JP2004082226A - Method of determining grinding conditions for glass sheet end face and ways of working glass sheet end face - Google Patents

Method of determining grinding conditions for glass sheet end face and ways of working glass sheet end face Download PDF

Info

Publication number
JP2004082226A
JP2004082226A JP2002242602A JP2002242602A JP2004082226A JP 2004082226 A JP2004082226 A JP 2004082226A JP 2002242602 A JP2002242602 A JP 2002242602A JP 2002242602 A JP2002242602 A JP 2002242602A JP 2004082226 A JP2004082226 A JP 2004082226A
Authority
JP
Japan
Prior art keywords
grinding
glass plate
face
sectional area
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002242602A
Other languages
Japanese (ja)
Other versions
JP3953915B2 (en
Inventor
Kazushi Shinozaki
篠崎 一資
Miki Yoshida
吉田 幹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2002242602A priority Critical patent/JP3953915B2/en
Publication of JP2004082226A publication Critical patent/JP2004082226A/en
Application granted granted Critical
Publication of JP3953915B2 publication Critical patent/JP3953915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve productivity in grinding the end face of a glass sheet by smoothly increasing feed rate, which was used to be set at a low level. <P>SOLUTION: In this invention, peripheral speed Vr, and feed rate V1 or grinding section area S are set so as to satisfy the condition of v = V1 x S/Vr ≤16×10<SP>-3</SP>. The ground face is excellent, and it is possible to process 1,500 to 2,660 glass sheets, using only one grinding wheel. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス板の端面を仕上がり精度を維持しつつ、能率良く研削することのできる研削条件の決定方法に関する。
【0002】
【従来の技術】
例えば、特開2001−87998公報「板ガラスの研削方法及び研削装置」の段落番号[0016]第2行〜第7行に「3,600rpmで回転駆動している回転砥石1・・・略・・・7,000mm/分の線速度で研削加工すると共に、」と記載されている。
【0003】
なお、上記公報の段落番号[0014]第2行に「回転砥石1は、直径が200mm」とあるので、0.2(m)×π×3600(回転/分)=2261(m/分)の換算により、回転砥石1の周速度は、2261(m/分)となる。
すなわち、上記公報の実施例では、周速度2261(m/分)で回転駆動している回転砥石1を送り速度7.0(m/分)で送ることにより、研削を実施していることになる。
【0004】
【発明が解決しようとする課題】
ガラス板の周長が2800mmであれば、2.8(m)/7.0(m/分)=0.4(分)=24(秒)の計算により、1枚のガラス板を研削処理するのに24秒を要してしまう。これでは、1時間当たり100枚程度(ロス時間を含む)しか処理できない。
近年の生産性向上の要求から、生産速度を上げる必要がある。
【0005】
生産性を上げるには、送り速度を上げることが有効であるが、ただ単に送り速度を上げただけでは、研削面に肌荒れが発生してしまうことがある。
【0006】
同様に、回転砥石の周速度を上げることが有効であるが、ただ単に周速度を上げるだけでは、焼けを発生してしまうことがある。さらに、モータをより高出力のモータに交換する必要もある。
【0007】
また、生産性を上げるために、砥石の切込みを浅くして研削断面積を小さくすることが考えられる。このためには、素板から所定形状に切り出す際の寸法精度や、切り出したガラス板の端面を研削する際の位置決め精度が重要になる。これら精度は、現状の設備でも十分満足すべきレベルにあり、換言すると改善の余地がほとんどないことになる。これ以上、切込みを浅くすると当然のことながら、研削されない部分、すなわち研削むらが発生することになる。
【0008】
この様に、研削の条件を個々に変更すると、問題が発生し易いため、上記公報の様に低めの送り速度7.0(m/分)に設定せざるを得ないのが現状であった。
【0009】
【課題を解決するための手段】
本発明者らは、複数の要素が相互に影響し合っていることを前提として、複数の要素の選定及び相関を調べる研究を実施した。
【0010】
要素には、砥石の種類・外径・幅・周速度、クーラント液の種類・温度・供給量、ガラス板の形状・長さ・厚さ・送り速度、研削断面積、外気温度など各種のものが考えられる。
【0011】
砥石の種類はガラス板の端面の研削に限れば、ダイヤモンド砥石などに種類を限定することができる。
砥石の外径は、周速度で管理すれば、その大小は問題にならない。砥石の幅は、ガラス板の厚さを優先すれば、無視することができる。
【0012】
クーラント液の種類は、ガラス板の端面の研削に限れば、種類を限定することができる。クーラント液の温度は、特に加熱又は冷却などを行わずに、十分な液量を循環させれば、一定の温度範囲にすることができるので、要素から外すことができる。クーラント液の供給量は、研削面が高温にならぬ程度に冷却することと、研削面の切り粉を除去できる量であればよく、それ程、厳密に管理する必要はない。
【0013】
ガラス板は、研削長さで管理すれば、板形状や長さは問題にならない。ガラスの厚さと切込み代は、重要である。そこで、厚さと切込み代の積に対応する値としての研削断面積を使用することにした。
外気温度は影響が少ないので無視することにした。
【0014】
以上の考えから、重要要素として、砥石の周速度、送り速度及び研削断面積の3つを選択した。すなわち、送り速度は生産性に直接影響する最重要要素である。研削断面積は、砥石に及ぼす負荷抵抗を決定する要素であり、研削断面積が大きければ、送り速度を下げる必要が出てくる。砥石の周速度は、切削性能に影響するため、周速度が大きいほど送り速度を上げることができる。
【0015】
さらに、砥石への負荷を考えると、砥石は円板の外周面に接着剤によりダイヤモンド粒子を貼り付けてなるから、使用上の許容最大負荷は自ずと定まる。
このときの負荷は、送り速度並びに研削断面積に比例することは言うまでもない。
【0016】
そして、砥石の周速度を上げることで送り速度や研削断面積を増加することが可能となった使用上の経験から、本発明者らは、(送り速度×研削断面積)/周速度が砥石に与える負荷を規定するのではないか、と考えるに至った。
【0017】
(送り速度×研削断面積)/周速度は、砥石の単位長さ当りの研削量と表現することができる。砥石の単位長さ当りの研削量をv、送り速度をVl、周速度をVr、研削断面積をSとすれば、v=(Vl・S)/Vrとなる。このvを管理することにより、研削条件の適正化を図ることができるのではないか、と考えるに至り、この考えの検証を行うことにした。
【0018】
まず、砥石の周速度、送り速度及び研削断面積の影響を調べる。なお、研削断面積Sは次の図で定義する面積である。
図1(a)〜(c)は本発明の研削断面積の説明図である。
(a)は研削前のガラス板11を示す。
(b)は回転砥石12で研削した後のガラス板13を示す。ガラス板13は図面に表裏方向に移動する。
(c)は研削断面積Sを示す図であり、(b)で想像線で示したエリアに相当する。
【0019】
図2(a)、(b)は本発明における研削量と砥石の関係を示す模式図である。
(a)において、回転砥石12が周速度Vrで反時計回りに回転し、ガラス板13が送り速度Vlで図面下方へ移動している状態を示す。今、回転砥石12の中心を通り、ガラス板13の移動方向と直交する線がガラス板13に交わった点をP1、この点P1より、反時計方向に角度θ離れた点をP2とする。そして回転砥石12は時間tで角度θだけ、回転するとする。この結果、点P1〜点P2間の弧長は、t・Vrとなる。
【0020】
(b)は、時間tが経過した時を示し、(a)〜(b)間に、ガラス板13はt・Vlだけ進み、ガラス板13から想像線で示す小片が研削除去されたと考えると、この小片の体積は、t・Vl・Sとなる。
【0021】
(a)及び(b)から、小片の体積(t・Vl・S)の増減を考えると、角度θを増加すれば、小片の体積(t・Vl・S)は大きくなる。逆に、角度θが減少すれば、小片の体積(t・Vl・S)は小さくなる。
すなわち、小片の体積(t・Vl・S)は弧長(t・Vr)の関数であることが予想される。
そこで、各要素Vl、Vr、Sを種々変更しつつ、研削実験を続けた。その結果を次の表で説明する。
【0022】
【表1】

Figure 2004082226
【0023】
表は、第1コラムに項目及びそのシンボル記号としての送り速度:Vl、砥石周速度:Vr、研削断面積:Sを順に並べ、その次に研削面の良否、砥石単位長さ当りの研削量:v及び砥石の寿命:ガラス板の処理枚数を列記した。
【0024】
なお、砥石単位長さ当りの研削量:vは、表の欄外(下方)の計算式(Vl・S/Vr)で、求める。なお、vの単位は、単純にはmmであるが、砥石1mm当りの研削量とすべく、mm/mmを使用する。
【0025】
砥石の寿命は、1個の回転砥石で、何枚のガラス板が処理できたかで定めることとした。
表の第2コラムは、単位を示す。第3コラム以降は実験例の番号を示す。
【0026】
実験1は、送り速度:Vlが24m/分、砥石周速度:Vrが3391m/分、研削断面積:Sが1.85mmの条件で実験を行った。
研削面の仕上り性は良好であった。計算によれば、砥石単位長さ当りの研削量:vは13.1×10 mm/mmとなる。そして、一個の砥石で2580枚のガラス板が処理できた。なお、砥石が寿命に達したときとは、研削面の肌あれが許容限度を超えたときとした。
【0027】
同様に実験2〜実験6は、表に示す条件で実験を行い、表に記載の結果を得た。ただし、実験6だけは研削面の仕上りは不良であった。
研削面の良否の判定から、砥石単位長さ当りの研削量:vが実験3の17.2×10 mm/mm以下であれば、肌荒れの問題は発生しないことが判明した。
【0028】
図3は本発明のvと砥石寿命の関係を示すグラフであり、横軸は砥石単位長さ当りの研削量v、縦軸はガラス板の処理枚数とした。そして、前記表1のvと砥石の寿命とから、データをプロットしたのが黒点(・)である。これらの黒点群を結ぶことで右下がりの直線Lを引くことができる。この直線Lによれば、砥石の寿命は研削量vに一次比例することが分かる。
【0029】
右下がりの直線Lは、生産性を上げるべく送り速度や砥石周速度を上げたために、砥石の寿命が短くなったとの考えに合致する。
従来の技術で述べたとおりに、ガラス板の研削作業では、少なくととも1時間当り100枚程度の処理が見込める。1日の稼働時間を10時間とすれば、少なくとも1000枚は、砥石を交換することなく、処理できることが望ましい。
【0030】
そこで、図3のグラフの縦軸の1000の目盛りから、破線を横に引き、直線Lから下へ折り返せば、v(v=Vl・S/Vr)は16.3×10 mm/mmとなる。この値を丸めた16.0×10 mm/mm以下にvを保てば、研削面の仕上がり性を良好に保ちつつ、砥石の寿命を確保することができる。
【0031】
以上から、請求項1は、ガラス板端面を回転砥石で研削するに際し、前記回転砥石の周速度をVr(m/分)、回転砥石に対するガラス板の相対送り速度をVl(m/分)、研削断面積をS(mm)としたときに、Vl・S/Vr≦16×10 の条件を満たすように、前記周速度Vr、送り速度Vl又は研削断面積Sを決定することを特徴とする。
【0032】
Vl・S/Vr≦16×10 の条件を満たすように、周速度Vr、送り速度Vl又は研削断面積Sを決定することにより、研削面の仕上がり性を良好に保ちつつ、砥石の寿命を確保することができる。
【0033】
ただし、v(v=Vl・S/Vr)を小さくすると、生産性が低下する可能性があるので、その検討を次に行う。
【0034】
図4は本発明のvと送り速度Vlの関係を示すグラフであり、横軸は砥石単位長さ当りの研削量v、縦軸は送り速度Vlとした。
送り速度の大小が生産量の大小に直接関係する。そこで、v=Vl・S/Vrを、変形してVl=(Vr/S)vとする。この式に、前記表1の実験5での値、Vr=3391m/分及びS=2.19mmを代入し、Vl=(3391/2.19)vの関数とすれば、図4に示す左下がりの直線を得ることができる。
【0035】
送り速度が、ほぼ生産量を決定するため、vを極度に下げることは好ましくない。v=16×10 での生産量を100%とした場合に、生産量は75%は確保したい。75%であれば、vは12×10 となる。図3によれば、v=12×10 で、ガラス板の処理枚数は3000枚を超える。これであれば、3〜4日は回転砥石を交換する必要が無くなる。
【0036】
従って、研削面の仕上がり性を良好に保ちつつ、砥石の寿命を確保し且つ生産性を高い水準に保つには、v(v=Vl・S/Vr)は12×10 〜16×10 の範囲から選択することが望ましいと言える。
【0037】
すなわち、請求項2は、ガラス板端面を回転砥石で研削するに際し、前記回転砥石の周速度をVr(m/分)、回転砥石に対するガラス板の相対送り速度をVl(m/分)、研削断面積をS(mm)としたときに、12×10 ≦(Vl・S/Vr)≦16×10 の条件を満たすように、前記周速度Vr、送り速度Vl又は研削断面積Sを決定することを特徴とする。
【0038】
12×10 ≦(Vl・S/Vr)≦16×10 の条件を満たすように、周速度Vr、送り速度Vl又は研削断面積Sを決定すれば、研削面の仕上がり性を良好に保ちつつ、砥石の寿命を確保し且つ生産性を高い水準に保つことができる。
【0039】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。
図5は本発明方法を実施するための研削装置の正面図であり、研削装置20は、図面左右、表裏方向へ移動する可動ベッド21と、この可動ベッド21上に設けたバキュームベース22・・・(・・・は複数を示す。)と、回転砥石12を高速で回転させる砥石駆動モータ24と、このモータ24を揺動可能に保持する砥石駆動モータ支持手段25と、前記回転砥石12へ所定量のクーラント液を噴射するクーラント噴射ノズル26と、からなり、バキュームベース22・・・にホールドさせたガラス板11を研削することのできる装置である。
【0040】
図6は図5の6−6矢視図であり、回転砥石12を毎分数千mの周速度Vrで高速回転させる。また、ガラス板11を毎分数十mの送り速度Vlで、回転砥石12に当てながら送る。クーラント噴射ノズル26からは毎分数十リットルのクーラント液を噴射することで、切削点での温度上昇を抑えると共に、切削の円滑化を図る。
【0041】
研削点Aでは、点Aを基準に、X軸、Y軸、θ軸の3軸同時制御することにより、回転砥石12でガラス板11の端面を研削することができる。
以上により、ガラス板11を効率よく研削することができる。
【0042】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
先ず、本発明ではガラス板の無数にある研削要素から、重要要素として、砥石の周速度、送り速度及び研削断面積の3つを選択し、送り速度をVl、周速度をVr、研削断面積をSとし、v=(Vl・S)/Vrなる砥石の単位長さ当りの研削量をvを管理指標とすることで、研削条件を決めることを提案するものであり、v=(Vl・S)/Vrの管理指標を用いることにより、研削面の仕上がり性と砥石の寿命の両方を確保しつつ、研削条件を決めることができ、研削作業者の負担を大幅に軽減できると共に、研削不良の発生を防止することができるようになった。
【0043】
具体的には、請求項1のガラス板端面の研削条件決定方法によれば、Vl・S/Vr≦16×10 の条件を満たすように、周速度Vr、送り速度Vl又は研削断面積Sを決定することにより、研削面の仕上がり性を良好に保ちつつ、砥石の寿命を確保することができる。
【0044】
請求項2のガラス板端面の研削条件決定方法によれば、12×10 ≦(Vl・S/Vr)≦16×10 の条件を満たすように、周速度Vr、送り速度Vl又は研削断面積Sを決定すれば、研削面の仕上がり性を良好に保ちつつ、砥石の寿命を確保し且つ生産性を高い水準に保つことができる。
【0045】
請求項3のガラス板端面の加工方法によれば、上記の研削条件にてガラス板端面を研削する方法であり、ガラス板の端面を仕上がり精度を維持しつつ、能率良く研削することができる加工方法である。
【図面の簡単な説明】
【図1】本発明の研削断面積の説明図
【図2】本発明における研削量と砥石の関係を示す模式図
【図3】本発明のvと砥石寿命の関係を示すグラフ
【図4】本発明のvと送り速度Vlの関係を示すグラフ
【図5】本発明方法を実施するための研削装置の正面図
【図6】図5の6−6矢視図
【符号の説明】
11…ガラス板、12…回転砥石、20…研削装置、24…砥石駆動モータ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for determining grinding conditions that can efficiently grind an end face of a glass plate while maintaining finishing accuracy.
[0002]
[Prior art]
For example, in Japanese Patent Application Laid-Open No. 2001-87998, “Plate Glass Grinding Method and Grinding Apparatus”, paragraph number [0016], from the second line to the seventh line, “Rotating wheel 1 rotating at 3,600 rpm. And grinding at a linear speed of 7,000 mm / min. "
[0003]
In the above publication, the second row of paragraph number [0014] states that the diameter of the rotary grindstone 1 is 200 mm, so that 0.2 (m) × π × 3600 (rotation / min) = 2261 (m / min) By conversion, the peripheral speed of the rotary grindstone 1 becomes 2261 (m / min).
In other words, in the embodiment of the above publication, the grinding is performed by feeding the rotating grindstone 1 rotating at a peripheral speed of 2261 (m / min) at a feed speed of 7.0 (m / min). Become.
[0004]
[Problems to be solved by the invention]
If the perimeter of the glass plate is 2800 mm, one glass plate is ground by the calculation of 2.8 (m) /7.0 (m / min) = 0.4 (min) = 24 (sec) It takes 24 seconds to do that. In this case, only about 100 sheets (including loss time) can be processed per hour.
Due to recent demands for productivity improvement, it is necessary to increase the production speed.
[0005]
To increase the productivity, it is effective to increase the feed rate. However, simply increasing the feed rate may cause roughening of the ground surface.
[0006]
Similarly, it is effective to increase the peripheral speed of the rotating grindstone, but simply increasing the peripheral speed may cause burning. Further, it is necessary to replace the motor with a higher output motor.
[0007]
Further, in order to increase the productivity, it is conceivable to reduce the depth of the grinding wheel to reduce the grinding cross-sectional area. For this purpose, dimensional accuracy when cutting out the base plate into a predetermined shape and positioning accuracy when grinding the end surface of the cut glass plate are important. These accuracies are at a satisfactory level even with the current equipment, in other words, there is little room for improvement. If the cut is made shallower than this, naturally, a portion that is not ground, that is, uneven grinding occurs.
[0008]
As described above, if the grinding conditions are individually changed, a problem is likely to occur. Therefore, at present, it is necessary to set a lower feed rate of 7.0 (m / min) as described in the above publication. .
[0009]
[Means for Solving the Problems]
The present inventors conducted research on selecting a plurality of elements and examining correlations, assuming that a plurality of elements influence each other.
[0010]
Elements include various types such as grinding wheel type, outer diameter, width, peripheral speed, coolant liquid type, temperature, supply amount, glass plate shape, length, thickness, feed rate, grinding cross-sectional area, and outside air temperature Can be considered.
[0011]
As long as the type of the grinding wheel is limited to grinding the end face of the glass plate, the type can be limited to a diamond grinding wheel or the like.
If the outer diameter of the grindstone is controlled by the peripheral speed, its size does not matter. The width of the grindstone can be ignored if the thickness of the glass plate is prioritized.
[0012]
The type of the coolant liquid can be limited as long as it is limited to grinding the end face of the glass plate. The temperature of the coolant liquid can be kept within a certain temperature range by circulating a sufficient amount of the liquid without particularly performing heating or cooling, and can be removed from the element. The supply amount of the coolant liquid may be an amount capable of cooling the ground surface so as not to reach a high temperature and removing chips from the ground surface, and does not need to be so strictly controlled.
[0013]
If the glass plate is controlled by the grinding length, the plate shape and length do not matter. Glass thickness and cutting depth are important. Therefore, the grinding cross-sectional area is used as a value corresponding to the product of the thickness and the cutting allowance.
The outside air temperature is so small that it is ignored.
[0014]
From the above considerations, three important factors were selected: the peripheral speed of the grinding wheel, the feed speed, and the grinding cross-sectional area. That is, the feed rate is the most important factor that directly affects productivity. The grinding cross-sectional area is an element that determines the load resistance exerted on the grindstone. If the grinding cross-sectional area is large, it is necessary to reduce the feed speed. Since the peripheral speed of the grindstone affects cutting performance, the feed speed can be increased as the peripheral speed increases.
[0015]
Further, considering the load on the grindstone, since the grindstone is formed by attaching diamond particles to the outer peripheral surface of the disk with an adhesive, the allowable maximum load in use is naturally determined.
It goes without saying that the load at this time is proportional to the feed rate and the grinding cross-sectional area.
[0016]
From the experience in use that it was possible to increase the feed speed and the grinding cross-sectional area by increasing the peripheral speed of the grinding wheel, the present inventors found that (feed speed x grinding cross-sectional area) / peripheral speed was I came to think that it might regulate the load to be applied to
[0017]
(Feeding speed × ground cross-sectional area) / peripheral speed can be expressed as the amount of grinding per unit length of the grinding wheel. Assuming that the grinding amount per unit length of the grindstone is v, the feed speed is Vl, the peripheral speed is Vr, and the grinding cross-sectional area is S, v = (Vl · S) / Vr. By managing this v, it was thought that the grinding conditions could be optimized, and this idea was verified.
[0018]
First, the effects of the peripheral speed, feed speed, and cross-sectional area of the grinding wheel are examined. The grinding cross-sectional area S is an area defined in the following figure.
1 (a) to 1 (c) are explanatory diagrams of the grinding cross-sectional area of the present invention.
(A) shows the glass plate 11 before grinding.
(B) shows the glass plate 13 after being ground by the rotating grindstone 12. The glass plate 13 moves in front and back directions in the drawing.
(C) is a diagram showing the grinding cross-sectional area S, which corresponds to the area shown by the imaginary line in (b).
[0019]
FIGS. 2A and 2B are schematic diagrams showing the relationship between the grinding amount and the grinding wheel in the present invention.
3A shows a state in which the rotary grindstone 12 rotates counterclockwise at the peripheral speed Vr, and the glass plate 13 moves downward in the drawing at the feed speed Vl. Now, let P1 be a point where a line passing through the center of the rotary grindstone 12 and orthogonal to the moving direction of the glass plate 13 intersects the glass plate 13, and let P2 be a point separated from this point P1 by an angle θ counterclockwise. Then, it is assumed that the rotating grindstone 12 rotates by the angle θ at time t. As a result, the arc length between the points P1 and P2 is t · Vr.
[0020]
(B) shows the time when the time t has elapsed, and it is assumed that the glass plate 13 has advanced by t · Vl between (a) and (b), and the small piece indicated by the imaginary line has been ground and removed from the glass plate 13. , The volume of this small piece is t · Vl · S.
[0021]
From (a) and (b), considering the increase / decrease of the volume (t · V1 · S) of the small piece, the volume (t · V1 · S) of the small piece increases as the angle θ increases. Conversely, as the angle θ decreases, the volume of the small piece (t · Vl · S) decreases.
That is, it is expected that the volume of the small piece (t · Vl · S) is a function of the arc length (t · Vr).
Therefore, the grinding experiment was continued while variously changing each of the elements Vl, Vr, and S. The results are described in the following table.
[0022]
[Table 1]
Figure 2004082226
[0023]
In the table, in the first column, items and their feed rates as symbol symbols: Vl, grinding wheel peripheral speed: Vr, grinding cross-sectional area: S are arranged in order, followed by the quality of the grinding surface, and the grinding amount per unit length of the grinding wheel. : V and life of whetstone: The number of processed glass plates was listed.
[0024]
The grinding amount per unit length of the grindstone: v is obtained by the calculation formula (Vl.S / Vr) outside (downward) of the table. The unit of v is simply mm 2 , but mm 3 / mm is used in order to set the grinding amount per 1 mm of the grindstone.
[0025]
The life of the grindstone was determined by how many glass plates could be processed by one rotating grindstone.
The second column of the table shows units. The third and subsequent columns show the numbers of the experimental examples.
[0026]
In Experiment 1, an experiment was performed under the conditions of a feed speed: Vl of 24 m / min, a grinding wheel peripheral speed: Vr of 3,391 m / min, and a grinding cross-sectional area: S of 1.85 mm 2 .
The finish of the ground surface was good. According to calculations, the grinding amount per grinding unit length: v is 13.1 × 10 - a 3 mm 3 / mm. Then, 2580 glass plates could be processed with one grindstone. In addition, the time when the grinding wheel reached the life was defined as the time when the surface roughness of the ground surface exceeded the allowable limit.
[0027]
Similarly, in Experiments 2 to 6, experiments were performed under the conditions shown in the table, and the results shown in the table were obtained. However, only in Experiment 6, the finish of the ground surface was poor.
From the determination of the quality of the grinding surface, the grinding amount per grinding unit length: v is 17.2 × 10 experiments 3 - not more than 3 mm 3 / mm, rough skin problems were found not to occur.
[0028]
FIG. 3 is a graph showing the relationship between v in the present invention and the life of the grinding wheel. The horizontal axis represents the grinding amount v per unit length of the grinding wheel, and the vertical axis represents the number of processed glass plates. The data is plotted based on v in Table 1 and the life of the grindstone to obtain black points (•). By connecting these black dot groups, a straight line L descending to the right can be drawn. According to the straight line L, it can be seen that the life of the grinding wheel is linearly proportional to the grinding amount v.
[0029]
The straight line L falling to the right agrees with the idea that the service life of the grinding wheel has been shortened because the feed speed and the peripheral speed of the grinding wheel have been increased in order to increase the productivity.
As described in the background art, in the grinding operation of a glass plate, at least about 100 sheets can be processed per hour. If the operating time per day is 10 hours, it is desirable that at least 1,000 wafers can be processed without replacing the grindstone.
[0030]
Therefore, from 1000 the scale of the vertical axis of the graph of FIG. 3, pull the broken line in the lateral, if Orikaese from the straight line L to bottom, v (v = Vl · S / Vr) is 16.3 × 10 - 3 mm 3 / mm. This value was 16.0 × 10 rounds - Keeping the v to 3 mm 3 / mm or less, while maintaining good finish of the grinding surface can be ensured grindstone life.
[0031]
From the above, the first aspect is that, when grinding the end surface of the glass plate with the rotary grindstone, the peripheral speed of the rotary grindstone is Vr (m / min), the relative feed speed of the glass plate to the rotary grindstone is Vl (m / min), grinding sectional area is taken as S (mm 2), Vl · S / Vr ≦ 16 × 10 - so as to satisfy the third condition, the peripheral speed Vr, to determine the feed rate Vl or grinding sectional area S Features.
[0032]
Vl · S / Vr ≦ 16 × 10 - as to satisfy the third condition, the peripheral speed Vr, by determining the feed speed Vl or grinding sectional area S, while maintaining good finish of the grinding surface, grinding wheel life Can be secured.
[0033]
However, if v (v = V1 · S / Vr) is reduced, the productivity may be reduced.
[0034]
FIG. 4 is a graph showing the relationship between v and the feed speed Vl according to the present invention, in which the horizontal axis represents the grinding amount v per unit length of the grindstone, and the vertical axis represents the feed speed Vl.
The magnitude of the feed rate is directly related to the magnitude of the output. Therefore, v = V1 · S / Vr is transformed to V1 = (Vr / S) v. By substituting the values in Experiment 5 of Table 1 above, Vr = 3391 m / min, and S = 2.19 mm 2 into this equation, and assuming a function of Vl = (3391 / 2.19) v, it is shown in FIG. A straight line descending left can be obtained.
[0035]
Extremely lowering v is not preferred because the feed rate largely determines the output. v = 16 × 10 - the production of the three is 100% production volume 75% want to secure. If 75%, v is 12 × 10 - a 3. According to FIG. 3, v = 12 × 10 - 3, the number of processed glass sheets exceeds 3000 sheets. In this case, there is no need to replace the rotating grindstone for three to four days.
[0036]
Accordingly, while maintaining good finish of the grinding surface, to keep the and productivity to ensure grinding wheel life at a high level, v (v = Vl · S / Vr) is 12 × 10 - 3 ~16 × 10 - it may be desirable to select from the 3 range.
[0037]
That is, when grinding the end face of the glass plate with a rotary grindstone, the peripheral speed of the rotary grindstone is Vr (m / min), and the relative feed speed of the glass plate to the rotary grindstone is Vl (m / min). the cross-sectional area is taken as S (mm 2), 12 × 10 - 3 ≦ (Vl · S / Vr) ≦ 16 × 10 - so as to satisfy the third condition, the peripheral velocity Vr, feed speed Vl or grinding sectional It is characterized in that the area S is determined.
[0038]
12 × 10 - 3 ≦ (Vl · S / Vr) ≦ 16 × 10 - so as to satisfy the third condition, the peripheral speed Vr, be determined feed speed Vl or grinding sectional area S, good finish of the grinding surface , While maintaining the life of the grindstone and maintaining the productivity at a high level.
[0039]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the accompanying drawings.
FIG. 5 is a front view of a grinding device for carrying out the method of the present invention. The grinding device 20 includes a movable bed 21 that moves left and right, front and back, and a vacuum base 22 provided on the movable bed 21. ··································· Grinding wheel drive motor 24 that rotates the rotating grindstone 12 at high speed; And a coolant injection nozzle 26 for injecting a predetermined amount of coolant, and is capable of grinding the glass plate 11 held on the vacuum bases 22.
[0040]
FIG. 6 is a view taken in the direction of arrows 6-6 in FIG. 5, in which the rotating grindstone 12 is rotated at a high speed at a peripheral speed Vr of several thousand meters per minute. Further, the glass plate 11 is fed while being brought into contact with the rotating grindstone 12 at a feed speed Vl of several tens of meters per minute. By injecting several tens of liters of coolant liquid per minute from the coolant injection nozzle 26, the temperature rise at the cutting point is suppressed and the cutting is facilitated.
[0041]
At the grinding point A, the end surface of the glass plate 11 can be ground with the rotary grindstone 12 by simultaneously controlling the three axes of the X axis, the Y axis, and the θ axis based on the point A.
As described above, the glass plate 11 can be efficiently ground.
[0042]
【The invention's effect】
The present invention has the following effects by the above configuration.
First, in the present invention, three innumerable grinding elements of a glass sheet are selected as important elements: a peripheral speed of a grinding wheel, a feed speed, and a grinding cross-sectional area. Is defined as S, and the grinding amount per unit length of the grinding wheel of v = (Vl · S) / Vr is used as a control index to determine the grinding condition, and v = (Vl · By using the control index of S) / Vr, it is possible to determine the grinding conditions while securing both the finishability of the ground surface and the life of the grinding wheel, and it is possible to greatly reduce the burden on the grinding operator and to reduce the grinding defect. Can be prevented from occurring.
[0043]
Specifically, according to the grinding condition determination method for a glass plate end faces of claim 1, Vl · S / Vr ≦ 16 × 10 - so as to satisfy the third condition, the peripheral speed Vr, feed speed Vl or grinding sectional area By determining S, it is possible to secure the life of the grindstone while maintaining good finish of the ground surface.
[0044]
According to the grinding condition determination method for a glass plate end faces of claims 2, 12 × 10 - 3 ≦ (Vl · S / Vr) ≦ 16 × 10 - so as to satisfy the third condition, the peripheral speed Vr, feed speed Vl or If the grinding cross-sectional area S is determined, the life of the grinding wheel can be ensured and the productivity can be maintained at a high level while maintaining the finish quality of the grinding surface in good condition.
[0045]
According to the method for processing an end face of a glass sheet according to claim 3, the end face of the glass sheet is ground under the above-described grinding conditions, and the end face of the glass sheet can be efficiently ground while maintaining the finishing accuracy. Is the way.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a grinding cross-sectional area of the present invention. FIG. 2 is a schematic diagram showing a relationship between a grinding amount and a grinding wheel in the present invention. FIG. 3 is a graph showing a relationship between v and grinding wheel life of the present invention. FIG. 5 is a graph showing the relationship between v and feed rate Vl according to the present invention. FIG. 5 is a front view of a grinding apparatus for carrying out the method of the present invention. FIG. 6 is a view taken along arrows 6-6 in FIG.
11: glass plate, 12: rotary grindstone, 20: grinding device, 24: grindstone drive motor.

Claims (3)

ガラス板端面を回転砥石で研削するに際し、前記回転砥石の周速度をVr(m/分)、ガラス板の送り速度をVl(m/分)、研削断面積をS(mm)としたときに、Vl・S/Vr≦16×10 の条件を満たすように、前記周速度Vr、送り速度Vl又は研削断面積Sを決定することを特徴とするガラス板端面の研削条件決定方法。When grinding the end surface of the glass plate with a rotary grindstone, when the peripheral speed of the rotary grindstone is Vr (m / min), the feed speed of the glass plate is Vl (m / min), and the grinding sectional area is S (mm 2 ) to, Vl · S / Vr ≦ 16 × 10 - so as to satisfy the third condition, the peripheral velocity Vr, grinding condition determination method for a glass plate end face and determines the feed rate Vl or grinding sectional area S. ガラス板端面を回転砥石で研削するに際し、前記回転砥石の周速度をVr(m/分)、回転砥石に対するガラス板の相対送り速度をVl(m/分)、研削断面積をS(mm)としたときに、12×10 ≦(Vl・S/Vr)≦16×10 の条件を満たすように、前記周速度Vr、送り速度Vl又は研削断面積Sを決定することを特徴とするガラス板端面の研削条件決定方法。When grinding the end face of the glass plate with a rotary grindstone, the peripheral speed of the rotary grindstone is Vr (m / min), the relative feed speed of the glass plate to the rotary grindstone is Vl (m / min), and the grinding cross-sectional area is S (mm 2). when the in), 12 × 10 - 3 ≦ (Vl · S / Vr) ≦ 16 × 10 - so as to satisfy the third condition, the peripheral speed Vr, to determine the feed rate Vl or grinding sectional area S Characteristic method of determining grinding conditions for glass plate end face. 請求項1又は2に記載のガラス板端面の研削条件決定方法によって決定された研削条件にて、ガラス板端面を研削することを特徴とするガラス板端面の加工方法。A method for processing an end surface of a glass plate, wherein the end surface of the glass plate is ground under the grinding conditions determined by the method for determining a grinding condition for an end surface of a glass plate according to claim 1.
JP2002242602A 2002-08-22 2002-08-22 Method for determining grinding condition of glass plate end surface and method for processing glass plate end surface Expired - Fee Related JP3953915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242602A JP3953915B2 (en) 2002-08-22 2002-08-22 Method for determining grinding condition of glass plate end surface and method for processing glass plate end surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242602A JP3953915B2 (en) 2002-08-22 2002-08-22 Method for determining grinding condition of glass plate end surface and method for processing glass plate end surface

Publications (2)

Publication Number Publication Date
JP2004082226A true JP2004082226A (en) 2004-03-18
JP3953915B2 JP3953915B2 (en) 2007-08-08

Family

ID=32051643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242602A Expired - Fee Related JP3953915B2 (en) 2002-08-22 2002-08-22 Method for determining grinding condition of glass plate end surface and method for processing glass plate end surface

Country Status (1)

Country Link
JP (1) JP3953915B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087135A (en) * 2006-10-04 2008-04-17 Nippon Electric Glass Co Ltd End surface grinding device of glass substrate and end surface grinding method
WO2012073626A1 (en) * 2010-12-01 2012-06-07 旭硝子株式会社 Grinding method and grinding device
WO2019198558A1 (en) * 2018-04-10 2019-10-17 日本電気硝子株式会社 Glass plate, and glass plate manufacturing method and end surface inspection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087135A (en) * 2006-10-04 2008-04-17 Nippon Electric Glass Co Ltd End surface grinding device of glass substrate and end surface grinding method
WO2012073626A1 (en) * 2010-12-01 2012-06-07 旭硝子株式会社 Grinding method and grinding device
WO2019198558A1 (en) * 2018-04-10 2019-10-17 日本電気硝子株式会社 Glass plate, and glass plate manufacturing method and end surface inspection method
JPWO2019198558A1 (en) * 2018-04-10 2021-05-13 日本電気硝子株式会社 Glass plate, glass plate manufacturing method and end face inspection method
JP7311842B2 (en) 2018-04-10 2023-07-20 日本電気硝子株式会社 GLASS SUBSTRATE FOR DISPLAY AND METHOD FOR MANUFACTURING GLASS SUBSTRATE FOR DISPLAY

Also Published As

Publication number Publication date
JP3953915B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
US7189145B2 (en) Method of and apparatus for producing roll
JP2010214550A (en) Chamfering device of silicon ingot, and chamfering method of prismatic silicon ingot using the same
WO2000063963A1 (en) Non-abrasive conditioning for polishing pads
JP2010262955A (en) Chamfering apparatus of silicon ingot and method for chamfering prismatic silicon ingot by using the same
JP2007054896A (en) Grinding method and grinder
JPH10217095A (en) Wire saw and work cutting method by wire saw
JP2010214552A (en) Chamfering device of prismatic silicon ingot, and chamfering method of prismatic silicon ingot using the same
JP2004082226A (en) Method of determining grinding conditions for glass sheet end face and ways of working glass sheet end face
JP2006205281A (en) Dressing device, grinding device, dressing method and numerical control program
JP2019126887A (en) Removal processing method, removal processing program and removal processor
JP2008023690A (en) Truing method for wafer chamfering grinding wheel and wafer chamfering device
JPH087272A (en) Production of magnetic disk substrate
JP2004342985A (en) Polishing device and method for dressing polishing pad
JPH10328986A (en) Disk substrate intermediate, manufacture thereof, and grinding work device
JPH07148648A (en) Grinding device and grinding method
JPH11207731A (en) Narrow width cutting and narrow groove working method
JP4313285B2 (en) Edge processing device for plate workpiece
WO2000053370A2 (en) Method and apparatus for non-abrasive conditioning of polishing pads
JP2012135854A (en) Method for grinding lithium tantalate
JP2003260646A (en) Grinding method of nonaxisymmetric and aspheric surface, and its device
JP2002066931A (en) Grinding wheel and method and device for mirror finished surface grinding
JP2001062685A (en) Grinding device
JPH11198006A (en) Manufacture of surface processed substrate and processing device used for such manufacture
JP2000176832A (en) Grinding method
JP2001054864A (en) Grinding method and grinding wheel using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050308

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A131 Notification of reasons for refusal

Effective date: 20070327

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070425

LAPS Cancellation because of no payment of annual fees