JP2004081969A - Adsorbent for harmful substance in exhaust gas and method of removing the same - Google Patents

Adsorbent for harmful substance in exhaust gas and method of removing the same Download PDF

Info

Publication number
JP2004081969A
JP2004081969A JP2002245767A JP2002245767A JP2004081969A JP 2004081969 A JP2004081969 A JP 2004081969A JP 2002245767 A JP2002245767 A JP 2002245767A JP 2002245767 A JP2002245767 A JP 2002245767A JP 2004081969 A JP2004081969 A JP 2004081969A
Authority
JP
Japan
Prior art keywords
activated carbon
exhaust gas
average particle
graphite
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002245767A
Other languages
Japanese (ja)
Other versions
JP3888950B2 (en
Inventor
Atsushi Hirayama
平山 敦
Toru Shiomitsu
塩満 徹
Toshiaki Tsuji
辻 俊昭
Takeji Meguro
目黒 竹司
Hitoshi Kuwagaki
桑垣 整
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO GIJUTSU SERVICE KK
JFE Engineering Corp
Yokohama TLO Co Ltd
Original Assignee
KANKYO GIJUTSU SERVICE KK
JFE Engineering Corp
Yokohama TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO GIJUTSU SERVICE KK, JFE Engineering Corp, Yokohama TLO Co Ltd filed Critical KANKYO GIJUTSU SERVICE KK
Priority to JP2002245767A priority Critical patent/JP3888950B2/en
Publication of JP2004081969A publication Critical patent/JP2004081969A/en
Application granted granted Critical
Publication of JP3888950B2 publication Critical patent/JP3888950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safe operation means by preventing the combustion of active carbon, in a method of adsorbing and removing harmful substances in an exhaust gas by blowing the active carbon thereinto. <P>SOLUTION: An adsorbent for harmful substances in an exhaust gas comprises a mixture of the active carbon and high temperature conductor. The active carbon has an average particle diameter of 5-150 μm and a particle density of 0.5-1.7 g/ml and the high temperature conductor has a heat conductivity higher than that of the active carbon, an average particle diameter of 5-5,000 μm and a particle density of 0.1-9 g/ml. The method of removing the harmful substances in the exhaust gas using the adsorbent is also disclosed. The problem to be solved is solved by the adsorbent for harmful substances and the method of removing the harmful substances. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ごみ焼却炉やガス化溶融炉などから排出される排ガス中に含まれるダイオキシン類、重金属類等の有害物質を吸着する吸着剤、およびそれを用いた有害物質の除去方法に関するものである。
【0002】
【従来の技術】
ごみ焼却炉やガス化溶融炉から排出される排ガスに含まれるダイオキシン類、重金属類等の有害物質の除去方法として、活性炭を用いた吸着除去法等が用いられている。この活性炭を用いる方法は、粉末活性炭を排ガス中に吹き込む方法と粒状活性炭を充填した塔を排ガスを通過させる方法がある。活性炭はもとより炭素であるから発火の危険性をはらんでいるが燃焼排ガスは燃焼の際に酸素が消費されて低酸素濃度になっていることもあって特に対策はとられていない。
【0003】
一方、粒状活性炭を用いる方法は、充填された活性炭層の一部が局所的に高温になることが問題となり、その対策として活性炭に熱伝導性向上材を添加して造粒し、全体として熱伝導率を高めてこの局所的発熱を放散させる技術が開発されている(特開2000−272914号公報)、熱伝導性向上材は金属材、セラミック材、炭素材等であり、実施例で採用されているものはグラファイトである。
【0004】
【発明が解決しようとする課題】
本発明者らは粉末活性炭を吹き込む方法においても発火に対する対策が必要であることを見出した。すなわち、粉末活性炭の吹き込みによる有害ガス除去を行う場合、吹き込み前の粉末活性炭を貯留する貯留槽、集塵装置で集塵されその後払い落とされ集塵装置底部に堆積した使用後活性炭を含む飛灰堆積層、および集塵装置底部より搬出された使用後活性炭の混入した飛灰を貯留する貯留槽等において、大量の活性炭あるいは活性炭混入飛灰が堆積するケースが存在する。また、活性炭は外部から熱を与えられない場合にも、活性炭への被吸着物質の吸着がおこる際の吸着熱、活性炭中に本質的に存在する揮発性あるいは低沸点有機化合物の自然酸化による反応熱、活性炭に吸着した有機化合物の自然酸化による反応熱等を発生する。このような発熱が、前述した活性炭あるいは活性炭混入飛灰の堆積層において発生すると、活性炭および飛灰の熱伝導性の低さのために、熱が外部に放散されずに層内に蓄熱され層温度の上昇を招き、層温度が活性炭の炭材自体の発火温度まで上昇すると層全体が炎上してしまう危険性をはらんでいる。
【0005】
このような現象は活性炭の原料、製造法等によってはより加速される場合がある。例えば、リサイクル法の施行に伴い、建設廃材等の再利用が社会的に急務となっているが、廃材を分別し木材として新築建材として利用することは実際には困難であり、廃材の炭化、活性化による吸着剤としての利用が検討されている。とりわけごみ焼却炉におけるダイオキシン吸着への利用が実施されつつある。こうした利用は廃棄物の適正管理をすすめるため好ましいといえるが、廃木材を原料に用い活性炭を製造した場合、活性炭中にセメント等の付着物が混入するため、製品の発火点が低下し、利用条件によっては発火の危険が増す。また、従来の石炭等を原料とする活性炭に比べ、低密度のため、いったん発熱、発火した場合の類焼が早く、事故につながる危険性がより高まると考えられる。
【0006】
【課題を解決するための手段】
本発明者らは、このような課題を解決する手段として、特定の粒径と粒子密度を有する活性炭と高熱伝導体を組み合わせて混合し、この混合物を排ガス中に吹き込むことによって有害物質の除去性を損なうことなく発火の問題を解決できることを見出した。すなわち、粉末活性炭に高熱伝導体を混合することにより、熱伝導率を向上させることが可能となり、吹き込み前の粉末活性炭を貯留する貯留槽、集塵装置で集塵され、その後払い落とされ集塵装置底部に堆積した使用後活性炭を含む飛灰堆積層、および集塵装置底部より搬出された使用後活性炭の混入した飛灰を貯留する貯留槽等の、堆積層内における発熱を速やかに外部へと放熱させ層の温度上昇を防ぎ発火を防止できる。また、市販の活性炭と高熱伝導体を物理混合するだけで得られるため、その製造に特別な工程を必要とせず、安価に製造することができる。
【0007】
本発明は、かかる知見に基づいてなされたものであり、平均粒子径5〜150μm、粒子密度0.5〜1.7g/mlである活性炭と、該活性炭より高い熱伝導率を有し、かつ平均粒子径5〜5000μm、粒子密度0.1〜9g/mlである高熱伝導体の混合物よりなる、排ガス中の有害物質吸着剤、およびそれを用いた排ガスからの有害物質の除去方法に関するものである。
【0008】
【発明の実施の形態】
活性炭は、平均粒子径が5〜150μm程度、好ましくは10〜100μm程度、特に好ましくは10〜50μm程度、粒子密度が0.5〜1.7g/ml程度、好ましくは0.6〜1.5g/ml程度、特に好ましくは0.8〜1.3g/ml程度のものを用いる。ここでいうところの平均粒子径とは、ふるい分け法あるいはレーザー回析法等で測定した粒度分布の累積50%粒子径を指す。また、ここでいうところの粒子密度ρとは、プロパノール、ブタノール、ケロシン等に浸漬し液中での重量を測定するいわゆるアルキメデス法により測定した真密度ρ(g/cc)と、水銀圧入法あるいは窒素吸着法等によって求めた細孔容積Vpore(cc/g)より求めたものであり、
ρ=ρ/(1+ρ×Vpore) ………… 式(1)
で表される。
【0009】
上記平均粒子径と粒子密度は、吸着剤を例えばろ過式集塵機前に吹き込んで用いる場合、吹き込まれた粉末が排ガス気流に乗ってろ布に付着する必要があるためであり、これより大きいとろ布に付着する前に煙道に落下してしまい、またこれより小さいと粉体としてのハンドリング性の困難さ、あるいはろ布で集塵されずにろ布を通過してしまう等の不具合を生ずる。
【0010】
活性炭のその他の物性値としては、有害物質吸着能の点で比表面積が100m/g以上、望ましくは300m/g以上のものがよい。比表面積の上限は特に限定されないが実用上1200m/g程度までのものが用いられる。また、発火現象を防止するため、用いる活性炭の発火温度は400℃以上であることが好ましい。また望ましくは450℃以上、さらに望ましくは500℃以上であることが好ましい。一方、発火温度は高い程よいが、実用的観点から最高でも600℃程度である。活性炭は一般的に熱伝導率が低く、0.1〜0.4W/mK程度、通常0.1〜0.3W/mK程度である。ここでいうところの発火温度とは、示差熱分析計で測定した発熱ピークの立ち上がり変曲点の値である。これより発火温度が低いと、いくら熱伝導率を向上させても、発火に至る可能性が高くなる。
【0011】
活性炭の原料は、やしがら等の植物系原料でも良いが、より望ましくは石炭系原料が好ましい。なお、ここでいうところの活性炭には、当然のことながら活性コークスも含まれる。
【0012】
活性炭に物理混合する高熱伝導体は、用いる活性炭より熱伝導率が高いものを用いる。具体的値では0.2W/mK以上、好ましくは2〜1000W/mK程度、特に好ましくは20〜1000W/mK程度のものがよい。活性炭の熱伝導率に対する比率では10倍以上、好ましくは100倍以上のものが望ましい。
【0013】
高熱伝導体の具体例としては、セラミック、金属、黒鉛等が用いられるが、特に黒鉛はその熱伝導率が活性炭の数倍〜100倍程度高く、通常入手される材料において要求される平均粒子径や粒子密度を満たすものが存在し、また主構成元素が炭素であり活性炭と同じであることから、活性炭との混合性、使用後の処理条件の面において特に好ましい。また、同様にコークスの一種であるピッチコークスやニードルコークスを用いても良い。
【0014】
また、高熱伝導体の平均粒子径と粒子密度は、活性炭と同じ理由で、平均粒子径が5〜5000μm程度、好ましくは5〜500μm程度、特に好ましくは5〜200μm程度、粒子密度が0.1〜9g/ml程度、好ましくは0.5〜5g/ml程度、特に好ましくは1〜3g/ml程度のものを用いる。平均粒子径と粒子密度の意義は活性炭のところで説明した通りである。また、高熱伝導体が黒鉛である場合、黒鉛の平均粒子径は活性炭の平均粒子径の0.4〜1倍、好ましくは0.5〜1倍であることが望ましい。
【0015】
活性炭と高熱伝導体の混合割合は、用いる高熱伝導体の熱伝導率によって異なるが、混合比率が高い程、発火防止の効果があり、また有害物質除去率の観点から高熱伝導体の重量%で10〜80%、特に20〜50%が好ましい。
【0016】
本発明の吸着剤には第3成分を含有させることができる。例えば消石灰を混合して吹き込むことにより、酸性ガスの除去と有害物質の吸着除去との同時達成が可能となるとともに、消石灰の混合により活性炭が希釈されるため、発火防止の観点において好ましい。消石灰を添加する場合、好ましい添加量は、混合物1〜40重量%、消石灰が99〜60重量%程度、好ましくは混合物2〜20重量%、消石灰が98〜80重量%程度である。
【0017】
本発明の吸着剤はそのまま排ガス中に吹き込めばよい。その際、排ガスの温度は活性炭が充分に吸着能力を発揮する温度、具体的には250℃以下、好ましくは200℃以下、特に好ましくは180℃以下とする。ごみ焼却炉等から排出される燃焼排ガスは通常750〜950℃、ガス化溶融炉から排出される排ガスは800〜950℃と高いのでこれらはまず上記温度以下まで冷却してから排ガスに吹き込む。温度の下限は酸露点による腐食の問題から概ね160℃程度までである。吸着剤の吹込量は除去しようとする有害物質の種類と含有量および必要とする除去の程度等に応じて定められ、これは予め試験をして定めるのがよい。吹き込む位置はガス冷却設備等で冷却後集塵装置で、集塵されるまでの間がよい。集塵装置は本発明の吸着剤を捕集できるものであればよいが、バグフィルタが特に好ましい。この集塵装置は排ガス中の飛灰等も合わせて捕集させてもよい。
【0018】
【実施例】
[実施例1]
やしがらまたは石炭を原料とする市販の活性炭と数種類の市販の高熱伝導体との各混合物の熱伝導率、発火温度および発火に至るまでの投入電力量を測定した。
【0019】
用いたやしがら原料活性炭は比表面積1000m/g、平均粒子径20μm、粒子密度0.96g/ml、石炭原料活性炭は比表面積900m/g、平均粒子径25μm、粒子密度1.2g/mlのものである。また高熱伝導体には粉末黒鉛、フレーク状黒鉛、アルミニウム粉末およびニッケル粉末の4種類を用いた。粉末黒鉛は平均粒子径18μm、粒子密度1.5g/ml、フレーク状黒鉛は平均粒子径120μm、粒子密度1.4g/ml、アルミニウム粉末は平均粒子径19μm、粒子密度1.5g/ml、そして、ニッケル粉末は平均粒子径20μm、粒子密度2.5g/mlであった。
【0020】
発火温度は図1に示す装置を用いて発火試験を行って求めた。この装置にマッフル炉1の内部に金属製メッシュでできた円筒形容器2が設けられ、その中心に加熱用ヒータ3が設置されている。また、内部には温度計4が設置されている。各混合物5を金属製メッシュ2に充填してマッフル炉1に入れ、単位時間当り一定量の電力をヒーターに投入し、中心温度を測定した。この温度が急激に上昇する温度を発火温度とし、この時点までに投入した電力量を比較した。
得られた結果を表1に示す。
【0021】
【表1】

Figure 2004081969
【0022】
[実施例2]
原料および製造工程の異なる活性炭(16種類)および黒鉛(16種類)について、イソプロパノールを浸漬液として用いアルキメデス法により真密度を求め、また窒素吸着法により細孔容積を求めた。
得られた結果を表2に示す。
【0023】
【表2】
Figure 2004081969
【0024】
ここで、気孔率Rは真密度ρおよび細孔容積Vporeより計算され、
=(ρ×Vpore)/(1+ρ×Vpore) ………… 式(2)
で表される。
【0025】
この材料について、表2数値を基に、これらの活性炭および黒鉛を吹込材料として用いた時に重要となる終末速度Uについて検討した。
終末速度Uは下式
={g×d ×(ρ−ρ)}/18/μ ………… 式(3)
で表される。
ここで、g:重力加速度、d:平均粒子径、ρ:粒子密度、ρ:空気密度、μ:空気粘度である。
【0026】
式(3)を変形すると、ρ>>ρなので、
={(18×μ×U)/(g×ρ)}0.5 ………… 式(4)
となる。この式より異なる粒子密度の粉末について等しい終末速度を得るためには、粒子密度の比に応じた異なる平均粒子径の粉末である必要がある。ここで、A粒子の粒子密度をρA、B粒子の粒子密度をρBとすると、等しい終末速度Uが得られる平均粒子径dAおよびdBは
A/dB=(ρA/ρB)−0.5 ………… 式(5)
の関係を満たすものである。
【0027】
表2結果より、式(1)および式(2)を用いて計算すると、活性炭の粒子密度は0.56g/cc〜1.6g/cc、黒鉛の粒子密度は1.52〜2.26である。よってこの値を式(5)にあてはめることにより、活性炭の平均粒子径が、黒鉛の平均粒子径の約0.4倍〜1倍、好ましくは0.49倍〜0.98倍にして混合し、吹込材料とすることにより、等しい終末速度が得られることがわかった。このような等しい終末速度が得られるように両材料の混合時の平均粒子径を決めることで、ごみ焼却炉の煙道に吹き込んだ際のガス流れへの同伴性、ろ過式集塵機におけるろ布への到達性、ろ布への付着性、ろ布からの払い落とし性、ろ過式集塵機において払い落とされた飛灰中における活性炭と黒鉛の混合性の均一性等が向上する。
【0028】
また、表2記載した活性炭16種、黒鉛16種について、それぞれ平均粒子径と終末速度の関係を計算した。その結果を図2〜図9に示す。その際に簡単のために、活性炭においては気孔率を20%、35%、50%、60%に大きく分類して表記した。また、黒鉛の場合は、気孔率を1%、5%、10%、20%に大きく分類して表記した。
【0029】
ここで、ごみ焼却炉におけるろ過式集塵機において、ろ過速度は通常0.6m/min〜1.2m/min(0.01m/sec〜0.02m/sec)で設計されている。したがって、ごみ焼却炉の煙道に吹き込んだ際のガス流れへの同伴性ばかりでなく、ろ過式集塵機におけるろ布への到達性、ろ布への付着性、ろ布からの払い落とし性、ろ過式集塵機において払い落とされた飛灰中における活性炭と黒鉛の混合性の均一性を達成するには、0.01m/sec〜0.02m/sec以下の流速を終末速度とする粒子を吹き込む必要がある。よって図2〜図9よりこの条件を満たす粒子径をもとめ、表3にまとめた。このような平均粒子径の活性炭および黒鉛を混合し吹込剤とすることで、優れた性能が発揮される。
【0030】
【表3】
Figure 2004081969
【0031】
[実施例3]
ごみ焼却炉実機においてろ過式集塵機上流煙道中に活性炭と黒鉛の混合剤を吹き込み、ろ過式集塵機のろ布表面に形成される、飛灰、活性炭および黒鉛の付着層を採取し、付着層内における活性炭と黒鉛の存在比率を測定した。その結果を表4に示す。吹込剤には、表2および表3に記載した活性炭16種および黒鉛16種の中から、それぞれ5種を選び、表4に示すような条件で活性炭と黒鉛を混合し吹き込んだ。また、この試験実施時のろ過式集塵機におけるろ過速度は0.014m/secであった。
【0032】
【表4】
Figure 2004081969
【0033】
[実施例4]
ごみ焼却炉実機において、ろ過式集塵機上流煙道中に活性炭と黒鉛の混合剤を吹き込み、排ガス中ダイオキシン類の除去性能を測定した結果を表5に示す。
【0034】
<試験条件>
集塵機運転温度:170℃
活  性  炭:粉末状石炭原料活性炭
高 熱 伝 導 体:黒鉛
吹  込  量:0.1g/m
【0035】
【表5】
Figure 2004081969
【0036】
【発明の効果】
本発明により、活性炭の発火を防止して排ガス中のダイオキシン等の有害物質を安定して除去することができる。
【図面の簡単な説明】
【図1】本発明で発火温度の測定に用いた発火試験機の概略構造を示す縦断面図である。
【図2】本発明で得られた黒鉛の粒子径と終末速度との関係を示すグラフである。
【図3】本発明で得られた黒鉛の粒子径と終末速度との関係を示すグラフである。
【図4】本発明で得られた黒鉛の粒子径と終末速度との関係を示すグラフである。
【図5】本発明で得られた黒鉛の粒子径と終末速度との関係を示すグラフである。
【図6】本発明で得られた黒鉛の粒子径と終末速度との関係を示すグラフである。
【図7】本発明で得られた活性炭の粒子径と終末速度との関係を示すグラフである。
【図8】本発明で得られた活性炭の粒子径と終末速度との関係を示すグラフである。
【図9】本発明で得られた活性炭の粒子径と終末速度との関係を示すグラフである。
【符号の説明】
1…マッフル炉
2…金属製メッシュ
3…ヒータ
4…熱電対(温度計)
5…吸着剤[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an adsorbent for adsorbing harmful substances such as dioxins and heavy metals contained in exhaust gas discharged from a refuse incinerator or a gasification and melting furnace, and a method for removing harmful substances using the same. is there.
[0002]
[Prior art]
As a method for removing harmful substances such as dioxins and heavy metals contained in exhaust gas discharged from a refuse incinerator or a gasification and melting furnace, an adsorption removal method using activated carbon or the like is used. As a method using this activated carbon, there are a method of blowing powdered activated carbon into exhaust gas and a method of passing exhaust gas through a column filled with granular activated carbon. Since activated carbon is naturally carbon, it has a risk of ignition. However, no particular measures have been taken for the combustion exhaust gas because oxygen is consumed during combustion and the oxygen concentration is low.
[0003]
On the other hand, in the method using granular activated carbon, there is a problem that a part of the filled activated carbon layer is locally heated to a high temperature. A technique for increasing the conductivity to dissipate this local heat has been developed (Japanese Patent Laid-Open No. 2000-272914). The thermal conductivity improving material is a metal material, a ceramic material, a carbon material, and the like, and is employed in Examples. What is being done is graphite.
[0004]
[Problems to be solved by the invention]
The present inventors have found that measures must be taken against ignition in the method of blowing powdered activated carbon. That is, when harmful gas is removed by blowing powdered activated carbon, fly ash containing used activated carbon collected in a storage tank for storing the powdered activated carbon before being blown, collected by a dust collector and then washed off and deposited on the bottom of the dust collector. There are cases where a large amount of activated carbon or fly ash mixed with activated carbon accumulates in a storage layer or the like for storing fly ash mixed with activated carbon after use, which is carried out from the sedimentary layer and the bottom of the dust collector. Activated carbon also has a heat of adsorption when the substance to be adsorbed is adsorbed on the activated carbon even when heat is not applied from the outside, and a reaction due to natural oxidation of volatile or low-boiling organic compounds essentially present in the activated carbon. Generates heat and reaction heat due to natural oxidation of organic compounds adsorbed on activated carbon. When such heat generation occurs in the above-described layer of activated carbon or fly ash mixed with activated carbon, heat is not dissipated to the outside and stored in the bed due to the low thermal conductivity of the activated carbon and fly ash. If the bed temperature rises to the ignition temperature of the activated carbon material itself due to an increase in temperature, there is a danger that the entire bed will burn.
[0005]
Such a phenomenon may be further accelerated depending on the raw material of the activated carbon, the production method, and the like. For example, with the enforcement of the Recycling Law, the recycling of construction waste materials has become an urgent social task.However, it is actually difficult to separate waste materials and use them as timber as new construction materials. Utilization as an adsorbent by activation is being studied. In particular, utilization for dioxin adsorption in refuse incinerators is being implemented. Such use is preferable because it promotes appropriate management of waste.However, when activated carbon is manufactured using waste wood as a raw material, the ignition point of the product is lowered because adhering substances such as cement are mixed in the activated carbon, and Depending on the conditions, the risk of ignition increases. In addition, compared to conventional activated carbon made from coal or the like, since the density is low, it is considered that once fired and fired, fire spread quickly and the risk of an accident was further increased.
[0006]
[Means for Solving the Problems]
As a means to solve such problems, the present inventors combine activated carbon having a specific particle size and particle density with a high thermal conductor, mix the mixture, and blow the mixture into exhaust gas to remove harmful substances. It was found that the problem of ignition could be solved without damaging the fire. That is, by mixing the powdered activated carbon with a high thermal conductor, the thermal conductivity can be improved, and the dust is collected in a storage tank for storing the powdered activated carbon before being blown, in a dust collecting device, and then dusted off. Heat generated in the sedimentary layer, such as the fly ash layer containing activated carbon deposited on the bottom of the device and the storage tank for the fly ash mixed with activated carbon discharged from the bottom of the dust collector, is quickly discharged to the outside. The heat can be radiated to prevent a rise in the temperature of the layer and prevent ignition. In addition, since it can be obtained only by physically mixing commercially available activated carbon and a high thermal conductor, it can be manufactured at low cost without requiring a special step for its manufacture.
[0007]
The present invention has been made based on such findings, has activated carbon having an average particle diameter of 5 to 150 μm, and a particle density of 0.5 to 1.7 g / ml, has a higher thermal conductivity than the activated carbon, and The present invention relates to a harmful substance adsorbent in an exhaust gas comprising a mixture of high thermal conductors having an average particle diameter of 5 to 5000 μm and a particle density of 0.1 to 9 g / ml, and a method for removing harmful substances from an exhaust gas using the same. is there.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The activated carbon has an average particle size of about 5 to 150 μm, preferably about 10 to 100 μm, particularly preferably about 10 to 50 μm, and a particle density of about 0.5 to 1.7 g / ml, preferably 0.6 to 1.5 g. / Ml, particularly preferably about 0.8 to 1.3 g / ml. Here, the average particle size refers to a 50% cumulative particle size of the particle size distribution measured by a sieving method or a laser diffraction method. The particle density ρ p referred to here is the true density ρ T (g / cc) measured by the so-called Archimedes method of immersing in propanol, butanol, kerosene or the like and measuring the weight in the liquid, and mercury intrusion. Is obtained from the pore volume V pore (cc / g) obtained by the method or nitrogen adsorption method, etc.
ρ p = ρ T / (1 + ρ T × V pore ) Equation (1)
Is represented by
[0009]
The average particle diameter and the particle density are because, for example, when the adsorbent is used by blowing it in front of a filter-type dust collector, the blown powder needs to adhere to the filter cloth in the exhaust gas stream. The particles fall into the flue before they adhere, and if smaller than this, problems such as difficulty in handling as powder or passing through the filter cloth without being collected by the filter cloth occur.
[0010]
As other physical property values of the activated carbon, those having a specific surface area of 100 m 2 / g or more, desirably 300 m 2 / g or more are preferable in terms of harmful substance adsorption ability. The upper limit of the specific surface area is not particularly limited, but a practical surface area of up to about 1200 m 2 / g is used. In order to prevent the ignition phenomenon, the ignition temperature of the activated carbon used is preferably 400 ° C. or higher. Preferably, the temperature is 450 ° C. or higher, more preferably 500 ° C. or higher. On the other hand, the higher the ignition temperature is, the better, but it is at most about 600 ° C. from a practical viewpoint. Activated carbon generally has a low thermal conductivity, about 0.1 to 0.4 W / mK, usually about 0.1 to 0.3 W / mK. Here, the ignition temperature is a value of a rising inflection point of an exothermic peak measured by a differential thermal analyzer. If the ignition temperature is lower than this, there is a high possibility of ignition even if the thermal conductivity is improved.
[0011]
The raw material of the activated carbon may be a plant raw material such as coconut, but more preferably a coal raw material. In addition, the activated carbon mentioned here naturally includes activated coke.
[0012]
The high thermal conductor physically mixed with the activated carbon has a higher thermal conductivity than the activated carbon used. Specific values are 0.2 W / mK or more, preferably about 2 to 1000 W / mK, and particularly preferably about 20 to 1000 W / mK. The ratio of the activated carbon to the thermal conductivity is desirably 10 times or more, preferably 100 times or more.
[0013]
As specific examples of the high thermal conductor, ceramics, metals, graphite and the like are used. In particular, graphite has a thermal conductivity several times to 100 times higher than that of activated carbon, and the average particle size required for commonly available materials And those having a particle density satisfying the above conditions, and the main constituent element is carbon, which is the same as activated carbon. Therefore, it is particularly preferable in view of the mixing property with activated carbon and the processing conditions after use. Similarly, pitch coke or needle coke which is a kind of coke may be used.
[0014]
In addition, the average particle diameter and the particle density of the high thermal conductor are, for the same reason as the activated carbon, the average particle diameter is about 5 to 5000 μm, preferably about 5 to 500 μm, particularly preferably about 5 to 200 μm, and the particle density is 0.1.の も の 9 g / ml, preferably about 0.5-5 g / ml, particularly preferably about 1-3 g / ml. The meanings of the average particle diameter and the particle density are as described for the activated carbon. When the high thermal conductor is graphite, the average particle size of the graphite is 0.4 to 1 times, preferably 0.5 to 1 times the average particle size of the activated carbon.
[0015]
The mixing ratio of the activated carbon and the high thermal conductor varies depending on the thermal conductivity of the high thermal conductor used. The higher the mixing ratio, the more effective the ignition prevention is, and from the viewpoint of the harmful substance removal rate, the higher the thermal conductor weight%. It is preferably from 10 to 80%, particularly preferably from 20 to 50%.
[0016]
The adsorbent of the present invention can contain a third component. For example, by mixing and blowing slaked lime, simultaneous removal of acidic gas and adsorption and removal of harmful substances can be achieved at the same time, and activated carbon is diluted by mixing slaked lime, which is preferable from the viewpoint of preventing ignition. When slaked lime is added, the preferable addition amount is 1 to 40% by weight of the mixture, about 99 to 60% by weight of the slaked lime, preferably 2 to 20% by weight of the mixture, and about 98 to 80% by weight of the slaked lime.
[0017]
The adsorbent of the present invention may be blown into exhaust gas as it is. At that time, the temperature of the exhaust gas is set to a temperature at which the activated carbon exerts sufficient adsorption capacity, specifically, 250 ° C. or less, preferably 200 ° C. or less, particularly preferably 180 ° C. or less. Since the combustion exhaust gas discharged from a refuse incinerator or the like is usually as high as 750 to 950 ° C. and the exhaust gas discharged from the gasification and melting furnace is as high as 800 to 950 ° C., these are first cooled to the temperature or lower and then blown into the exhaust gas. The lower limit of the temperature is about 160 ° C. due to the problem of corrosion due to the acid dew point. The amount of the adsorbent to be blown is determined according to the type and content of the harmful substance to be removed, the required degree of removal, and the like. It is preferable that the position to be blown be in a dust collecting device after being cooled by a gas cooling facility or the like, before the dust is collected. The dust collector may be any as long as it can collect the adsorbent of the present invention, and a bag filter is particularly preferable. This dust collector may collect fly ash and the like in the exhaust gas together.
[0018]
【Example】
[Example 1]
The thermal conductivity, the ignition temperature, and the amount of power input to the ignition of each mixture of commercially available activated carbon made from coconut or coal and several types of commercially available high thermal conductors were measured.
[0019]
The used coconut raw material activated carbon has a specific surface area of 1000 m 2 / g, an average particle diameter of 20 μm, a particle density of 0.96 g / ml, and the coal raw material activated carbon has a specific surface area of 900 m 2 / g, an average particle diameter of 25 μm, and a particle density of 1.2 g / g. ml. As the high thermal conductor, powdered graphite, flake graphite, aluminum powder and nickel powder were used. Powdered graphite has an average particle diameter of 18 μm, particle density of 1.5 g / ml, flake graphite has an average particle diameter of 120 μm, particle density of 1.4 g / ml, aluminum powder has an average particle diameter of 19 μm, particle density of 1.5 g / ml, and The nickel powder had an average particle diameter of 20 μm and a particle density of 2.5 g / ml.
[0020]
The ignition temperature was determined by performing an ignition test using the apparatus shown in FIG. In this apparatus, a cylindrical container 2 made of a metal mesh is provided inside a muffle furnace 1, and a heater 3 for heating is provided at the center of the cylindrical container 2. A thermometer 4 is installed inside. Each mixture 5 was filled in a metal mesh 2 and put in the muffle furnace 1, a constant amount of electric power was supplied to the heater per unit time, and the center temperature was measured. The temperature at which this temperature rises sharply was defined as the ignition temperature, and the amounts of power input up to this point were compared.
Table 1 shows the obtained results.
[0021]
[Table 1]
Figure 2004081969
[0022]
[Example 2]
With respect to activated carbon (16 types) and graphite (16 types) having different raw materials and manufacturing steps, the true density was determined by Archimedes method using isopropanol as an immersion liquid, and the pore volume was determined by nitrogen adsorption method.
Table 2 shows the obtained results.
[0023]
[Table 2]
Figure 2004081969
[0024]
Here, the porosity R P is calculated from the true density ρ T and the pore volume V pore ,
R P = (ρ T × V pore ) / (1 + ρ T × V pore ) Equation (2)
Is represented by
[0025]
This material, based on Table 2 Numerical was studied terminal velocity U T which is important when using these activated carbon and graphite as blowing material.
Terminal velocity U T is the formula U T = {g × d p 2 × (ρ p -ρ f)} / 18 / μ ............ formula (3)
Is represented by
Here, g: gravity acceleration, d p : average particle diameter, ρ p : particle density, ρ f : air density, μ: air viscosity.
[0026]
By transforming equation (3), since ρ p >> ρ f ,
d p = {(18 × μ × U T ) / (g × ρ p )} 0.5 ... Equation (4)
It becomes. According to this formula, in order to obtain the same terminal velocity for powders having different particle densities, powders having different average particle diameters according to the ratio of the particle densities are required. Here, when the particle density of the particle density A particle [rho p A, B particles and [rho p B, the average particle diameter d p A and d p B equal terminal velocity U T is obtained d p A / d p B = (ρ p A / ρ p B) −0.5 Equation (5)
It satisfies the relationship.
[0027]
From the results in Table 2, when calculated using the formulas (1) and (2), the particle density of activated carbon is 0.56 g / cc to 1.6 g / cc, and the particle density of graphite is 1.52 to 2.26. is there. Therefore, by applying this value to the expression (5), the average particle size of the activated carbon is about 0.4 to 1 times, preferably 0.49 to 0.98 times the average particle size of graphite and mixed. It has been found that the same terminal speed can be obtained by using a blown material. By determining the average particle size when mixing both materials so that such an equal terminal velocity can be obtained, entrainment into the gas flow when blown into the flue of a refuse incinerator and filter cloth in a filter-type dust collector And the adhering property to the filter cloth, the property of removing from the filter cloth, the uniformity of mixing of activated carbon and graphite in fly ash removed by the filter-type dust collector, and the like are improved.
[0028]
The relationship between the average particle diameter and the terminal velocity was calculated for each of 16 types of activated carbon and 16 types of graphite described in Table 2. The results are shown in FIGS. At that time, for simplicity, the porosity of activated carbon is broadly classified into 20%, 35%, 50%, and 60%. In the case of graphite, the porosity is roughly classified into 1%, 5%, 10%, and 20%.
[0029]
Here, in a filtration type dust collector in a refuse incinerator, a filtration speed is usually designed at 0.6 m / min to 1.2 m / min (0.01 m / sec to 0.02 m / sec). Therefore, not only the entrainment to the gas flow when it is blown into the flue of a refuse incinerator, but also the accessibility to the filter cloth, the adhesion to the filter cloth, the ability to remove from the filter cloth, In order to achieve a uniform mixing property between activated carbon and graphite in the fly ash removed in the dust collector, it is necessary to blow particles having a flow velocity of 0.01 m / sec to 0.02 m / sec or less as a terminal velocity. is there. Accordingly, the particle diameters satisfying these conditions are determined from FIGS. 2 to 9 and summarized in Table 3. By mixing activated carbon and graphite having such an average particle diameter as a blowing agent, excellent performance is exhibited.
[0030]
[Table 3]
Figure 2004081969
[0031]
[Example 3]
In a real garbage incinerator, a mixture of activated carbon and graphite is blown into the flue upstream of the filtration type dust collector, and the adhesion layer of fly ash, activated carbon and graphite formed on the filter cloth surface of the filtration type dust collector is collected. The existence ratio of activated carbon and graphite was measured. Table 4 shows the results. Five types of blowing agents were selected from 16 types of activated carbon and 16 types of graphite shown in Tables 2 and 3, respectively, and activated carbon and graphite were mixed and blown under the conditions shown in Table 4. The filtration speed of the filtration type dust collector at the time of performing this test was 0.014 m / sec.
[0032]
[Table 4]
Figure 2004081969
[0033]
[Example 4]
Table 5 shows the results of measuring the performance of removing dioxins in exhaust gas by blowing a mixture of activated carbon and graphite into the flue upstream of the filter-type dust collector in the actual incinerator.
[0034]
<Test conditions>
Dust collector operating temperature: 170 ° C
Activated carbon: powdered coal raw material activated carbon high heat conductor: graphite injection amount: 0.1 g / m 3 N
[0035]
[Table 5]
Figure 2004081969
[0036]
【The invention's effect】
According to the present invention, ignition of activated carbon can be prevented and harmful substances such as dioxin in exhaust gas can be stably removed.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a schematic structure of an ignition tester used for measuring an ignition temperature in the present invention.
FIG. 2 is a graph showing the relationship between the particle diameter of graphite obtained in the present invention and the terminal velocity.
FIG. 3 is a graph showing the relationship between the particle diameter of graphite obtained by the present invention and the terminal velocity.
FIG. 4 is a graph showing the relationship between the particle diameter of the graphite obtained in the present invention and the terminal velocity.
FIG. 5 is a graph showing the relationship between the particle diameter of graphite obtained by the present invention and the terminal velocity.
FIG. 6 is a graph showing the relationship between the particle diameter of graphite obtained by the present invention and the terminal velocity.
FIG. 7 is a graph showing the relationship between the particle diameter of the activated carbon obtained in the present invention and the terminal velocity.
FIG. 8 is a graph showing the relationship between the particle diameter of the activated carbon obtained in the present invention and the terminal velocity.
FIG. 9 is a graph showing the relationship between the particle diameter of the activated carbon obtained in the present invention and the terminal velocity.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Muffle furnace 2 ... Metal mesh 3 ... Heater 4 ... Thermocouple (thermometer)
5 Adsorbent

Claims (6)

平均粒子径5〜150μm、粒子密度0.5〜1.7g/mlである活性炭と、該活性炭より高い熱伝導率を有し、かつ平均粒子径5〜5000μm、粒子密度0.1〜9g/mlである高熱伝導体の混合物よりなる、排ガス中の有害物質吸着剤Activated carbon having an average particle size of 5 to 150 μm and a particle density of 0.5 to 1.7 g / ml, having a higher thermal conductivity than the activated carbon, and having an average particle size of 5 to 5000 μm and a particle density of 0.1 to 9 g / ml. Adsorbent for harmful substances in exhaust gas, consisting of a mixture of high thermal conductors 高熱伝導体の熱伝導率が0.2W/mK以上であることを特徴とする請求項1に記載の有害物質吸着剤The harmful substance adsorbent according to claim 1, wherein the high thermal conductor has a thermal conductivity of 0.2 W / mK or more. 高熱伝導体が黒鉛であることを特徴とする請求項1あるいは請求項2に記載の有害物質吸着剤The harmful substance adsorbent according to claim 1 or 2, wherein the high thermal conductor is graphite. 黒鉛の平均粒子径が、活性炭の平均粒子径の0.4倍〜1倍であることを特徴とする請求項3に記載の有害物質吸着剤The harmful substance adsorbent according to claim 3, wherein the average particle diameter of graphite is 0.4 to 1 times the average particle diameter of activated carbon. 消石灰に1〜40重量%の請求項1、2、3または4のいずれかに記載の吸着剤を混合して得られることを特徴とする有害物質吸着剤A harmful substance adsorbent obtained by mixing slaked lime with 1 to 40% by weight of the adsorbent according to any one of claims 1, 2, 3 and 4. ごみ焼却炉あるいは溶融炉から排出される排ガス中に含まれる有害物質を除去する方法であって、ガス冷却設備等により200℃前後まで排ガスを冷却し、その後集塵装置において排ガス中の有害物質を除去する場合において、集塵装置上流部に請求項1、2、3、4または5のいずれかに記載の粉末吸着剤を吹き込むことを特徴とする有害物質除去方法This is a method to remove harmful substances contained in exhaust gas discharged from refuse incinerators or melting furnaces. A method for removing harmful substances, comprising blowing the powder adsorbent according to any one of claims 1, 2, 3, 4, and 5 into an upstream portion of the dust collector when removing.
JP2002245767A 2002-08-26 2002-08-26 Hazardous substance adsorbent in exhaust gas and method for removing harmful substance Expired - Fee Related JP3888950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245767A JP3888950B2 (en) 2002-08-26 2002-08-26 Hazardous substance adsorbent in exhaust gas and method for removing harmful substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245767A JP3888950B2 (en) 2002-08-26 2002-08-26 Hazardous substance adsorbent in exhaust gas and method for removing harmful substance

Publications (2)

Publication Number Publication Date
JP2004081969A true JP2004081969A (en) 2004-03-18
JP3888950B2 JP3888950B2 (en) 2007-03-07

Family

ID=32053861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245767A Expired - Fee Related JP3888950B2 (en) 2002-08-26 2002-08-26 Hazardous substance adsorbent in exhaust gas and method for removing harmful substance

Country Status (1)

Country Link
JP (1) JP3888950B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109070072A (en) * 2016-04-04 2018-12-21 Ajo工业有限责任公司 Catalyst mixture for exhaust-gas treatment
US10471388B2 (en) 2016-04-04 2019-11-12 Cppe Carbon Process & Plant Engineering S.A. Sulfur dioxide removal from waste gas
US10478776B2 (en) 2016-04-04 2019-11-19 Cppe Carbon Process & Plant Engineering S.A. Process for the removal of heavy metals from fluids
US10940429B2 (en) * 2013-12-31 2021-03-09 Ada Carbon Solutions, Llc Method for the treatment of a flue gas stream

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10940429B2 (en) * 2013-12-31 2021-03-09 Ada Carbon Solutions, Llc Method for the treatment of a flue gas stream
CN109070072A (en) * 2016-04-04 2018-12-21 Ajo工业有限责任公司 Catalyst mixture for exhaust-gas treatment
JP2019516554A (en) * 2016-04-04 2019-06-20 アジョ インダストリー エス.アー エール.エル.Ajo Industrie S.A R.L. Catalyst mixture for exhaust gas treatment
US10471388B2 (en) 2016-04-04 2019-11-12 Cppe Carbon Process & Plant Engineering S.A. Sulfur dioxide removal from waste gas
US10478776B2 (en) 2016-04-04 2019-11-19 Cppe Carbon Process & Plant Engineering S.A. Process for the removal of heavy metals from fluids
US11369922B2 (en) 2016-04-04 2022-06-28 Cppe Carbon Process & Plant Engineering S.A. Catalyst mixture for the treatment of waste gas

Also Published As

Publication number Publication date
JP3888950B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
JP2002355531A (en) Method of treating exhaust gas in cement production
US6638347B2 (en) Carbon-based adsorption powder containing cupric chloride
US20020033097A1 (en) Process for adsorption of mercury from gaseous streams
JP2006096615A (en) Method of treating exhaust gas from cement kiln
Shemwell et al. Particulates generated from combustion of polymers (plastics)
AU2019200331A1 (en) Coal Ash Treatment System and Method
TW201226038A (en) Reduction of mercury emissions from cement plants
JPH07505444A (en) Method of processing materials that can be swept or flowed
CN107952786B (en) Method for treating solid hazardous waste
Yang et al. An electrically renewable air filter with integrated 3D nanowire networks
JPH02107301A (en) Method and apparatus for separating vapor like metal compound from carrier gas
JP3888950B2 (en) Hazardous substance adsorbent in exhaust gas and method for removing harmful substance
WO2003006140A1 (en) Carbon-based adsorption powder containing cupric chloride
KR100498881B1 (en) treatment apparatus for destroying by burning up and melting radioactive waste and method the same
Shih et al. Characterization of dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the atmosphere of different workplaces of a sinter plant
JP2000272914A (en) Thermally conductive activated carbon substance and gas treating apparatus
JP2005152719A (en) Activated carbon adsorber and its operation method
Li et al. A pilot study of mercury liberation and capture from coal-fired power plant fly ash
JP7270468B2 (en) Exhaust gas treatment device and exhaust gas treatment method
JP2004299928A (en) Hardly ignitable activated carbon and its manufacturing method, and method for processing waste gas
JP2021006747A (en) Thermal decomposition treatment method of refuse using organic substance thermal decomposition furnace
Chen et al. The effects of chloride additives on adsorption of heavy metals during incineration
JP2005152718A (en) Activated carbon cartridge for activated carbon adsorber
JP3302944B2 (en) Method for treating incinerator effluent containing dioxins
JPH1170315A (en) Treatment of high temperature gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3888950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees