JP3888950B2 - Hazardous substance adsorbent in exhaust gas and method for removing harmful substance - Google Patents
Hazardous substance adsorbent in exhaust gas and method for removing harmful substance Download PDFInfo
- Publication number
- JP3888950B2 JP3888950B2 JP2002245767A JP2002245767A JP3888950B2 JP 3888950 B2 JP3888950 B2 JP 3888950B2 JP 2002245767 A JP2002245767 A JP 2002245767A JP 2002245767 A JP2002245767 A JP 2002245767A JP 3888950 B2 JP3888950 B2 JP 3888950B2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- exhaust gas
- graphite
- average particle
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Chimneys And Flues (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ごみ焼却炉やガス化溶融炉などから排出される排ガス中に含まれるダイオキシン類、重金属類等の有害物質を吸着する吸着剤、およびそれを用いた有害物質の除去方法に関するものである。
【0002】
【従来の技術】
ごみ焼却炉やガス化溶融炉から排出される排ガスに含まれるダイオキシン類、重金属類等の有害物質の除去方法として、活性炭を用いた吸着除去法等が用いられている。この活性炭を用いる方法は、粉末活性炭を排ガス中に吹き込む方法と粒状活性炭を充填した塔を排ガスを通過させる方法がある。活性炭はもとより炭素であるから発火の危険性をはらんでいるが燃焼排ガスは燃焼の際に酸素が消費されて低酸素濃度になっていることもあって特に対策はとられていない。
【0003】
一方、粒状活性炭を用いる方法は、充填された活性炭層の一部が局所的に高温になることが問題となり、その対策として活性炭に熱伝導性向上材を添加して造粒し、全体として熱伝導率を高めてこの局所的発熱を放散させる技術が開発されている(特開2000−272914号公報)、熱伝導性向上材は金属材、セラミック材、炭素材等であり、実施例で採用されているものはグラファイトである。
【0004】
【発明が解決しようとする課題】
本発明者らは粉末活性炭を吹き込む方法においても発火に対する対策が必要であることを見出した。すなわち、粉末活性炭の吹き込みによる有害ガス除去を行う場合、吹き込み前の粉末活性炭を貯留する貯留槽、集塵装置で集塵されその後払い落とされ集塵装置底部に堆積した使用後活性炭を含む飛灰堆積層、および集塵装置底部より搬出された使用後活性炭の混入した飛灰を貯留する貯留槽等において、大量の活性炭あるいは活性炭混入飛灰が堆積するケースが存在する。また、活性炭は外部から熱を与えられない場合にも、活性炭への被吸着物質の吸着がおこる際の吸着熱、活性炭中に本質的に存在する揮発性あるいは低沸点有機化合物の自然酸化による反応熱、活性炭に吸着した有機化合物の自然酸化による反応熱等を発生する。このような発熱が、前述した活性炭あるいは活性炭混入飛灰の堆積層において発生すると、活性炭および飛灰の熱伝導性の低さのために、熱が外部に放散されずに層内に蓄熱され層温度の上昇を招き、層温度が活性炭の炭材自体の発火温度まで上昇すると層全体が炎上してしまう危険性をはらんでいる。
【0005】
このような現象は活性炭の原料、製造法等によってはより加速される場合がある。例えば、リサイクル法の施行に伴い、建設廃材等の再利用が社会的に急務となっているが、廃材を分別し木材として新築建材として利用することは実際には困難であり、廃材の炭化、活性化による吸着剤としての利用が検討されている。とりわけごみ焼却炉におけるダイオキシン吸着への利用が実施されつつある。こうした利用は廃棄物の適正管理をすすめるため好ましいといえるが、廃木材を原料に用い活性炭を製造した場合、活性炭中にセメント等の付着物が混入するため、製品の発火点が低下し、利用条件によっては発火の危険が増す。また、従来の石炭等を原料とする活性炭に比べ、低密度のため、いったん発熱、発火した場合の類焼が早く、事故につながる危険性がより高まると考えられる。
【0006】
本発明者らは、このような課題を解決する手段として、特定の粒径と粒子密度を有する活性炭と高熱伝導体である黒鉛を組み合わせて混合し、この混合物を排ガス中に吹き込むことによって有害物質の除去性を損なうことなく発火の問題を解決できることを見出した。すなわち、粉末活性炭に黒鉛を混合することにより、熱伝導率を向上させることが可能となり、吹き込み前の粉末活性炭を貯留する貯留槽、集塵装置で集塵され、その後払い落とされ集塵装置底部に堆積した使用後活性炭を含む飛灰堆積層、および集塵装置底部より搬出された使用後活性炭の混入した飛灰を貯留する貯留槽等の、堆積層内における発熱を速やかに外部へと放熱させ層の温度上昇を防ぎ発火を防止できる。また、市販の活性炭と黒鉛を物理混合するだけで得られるため、その製造に特別な工程を必要とせず、安価に製造することができる。
【0007】
本発明は、かかる知見に基づいてなされたものであり、平均粒子径5〜150μm、粒子密度0.56〜1.6g/mlである活性炭と、該活性炭より高い熱伝導率を有し、かつ平均粒子径5〜150μm、粒子密度1.52〜2.26g/ml、熱伝導率0.2W/mk以上である黒鉛の混合物よりなり、黒鉛の平均粒子径が、活性炭の平均粒子径の0.4倍〜1倍であることを特徴とする、排ガス中の有害物質吸着剤、およびそれを用いた排ガスからの有害物質の除去方法に関するものである。
【0008】
【発明の実施の形態】
活性炭は、平均粒子径が5〜150μm程度、好ましくは10〜100μm程度、特に好ましくは10〜50μm程度、粒子密度が0.56〜1.6g/ml程度、好ましくは0.6〜1.5g/ml程度、特に好ましくは0.8〜1.3g/ml程度のものを用いる。ここでいうところの平均粒子径とは、ふるい分け法あるいはレーザー回析法等で測定した粒度分布の累積50%粒子径を指す。また、ここでいうところの粒子密度ρpとは、プロパノール、ブタノール、ケロシン等に浸漬し液中での重量を測定するいわゆるアルキメデス法により測定した真密度ρT(g/ml)と、水銀圧入法あるいは窒素吸着法等によって求めた細孔容積Vpore(ml/g)より求めたものであり、
ρp=ρT/(1+ρT×Vpore) ………… 式(1)
で表される。
【0009】
上記平均粒子径と粒子密度は、吸着剤を例えばろ過式集塵機前に吹き込んで用いる場合、吹き込まれた粉末が排ガス気流に乗ってろ布に付着する必要があるためであり、これより大きいとろ布に付着する前に煙道に落下してしまい、またこれより小さいと粉体としてのハンドリング性の困難さ、あるいはろ布で集塵されずにろ布を通過してしまう等の不具合を生ずる。
【0010】
活性炭のその他の物性値としては、有害物質吸着能の点で比表面積が100m2/g以上、望ましくは300m2/g以上のものがよい。比表面積の上限は特に限定されないが実用上1200m2/g程度までのものが用いられる。また、発火現象を防止するため、用いる活性炭の発火温度は400℃以上であることが好ましい。また望ましくは450℃以上、さらに望ましくは500℃以上であることが好ましい。一方、発火温度は高い程よいが、実用的観点から最高でも600℃程度である。活性炭は一般的に熱伝導率が低く、0.1〜0.4W/mK程度、通常0.1〜0.3W/mK程度である。ここでいうところの発火温度とは、示差熱分析計で測定した発熱ピークの立ち上がり変曲点の値である。これより発火温度が低いと、いくら熱伝導率を向上させても、発火に至る可能性が高くなる。
【0011】
活性炭の原料は、やしがら等の植物系原料でも良いが、より望ましくは石炭系原料が好ましい。なお、ここでいうところの活性炭には、当然のことながら活性コークスも含まれる。
【0012】
活性炭に物理混合する黒鉛は、用いる活性炭より熱伝導率が高いものを用いる。具体的値では0.2W/mK以上、好ましくは2〜1000W/mK程度、特に好ましくは20〜1000W/mK程度のものである。活性炭の熱伝導率に対する比率では10倍以上、好ましくは100倍以上のものが望ましい。
【0013】
黒鉛はその熱伝導率が活性炭の数倍〜100倍程度高く、通常入手される材料において要求される平均粒子径や粒子密度を満たすものが存在し、また主構成元素が炭素であり活性炭と同じであることから、活性炭との混合性、使用後の処理条件の面において特に好ましい。
【0014】
また、黒鉛の平均粒子径と粒子密度は、活性炭と同じ理由で、平均粒子径が5〜150μm程度、粒子密度が1.52〜2.26g/ml程度のものを用いる。平均粒子径と粒子密度の意義は活性炭のところで説明した通りである。また、黒鉛の平均粒子径は活性炭の平均粒子径の0.4〜1倍、好ましくは0.5〜1倍である。
【0015】
活性炭と黒鉛の混合割合は、用いる黒鉛の熱伝導率によって異なるが、混合比率が高い程、発火防止の効果があり、また有害物質除去率の観点から黒鉛の重量%で10〜80%、特に20〜50%が好ましい。
【0016】
本発明の吸着剤には第3成分を含有させることができる。例えば消石灰を混合して吹き込むことにより、酸性ガスの除去と有害物質の吸着除去との同時達成が可能となるとともに、消石灰の混合により活性炭が希釈されるため、発火防止の観点において好ましい。消石灰を添加する場合、好ましい添加量は、混合物1〜40重量%、消石灰が99〜60重量%程度、好ましくは混合物2〜20重量%、消石灰が98〜80重量%程度である。
【0017】
本発明の吸着剤はそのまま排ガス中に吹き込めばよい。その際、排ガスの温度は活性炭が充分に吸着能力を発揮する温度、具体的には250℃以下、好ましくは200℃以下、特に好ましくは180℃以下とする。ごみ焼却炉等から排出される燃焼排ガスは通常750〜950℃、ガス化溶融炉から排出される排ガスは800〜950℃と高いのでこれらはまず上記温度以下まで冷却してから排ガスに吹き込む。温度の下限は酸露点による腐食の問題から概ね160℃程度までである。吸着剤の吹込量は除去しようとする有害物質の種類と含有量および必要とする除去の程度等に応じて定められ、これは予め試験をして定めるのがよい。吹き込む位置はガス冷却設備等で冷却後集塵装置で、集塵されるまでの間がよい。集塵装置は本発明の吸着剤を捕集できるものであればよいが、バグフィルタが特に好ましい。この集塵装置は排ガス中の飛灰等も合わせて捕集させてもよい。
【0018】
【実施例】
[実施例1]
やしがらまたは石炭を原料とする市販の活性炭と数種類の市販の高熱伝導体との各混合物の熱伝導率、発火温度および発火に至るまでの投入電力量を測定した。
【0019】
用いたやしがら原料活性炭は比表面積1000m2/g、平均粒子径20μm、粒子密度0.96g/ml、石炭原料活性炭は比表面積900m2/g、平均粒子径25μm、粒子密度1.2g/mlのものである。また高熱伝導体には粉末黒鉛、フレーク状黒鉛、アルミニウム粉末およびニッケル粉末の4種類を用いた。粉末黒鉛は平均粒子径18μm、粒子密度1.5g/ml、フレーク状黒鉛は平均粒子径120μm、粒子密度1.4g/ml、アルミニウム粉末は平均粒子径19μm、粒子密度1.5g/ml、そして、ニッケル粉末は平均粒子径20μm、粒子密度2.5g/mlであった。
【0020】
発火温度は図1に示す装置を用いて発火試験を行って求めた。この装置にマッフル炉1の内部に金属製メッシュでできた円筒形容器2が設けられ、その中心に加熱用ヒータ3が設置されている。また、内部には温度計4が設置されている。各混合物5を金属製メッシュ2に充填してマッフル炉1に入れ、単位時間当り一定量の電力をヒーターに投入し、中心温度を測定した。この温度が急激に上昇する温度を発火温度とし、この時点までに投入した電力量を比較した。
得られた結果を表1に示す。
【0021】
【表1】
【0022】
[実施例2]
原料および製造工程の異なる活性炭(16種類)および黒鉛(16種類)について、イソプロパノールを浸漬液として用いアルキメデス法により真密度を求め、また窒素吸着法により細孔容積を求めた。
得られた結果を表2に示す。
【0023】
【表2】
【0024】
ここで、気孔率RPは真密度ρTおよび細孔容積Vporeより計算され、
RP=(ρT×Vpore)/(1+ρT×Vpore) ………… 式(2)
で表される。
【0025】
この材料について、表2数値を基に、これらの活性炭および黒鉛を吹込材料として用いた時に重要となる終末速度UTについて検討した。
終末速度UTは下式
UT={g×dp 2×(ρp−ρf)}/18/μ ………… 式(3)
で表される。
ここで、g:重力加速度、dp:平均粒子径、ρp:粒子密度、ρf:空気密度、μ:空気粘度である。
【0026】
式(3)を変形すると、ρp>>ρfなので、
dp={(18×μ×UT)/(g×ρp)}0.5 ………… 式(4)
となる。この式より異なる粒子密度の粉末について等しい終末速度を得るためには、粒子密度の比に応じた異なる平均粒子径の粉末である必要がある。ここで、A粒子の粒子密度をρpA、B粒子の粒子密度をρpBとすると、等しい終末速度UTが得られる平均粒子径dpAおよびdpBは
dpA/dpB=(ρpA/ρpB)-0.5 ………… 式(5)
の関係を満たすものである。
【0027】
表2結果より、式(1)および式(2)を用いて計算すると、活性炭の粒子密度は0.56g/ml〜1.6g/ml、黒鉛の粒子密度は1.52〜2.26g/mlである。よってこの値を式(5)にあてはめることにより、活性炭の平均粒子径が、黒鉛の平均粒子径の約0.4倍〜1倍、好ましくは0.49倍〜0.98倍にして混合し、吹込材料とすることにより、等しい終末速度が得られることがわかった。このような等しい終末速度が得られるように両材料の混合時の平均粒子径を決めることで、ごみ焼却炉の煙道に吹き込んだ際のガス流れへの同伴性、ろ過式集塵機におけるろ布への到達性、ろ布への付着性、ろ布からの払い落とし性、ろ過式集塵機において払い落とされた飛灰中における活性炭と黒鉛の混合性の均一性等が向上する。
【0028】
また、表2記載した活性炭16種、黒鉛16種について、それぞれ平均粒子径と終末速度の関係を計算した。その結果を図2〜図9に示す。その際に簡単のために、活性炭においては気孔率を20%、35%、50%、60%に大きく分類して表記した。また、黒鉛の場合は、気孔率を1%、5%、10%、20%に大きく分類して表記した。
【0029】
ここで、ごみ焼却炉におけるろ過式集塵機において、ろ過速度は通常0.6m/min〜1.2m/min(0.01m/sec〜0.02m/sec)で設計されている。したがって、ごみ焼却炉の煙道に吹き込んだ際のガス流れへの同伴性ばかりでなく、ろ過式集塵機におけるろ布への到達性、ろ布への付着性、ろ布からの払い落とし性、ろ過式集塵機において払い落とされた飛灰中における活性炭と黒鉛の混合性の均一性を達成するには、0.01m/sec〜0.02m/sec以下の流速を終末速度とする粒子を吹き込む必要がある。よって図2〜図9よりこの条件を満たす粒子径をもとめ、表3にまとめた。このような平均粒子径の活性炭および黒鉛を混合し吹込剤とすることで、優れた性能が発揮される。
【0030】
【表3】
【0031】
[実施例3]
ごみ焼却炉実機においてろ過式集塵機上流煙道中に活性炭と黒鉛の混合剤を吹き込み、ろ過式集塵機のろ布表面に形成される、飛灰、活性炭および黒鉛の付着層を採取し、付着層内における活性炭と黒鉛の存在比率を測定した。その結果を表4に示す。吹込剤には、表2および表3に記載した活性炭16種および黒鉛16種の中から、それぞれ5種を選び、表4に示すような条件で活性炭と黒鉛を混合し吹き込んだ。また、この試験実施時のろ過式集塵機におけるろ過速度は0.014m/secであった。
【0032】
【表4】
【0033】
[実施例4]
ごみ焼却炉実機において、ろ過式集塵機上流煙道中に活性炭と黒鉛の混合剤を吹き込み、排ガス中ダイオキシン類の除去性能を測定した結果を表5に示す。
【0034】
<試験条件>
集塵機運転温度:170℃
活 性 炭:粉末状石炭原料活性炭
高 熱 伝 導 体:黒鉛
吹 込 量:0.1g/m3N
【0035】
【表5】
【0036】
【発明の効果】
本発明により、活性炭の発火を防止して排ガス中のダイオキシン等の有害物質を安定して除去することができる。
【図面の簡単な説明】
【図1】 本発明で発火温度の測定に用いた発火試験機の概略構造を示す縦断面図である。
【図2】 本発明で得られた黒鉛の粒子径と終末速度との関係を示すグラフである。
【図3】 本発明で得られた黒鉛の粒子径と終末速度との関係を示すグラフである。
【図4】 本発明で得られた黒鉛の粒子径と終末速度との関係を示すグラフである。
【図5】 本発明で得られた黒鉛の粒子径と終末速度との関係を示すグラフである。
【図6】 本発明で得られた黒鉛の粒子径と終末速度との関係を示すグラフである。
【図7】 本発明で得られた活性炭の粒子径と終末速度との関係を示すグラフである。
【図8】 本発明で得られた活性炭の粒子径と終末速度との関係を示すグラフである。
【図9】 本発明で得られた活性炭の粒子径と終末速度との関係を示すグラフである。
【符号の説明】
1…マッフル炉
2…金属製メッシュ
3…ヒータ
4…熱電対(温度計)
5…吸着剤[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adsorbent that adsorbs harmful substances such as dioxins and heavy metals contained in exhaust gas discharged from a waste incinerator or gasification melting furnace, and a method for removing harmful substances using the same. is there.
[0002]
[Prior art]
As a method for removing harmful substances such as dioxins and heavy metals contained in exhaust gas discharged from waste incinerators and gasification and melting furnaces, an adsorption removal method using activated carbon is used. As a method using this activated carbon, there are a method in which powdered activated carbon is blown into the exhaust gas and a method in which the exhaust gas is passed through a tower filled with granular activated carbon. Since activated carbon is carbon as well as being active, there is a risk of ignition, but the combustion exhaust gas is not taken special measures because oxygen is consumed at the time of combustion and the oxygen concentration becomes low.
[0003]
On the other hand, the method using granular activated carbon has a problem that a part of the packed activated carbon layer becomes locally hot, and as a countermeasure against this, granulate by adding a thermal conductivity improver to the activated carbon and heat it as a whole. Technology has been developed to dissipate this local heat generation by increasing the conductivity (Japanese Patent Laid-Open No. 2000-272914), and the thermal conductivity improver is a metal material, a ceramic material, a carbon material, etc., and is adopted in the examples. What is being done is graphite.
[0004]
[Problems to be solved by the invention]
The present inventors have found that measures against ignition are necessary even in the method of blowing powdered activated carbon. In other words, when removing harmful gases by blowing powdered activated carbon, a storage tank that stores powdered activated carbon before blowing, fly ash containing activated carbon that has been collected by the dust collector and then removed and deposited on the bottom of the dust collector There are cases in which a large amount of activated carbon or activated carbon-mixed fly ash accumulates in a storage tank or the like for storing the deposited layer and fly ash mixed with activated carbon after use that has been carried out from the bottom of the dust collector. In addition, even when activated carbon cannot be heated from the outside, the heat of adsorption when the adsorbed substance is adsorbed on the activated carbon, and the reaction due to natural oxidation of volatile or low-boiling organic compounds that are essentially present in the activated carbon. Generates heat and heat of reaction due to natural oxidation of organic compounds adsorbed on activated carbon. When such heat generation occurs in the above-mentioned activated carbon or activated carbon-mixed fly ash deposits, heat is stored in the layers without being dissipated outside due to the low thermal conductivity of the activated carbon and fly ash. If the temperature rises and the layer temperature rises to the ignition temperature of the activated carbon charcoal material itself, there is a risk that the entire layer will burn.
[0005]
Such a phenomenon may be further accelerated depending on the raw material of the activated carbon, the manufacturing method, and the like. For example, with the enforcement of the Recycling Law, the reuse of construction waste is becoming an urgent social issue, but it is actually difficult to separate the waste and use it as new construction material as timber. Use as an adsorbent by activation has been studied. In particular, utilization for dioxin adsorption in refuse incinerators is being implemented. Such use is preferable because it promotes proper management of waste. However, when activated carbon is produced using waste wood as a raw material, adhering substances such as cement are mixed in the activated carbon. Depending on the conditions, the risk of ignition increases. In addition, compared to conventional activated carbon made from coal or the like, it has a low density, so it is thought that it will burn quickly once it generates heat and ignites, leading to a higher risk of accidents.
[0006]
As a means for solving such problems, the present inventors mixed activated carbon having a specific particle size and particle density and graphite, which is a high thermal conductor, and injected the mixture into exhaust gas, thereby toxic substances. It has been found that the problem of ignition can be solved without impairing the removability of. That is, by mixing graphite with powdered activated carbon, it becomes possible to improve the thermal conductivity, and it is collected in the storage tank that stores the powdered activated carbon before blowing, the dust collector, and then dusted off and then the bottom of the dust collector Quickly dissipate the heat generated in the deposit layer, such as the fly ash deposit layer that contains the activated carbon deposited after use, and the storage tank that stores the fly ash mixed with the activated carbon after use that was transported from the bottom of the dust collector. This prevents the temperature of the layer from rising and prevents ignition. Moreover, since it is obtained only by physically mixing commercially available activated carbon and graphite, it does not require a special process for its production and can be produced at low cost.
[0007]
The present invention has been made on the basis of such findings, and has an average particle diameter of 5 to 150 μm and a particle density of 0.5 6 to 1. Activated carbon having 6 g / ml, a higher thermal conductivity than the activated carbon, an average particle size of 5 to 150 μm, a particle density of 1.52 to 2.26 g / ml, and a thermal conductivity of 0.2 W / mk A toxic substance adsorbent in exhaust gas, comprising the above graphite mixture, wherein the average particle size of graphite is 0.4 to 1 times the average particle size of activated carbon, and the same The present invention relates to a method for removing harmful substances from exhaust gas.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The activated carbon has an average particle size of about 5 to 150 μm, preferably about 10 to 100 μm, particularly preferably about 10 to 50 μm, and a particle density of 0.5 6 to 1. About 6 g / ml, preferably about 0.6 to 1.5 g / ml, particularly preferably about 0.8 to 1.3 g / ml is used. The average particle size here refers to the cumulative 50% particle size of the particle size distribution measured by a sieving method or a laser diffraction method. The particle density ρ p referred to here is the true density ρ T (g / ml) measured by the so-called Archimedes method in which the weight in the liquid is measured by immersing in propanol, butanol, kerosene, etc., and mercury intrusion. Obtained from the pore volume V pore (ml / g) obtained by the method of adsorption or nitrogen adsorption,
ρ p = ρ T / (1 + ρ T × V pore ) ………… Formula (1)
It is represented by
[0009]
The above average particle diameter and particle density are because when the adsorbent is blown in front of the filter-type dust collector, for example, the blown powder needs to get on the exhaust gas flow and adhere to the filter cloth. If it falls to the flue before adhering, and if it is smaller than this, problems such as difficulty in handling as a powder or passing through the filter cloth without being collected by the filter cloth occur.
[0010]
As other physical property values of the activated carbon, those having a specific surface area of 100 m 2 / g or more, preferably 300 m 2 / g or more are preferable in terms of the ability to adsorb harmful substances. The upper limit of the specific surface area is not particularly limited, but practically up to about 1200 m 2 / g is used. Moreover, in order to prevent an ignition phenomenon, it is preferable that the ignition temperature of the activated carbon to be used is 400 degreeC or more. Desirably, it is preferably 450 ° C. or higher, more preferably 500 ° C. or higher. On the other hand, the higher the ignition temperature, the better, but the maximum is about 600 ° C. from a practical viewpoint. Activated carbon generally has a low thermal conductivity and is about 0.1 to 0.4 W / mK, usually about 0.1 to 0.3 W / mK. The ignition temperature here is the value of the rising inflection point of the exothermic peak measured with a differential thermal analyzer. If the ignition temperature is lower than this, even if the thermal conductivity is improved, the possibility of ignition is increased.
[0011]
The raw material for the activated carbon may be a plant-based raw material such as palm, but more preferably a coal-based raw material. Incidentally, the activated carbon mentioned here naturally includes activated coke.
[0012]
The graphite that is physically mixed with the activated carbon has a higher thermal conductivity than the activated carbon used. The specific value is 0.2 W / mK or more, preferably about 2 to 1000 W / mK, particularly preferably about 20 to 1000 W / mK. The ratio of the activated carbon to the thermal conductivity is 10 times or more, preferably 100 times or more.
[0013]
Graphite has a thermal conductivity several times to 100 times higher than that of activated carbon, and there are those that satisfy the average particle size and particle density required in materials that are usually available, and the main constituent element is carbon and is the same as activated carbon Therefore, it is particularly preferable in terms of miscibility with activated carbon and treatment conditions after use.
[0014]
Moreover, the average particle diameter and particle density of graphite are the same as that of activated carbon, and the average particle diameter is about 5 to 150 μm, and the particle density is 1 . About 52 to 2.26 g / ml is used. The meanings of the average particle size and the particle density are as described for the activated carbon. Moreover, the average particle diameter of graphite is 0.4-1 times, preferably 0.5-1 times the average particle diameter of activated carbon.
[0015]
The mixing ratio of activated carbon and graphite varies depending on the thermal conductivity of the graphite used, but the higher the mixing ratio, the more effective the prevention of ignition, and from the viewpoint of the harmful substance removal rate, 10 to 80% by weight of graphite, especially 20 to 50% is preferable.
[0016]
The adsorbent of the present invention can contain a third component. For example, mixing and blowing slaked lime makes it possible to simultaneously remove acid gas and adsorb and remove harmful substances, and because activated carbon is diluted by mixing slaked lime, it is preferable in terms of preventing ignition. When adding slaked lime, the preferable addition amount is 1 to 40% by weight of the mixture, 99 to 60% by weight of slaked lime, preferably 2 to 20% by weight of the mixture, and about 98 to 80% by weight of slaked lime.
[0017]
The adsorbent of the present invention may be blown into the exhaust gas as it is. At that time, the temperature of the exhaust gas is set to a temperature at which the activated carbon sufficiently exhibits the adsorption capacity, specifically 250 ° C. or less, preferably 200 ° C. or less, particularly preferably 180 ° C. or less. Combustion exhaust gas discharged from a garbage incinerator or the like is usually high at 750 to 950 ° C., and exhaust gas discharged from a gasification melting furnace is as high as 800 to 950 ° C. Therefore, these are first cooled to the above temperature or less and then blown into the exhaust gas. The lower limit of the temperature is about 160 ° C. due to the problem of corrosion due to acid dew point. The amount of adsorbent blown is determined according to the type and content of harmful substances to be removed, the required degree of removal, etc., and this should be determined in advance by testing. The blowing position is good until the dust is collected by the dust collector after being cooled by a gas cooling facility or the like. The dust collector is not particularly limited as long as it can collect the adsorbent of the present invention, but a bag filter is particularly preferable. This dust collector may also collect fly ash and the like in the exhaust gas.
[0018]
【Example】
[Example 1]
The thermal conductivity, ignition temperature, and input electric energy until ignition were measured for each mixture of commercially available activated carbon made from palm or coal and several types of commercially available high thermal conductors.
[0019]
The used coconut raw material activated carbon has a specific surface area of 1000 m 2 / g, an average particle size of 20 μm, a particle density of 0.96 g / ml, and the coal raw material activated carbon has a specific surface area of 900 m 2 / g, an average particle size of 25 μm, and a particle density of 1.2 g / ml. ml. In addition, four types of powdered graphite, flaky graphite, aluminum powder and nickel powder were used as the high thermal conductor. Powdered graphite has an average particle size of 18 μm, particle density of 1.5 g / ml, flaky graphite has an average particle size of 120 μm, particle density of 1.4 g / ml, aluminum powder has an average particle size of 19 μm, particle density of 1.5 g / ml, and The nickel powder had an average particle size of 20 μm and a particle density of 2.5 g / ml.
[0020]
The ignition temperature was determined by conducting an ignition test using the apparatus shown in FIG. In this apparatus, a
The obtained results are shown in Table 1.
[0021]
[Table 1]
[0022]
[Example 2]
For activated carbon (16 types) and graphite (16 types) having different raw materials and manufacturing processes, the true density was determined by the Archimedes method using isopropanol as the immersion liquid, and the pore volume was determined by the nitrogen adsorption method.
The obtained results are shown in Table 2.
[0023]
[Table 2]
[0024]
Here, the porosity R P is calculated from the true density ρ T and the pore volume V pore ,
R P = (ρ T × V pore ) / (1 + ρ T × V pore ) (2)
It is represented by
[0025]
With respect to this material, based on the numerical values in Table 2, the terminal velocity U T , which is important when using these activated carbon and graphite as blowing materials, was examined.
The terminal velocity U T is expressed by the following equation U T = {g × d p 2 × (ρ p −ρ f )} / 18 / μ (3)
It is represented by
Here, g: gravitational acceleration, d p : average particle diameter, ρ p : particle density, ρ f : air density, and μ: air viscosity.
[0026]
Transforming equation (3), ρ p >> ρ f
d p = {(18 × μ × U T ) / (g × ρ p )} 0.5 (4)
It becomes. From this formula, in order to obtain an equal terminal velocity for powders having different particle densities, it is necessary that the powders have different average particle diameters according to the ratio of the particle densities. Here, when the particle density of the A particles is ρ p A and the particle density of the B particles is ρ p B, the average particle diameters d p A and d p B at which an equal terminal velocity U T is obtained are d p A / d p B = (ρ p A / ρ p B) −0.5 (5)
It satisfies the relationship.
[0027]
From the results in Table 2, when calculated using the formulas (1) and (2), the particle density of the activated carbon is 0.56 g / ml to 1.6 g / ml , and the particle density of graphite is 1.52 to 2.26 g. / Ml . Therefore, by applying this value to equation (5), the average particle diameter of the activated carbon is about 0.4 to 1 times, preferably 0.49 to 0.98 times the average particle diameter of graphite. It was found that by using the blown material, an equal terminal speed can be obtained. By determining the average particle size when mixing both materials so that such an equal terminal velocity can be obtained, the entrainment in the gas flow when blowing into the flue of the refuse incinerator, to the filter cloth in the filtration dust collector Reachability, adherence to filter cloth, removal from filter cloth, uniformity of mixing of activated carbon and graphite in fly ash removed by filtration dust collector, and the like are improved.
[0028]
Moreover, the relationship between the average particle diameter and the terminal velocity was calculated for each of the 16 types of activated carbon and 16 types of graphite described in Table 2. The results are shown in FIGS. At that time, for the sake of simplicity, the porosity of activated carbon is roughly classified into 20%, 35%, 50%, and 60%. In the case of graphite, the porosity is roughly classified into 1%, 5%, 10%, and 20%.
[0029]
Here, in the filtration type dust collector in the refuse incinerator, the filtration speed is usually designed at 0.6 m / min to 1.2 m / min (0.01 m / sec to 0.02 m / sec). Therefore, not only the gas flow when entrained in the flue of a waste incinerator but also the reachability to the filter cloth, the adhesion to the filter cloth, the wiping off from the filter cloth, and the filtration In order to achieve uniformity in the mixing of activated carbon and graphite in the fly ash that has been scraped off in the dust collector, it is necessary to blow particles having a flow velocity of 0.01 m / sec to 0.02 m / sec or less at the terminal velocity. is there. Accordingly, the particle diameters satisfying this condition were determined from FIGS. 2 to 9 and summarized in Table 3. By mixing the activated carbon and graphite having such an average particle diameter into a blowing agent, excellent performance is exhibited.
[0030]
[Table 3]
[0031]
[Example 3]
In the actual waste incinerator, a mixture of activated carbon and graphite is blown into the flue upstream of the filtration dust collector, and the adhering layer of fly ash, activated carbon and graphite formed on the filter cloth surface of the filtration dust collector is collected, The abundance ratio of activated carbon and graphite was measured. The results are shown in Table 4. As the blowing agent, 5 types were selected from 16 types of activated carbon and 16 types of graphite described in Tables 2 and 3, and activated carbon and graphite were mixed and blown under the conditions shown in Table 4. Moreover, the filtration rate in the filtration type dust collector at the time of this test implementation was 0.014 m / sec.
[0032]
[Table 4]
[0033]
[Example 4]
Table 5 shows the results of measuring the removal performance of dioxins in the exhaust gas by injecting a mixture of activated carbon and graphite into the flue upstream of the filtration dust collector in the actual waste incinerator.
[0034]
<Test conditions>
Dust collector operating temperature: 170 ° C
Active charcoal: Powdered coal raw material activated carbon high heat conductor: Graphite injection amount: 0.1 g / m 3 N
[0035]
[Table 5]
[0036]
【The invention's effect】
According to the present invention, ignition of activated carbon can be prevented and harmful substances such as dioxin in exhaust gas can be stably removed.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a schematic structure of an ignition tester used for measuring an ignition temperature in the present invention.
FIG. 2 is a graph showing the relationship between the particle diameter of graphite obtained by the present invention and the terminal velocity.
FIG. 3 is a graph showing the relationship between the particle size of graphite obtained by the present invention and the terminal velocity.
FIG. 4 is a graph showing the relationship between the particle size of graphite obtained by the present invention and the terminal velocity.
FIG. 5 is a graph showing the relationship between the particle size of graphite obtained by the present invention and the terminal velocity.
FIG. 6 is a graph showing the relationship between the particle size of graphite obtained by the present invention and the terminal velocity.
FIG. 7 is a graph showing the relationship between the particle diameter of the activated carbon obtained in the present invention and the terminal velocity.
FIG. 8 is a graph showing the relationship between the particle size of the activated carbon obtained in the present invention and the terminal velocity.
FIG. 9 is a graph showing the relationship between the particle diameter of the activated carbon obtained in the present invention and the terminal velocity.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Muffle
5 ... Adsorbent
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002245767A JP3888950B2 (en) | 2002-08-26 | 2002-08-26 | Hazardous substance adsorbent in exhaust gas and method for removing harmful substance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002245767A JP3888950B2 (en) | 2002-08-26 | 2002-08-26 | Hazardous substance adsorbent in exhaust gas and method for removing harmful substance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004081969A JP2004081969A (en) | 2004-03-18 |
JP3888950B2 true JP3888950B2 (en) | 2007-03-07 |
Family
ID=32053861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002245767A Expired - Fee Related JP3888950B2 (en) | 2002-08-26 | 2002-08-26 | Hazardous substance adsorbent in exhaust gas and method for removing harmful substance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3888950B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9468904B2 (en) * | 2013-12-31 | 2016-10-18 | Ada Carbon Solutions, Llc | Sorbent compositions having pneumatic conveyance capabilities |
LU93012B1 (en) | 2016-04-04 | 2017-11-08 | Cppe Carbon Process & Plant Eng S A En Abrege Cppe S A | Sulfur dioxide removal from waste gas |
LU93013B1 (en) | 2016-04-04 | 2017-11-08 | Cppe Carbon Process & Plant Eng S A En Abrege Cppe S A | Process for the removal of heavy metals from fluids |
LU93014B1 (en) * | 2016-04-04 | 2017-10-05 | Ajo Ind S A R L | Catalyst mixture for the treatment of waste gas |
-
2002
- 2002-08-26 JP JP2002245767A patent/JP3888950B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004081969A (en) | 2004-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6524371B2 (en) | Process for adsorption of mercury from gaseous streams | |
US6638347B2 (en) | Carbon-based adsorption powder containing cupric chloride | |
Zheng et al. | Experimental study on electrostatic precipitation of low-resistivity high-carbon fly ash at high temperature | |
JP2002355531A (en) | Method of treating exhaust gas in cement production | |
AU2002252500A1 (en) | Method of absorbing metals and organic compounds from vaporous streams | |
WO2002085498A1 (en) | Method of adsorbing metals and organic compounds from vaporous streams | |
US8133304B2 (en) | Process for the production of carbonaceous adsorption agents doped with elementary sulfur and a process for waste gas cleaning using such adsorption agents | |
JP3888950B2 (en) | Hazardous substance adsorbent in exhaust gas and method for removing harmful substance | |
Saini et al. | A novel approach for reducing toxic emissions during high temperature processing of electronic waste | |
Yang et al. | An electrically renewable air filter with integrated 3D nanowire networks | |
JPH07505444A (en) | Method of processing materials that can be swept or flowed | |
JP2000157832A (en) | Treatment of waste activated carbon and treatment of activated coke | |
JP2013088360A (en) | Decontamination system and decontamination method of radioactive substance | |
EP1406718A1 (en) | Carbon-based adsorption powder containing cupric chloride | |
US5297495A (en) | Process of incinerating waste materials | |
JP3073196B1 (en) | Thermal conductive activated carbon material and gas treatment equipment | |
Shih et al. | Characterization of dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the atmosphere of different workplaces of a sinter plant | |
JP2005152719A (en) | Activated carbon adsorber and its operation method | |
Liu et al. | Effects of bed material size distribution, operating conditions and agglomeration phenomenon on heavy metal emission in fluidized bed combustion process | |
RU2268084C2 (en) | Material and a method for retaining polyhalogenated compounds | |
Li et al. | A pilot study of mercury liberation and capture from coal-fired power plant fly ash | |
JP7270468B2 (en) | Exhaust gas treatment device and exhaust gas treatment method | |
JPH108118A (en) | Production of desulfurizing agent for steel making from waste gas of waste incineration | |
JPH1170315A (en) | Treatment of high temperature gas | |
JP2004299928A (en) | Hardly ignitable activated carbon and its manufacturing method, and method for processing waste gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060413 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060907 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061128 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3888950 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313122 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313122 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111208 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111208 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121208 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121208 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131208 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |