JP2004081139A - Method for culturing basidiomycete and culture vessel - Google Patents

Method for culturing basidiomycete and culture vessel Download PDF

Info

Publication number
JP2004081139A
JP2004081139A JP2002248819A JP2002248819A JP2004081139A JP 2004081139 A JP2004081139 A JP 2004081139A JP 2002248819 A JP2002248819 A JP 2002248819A JP 2002248819 A JP2002248819 A JP 2002248819A JP 2004081139 A JP2004081139 A JP 2004081139A
Authority
JP
Japan
Prior art keywords
culture
air
basidiomycete
culture solution
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002248819A
Other languages
Japanese (ja)
Inventor
Takumi Koga
古我 匠
Isao Horiuchi
堀内 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OUBIKEN KK
Oubiken KK
Original Assignee
OUBIKEN KK
Oubiken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OUBIKEN KK, Oubiken KK filed Critical OUBIKEN KK
Priority to JP2002248819A priority Critical patent/JP2004081139A/en
Publication of JP2004081139A publication Critical patent/JP2004081139A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/14Pressurized fluid

Abstract

<P>PROBLEM TO BE SOLVED: To provide a culture vessel for the culture of the mycelia of basidiomycete under stirring the culture liquid while lowering the stress on the mycelia as far as possible and supplying sufficient oxygen to the culture liquid. <P>SOLUTION: The culture vessel 1 for basidiomycete is provided with a vessel body 3, an air supplying pipe 4 placed at the bottom of the vessel body 3 and a plurality of air-ejection nozzles 6 attached to the air-supplying pipe 4. The air-ejection nozzle 6 is made of a sintered metal and is attached to the air-supplying pipe 4 slantly upward relative to the vessel body 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、担子菌類の培養方法およびその培養に用いられる培養容器に関するものである。
【0002】
【従来の技術】
従来、キノコ類に代表される担子菌類の培養では、主に子実体を形成させてそれを食することを目的としていた。しかしながら、担子菌類の一種であるアガリクスブラゼイ(Agaricus blazei)が抗腫瘍性のβ−グルカンを多量に含有していることが分かったために需要が飛躍的に増大した。一方、菌糸体の中にも機能性の高いβ−グルカンが多量に含まれているため、最近ではアガリクスブラゼイの菌糸体を得るための液体培養方法が行われるようになっている(特開平10−287584)。
【0003】
前記の液体培養方法では、アガリクスブラゼイが好気性菌であることから酸素の供給が必要となるが、従来は酸素を満遍なく供給できるように、液体培養の容器内に回転羽根を設け、培養液を撹拌しながら酸素を供給する方法が提案されていた。
【0004】
【発明が解決しようとする課題】
しかしながら、アガリクスブラゼイの液体培養では、培養が進むにつれて菌糸がペレット状に凝集する傾向がある。そのために、培養が進むほどペレットの内部に酸素が供給されにくくなり、その結果菌糸が壊死するという現象が生じていた。それに対して従来は、回転羽根で培養液を撹拌することで、酸素供給を満遍なく行うと共に、液攪拌の効果によりペレットの凝集を防ぐ方法が用いられていた。ところが、同方法では培養液中で成長したアガリクスブラゼイの菌糸体を回転羽根で剪断することになるため、菌糸体にストレスを与える原因となり、β−グルカンを多量に含む菌糸体の成長を妨げてしまう他、剪断された菌糸体同士がさらに凝集して大きなペレットを形成してしまうおそれがあった。大きなペレットの形成は、ペレット内部に酸素供給がなされない部分を多く作り出し、その結果菌の溶菌を招き、菌体収量の減収へとつながる原因となる。更に、同菌は壁面を成長基盤として増殖する性質があるため、培養槽内壁や回転羽根のような突起部分を土台として菌が増殖し、十分な菌体収量が得られない原因となっていた。
【0005】
そこで本発明では、アガリクスブラゼイの菌糸体にストレスを与えないような手段で撹拌すると共に、撹拌方法を工夫することでペレット一つ一つの粒子サイズを小さくして、ペレット内部にも酸素が十分に供給されるような担子菌の培養方法および培養容器を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意研究を行った結果、培養液にエアー圧による旋回流を発生させることで、菌糸体に攪拌によるストレスを与えることなく培養液を撹拌できることを見出し、本発明に到達した。
【0007】
すなわち、本発明の請求項1に係る担子菌の培養方法は、容器内の培養液を撹拌しながら担子菌を培養する方法において、前記培養液中にエアーを噴射することで培養液に旋回流を与えて撹拌することを特徴とする。
【0008】
上記の培養方法によれば、エアー圧による旋回流を利用して攪拌を行うために、菌糸体にストレスを与える原因となる剪断力が、従来の回転羽根による攪拌と比べて著しく小さくなる。そのため、攪拌によって菌糸体に与えるストレスが小さくなり、菌糸体の成長を妨げることがない。
【0009】
また、上記の旋回流は、エアーを容器の下部から斜め上方に向けて培養液中に勢いよく噴射することで、大容量の培養容器であっても培養液を十分に撹拌することができる。
【0010】
また、前記培養液の旋回流を反時計回りに発生させることで、菌糸体に与えるストレスが小さくなり、成長がより一層促進されることになる。
【0011】
また、前記エアーが微細な泡状となって培養液中に噴射されると共に、前記エアーの噴射量を100〜150L/minに、エアーの噴射圧力を0.01〜0.2MPaに設定することで、培養液中に供給される溶存酸素量が十分に確保され、好気性菌の生育にとってはより好ましい培養環境が得られる。
【0012】
本発明の請求項7に係る担子菌の培養容器は、容器本体と、この容器本体の底部に設けられたエアー供給管と、このエアー供給管に設けられた複数のエアー噴射ノズルとを備えたことを特徴とする。
【0013】
また、前記エアー噴射ノズルに焼結金属を用いることで、エアーを微細な泡状で噴射することができる。
【0014】
また、前記エアー噴射ノズルが容器本体に対して斜め上方に向けてエアー供給管に取り付けられることで旋回流を発生させ易くなり、大容量の培養容器であっても培養液を十分に撹拌することができる。
【0015】
上記の培養容器を用いることで、エアー供給管に設けた複数のエアー噴射ノズルから、燒結金属を介してエアーを噴射することで培養液中への溶存酸素濃度を増やすことができる。また、エアー噴射ノズルの取り付け向きに角度を持たせることで、培養液に旋回流を起こさせ、満遍なく攪拌することが可能となった。
【0016】
本発明の担子菌には、一般にキノコと称される菌類の大部分が含まれ、上述のアガリクスブラゼイの他、抗腫瘍性が高いとされるメシマコブ、ハナビラタケ、カンゾウタケ、カバノアナタケなどの菌糸体培養に適用される。
【0017】
【発明の実施の形態】
以下、添付図面に基づいて本発明に係る担子菌の培養方法および培養容器を詳細に説明する。ここで、図1は本発明に係る培養容器の内部構造を示す図、図2はエアー噴射ノズルの取付位置を示す斜視図、図3はエアー噴射ノズルの先端構造を示す断面図である。
【0018】
図1に示したように、本発明の培養容器1は、外周部がウォータージャケット2によって覆われた円筒状の容器本体3と、この容器本体3内の下部に配管されたリング状のエアー供給管4と、外部のコンプレッサ(図示せず)から前記エアー供給管4にエアーを圧送するために、容器本体3の上部から内周壁に沿って縦方向に配管されたエアー導管5とを備える。
【0019】
前記エアー供給管4は、アルミニウム製のチューブを容器本体3の内周壁に沿って配管したもので、このエアー供給管4には多数のエアー噴射ノズル6が一定間隔ごとに全周に亘って取り付けられている。これらのエアー噴射ノズル6は、図2(a)に示したように、エアー供給管4の接線方向に対して角度θ1で内方に向かって、また、図2(b)に示したように、水平方向に対して角度θ2で斜め上方に向かって取り付けられている。エアー噴射ノズル6が、このような角度に設定されることで、エアー噴射ノズル6から噴射されたエアーが容器本体3内に収容された培養液に旋回流を発生させることができる。なお、これらθ1,θ2は容器本体3の大きさや培養液の容量などによって最適な角度に設定される。また、この実施形態に係るエアー噴射ノズル6は、図3に示したように、先端噴出部7が金属粉末を圧縮成形して焼き固めた焼結金属によって形成されている。この焼結金属には網目のような微細な孔が多数形成されているため、この微細な孔を通ってエアーが噴射されることでエアーが微細な泡状となって噴き出され、培養液中への空気の溶け込みが容易になると共に、培養液中に供給される溶存酸素量も多くなる。
【0020】
本発明において注目すべき点は、容器本体3内に収容された培養液に反時計回り(左方向)の旋回流を与えることである。旋回流の回転方向によって菌糸体の成長速度に差が生ずることが、発明者らの実験によって確かめられている。北半球では培養液を反時計回りに回転させることで旋回流が無理なく発生して菌糸体へのストレスが少なくなる。上記の実施形態では、エアー噴射ノズル6を図2に示したような角度に取り付けることによって反時計方向への旋回流を発生させている。
【0021】
前記エアー噴射ノズル6から培養液中に噴射されるエアーの噴射量は100〜150L/minが望ましく、エアーの噴射圧力は0.01〜0.2MPaが望ましい。噴射量や噴射圧力はエアーコンプレッサからのエアー供給量やエアー噴射ノズルの絞りを調整することで設定され、容器本体3の大きさや培養液の容量などによって最適値に調整される。また、培養液の温度管理は、前述したウォータージャケット2内の水温を制御することで行なわれる。
【0022】
したがって、上述のような構成からなる培養容器1にあっては、図1に示したように、容器本体3の内周壁に沿って設けられた多数のエアー噴射ノズル6から所定の角度θ1,θ2でエアーが噴射されるので、容器本体3内の培養液はその噴射圧力によって旋回流が発生する。そして、この旋回流によって培養液が撹拌され、酸素が培養液全体に満遍なく供給されることになる。さらに、エアー噴射ノズル6からは、エアーが微細な泡状となって培養液内に噴射されるので、供給される溶存酸素量も多くなると共に、培養液に酸素が溶け込み易くなる。
【0023】
【実施例】
以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。
【0024】
(実施例1)
攪拌ストレスの数値化及び、攪拌ストレスが菌体収量に及ぼす影響についての試験
菌糸体の収量及び有効成分であるβ−グルカン量と攪拌ストレスとの間には密接な関係がある。それを確かめるための試験を行った。アガリクスブラゼイの菌子体の収量及びβ−グルカンの含有量に及ぼす攪拌ストレスの影響は、500ml容三角フラスコ中の培養液量を変え、同一振とう速度で振とうさせることによって攪拌ストレスを変化させる方法で評価を行った。攪拌ストレスは、ラボスケール及びプラントスケールの両方に共通して適用できるようにするため、物質溶解速度定数Kとして数値化した。同定数は、文献(H.Tanaka,Biotechnol. Bioeng.,Vol.XXIII,p1207−1208(1981))を用いて、β−ナフトールの溶解速度定数から算出される。Kが大きいほど攪拌ストレスが大きいとみなすことができる。
【0025】
そこでまず、三角フラスコ中の各培地量における物質溶解速度定数Kの測定を行った。測定は先に述べた文献中の定法に従って行った。その結果を表1に示した。培養液量が100〜200mlでは違いがほとんど見られなかったが、300mlより増えると物質溶解速度係数の値が下がる傾向が見られた。すなわち、攪拌による物理的ストレスが低下することを示した。
【0026】
【表1】

Figure 2004081139
【0027】
そこで、実際に菌を培養する際の菌体収量に及ぼす物質溶解速度係数K(攪拌ストレス)の影響を調べた。試験は、500ml容三角フラスコ中に100ml〜500mlまで100ml刻みでMYS培地(1%モルトエキス、0.4%イーストエキス、1%サッカロース)を添加し、滅菌後に任意量の種菌を植菌して、25℃で21日間培養を行った。その後、濾過により菌糸体を集菌し、105℃の乾燥機で2日間乾燥後にその重量を求めた。
【0028】
その結果を表2に示した。それによれば、乾燥菌体重量は、培養液量が300ml〜400mlの際に最も高い値を示した。これらの結果を総合して考えると、物質溶解速度係数Kを約1〜1.5×10−3(cm/sec)に制御した培養を行うことで、より高い菌体収量を得ることが可能になった。
【0029】
【表2】
Figure 2004081139
【0030】
(実施例2)
攪拌ストレスが菌体ペレットの大きさに及ぼす影響についての試験
実施例1で、攪拌ストレスが菌体収量に及ぼす影響についての検討を行ったが、高い菌体収量が得られる攪拌条件が実際のプラントレベルに適用可能であるかどうかは分からない。特にペレットの大きさについては、サイズが大きいと均一な攪拌が行われずに培養槽壁面に付着し、菌体増殖の妨げとなる原因となる。従ってスケールアップ時には、ペレットが大きくなるのではなく、ペレットのサイズは小さいがペレット数は増える状態にあることが望ましい。
【0031】
そこで、物質溶解速度係数Kと菌体ペレットの大きさ・数の関係を調べた。実施例1と同様の組成の培養液を、500ml容三角フラスコに100〜500mlまで100ml刻みで5種類の用量で添加し、滅菌後に任意量の種菌を植菌して21日間振とう培養を行った。培養終了後、フラスコ毎に菌体ペレットを集菌し、数とサイズをノギスで測定した。
【0032】
その結果を表3に示した。物質溶解速度係数が高い、すなわち攪拌ストレスが強いK=1.95や2.01の時には、菌体はほとんど成長しない。一方、K=1.66から1.08にかけては、他よりも細かい径のペレットが数多く出てきている。従って、攪拌ストレスが弱くなるとペレットの数は増え、かつサイズが小さいものが生じていることがわかった。実施例1の結果も踏まえて考察した結果、物質溶解速度係数Kが1〜1.5の時に菌体収量、ペレットの形状共に優れた成績が得られることがわかった。
【0033】
【表3】
Figure 2004081139
【0034】
(実施例3)
菌体収量の比較試験
本発明に係る培養容器を用いた培養法と従来の培養法との菌体収量の比較を、担子菌であるアガリクスブラゼイを用いて行った。前培養は実施例1と同じ組成の培地を作成し、pH無調整で使用した。前々培養により直径約10mmに成長した菌糸体ペレットを機械的に分散し、25℃で振とう培養を増殖期に達するまで行った。
【0035】
本実施例では、直径約2.5m、高さ約3mの円筒形の培養容器(15トン容)に約12トンの培地を入れて滅菌を行った。その後、前培養菌体懸濁液300Lを培養容器に植菌した。さらに、フィルタでろ過した無菌エアーを培養容器内に設けた14個のエアー噴射ノズルから噴射し、培養液に反時計回りの旋回流を発生させた。エアー噴射ノズルからのエアー噴射量は100L/min、エアー噴射圧力は0.01MPaである。培養液の温度を25〜28℃に保ち、その状態で14日間培養を行った。培養終了後に固液分離して菌体を全て回収し、乾燥機で2〜3日乾燥させたのち菌体の重量を求め、さらに全培養液に対する菌体収量割合を求めた。
【0036】
一方、比較例では通気攪拌型培養を行い、培養容器として東京理科器械株式会社製のMINI JARFERMENTOR M100を用いた。攪拌翼として変形パドル翼(Li=50mm、Di=65mm:中空の長方形で辺の幅は10mm)を取り付け、邪魔板を外して培養を行った。培養容器内に上記組成の培地1.7Lと消泡剤数滴を入れて滅菌後、前培養菌体件濁液300mlを植菌し、培地総量を2Lとした。培養液を25℃に保ち、攪拌翼の回転数を100rpm、通気量を0.1L/minに調整して通気攪拌培養を行った。培養終了後は前記実施例と同様、菌体を全て回収し、乾燥機で2〜3日乾燥させたのち菌体の重量を求め、さらに全培養液に対する菌体収量割合を求めた。
【0037】
上記の実施例および比較例の結果を表4に示した。それによれば、全培養液に対する菌体収量割合が本実施例の場合は、比較例の約2.3倍であった。
【0038】
【表4】
Figure 2004081139
【0039】
【発明の効果】
以上説明したように、本発明に係る担子菌の培養方法によれば、培養液中にエアーを所定の角度で噴射することによって旋回流を発生させ、それによって培養液を撹拌すると共に酸素を十分に供給するようにしたので、培養液中の溶存酸素濃度を高めることができると共に、従来のような回転羽根による撹拌とは異なって菌糸体にストレスを与えることがないので、菌糸体の成長が飛躍的に伸びる。
【0040】
また、本発明に係る培養容器によれば、エアー供給管に設けた複数のエアー噴射ノズルからエアーを噴射することで培養液に十分な旋回流を発生させ、それによって培養液中の溶存酸素濃度を増やすことのできるような撹拌が可能となった。
【図面の簡単な説明】
【図1】本発明に係る培養容器の内部構造を示す図である。
【図2】エアー噴射ノズルの取付角度を示す斜視図である。
【図3】エアー噴射ノズルの先端部の構造を示す断面図である。1 培養容器
2 ウォータージャケット
3 容器本体
4 エアー供給管
5 エアー導管
6 エアー噴射ノズル
7 先端噴出部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for cultivating basidiomycetes and a culture vessel used for the cultivation.
[0002]
[Prior art]
Conventionally, cultivation of basidiomycetes represented by mushrooms has been mainly intended to form fruiting bodies and eat them. However, it has been found that Agaricus blazei, which is a kind of basidiomycetes, contains a large amount of antitumor β-glucan, and the demand has increased dramatically. On the other hand, since the mycelium contains a large amount of highly functional β-glucan, a liquid culture method for obtaining a mycelium of Agaricus blazei has recently been performed (Japanese Patent Laid-Open No. -287584).
[0003]
In the liquid culture method, since Agaricus blazei is an aerobic bacterium, it is necessary to supply oxygen.However, conventionally, rotating blades are provided in a liquid culture container so that oxygen can be supplied uniformly, and the culture solution is supplied. A method of supplying oxygen while stirring has been proposed.
[0004]
[Problems to be solved by the invention]
However, in the liquid culture of Agaricus blazei, mycelia tend to agglomerate into pellets as the culture proceeds. For this reason, as the culture progresses, it becomes difficult to supply oxygen into the inside of the pellet, and as a result, a phenomenon has occurred in which hyphae are necrotic. On the other hand, conventionally, a method has been used in which the culture solution is agitated by the rotating blades to supply oxygen evenly and to prevent aggregation of the pellets by the effect of the solution agitation. However, in this method, the mycelium of Agaricus blazei grown in the culture solution is sheared by the rotating blades, which causes stress on the mycelium and hinders the growth of the mycelium containing a large amount of β-glucan. In addition, there is a possibility that the sheared mycelia further aggregate to form a large pellet. The formation of a large pellet creates many portions in the pellet where no oxygen is supplied, resulting in lysis of the bacterium, leading to a decrease in the yield of the bacterium. Furthermore, since the bacterium has the property of proliferating on the wall surface as a growth base, the bacterium proliferates on the protrusions such as the inner wall of the culture tank and the rotating blades, and this has been a cause of insufficient cell yield. .
[0005]
Therefore, in the present invention, while stirring by a means that does not give stress to the mycelium of Agaricus blazei, the particle size of each pellet is reduced by devising a stirring method, and oxygen is sufficiently contained inside the pellet. It is an object of the present invention to provide a basidiomycete cultivation method and a culture vessel as supplied.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, found that by generating a swirling flow by air pressure in the culture solution, the culture solution can be stirred without applying stress due to stirring to the mycelium. Reached the present invention.
[0007]
That is, in the method for cultivating basidiomycetes according to claim 1 of the present invention, in the method of culturing basidiomycetes while stirring the culture solution in a container, the air is injected into the culture solution to form a swirling flow into the culture solution. And stirring the mixture.
[0008]
According to the above-mentioned culturing method, since the stirring is performed using the swirling flow by the air pressure, the shearing force that causes stress on the mycelium is significantly reduced as compared with the stirring by the conventional rotating blade. Therefore, the stress given to the mycelium by stirring is reduced, and the growth of the mycelium is not hindered.
[0009]
In addition, the above-mentioned swirling flow can sufficiently agitate the culture solution even in a large-capacity culture container by injecting air vigorously into the culture solution obliquely upward from the lower part of the container.
[0010]
In addition, by generating the swirling flow of the culture solution in a counterclockwise direction, the stress applied to the mycelium is reduced, and the growth is further promoted.
[0011]
Further, the air is sprayed into the culture solution in the form of fine bubbles, and the injection amount of the air is set to 100 to 150 L / min, and the injection pressure of the air is set to 0.01 to 0.2 MPa. Thus, the amount of dissolved oxygen supplied to the culture solution is sufficiently ensured, and a more favorable culture environment for the growth of aerobic bacteria can be obtained.
[0012]
The basidiomycete culture container according to claim 7 of the present invention includes a container main body, an air supply pipe provided at the bottom of the container main body, and a plurality of air injection nozzles provided at the air supply pipe. It is characterized by the following.
[0013]
Further, by using a sintered metal for the air injection nozzle, air can be injected in a fine bubble shape.
[0014]
Further, since the air injection nozzle is attached to the air supply pipe obliquely upward with respect to the container body, a swirling flow is easily generated, and even in a large-capacity culture container, the culture solution is sufficiently stirred. Can be.
[0015]
By using the above-described culture container, the concentration of dissolved oxygen in the culture solution can be increased by injecting air from a plurality of air injection nozzles provided in the air supply pipe via sintered metal. In addition, by giving an angle to the mounting direction of the air injection nozzle, a swirling flow was caused in the culture solution, and it was possible to stir evenly.
[0016]
The basidiomycete of the present invention contains most of fungi generally called mushrooms, and in addition to the above-mentioned Agaricus blazei, is used for mycelium culture of meshimakobu, hanabiratake, licorice mushroom, birch mushroom, etc., which are highly antitumor. Applied.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the basidiomycete culture method and culture vessel according to the present invention will be described in detail with reference to the accompanying drawings. Here, FIG. 1 is a view showing an internal structure of the culture vessel according to the present invention, FIG. 2 is a perspective view showing an attachment position of an air injection nozzle, and FIG. 3 is a sectional view showing a tip structure of the air injection nozzle.
[0018]
As shown in FIG. 1, a culture vessel 1 of the present invention includes a cylindrical vessel body 3 whose outer peripheral portion is covered by a water jacket 2, and a ring-shaped air supply piped at a lower portion inside the vessel body 3. A pipe 4 and an air conduit 5 vertically piped from the upper part of the container body 3 along the inner peripheral wall to pump air from an external compressor (not shown) to the air supply pipe 4.
[0019]
The air supply pipe 4 is formed by arranging an aluminum tube along the inner peripheral wall of the container body 3, and a large number of air injection nozzles 6 are attached to the air supply pipe 4 at regular intervals over the entire circumference. Have been. As shown in FIG. 2A, these air injection nozzles 6 are directed inward at an angle θ1 with respect to the tangential direction of the air supply pipe 4, and as shown in FIG. , At an angle θ2 with respect to the horizontal direction. By setting the air injection nozzle 6 at such an angle, the air injected from the air injection nozzle 6 can generate a swirling flow in the culture solution contained in the container body 3. Note that θ1 and θ2 are set to optimal angles depending on the size of the container body 3 and the volume of the culture solution. Further, in the air injection nozzle 6 according to this embodiment, as shown in FIG. 3, the front-end ejection portion 7 is formed of a sintered metal obtained by compression-molding a metal powder and sintering it. Since a large number of fine pores such as meshes are formed in this sintered metal, air is injected through these fine pores to form air in the form of fine bubbles. The dissolution of air into the medium becomes easy, and the amount of dissolved oxygen supplied to the culture solution also increases.
[0020]
A point to be noted in the present invention is that a counterclockwise (leftward) swirling flow is applied to the culture solution contained in the container body 3. It has been confirmed by experiments by the inventors that a difference occurs in the growth rate of the mycelium depending on the rotation direction of the swirling flow. In the northern hemisphere, rotating the culture solution counterclockwise generates a swirling flow without difficulty and reduces stress on the mycelium. In the above embodiment, a counterclockwise swirling flow is generated by mounting the air injection nozzle 6 at an angle as shown in FIG.
[0021]
The amount of air injected into the culture solution from the air injection nozzle 6 is preferably 100 to 150 L / min, and the air injection pressure is preferably 0.01 to 0.2 MPa. The injection amount and the injection pressure are set by adjusting the air supply amount from the air compressor and the throttle of the air injection nozzle, and are adjusted to optimal values by the size of the container body 3 and the volume of the culture solution. The temperature control of the culture solution is performed by controlling the water temperature in the water jacket 2 described above.
[0022]
Therefore, in the culture container 1 having the above-described configuration, as shown in FIG. 1, a plurality of air injection nozzles 6 provided along the inner peripheral wall of the container main body 3 provide predetermined angles θ1, θ2. As a result, the swirling flow of the culture solution in the container body 3 is generated by the injection pressure. Then, the culture solution is stirred by the swirling flow, and oxygen is supplied evenly to the entire culture solution. Furthermore, since the air is sprayed into the culture solution from the air injection nozzle 6 in the form of fine bubbles, the amount of dissolved oxygen supplied is increased, and oxygen is easily dissolved into the culture solution.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
[0024]
(Example 1)
Quantification of stirring stress and effect of stirring stress on cell yield There is a close relationship between the yield of test mycelium and the amount of β-glucan as an active ingredient and stirring stress. A test was performed to confirm this. The effect of stirring stress on the yield of mycelium of Agaricus blazei and the content of β-glucan is determined by changing the amount of culture solution in a 500 ml Erlenmeyer flask and shaking at the same shaking speed to change the stirring stress. Was evaluated. The agitation stress was quantified as a substance dissolution rate constant K in order to be applicable to both the laboratory scale and the plant scale. The constant is calculated from the dissolution rate constant of β-naphthol using the literature (H. Tanaka, Biotechnol. Bioeng., Vol. XXIII, p1207-1208 (1981)). It can be considered that the larger K is, the larger the stirring stress is.
[0025]
Therefore, first, the substance dissolution rate constant K for each amount of medium in the Erlenmeyer flask was measured. The measurement was performed according to the standard method described in the literature described above. The results are shown in Table 1. When the amount of the culture solution was 100 to 200 ml, there was almost no difference, but when the amount was more than 300 ml, the value of the substance dissolution rate coefficient tended to decrease. That is, it was shown that the physical stress due to stirring was reduced.
[0026]
[Table 1]
Figure 2004081139
[0027]
Therefore, the effect of the substance dissolution rate coefficient K (stirring stress) on the yield of cells when the cells were actually cultured was examined. In the test, MYS medium (1% malt extract, 0.4% yeast extract, 1% saccharose) was added in 100 ml increments of 100 ml to a 500 ml Erlenmeyer flask, and after sterilization, an arbitrary amount of inoculum was inoculated. At 25 ° C. for 21 days. Thereafter, the mycelium was collected by filtration, and after drying in a dryer at 105 ° C. for 2 days, the weight was determined.
[0028]
The results are shown in Table 2. According to this, the dry cell weight showed the highest value when the amount of the culture solution was 300 ml to 400 ml. Considering these results in total, it is possible to obtain a higher cell yield by culturing while controlling the substance dissolution rate coefficient K to about 1 to 1.5 × 10 −3 (cm / sec). Became.
[0029]
[Table 2]
Figure 2004081139
[0030]
(Example 2)
Test on the Effect of Stirring Stress on the Size of Cell Pellet In Example 1, the effect of stirring stress on the cell yield was examined. Not sure if it is applicable to a level. In particular, regarding the size of the pellet, if the size is large, uniform agitation is not performed and the pellet adheres to the wall of the culture tank, which becomes a cause of hindering the growth of bacterial cells. Therefore, at the time of scale-up, it is desirable that the size of the pellet is small but the number of pellets is increased instead of the size of the pellet increasing.
[0031]
Thus, the relationship between the substance dissolution rate coefficient K and the size and number of the cell pellets was examined. A culture solution having the same composition as in Example 1 was added to a 500 ml Erlenmeyer flask in 100 ml increments in 100 ml increments in five different doses, and after sterilization, an arbitrary amount of inoculum was inoculated and shake culture was performed for 21 days. Was. After completion of the culture, the cell pellet was collected for each flask, and the number and size were measured with a caliper.
[0032]
Table 3 shows the results. When the substance dissolution rate coefficient is high, that is, when the stirring stress is strong, such as K = 1.95 or 2.01, bacterial cells hardly grow. On the other hand, from K = 1.66 to 1.08, a large number of pellets having a finer diameter than others have come out. Therefore, it was found that when the stirring stress became weaker, the number of pellets increased and some pellets were small in size. As a result of consideration based on the results of Example 1, it was found that when the substance dissolution rate coefficient K was 1 to 1.5, excellent results were obtained in both cell yield and pellet shape.
[0033]
[Table 3]
Figure 2004081139
[0034]
(Example 3)
Comparative test of cell yield The comparison of the cell yield between the culture method using the culture vessel according to the present invention and the conventional culture method was performed using Agaricus blazei, a basidiomycete. For pre-culture, a medium having the same composition as in Example 1 was prepared and used without pH adjustment. The mycelial pellet that had grown to a diameter of about 10 mm by pre-pre-culture was mechanically dispersed and shake-cultured at 25 ° C. until the growth phase was reached.
[0035]
In the present example, about 12 tons of culture medium was put into a cylindrical culture vessel (15 tons capacity) having a diameter of about 2.5 m and a height of about 3 m and sterilized. Thereafter, 300 L of the precultured cell suspension was inoculated into a culture vessel. Further, sterile air filtered by a filter was jetted from 14 air jet nozzles provided in the culture vessel to generate a counterclockwise swirling flow in the culture solution. The air injection amount from the air injection nozzle is 100 L / min, and the air injection pressure is 0.01 MPa. The temperature of the culture was maintained at 25 to 28 ° C., and culturing was performed for 14 days in that state. After completion of the culture, all cells were collected by solid-liquid separation, dried in a dryer for 2 to 3 days, then the weight of the cells was determined, and the ratio of the cell yield to the total culture was determined.
[0036]
On the other hand, in the comparative example, aeration and agitation type culture was performed, and MINI JARFERMENTOR M100 manufactured by Tokyo Rikakikai Co., Ltd. was used as a culture vessel. A deformed paddle blade (Li = 50 mm, Di = 65 mm: hollow rectangle with a side width of 10 mm) was attached as a stirring blade, and the baffle was removed for culturing. 1.7 L of the medium having the above composition and a few drops of an antifoaming agent were put into a culture vessel, sterilized, and then 300 ml of a pre-cultured cell suspension was inoculated to make the total amount of the medium 2 L. The culture solution was maintained at 25 ° C., and the number of revolutions of the stirring blade was adjusted to 100 rpm, and the aeration rate was adjusted to 0.1 L / min to perform aeration and stirring culture. After the completion of the culture, all the cells were collected and dried in a drier for 2 to 3 days, and the weight of the cells was determined in the same manner as in the above example. Further, the ratio of the cell yield to the total culture solution was determined.
[0037]
Table 4 shows the results of the above Examples and Comparative Examples. According to this, the ratio of the cell yield to the total culture solution was about 2.3 times that of the comparative example in the case of the present example.
[0038]
[Table 4]
Figure 2004081139
[0039]
【The invention's effect】
As described above, according to the method for cultivating basidiomycetes according to the present invention, a swirling flow is generated by injecting air into the culture at a predetermined angle, whereby the culture is stirred and oxygen is sufficiently supplied. So that the concentration of dissolved oxygen in the culture solution can be increased, and stress is not applied to the mycelium unlike conventional stirring by rotating blades. It grows dramatically.
[0040]
Further, according to the culture vessel of the present invention, a sufficient swirling flow is generated in the culture solution by injecting air from a plurality of air injection nozzles provided in the air supply pipe, thereby dissolving the dissolved oxygen concentration in the culture solution. The agitation that can increase the amount of water became possible.
[Brief description of the drawings]
FIG. 1 is a diagram showing the internal structure of a culture vessel according to the present invention.
FIG. 2 is a perspective view showing a mounting angle of an air injection nozzle.
FIG. 3 is a cross-sectional view showing a structure of a tip portion of the air injection nozzle. DESCRIPTION OF SYMBOLS 1 Culture container 2 Water jacket 3 Container main body 4 Air supply pipe 5 Air conduit 6 Air injection nozzle 7 Tip ejection part

Claims (9)

容器内の培養液を撹拌しながら担子菌を培養する方法において、前記培養液中にエアーを噴射することで培養液に旋回流を与えて撹拌することを特徴とする担子菌の培養方法。A method for cultivating basidiomycetes while stirring the culture in a container, wherein the culture is stirred by applying a swirling flow to the culture by injecting air into the culture. 前記エアーが容器の下部から斜め上方に向けて培養液中に噴射されてなる請求項1記載の担子菌の培養方法。The basidiomycete cultivation method according to claim 1, wherein the air is injected into the culture solution obliquely upward from a lower portion of the container. 前記旋回流が反時計回りに発生する請求項1記載の担子菌の培養方法。The basidiomycete culture method according to claim 1, wherein the swirling flow is generated in a counterclockwise direction. 前記エアーが微細な泡状となって培養液中に噴射されてなる請求項1記載の担子菌の培養方法。The method for cultivating basidiomycetes according to claim 1, wherein the air is finely foamed and injected into the culture solution. 前記エアーの噴射量が100〜150L/minである請求項1又は2記載の担子菌の培養方法。The basidiomycete cultivation method according to claim 1 or 2, wherein the air injection amount is 100 to 150 L / min. 前記エアーの噴射圧力が0.01〜0.2MPaである請求項1又は2記載の担子菌の培養方法。The basidiomycete cultivation method according to claim 1 or 2, wherein the air injection pressure is 0.01 to 0.2 MPa. 容器本体と、この容器本体の底部に設けられたエアー供給管と、このエアー供給管に設けられた複数のエアー噴射ノズルとを備えたことを特徴とする担子菌の培養容器。A basidiomycete culture container, comprising: a container body; an air supply pipe provided at a bottom portion of the container body; and a plurality of air injection nozzles provided at the air supply pipe. 前記エアー噴射ノズルが焼結金属によって形成されてなる請求項7記載の担子菌の培養容器。The basidiomycete culture vessel according to claim 7, wherein the air injection nozzle is formed of a sintered metal. 前記エアー噴射ノズルが容器本体に対して斜め上方に向けてエアー供給管に取り付けられてなる請求項7記載の担子菌の培養容器。The basidiomycete culture container according to claim 7, wherein the air injection nozzle is attached to the air supply pipe obliquely upward with respect to the container body.
JP2002248819A 2002-08-28 2002-08-28 Method for culturing basidiomycete and culture vessel Pending JP2004081139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248819A JP2004081139A (en) 2002-08-28 2002-08-28 Method for culturing basidiomycete and culture vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248819A JP2004081139A (en) 2002-08-28 2002-08-28 Method for culturing basidiomycete and culture vessel

Publications (1)

Publication Number Publication Date
JP2004081139A true JP2004081139A (en) 2004-03-18

Family

ID=32056101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248819A Pending JP2004081139A (en) 2002-08-28 2002-08-28 Method for culturing basidiomycete and culture vessel

Country Status (1)

Country Link
JP (1) JP2004081139A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121954A (en) * 2004-10-28 2006-05-18 Japan Science & Technology Agency Method for producing enzyme degradation product
WO2013119072A1 (en) * 2012-02-08 2013-08-15 에스케이케미칼 주식회사 Microorganism cultivator for inducing activation of anaerobic digestion of organic waste
JP2016220584A (en) * 2015-05-28 2016-12-28 エイブル株式会社 Sparger
WO2017028713A1 (en) * 2015-08-18 2017-02-23 重庆润泽医药有限公司 Culture device for tissue cell suspension
CN112210504A (en) * 2020-10-15 2021-01-12 新疆天润生物科技股份有限公司 Kluyveromyces marxianus strain culture medium and strain culture method thereof
CN115074262A (en) * 2022-07-06 2022-09-20 厦门大昌生物技术服务有限公司 Rhodosporidium toruloides culture process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121954A (en) * 2004-10-28 2006-05-18 Japan Science & Technology Agency Method for producing enzyme degradation product
WO2013119072A1 (en) * 2012-02-08 2013-08-15 에스케이케미칼 주식회사 Microorganism cultivator for inducing activation of anaerobic digestion of organic waste
JP2016220584A (en) * 2015-05-28 2016-12-28 エイブル株式会社 Sparger
WO2017028713A1 (en) * 2015-08-18 2017-02-23 重庆润泽医药有限公司 Culture device for tissue cell suspension
CN106635795A (en) * 2015-08-18 2017-05-10 重庆润泽医药有限公司 A culture device for suspended tissue cells
CN112210504A (en) * 2020-10-15 2021-01-12 新疆天润生物科技股份有限公司 Kluyveromyces marxianus strain culture medium and strain culture method thereof
CN112210504B (en) * 2020-10-15 2021-05-18 新疆天润生物科技股份有限公司 Culture method of Kluyveromyces marxianus strain
CN115074262A (en) * 2022-07-06 2022-09-20 厦门大昌生物技术服务有限公司 Rhodosporidium toruloides culture process

Similar Documents

Publication Publication Date Title
JP4526712B2 (en) Method for culturing basidiomycetes in liquid medium
US4978616A (en) Fluidized cell cultivation process
EP2039754B1 (en) Bioreactor, cell culture method, and substance production method
AU664596B2 (en) Method and apparatus for growing biomass particles
EP2313486A1 (en) System and method for controlling a mammalian cell culture process
GB2433266A (en) Cell culture vessel
CN110241023B (en) Bioreactor for high-density large-scale animal cell culture and application
CN105129975B (en) A kind of built-in screening wire formula aerobic granular sludge reactor and its sewage water treatment method
JP2004081139A (en) Method for culturing basidiomycete and culture vessel
WO2018139343A1 (en) Biological reaction device in which micro-nano bubbles are used, and biological reaction method in which said biological reaction device is used
JPH07121216B2 (en) Stirred bioreactor and incubator
US20120052578A1 (en) Gassing system
JP2011177046A (en) Method and apparatus for culturing cell
JP6087476B1 (en) Biological reaction device using oxygen-enriched micro-nano bubbles and biological reaction method using this biological reaction device
CN108998353A (en) A kind of device for microculture
EP0316449B1 (en) Method and apparatus for incubating animal cells
US5278058A (en) Process for the production of lignolytical enzymes by means of phanerochaete chrysosporium
KR100369240B1 (en) Bioreactor for the culture of microorganisms
US20240060034A1 (en) Producing fungal spores by solid-state fermentation
CN205035145U (en) Built -in good oxygen granular sludge reactor of screen cloth formula
Yukimune et al. Increase of scopolamine production by high density culture of Duboisia myoporoides roots
JP2002218969A (en) Method for producing edible mushroom
Hayashi et al. Cultivation of baker's yeast by a fermenter with a basket-shaped unit for agitation
US5403723A (en) Process for the production of lignolytic enzymes by means of white rot fungi
US20090176294A1 (en) Method for the submerged cultivation of filamentous organisms