JP2004081022A - Pure culture of aphanothece sacrum - Google Patents

Pure culture of aphanothece sacrum Download PDF

Info

Publication number
JP2004081022A
JP2004081022A JP2002243145A JP2002243145A JP2004081022A JP 2004081022 A JP2004081022 A JP 2004081022A JP 2002243145 A JP2002243145 A JP 2002243145A JP 2002243145 A JP2002243145 A JP 2002243145A JP 2004081022 A JP2004081022 A JP 2004081022A
Authority
JP
Japan
Prior art keywords
medium
sacrum
cells
concentration
pure culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002243145A
Other languages
Japanese (ja)
Inventor
Hideaki Hagiwara
萩原 秀昭
Yasumasa Takeshima
竹嶋 康誠
Ryuhei Ogawa
小川 隆平
Tsuneo Fujishiro
藤城 常雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002243145A priority Critical patent/JP2004081022A/en
Publication of JP2004081022A publication Critical patent/JP2004081022A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for isolation and pure culture of Aphanothece sacrum using a culture medium prepared according to an individual ordor for isolation and pure culture of freshwater algae growing in the special environment. <P>SOLUTION: The method for the pure culture of the Aphanothece sacrum is characterized by culturing algal bodies of the Aphanothece sacrum in a culture medium for the culturing the freshwater algae containing at least Ca, Cu, Fe, Mg, Mn and Zn as metal elements in the following weight ratios of Ca 1, Cu 0.00025-0.00049, Fe 0.017-0.068, Mg 0.160-0.313, Mn 0.060 and Zn 0.0012 and further sulfate ions at 5.8-11.7 mg/L concentration, nitrate ions at 2.8-56.6 mg/L concentration and phosphate ions at 1.4-28.6 mg/L concentration. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は食用の淡水性ラン藻であるスイゼンジノリの純粋培養技術に関する。
【0002】
【従来の技術】
淡水性の藻類を自然界から単離・純化する場合、目的の藻類の栄養要求性や他の細かな生育条件(例えば、水温、光等)を検討しなければならない。しかし、実際は目的とする藻類の栄養要求性や他の細かな生育条件を単離する前に検討することは難しく、目的の藻類を特異的に単離・純化することはできなかった。現在までに単離・純化された藻類の多くは、淡水藻類を培養するために考案された既存の培地(例えばBG−11、MA、MDM、CT等)及び培養条件下で生育してきた藻類を積極的に選択して得られたものであり、目的とする藻類がある場合にその藻類が既存の培地及び培養条件で必ずしも得られるとは限らない。
【0003】
例えば、食用の淡水性ラン藻スイゼンジノリは阿蘇山水系の湧水という限られた環境でしか生育できない特殊なラン藻であり、水質の悪化などにより絶滅の危機に瀕している。現在までに多くの研究者が淡水性藻類のための既存の培地(例えばBG−11、MA、MDM、CT等)及び培養条件で単離及び純粋培養を試みたがいずれも成功には至っていない。
【0004】
スイゼンジノリ(Aphanothece sacrum)は淡水性の単細胞性ラン藻(シアノバクテリア)で、日本固有の種として知られている。A. sacrumはこの種に独特の不規則に広がった葉状体(stratum)を形成し、大きいものでは長さが10cm以上にも達する。日本ではこの葉状体を古くから食用として利用しており、A. sacrumは天然記念物にも指定された貴重な淡水藻である。しかし、この淡水藻は阿蘇山水系の清らかな湧水でのみ生育可能で、自生地では水質の悪化に伴って絶滅してしまい、現在では福岡県甘木市で養殖されるのみとなっている。この貴重な淡水藻を保護する目的で、繁殖させるための地道な努力が払われているが、絶滅の危機を脱することができておらず、将来にわたって養殖が継続できるか疑問視される。
【0005】
A. sacrumの存在は、W. F. R. SuringarによるIllustration des Algus du Japon(1872)中でPhylloderma sacrumとして初めて世界に紹介された。しかし、その後岡田喜一(1953)によりAphanothece属に移されている。A. sacrum藻体から抽出されたフェレドキシンに関する一連の研究(Wada et al., 1974、Hase etal.,1975、1976,1978)は、ラン藻の系統分類学的研究においてA. sacrumが特殊な位置にあることを示した(Wilmotte 1994)。しかし、A. sacrumが日本の限られた地域でしか生育できず、未だに純粋培養に成功していないことによって、その後の遺伝学的な研究並びに生理学的研究が妨げられてきた。
【0006】
A. sacrumを純粋培養しようとする試みは、現在までに多くの研究者によってなされてきたが、それらの試みはいずれも成功には至っていない。例えば、本発明者らは以前ラン藻での培養に汎用されているBG−11培地を用いてスイゼンジノリから単細胞性のラン藻を単離し、KuXとして特許出願(特願平8−191605号)したが、その後の解析の結果、このラン藻はA. sacrumではないことが判明した。その理由としては、A. sacrumが特殊な栄養要求性を有するラン藻であり、今日までに開発された淡水性藻類の培地、例えばBG−11、MDM、MA、CT等では生育しないかもしくは生育したとしても夾雑するバクテリア及び他の藻類の生育が早く、A. sacrumの生育が妨げられ、その結果として、A. sacrumを単離することができなかったものと思われる。
【0007】
【発明が解決しようとする課題】
本発明の目的は、特殊環境に生育する淡水性藻類を単離・純粋培養するためのオーダーメイドにより調製された培地を用いてスイゼンジノリを単離・純粋培養することである。
【0008】
【課題を解決するための手段】
本発明者らは、A. sacrum藻体に含まれる金属元素に着目し、そのうちの少なくともCa、Cu、Fe、Mg、Mn 及びZnの灰分当たりの重量比に基づいて基本培地を構築し、A. sacrum細胞の生育に対する影響を考慮しながら各金属イオン及びその他の成分の量比を調整した結果、今回、A. sacrumの生育に適した培地(AST)を見出し、これを用いてA. sacrum細胞を純粋培養し単離することに成功した。
【0009】
かくして、本発明によれば、スイゼンジノリ藻体を、金属元素としてCa、Cu、Fe、Mg、Mn 及びZnを下記に示す重量比
Ca             1
Cu             0.00025〜0.00049
Fe             0.017〜0.068
Mg             0.160〜0.313
Mn             0.060
Zn             0.0012
で含有し、且つ硫酸イオンを 5.8mg/L〜11.7mg/Lの濃度で、硝酸イオンを 2.8mg/L〜56.5mg/L の濃度でそしてリン酸イオンを 1.4mg/L〜28.6mg/Lの濃度で含有する淡水性藻類培養培地で培養することを特徴とするAphanothece sacrumの純粋培養方法が提供される。
【0010】
以下、本発明により提供される特殊な栄養要求性を示すラン藻A. sacrumの単離・純粋培養についてさらに詳細に説明する。
【0011】
【発明の実施の形態】
本発明者らは、スイゼンジノリ藻体に含まれる金属元素に着目し、スイゼンジノリ藻体に含まれる金属元素のうちの少なくともCa、Cu、Fe、Mg、Mn 及びZnの灰分当たりの重量比に基づいて基本培地を構築し、A. sacrum細胞の生育に対する影響を考慮しながら各金属イオン及びその他の成分の量比を調整し、A. sacrumの生育に適した培地(以下 AST 培地という)を調製した。
【0012】
このAST培地を用いて、福岡県甘木市で養殖された藻体から単細胞性のラン藻細胞を単離・純粋培養することに成功した。この単細胞性ラン藻がA. sacrumであることを確認するために同定されている2種類のフェレドキシンのおのおののアミノ酸配列をもとに設計した遺伝子増幅のためのオリゴヌクレオチド(PCRプライマー)を用いてフェレドキシン遺伝子を単離し、その配列を決定することにより単離・純粋培養したラン藻がA. sacrumであると同定した。
【0013】
A. sacrum の純粋培養及び同定の手順を、以下、実施例によりさらに具体的に説明する。
【0014】
【実施例】
実施例1:基本培地の調製
スイゼンジノリの乾燥藻体に含まれる灰分当たりの金属元素量については、既に報告されている(食総研報 技術報告37:163〜173、1980)。この報告をもとに、Ca、Cu、Mg、Mn、Znの各金属元素に関してはCaの含有量を1(約20mg/L:甘木のスイゼンジノリ養殖黄金川のCa濃度に等しい)としてその比が灰分当たり量比(後記表5参照)と等しくなるようにし、Feについては溶解性を考慮して沈殿が生じない濃度でCaに対する比に近い値とした。また、藻類の培地に汎用されている金属塩を利用して添加し、Na、Kに関しては、細胞内に能動的に取込・排泄されることを考慮してCaに対する比を重要視せずNO 、CO 2−−、PO 3−を金属塩として加えるための金属イオンとして培地の基本組成を構築した。さらに、藻類の培養に必要とされるB、Co、Ni、Se、Mo等の微量元素を他の藻類用培地にふくまれる量で加えて基本培地とした(AS−I培地)。
【0015】
福岡県甘木市で養殖されたスイゼンジノリ藻体(長径約2〜4cm)を約5mm角の小塊(湿重量0.31g)とし、5 mLの基本培地AS−I培地を含むプラスチック製のペトリディシュ(ファルコン)に植え付け、光照射(約250 lux)下、25±2℃で藻体の生育を観察した。1ヶ月後、藻体中に細胞は存在していたが、藻体の湿重量はほとんど変化していなかった(0.38 g)。そこで、Ca、Cu、Fe、Mg、Mn 及びZn の比を変えずにAS−I培地を構成する成分の量比を変更し、スイゼンジノリ細胞の生育に対する影響を調べた。
【0016】
Mgとして加えている硫酸化塩の半量を塩化塩とした培地(AS−II培地)、硫酸マグネシウムの半量を塩化マグネシウムに換え、硝酸塩、リン酸塩、炭酸塩等の量を2倍とした培地(AS−III培地)、Mg、Ca、Mn、Fe、Zn、Cu及びCoの量を半量とした培地(AS−IV培地)を調製した(下記表1参照)。これらの培地100mLを300mL用三角フラスコにスイゼンジノリ藻体(約5mm角の小塊:湿重量約0.5g)を入れ光照射(約250 lux)下、25±2℃でゆっくりと振盪(50rpm)させながら8日間インキュベートして藻体の生育を比較した。藻体の生育状態を表2に示す。
【0017】
【表1】

Figure 2004081022
【0018】
【表2】
Figure 2004081022
【0019】
上記の結果から、4種の培地の中ではAS−II培地がスイゼンジノリ細胞の生育にもっとも適しており、硫酸イオンがスイゼンジノリ細胞の生育に影響していること、並びに硝酸イオン、リン酸イオン量が多いほど夾雑するバクテリアの生育が著しいことが示唆された。また、AS−IV培地でも生育が認められることから、AS−IV培地での結果を加味してAS−II培地のCa、Cu、Fe、Mg、Mn 及びZnの量比をさらに調整した。
【0020】
硫酸マグネシウム、塩化マグネシウム、硫酸銅及び酒石酸鉄の量を半量とした培地(AS−1/2MF)、硫酸マグネシウム、塩化マグネシウム及び硫酸銅の量を半量とし、さらに酒石酸鉄の量を1/4とした培地(AS−1/2M1/4F)を調製した(下記表3参照)。これらの培地100mLを300mL用三角フラスコにスイゼンジノリ藻体(約5mm角の小塊:湿重量約0.5 g)を入れ光照射(約250 lux)下、25±2℃でゆっくりと振盪(50rpm)させながら8日間インキュベートして藻体の生育を比較した。藻体の生育状態を表4に示す。
【0021】
【表3】
Figure 2004081022
【0022】
【表4】
Figure 2004081022
【0023】
上記結果から、AS−II培地の硫酸マグネシウム、塩化マグネシウム及び硫酸銅の量を1/2としてさらに酒石酸鉄の量を1/4としたAS−1/2M1/4F培地がスイゼンジノリ藻体の生育に適していることが示唆された。
【0024】
スイゼンジノリ藻体の生育が観察され、真核藻類の著しい生育が見られなかったAS−II 培地、AS−1/2M1/4F培地と自然状態のスイゼンジノリにおけるCaの含有量を1 としたときの Ca、Cu、Fe、Mg、Mn、Znの重量比は表5のとおりであり、実質的に等しい比率であった。
【0025】
【表5】
Figure 2004081022
【0026】
スイゼンジノリ藻体の生育率の良かったAS−1/2M1/4F培地をAST培地と命名し、A. sacrum純粋培養のための培地とした。
実施例2:A. sacrum の単離
原料のスイゼンジノリ(Aphanothece sacrum )は福岡県甘木市の遠藤金川堂のものを用いる。この藻体(約1.5g)を無菌水でよく洗浄後、無菌水100mlと共に、Ace homogenizer AM−9(Nihonseiki Kaisha)で細かくすりつぶし、G1ガラスろ過器(細孔の大きさ:100〜120μm)に通した。ヘマサイトメーターに一部をとり、顕微鏡で観察してスイゼンジノリの細胞が1つずつ分かれていることを確認すると共に細胞数を測定し、この菌数をもとに殺菌済みAST液体培地5ml入った試験管に1個ずつ細胞が植菌できるように希釈、植菌し、25℃、5,000lux蛍光灯下で約1ヶ月間培養した。2100本のサンプルを作成したうち、約7割の試験管にスイゼンジノリと思われる細胞が認められた。
【0027】
これら増殖の認められた試験管のサンプルを用い、ポリペプトン(0.1%)と酵母抽出物(0.1%)を含む有機物入りAST培地に増殖の認められた試験管から0.1mlずつ植菌した。もし、従属栄養細菌がコンタミネーションしていたら、2〜3日でこれらの試験管は白濁する。約10日たっても白濁しないサンプルの試験管を第1次純粋スイゼンジノリと考え、同様な操作を最低2回行なったのち、残った試験管(1本)から株分けを2回行なった。最終的に4本の試験管を用い、従属栄養細菌の混在のテストを行ない、白濁しないサンプルを選抜した。
【0028】
以上の処理を行った藻体約 4〜5g に AST 培地を 30ml 加え、ホモジェナイザーで細かくすりつぶした。これを G2ガラスろ過器(細孔の大きさ:40〜50μm)に通した後に容量 50ml のスクリューキャップのチューブに移し、遠心機(Centrifuge 05P−21、Hitachi)で遠心分離して沈殿を回収した。この沈殿を容量 2mlのマイクロチューブに移し、ソニケーター(SonicatorTM W−220、Heat Systems− Ultrasonics)を用いて超音波処理し、卓上遠心機(MTX−150、ローター:TMA−S26、TOMY)で遠心分離して細胞のみの沈殿を回収した。沈殿を AST 培地にとかし、ヨードキサノールの濃度で40〜45% の OptiPrepTM (Axis−Shield)の密度勾配に重層し、超遠心機(70P−72、ローター:SRP28SA−165、Hitachi)で 25,000rpm、2時間超遠心した。中心付近に見られた細胞層をマイクロチューブに回収し、等量〜9倍量の AST 培地を加え、卓上遠心機で遠心分離して細胞のみの沈殿を回収した。沈殿を適当量の AST 培地にとかし、ヘマサイトメーターに一部をとり、顕微鏡で観察してスイゼンジノリの細胞が1つずつ分かれていることを確認すると共に細胞数を測定し、この菌数をもとに 0.6% のアガロースを含むAST培地のプレートに16,000個の細胞をまき、25〜27℃、2,000〜3,000luxの蛍光灯下で約1ヶ月間培養した。
【0029】
形成されたコロニーの内、付近にコンタミネーションのコロニーが観察されなかったコロニーを選択し、その中から LIVE/DEAD BacLight(Molecular Probe)で染色して蛍光顕微鏡で観察したときに細胞間にコンタミネーションのシグナルが見られなかったクローンを選抜した。
【0030】
このクローン化された藻体を先の有機物入りAST培地の他、AST 培地に牛肉抽出物(0.3%)とペプトン(0.5%)を加えた培地(B−III medium)、AST 培地に酢酸ナトリウム(0.05%)、グルコース(0.05%)、トリプトン(0.05%)、酵母抽出物(0.03%)を加えた培地(B−V medium)、AST 培地に酵母抽出物(0.1%)とトリプトン(0.2%)を加えた培地(YT medium)を用いて25〜27℃、60rpm、2,000〜3,000luxの蛍光灯下で1週間培養し、コンタミネーションが増殖してこないことを確認した。
実施例3:A. sacrum の単離
原料のスイゼンジノリ(Aphanothece sacrum )は福岡県甘木市の遠藤金川堂のものを用いる。この藻体約 4〜5g に AST 培地を 30ml 加え、ホモジェナイザーで細かくすりつぶした。これを G2ガラスろ過器(細孔の大きさ:40〜50μm)に通した後に容量 50ml のスクリューキャップのチューブに移し、遠心機(Centrifuge 05P−21、Hitachi)で遠心分離して沈殿を回収した。この沈殿を容量 2mlのマイクロチューブに移し、ソニケーター(SonicatorTM W−220、Heat Systems − Ultrasonics)を用いて超音波処理し、卓上遠心機(MTX−150、ローター:TMA−S26、TOMY)で遠心分離して細胞のみの沈殿を回収した。沈殿を AST 培地にとかし、ヨードキサノールの濃度で40〜45% の OptiPrepTM (Axis−Shield)の密度勾配に重層し、超遠心機(70P−72、ローター:SRP28SA−165、Hitachi)で 25,000rpm、2時間超遠心した。中心付近に見られた細胞層をマイクロチューブに回収し、等量〜9倍量の AST 培地を加え、卓上遠心機で遠心分離して細胞のみの沈殿を回収した。沈殿を適当量の AST 培地にとかし、ヘマサイトメーターに一部をとり、顕微鏡で観察してスイゼンジノリの細胞が1つずつ分かれていることを確認すると共に細胞数を測定し、この菌数をもとに 0.6% のアガロースを含むAST培地のプレートに16,000個の細胞をまき、25〜27℃、2,000〜3,000luxの蛍光灯下で約1ヶ月間培養した。
【0031】
形成されたコロニーの内、付近にコンタミネーションのコロニーが観察されなかったコロニーを選択し、その中から LIVE/DEAD BacLight(Molecular Probe)で染色して蛍光顕微鏡で観察したときに細胞間にコンタミネーションのシグナルが見られなかったクローンを選抜した。
【0032】
このクローン化された藻体を先の有機物入りAST培地の他、AST 培地に牛肉抽出物 (0.3%)とペプトン(0.5%)を加えた培地(B−III medium)、AST 培地に酢酸ナトリウム(0.05%)、グルコース(0.05%)、トリプトン(0.05%)、酵母抽出物(0.03%)を加えた培地(B−V medium)、AST 培地に酵母抽出物(0.1%)とトリプトン(0.2%)を加えた培地(YT medium)を用いて25〜27℃、60rpm、2,000〜3,000luxの蛍光灯下で1週間培養し、コンタミネーションが増殖してこないことを確認した。
実施例4:自然状態のスイゼンジノリのフェレドキシン遺伝子の部分塩基配列の決定
自然状態のスイゼンジノリを滅菌水で十分水洗いしたものから ISOPLANTTM(日本ジーン)を用い、以下のようにして DNA を抽出した。
【0033】
藻体約1g に対してキットの Solution I を3倍量加えて撹拌後、キットの Solution II を藻体の1.5倍量加えて50℃で15〜120分反応させた。キットの Solution III を藻体の1.5倍量加えて氷上に15分置き、遠心機(Centrifuge 05P−21、Hitachi)を用いて 3,000rpm で 10分間遠心分離した後、水層を別のチューブに移した。2倍量のエタノールを加えて遠心機(SCR 20BA、ローター:RPR 20−2、Hitachi)で 7,000rpm で 10分間遠心分離して沈殿を回収した。沈殿を TE バッファー 0.5ml に溶かし、フェノール・クロロフォルム(1:1)を等量加えてよく撹拌した。12,000rpm で 5分間遠心分離した後、水層を別のマイクロチューブに移した。水層とフェノール・クロロフォルム層の間にゲルに由来する中間層が見られなくなるまでフェノール・クロロフォルム処理を繰り返した。水層の10分の1量の酢酸ナトリウムと、2倍量の 100%エタノールを加えて混合した後、−20℃で10分間放置した。卓上遠心機(MTX−150、ローター:TMA−S26、TOMY)で 4℃、15,000rpm で 10分間遠心分離した後、上清を廃棄した。100μl の滅菌水を加えよく撹拌し、50℃ で10分加温して、これを以下の PCR によるスイゼンジノリのフェレドキシン遺伝子の増幅反応の鋳型 DNA 溶液とした。
【0034】
スイゼンジノリのフェレドキシンタンパク質として既に報告されている2種類のアミノ酸配列を元に次の配列のプライマーを設計して、以下の配列を持つDNAを合成した。
Figure 2004081022
この配列をプライマーに、スイゼンジノリから調製した DNA を鋳型に用いて PCR によるスイゼンジノリのフェレドキシン I 及びフェレドキシン II 遺伝子の増幅行った。反応液の組成および反応条件は下記のとおりである。

反応液組成
鋳型 DNA                    1μg
TaKaRa Taq      (TaKaRa)        0.25μl
10x PCR バッファー  (TaKaRa)        5μl
dNTP Mix       (TaKaRa)        4μl
プライマー 1*     (0.01mM)        1μl
プライマー 2**     (0.01mM)        1μl
滅菌水             up to 50μl
* AsFd−IN  :GACTCCCGATGGAGACAATG
または
AsFd−IIN :GAGGTAGCAGATGATCAGACC
**AsFd−IC  :TCTCCGGTAGGATAAGCCAC
または
AsFd−IIC :CTCCTGTAGGATAAGCAACGC
Figure 2004081022
この反応により増幅された DNA 断片を SUPRECTM−02(Takara)を用いて濃縮し、1x TAE − 2% アガロースゲルを用いた電気泳動で、目的とする約 0.3kb のDNA 断片をプライマーなどと分離した後、目的の位置のゲルを切り出して細かく刻んで SUPRECTM−01(Takara)に移して、卓上遠心機で遠心して増幅された DNA 断片を回収した。
【0035】
回収した断片を「TA Cloning Kit」(Invitrogen)を用い、下記の反応液の組成および反応条件で pCR2.1 ベクターと連結させた。

反応液組成
PCR prodμct                 1μl
pCR2.1TM vector        (25ng/μl)   2μl
10x Ligation バッファー    (Invitrogen)  1μl
T4 DNA Ligase         (Invitrogen)  1μl
滅菌水                up to 10μl
反応条件
16℃x  一晩
大腸菌 INVαF’(Invitrogen)50μl に、INVαF’ に付属していた 0.5 Mβ−メルカプトエタノール 2μl と連結反応液 2μl を加えて氷上に30分置いた。この大腸菌液を42℃で30秒処理して形質転換させた後、氷上に2分置いた。INVαF’ に付属していた SOC 培地を 200μl 加えて37℃、170rpm で1時間振盪培養した。50μg /μl のアンピシリンを含む LB 寒天培地上に 40mg/ml の X−Gal DMFA溶液を40μl 塗布した後に100μl の大腸菌液をまき、37℃で一晩培養した。
【0036】
プレート上に形成されたいくつかの白いコロニーを拾い、Lysis バッファー(20mM Tris−HCl pH 8.0、50mM KCl、0.1% Tween 20)10μl に溶かした。これを95℃で5分処理したもの 5μl を鋳型に、ベクター上の配列をプライマーにしてPCR を行った。反応液の組成および反応条件は下記のとおりである。

反応液組成
鋳型 DNA                5μl
TaKaRa Taq      (TaKaRa)     0.25μl
10x PCR バッファー  (TaKaRa)     5μl
dNTP Mix       (TaKaRa)     4μl
primer setA*     (0.01mM each)   1μl
滅菌水            up to 50μl
Figure 2004081022
PCR 産物を電気泳動し、目的とするサイズの DNA 断片が含まれた PCR 産物を鋳型に Dye Primer Cycle Sequencing Core Kit(Applied Biosystems)を用いてシーケンシング反応を行った。反応液の組成および反応条件は下記のとおりである。

反応液組成
鋳型 DNA       (10ng/μl)       1μl
5x Seq バッファー               1μl
d/ddNTP                    1μl
Dye primer      (0.4μM)        1μl
Diluted Enzyme*                1μl
*Diluted EnzymeAmpliTaq DNA polymerase, FS  1μl
5x Seq バッファー               1μl
滅菌水                    5μl
Figure 2004081022
この反応産物を DNA シーケンサー(DSQ−1、Shimazu)にかけて塩基配列を決定し、この部分塩基配列(配列表の配列番号1及び2参照)から推定される部分アミノ酸配列が、既報のフェレドキシンタンパク質の部分アミノ酸配列と一致したことを確認した(図1及び図2参照)。
実施例5:単離した藻体の同定
実施例2または3でクローン化された藻体がスイゼンジノリの本体である A. sacrum かどうかを同定する。藻体の外観は、細胞の長径が約6μmの桿形である点、細胞はゲルに埋まった状態にある点など、自然状態のスイゼンジノリの外観と一致する。また、以下の方法で単離した藻体からスイゼンジノリのフェレドキシン遺伝子の部分塩基配列が検出されるかどうかを確認した。
【0037】
実施例2または3で単離した藻体に対して ISOPLANT II TM(日本ジーン)を用いて以下のように DNA を抽出した。
【0038】
藻体約1g に対してキットの Solution I を3倍量加えて撹拌後、キットの Solution II を藻体の1.5倍量加えて50℃で15〜20分反応させた。キットの Solution III−A を藻体の1倍量、キットの Solution III−B を藻体の1.2倍量加えて氷上に15分置き、遠心機(Centrifuge 05P−21、Hitachi)を用いて 3,000rpm で 10分間遠心分離した後、水層を別のチューブに移した。2倍量のエタノールを加えて遠心機(SCR 20BA、ローター:RPR 20−2、Hitachi)で 7,000rpm で 10分間遠心分離して沈殿を回収した。沈殿を TE バッファー 0.5ml に溶かし、フェノール・クロロフォルム(1:1)を等量加えてよく撹拌した。12,000rpm で 5分間遠心分離した後、水層を別のマイクロチューブに移した。水層とフェノール・クロロフォルム層の間にゲルに由来するとみられる中間層が見られなくなるまでフェノール・クロロフォルム処理を繰り返した。水層に10分の1量の酢酸ナトリウムと、2〜2.5倍量の 100% エタノールを加えて混合した後、−20℃で10分間放置した。卓上遠心機(MTX−150、ローター:TMA−S26、TOMY)で 4℃、15,000rpm で 10分間遠心分離した後、上清を廃棄した。上清を十分除いた後、100μl の滅菌水を加えよく撹拌し、50℃ で10分加温して以下の PCR によるフェレドキシン遺伝子の増幅反応の鋳型 DNA 溶液とした。
【0039】
実施例4に記載のプライマーを用いて、単離した藻体の DNA からフェレドキシン遺伝子の部分塩基配列を増幅した。反応液の組成および反応条件は実施例4のAとおりである。
【0040】
この反応により増幅された DNA 断片を「TA Cloning Kit」(Invitrogen)を用い、実施例4のBの反応液の組成および反応条件で pCR2.1 ベクターと連結させた。大腸菌 INVαF’(Invitrogen)50μl に、INVαF’ に付属していた 0.5 Mβ−メルカプトエタノール 2μl と連結反応液 2μl を加えて氷上に30分置いた。この大腸菌液を42℃で30秒処理した後、氷上に2分置いた。INVαF’ に付属していた SOC 培地を 200μl 加えて37℃、170rpm で1時間振盪培養した。50μg /μl のアンピシリンを含む LB 寒天培地上に 40mg/ml の X−Gal DMFA溶液を40μl 塗布した後に50μl の大腸菌液をまき、37℃で一晩培養した。
【0041】
プレート上に形成されたいくつかの白いコロニーを拾い、Lysis バッファー(20mM Tris−HCl pH 8.0、50mM KCl、0.1% Tween 20)10μl に溶かした。これを95℃で5分処理したもの 5μl を鋳型に、pCR2.1 ベクター上の配列をプライマーにして PCR を行った。反応液の組成および反応条件は実施例4の C のとおりである。PCR 産物を電気泳動して目的とするサイズの DNA 断片が含まれた PCR 産物を選択し、これを鋳型に Dye Primer Cycle Sequencing Core Kit(AppliedBiosystems)を用いてシーケンシング反応を行った。反応液の組成および反応条件は実施例4の D の通りである。この反応産物を DNA シーケンサー(DSQ−1、Shimazu)にかけて塩基配列を決定し、この部分塩基配列から推定される部分アミノ酸配列が、既報のフェレドキシンタンパク質の部分アミノ酸配列と一致したことを確認した(図3参照)。
【0042】
今回クローン化された藻体は自然状態のスイゼンジノリが持つ塩基配列を持ち、外観が自然状態のスイゼンジノリに似ていることから、スイゼンジノリの本体である A. sacrum であると同定し、これをA. sacrum KuX 3と命名した。この藻体は、経済産業省産業技術総合研究所生命工学工業技術研究所に、ブダペスト条約のもとで国際寄託されている(受託番号FERM BP−7315)。
実施例6:A. sacrum KuX 3 の16S rRNA 遺伝子の部分塩基配列の解析
対象とする藻体が実施例2または3でクローン化された藻体 A. sacrum  KuX 3 かどうかを同定するための指標として 16S rRNA 遺伝子の部分塩基配列を解析した。
【0043】
実施例5で抽出した単離した藻体の DNA を以下の PCR による16S rRNA 遺伝子の増幅反応の鋳型 DNA 溶液とした。
【0044】
16S rRNA 遺伝子を増幅するためのユニバーサルプライマーを用いて、単離した藻体の DNAから 16S rRNA 遺伝子の部分塩基配列を増幅した。反応液の組成および反応条件は下記のとおりである。
反応液組成
鋳型 DNA            5μlまたは1μg
TaKaRa Taq        (TaKaRa)      0.25μl
10x PCR バッファー    (TaKaRa)      5μl
dNTP Mix         (TaKaRa)      4μl
プライマー 16S−27f*    (0.01mM)      1μl
プライマー 16S−1525r**  (0.01mM)      1μl
滅菌水             up to 50μl
* 16S−27f   : AGAGTTTGATCMTGGCTCAG
**16S−1525r : AAGGAGGTGWTCCARCC
Figure 2004081022
この反応により増幅された DNA 断片を「TA Cloning Kit」(Invitrogen)を用い、実施例4のBの反応液の組成および反応条件で pCR2.1 ベクターと連結させた。大腸菌 INVαF’(Invitrogen)50μl に、INVαF’ に付属していた 0.5 Mβ−メルカプトエタノール 2μl と連結反応液 2μl を加えて氷上に30分置いた。この大腸菌液を42℃で30秒処理した後、氷上に2分置いた。INVαF’ に付属していた SOC 培地を 200μl 加えて37℃、170rpm で1時間振盪培養した。50μg /μl のアンピシリンを含む LB 寒天培地上に 40mg/ml の X−Gal DMFA溶液を40μl 塗布した後に50μl の大腸菌液をまき、37℃で一晩培養した。
【0045】
プレート上に形成されたいくつかの白いコロニーを拾い、Lysis バッファー(20mM Tris−HCl pH 8.0、50mM KCl、0.1% Tween 20)10μl に溶かした。これを95℃で5分処理したもの 5μl を鋳型に、pCR2.1 ベクター上の配列をプライマーにして PCR を行った。反応液の組成および反応条件は実施例4のCのとおりである。PCR 産物を電気泳動して目的とするサイズの DNA 断片が含まれた PCR 産物を選択し、これを鋳型に Dye Primer Cycle Sequencing Core Kit(AppliedBiosystems)を用いてシーケンシング反応を行った。反応液の組成および反応条件は実施例4のDのとおりである。この反応産物を DNA シーケンサー(DSQ−1、Shimazu)にかけて塩基配列を決定し、この部分塩基配列(配列表の配列番号3参照)がラン藻の 16S rRNA 遺伝子の部分塩基配列に相同性があることを確認した(図4参照)。
実施例7:A. sacrum の純粋培養
クローン化されたA. sacrum の純粋培養条件を確立するため、AST 培地の特徴である硝酸塩及びリン酸塩の塩濃度の有効範囲を検討した。
【0046】
硝酸カリウムとリン酸水素二カリウムを除いた AST 培地を100ml の三角フラスコに 30ml ずつ分注した。これに、終濃度がそれぞれ 0.1xNP、0.5xNP、1xNP、5xNP、10xNP、50xNP(硝酸カリウム: 9.216mg/L、リン酸水素二カリウム: 5.248mg/L を1x NP とする)となるようにNP の溶液を 30ml ずつ混合した後、オートクレーブ滅菌した。十分冷めたところでオートクレーブ滅菌した 100ml の三角フラスコに 20ml ずつ分注した。これに今回単離した細胞塊 0.02g を加えて 800lux の連続明条件、25℃、60rpm の培養条件で振盪培養を行い1週間ごとの細胞塊の湿重量を量った。
【0047】
2週間培養した結果 0.5xNP〜10xNP(硝酸イオン濃度 2.8mg/L〜56.5mg/L リン酸イオン濃度1.4mg/L〜28.6mg/L)において湿重量の増加が見られた(下記表6参照)。
【0048】
【表6】
Figure 2004081022
【0049】
【配列表】
Figure 2004081022
Figure 2004081022
Figure 2004081022

【図面の簡単な説明】
【図1】自然状態のスイゼンジノリのフェレドキシン I 遺伝子の部分塩基配列。
【図2】自然状態のスイゼンジノリのフェレドキシン II 遺伝子の部分塩基配列。
【図3】自然状態のスイゼンジノリと単離した細胞(KuX 3)のフェレドキシン遺伝子の部分塩基配列の比較。
【図4】単離した細胞(KuX 3)の16S rRNA 遺伝子の部分塩基配列とその相同性検索の結果。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pure cultivation technique of edible freshwater cyanobacterium, Suiseninori.
[0002]
[Prior art]
When isolating and purifying freshwater algae from nature, the nutritional requirements of the target algae and other detailed growth conditions (eg, water temperature, light, etc.) must be considered. However, in practice, it is difficult to examine the nutritional requirements of the target alga and other detailed growth conditions before isolation, and the target alga could not be specifically isolated and purified. Many of the algae that have been isolated and purified to date are based on existing media (eg, BG-11, MA, MDM, CT, etc.) devised for culturing freshwater algae and algae that have grown under culture conditions. It is obtained by aggressive selection, and if there is a target algae, the algae is not always obtained with an existing medium and culture conditions.
[0003]
For example, the edible freshwater cyanobacterium Suizenjinori is a special cyanobacterium that can grow only in a limited environment such as the spring water of the Aso Mountain Water System, and is threatened with extinction due to deterioration of water quality. To date, many researchers have attempted isolation and pure culture on existing media for freshwater algae (eg, BG-11, MA, MDM, CT, etc.) and culture conditions, but none have been successful. .
[0004]
Aphaenothece sacrum is a freshwater unicellular cyanobacterium (cyanobacterium), which is known as a species unique to Japan. A. Sacrum forms irregularly spread strata, unique to this species, and can be as long as 10 cm or more in large ones. In Japan, this foliate has been used for food since ancient times. Sacrum is a valuable freshwater algae that has been designated as a natural monument. However, this freshwater algae can only grow in the clear spring waters of the Aso Mountains, and has become extinct due to the deterioration of its water quality, and is currently only cultivated in Amagi City, Fukuoka Prefecture. Efforts have been made to breed this valuable freshwater algae in a steady effort, but they have not escaped the threat of extinction and are questioned if aquaculture can continue in the future.
[0005]
A. Sacrum is present in W.C. F. R. It was first introduced to the world as Phylderma sacrum in Illustration des Algus du Japan (1872) by ingSurningar. However, it was later transferred to the genus Aphanothece by Kiichi Okada (1953). A. A series of studies on ferredoxins extracted from Sacrum algal bodies (Wada et al., 1974, Hase et al., 1975, 1976, 1978) have been described in a phylogenetic study of cyanobacteria. Sacrum was shown to be in a special position (Wilmotte 1994). However, A. The fact that sacrum can only grow in a limited area of Japan and has not yet been successfully cultured in pure culture has hindered subsequent genetic and physiological studies.
[0006]
A. Attempts to purify sacrum in pure culture have been made by many researchers to date, but none of them has been successful. For example, the present inventors isolated a single-celled cyanobacterium from Suiseninori using a BG-11 medium that has been widely used for cultivation in cyanobacteria, and filed a patent application as KuX (Japanese Patent Application No. Hei 8-191605). However, as a result of the subsequent analysis, this cyanobacterium was found to have A. It turned out that it was not sacrum. The reason is as follows. sacrum is a cyanobacterium having a special auxotrophy, and does not grow on freshwater algae cultures developed to date, such as BG-11, MDM, MA, CT, etc. The growth of other algae is fast. Sacrum is hindered, and as a result, It seems that sacrum could not be isolated.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to isolate and purify a water-liquorice maize using a custom-made medium for isolating and purifying a freshwater algae growing in a special environment.
[0008]
[Means for Solving the Problems]
The present inventors have proposed A.I. Focusing on the metal elements contained in the {sacrum algal body, a basal medium was constructed based on at least the weight ratio of Ca, Cu, Fe, Mg, Mn} and Zn per ash. As a result of adjusting the quantitative ratio of each metal ion and other components in consideration of the influence on the growth of sacrum cells, this time, A. A medium (AST) suitable for the growth of sacrum was found, and this was used to produce A. sacrum. Sacrum cells were successfully cultured in pure culture and isolated.
[0009]
Thus, according to the present invention, a watermelon alga body is used as a metal element with Ca, Cu, Fe, Mg, Mn and Zn in the following weight ratios:
Ca 1
Cu 0.00025-0.00049
Fe 0.017 to 0.068
Mg 0.160 ~ 0.313
Mn 0.060
Zn 0.0012
And a sulfate ion at a concentration of {5.8 mg / L to 11.7 mg / L, a nitrate ion at a concentration of {2.8 mg / L to 56.5 mg / L}, and a phosphate ion at {1.4 mg / L. The present invention provides a method for purely cultivating Aphanothece sacrum, which comprises culturing in a freshwater algal culture medium containing a concentration of の 28.6 mg / L.
[0010]
Hereinafter, the cyanobacterium A.1 showing the special auxotrophy provided by the present invention. The isolation and pure culture of sacrum will be described in more detail.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have focused on the metal elements contained in the L. albicans, based on the weight ratio of at least Ca, Cu, Fe, Mg, Mn and Zn of the metal elements contained in the L. alba bodies based on the ash content. A basal medium was constructed and The amount ratio of each metal ion and other components was adjusted while considering the effect on the growth of sacrum cells. A medium suitable for growing sacrum (hereinafter referred to as AST medium) was prepared.
[0012]
Using this AST medium, we succeeded in isolating and purifying pure unicellular cyanobacterial cells from algal cells cultured in Amagi City, Fukuoka Prefecture. This unicellular cyanobacterium is A. cerevisiae. The ferredoxin gene was isolated using an oligonucleotide (PCR primer) for gene amplification designed based on the amino acid sequence of each of the two types of ferredoxins identified to confirm that the ferredoxin was a sacrum. The cyanobacteria isolated and purely cultured by determining Sacrum was identified.
[0013]
A. The procedure of pure culture and identification of {sacrum} will be described more specifically below by way of Examples.
[0014]
【Example】
Example 1: Preparation of basal medium
The amount of metal element per ash contained in dried alga bodies of Suiseninori has already been reported (Shokukenkenhoku Technical Report 37: 163-173, 1980). Based on this report, for each metal element of Ca, Cu, Mg, Mn and Zn, the content of Ca was assumed to be 1 (approximately 20 mg / L: equal to the Ca concentration of the sweet-water-cultured Koganegawa of Amagi tree). The ratio was set to be equal to the ash content ratio (see Table 5 below), and Fe was set to a value close to the ratio to Ca at a concentration at which precipitation did not occur in consideration of solubility. In addition, metal salts commonly used in algae culture medium are added, and the ratio of Ca to Na is not considered important for Na and K in consideration of being actively taken up and excreted in cells. NO3 , CO3 2--, PO4 3-The basic composition of the medium was constructed as metal ions to add as a metal salt. Further, trace elements such as B, Co, Ni, Se, and Mo, which are required for algae culture, were added in an amount included in other algae culture media to prepare a basic culture medium (AS-I culture medium).
[0015]
A plastic petri dish containing a water-absorbing algae body (approximately 2 to 4 cm long) cultivated in Amagi City, Fukuoka Prefecture, as a small lump (wet weight 0.31 g) of about 5 mm square and containing 5 mL of a basic medium AS-I medium (Falcon), and the growth of algal cells was observed at 25 ± 2 ° C. under light irradiation (about 250 lux). One month later, cells were present in the alga, but the wet weight of the alga was almost unchanged (0.38 kg). Therefore, the influence on the growth of the water-swallower cells was examined by changing the ratio of the components constituting the AS-I medium without changing the ratio of Ca, Cu, Fe, Mg, Mn and Zn.
[0016]
Medium (AS-II medium) in which half of sulfated salt added as Mg is chloride (AS-II medium), medium in which half of magnesium sulfate is replaced with magnesium chloride and the amount of nitrate, phosphate, carbonate, etc. is doubled (AS-III medium) and a medium (AS-IV medium) in which the amounts of Mg, Ca, Mn, Fe, Zn, Cu and Co were reduced to half were prepared (see Table 1 below). 100 mL of these mediums are placed in a 300 mL Erlenmeyer flask, into which a daffodil alga body (a small lump of about 5 mm square: wet weight of about 0.5 g) is put and slowly shaken at 25 ± 2 ° C. (50 rpm) under light irradiation (about 250 lux) After incubation for 8 days, the growth of algal cells was compared. Table 2 shows the growth state of the alga bodies.
[0017]
[Table 1]
Figure 2004081022
[0018]
[Table 2]
Figure 2004081022
[0019]
From the above results, among the four types of media, the AS-II medium was most suitable for the growth of N. japonica cells, that the sulfate ions affected the growth of N. nastoma cells, and that the amounts of nitrate ions and phosphate ions were higher. It was suggested that the larger the number, the more contaminant bacteria grew. In addition, since growth was observed in the AS-IV medium, the ratio of Ca, Cu, Fe, Mg, Mn and Zn in the AS-II medium was further adjusted in consideration of the results in the AS-IV medium.
[0020]
A medium (AS-1 / 2MF) in which the amounts of magnesium sulfate, magnesium chloride, copper sulfate and iron tartrate are reduced to half, the amounts of magnesium sulfate, magnesium chloride and copper sulfate are reduced to half, and the amount of iron tartrate is reduced to 1/4. A prepared medium (AS-1 / 2M1 / 4F) was prepared (see Table 3 below). 100 mL of these mediums are put into a 300 mL Erlenmeyer flask, into which a daffodil alga body (about 5 mm square small mass: wet weight of about 0.5 kg) is put and slowly shaken at 25 ± 2 ° C (50 rpm) under light irradiation (about 250 lux). ) And incubated for 8 days to compare the growth of algae. Table 4 shows the algal growth state.
[0021]
[Table 3]
Figure 2004081022
[0022]
[Table 4]
Figure 2004081022
[0023]
From the above results, the AS-1 / 2M1 / 4F medium, in which the amounts of magnesium sulfate, magnesium chloride and copper sulfate in the AS-II medium were reduced to 1/2 and the amount of iron tartrate was reduced to 1/4, was used for the growth of the water-absorbing alga body. Suggested to be suitable.
[0024]
Assuming that the Ca content in the AS-II medium, the AS-1 / 2M1 / 4F medium, and the natural state of the watermelon were 1%, the Ca content was 1%. , Cu, Fe, Mg, Mn, and Zn by weight are as shown in Table 5, and were substantially equal.
[0025]
[Table 5]
Figure 2004081022
[0026]
The AS-1 / 2M1 / 4F medium, which had a good growth rate of the water-wort algae, was named AST medium.培 地 sacrum was used as a medium for pure culture.
Example 2: A. Isolation of {sacrum}
As the raw material, Aphanothece {sacrum} is from Endo Kanagawado of Amagi City, Fukuoka Prefecture. This algal body (about 1.5 g) is thoroughly washed with sterile water, and then finely ground with 100 ml of sterile water using ACE homogenizer AM-9 (Nihonseiiki Kaisha), and a G1 glass filter (pore size: 100 to 120 μm). Passed. A portion of the cell was taken on a hemacytometer and observed under a microscope to confirm that the cells of P. perfringens were separated one by one and the number of cells was measured. Based on the number of cells, 5 ml of a sterilized AST liquid medium was placed. Each test tube was diluted and inoculated so that cells could be inoculated one by one, and cultured at 25 ° C. under a 5,000 lux fluorescent lamp for about one month. Of the 2,100 samples prepared, approximately 70% of the test tubes contained cells that seemed to be watermelon.
[0027]
Using a sample of the test tube in which the growth was observed, 0.1 ml each was inoculated from the test tube in which the growth was observed in an AST medium containing an organic substance containing polypeptone (0.1%) and yeast extract (0.1%). Bacteria. If heterotrophic bacteria are contaminated, these tubes become cloudy in 2-3 days. A test tube of a sample that did not become turbid even after about 10 days was regarded as a primary pure water bud, and the same operation was performed at least twice, and the remaining test tubes (one tube) were separated twice. Finally, the test for heterotrophic bacteria was performed using four test tubes, and a sample that did not become cloudy was selected.
[0028]
{30 ml} of {AST} medium was added to about {4-5 g} of the algae treated as described above, and the mixture was finely ground with a homogenizer. This was passed through a {G2 glass filter (pore size: 40 to 50 μm), transferred to a screw cap tube with a volume of {50 ml}, and centrifuged with a centrifuge (Centrifuge 05P-21, Hitachi) to collect a precipitate. . The precipitate was transferred to a microtube having a volume of 2 ml, and sonicator (Sonicator) was used.TMUltrasonic treatment was performed using W-220, Heat Systems- Ultrasonics, and the mixture was centrifuged with a tabletop centrifuge (MTX-150, rotor: TMA-S26, TOMY) to collect a precipitate of only cells. The precipitate is dissolved in {AST} medium and the concentration of iodoxanol is 40-45% of {OptiPrep}.TMIt was overlaid on a density gradient of (Axis-Shield) and ultracentrifuged at 25,000 rpm for 2 hours in an ultracentrifuge (70P-72, rotor: SRP28SA-165, Hitachi). The cell layer observed near the center was collected in a microtube, an equal volume to 9-fold amount of {AST} medium was added, and the mixture was centrifuged with a tabletop centrifuge to collect a cell-only precipitate. Dissolve the precipitate in an appropriate amount of {AST} medium, take a part of it in a hemacytometer, observe under a microscope to confirm that the cells of Suiseninori are separated one by one, and count the number of cells. Then, 16,000 cells were seeded on a plate of AST medium containing {0.6%} agarose, and cultured at 25 to 27 ° C under a fluorescent lamp of 2,000 to 3,000 lux for about one month.
[0029]
Among the formed colonies, those colonies in which no contamination colonies were observed were selected, stained with \ Live / Dead \ BacLight (Molecular \ Probe), and contaminated between cells when observed with a fluorescence microscope. A clone in which no signal was observed was selected.
[0030]
This cloned algal body is used in addition to the above-mentioned AST medium containing organic matter, a medium (B-III medium) in which beef extract (0.3%) and peptone (0.5%) are added to an AST medium, and an AST medium. Medium (BV medium) containing sodium acetate (0.05%), glucose (0.05%), tryptone (0.05%) and yeast extract (0.03%) in yeast, yeast in AST medium The cells were cultured for 1 week in a medium (YT medium) containing an extract (0.1%) and tryptone (0.2%) under a fluorescent lamp of 2,000 to 3,000 lux at 25 to 27 ° C. and 60 rpm. It was confirmed that the contamination did not grow.
Example 3: A. Isolation of {sacrum}
As the raw material, Aphanothece {sacrum} is used from Endo Kanagawado of Amagi City, Fukuoka Prefecture. {30 ml} of {AST} medium was added to about {4-5 g} of the algal cells, and the mixture was ground with a homogenizer. This was passed through a G2 glass filter (pore size: 40 to 50 μm), transferred to a screw cap tube with a volume of {50 ml}, and centrifuged with a centrifuge (Centrifuge 05P-21, Hitachi) to collect a precipitate. . The precipitate was transferred to a microtube having a volume of 2 ml, and sonicator (Sonicator) was used.TMUltrasonic treatment was performed using W-220, Heat Systems-Ultrasonics, and the mixture was centrifuged with a tabletop centrifuge (MTX-150, rotor: TMA-S26, TOMY) to collect a precipitate of only cells. The precipitate is dissolved in {AST} medium, and the concentration of iodoxanol is 40 to 45% of {OptiPrep}.TMIt was overlaid on a density gradient of (Axis-Shield) and ultracentrifuged at 25,000 rpm for 2 hours in an ultracentrifuge (70P-72, rotor: SRP28SA-165, Hitachi). The cell layer observed near the center was collected in a microtube, an equal volume to 9-fold amount of {AST} medium was added, and the mixture was centrifuged with a tabletop centrifuge to collect a cell-only precipitate. Dissolve the precipitate in an appropriate amount of {AST} medium, take a part of it in a hemacytometer, observe under a microscope to confirm that the cells of Suiseninori are separated one by one, and count the number of cells. Then, 16,000 cells were seeded on a plate of AST medium containing {0.6%} agarose, and cultured at 25 to 27 ° C under a fluorescent lamp of 2,000 to 3,000 lux for about one month.
[0031]
Among the formed colonies, those colonies in which no contamination colonies were observed were selected, stained with \ Live / Dead \ BacLight (Molecular \ Probe), and contaminated between cells when observed with a fluorescence microscope. A clone in which no signal was observed was selected.
[0032]
This cloned algal body is used in addition to the above-mentioned AST medium containing organic substances, a medium (B-III medium) in which beef extract (0.3%) and peptone (0.5%) are added to an AST medium, and an AST medium. Medium (BV medium) containing sodium acetate (0.05%), glucose (0.05%), tryptone (0.05%) and yeast extract (0.03%) in yeast, yeast in AST medium The cells were cultured for 1 week in a medium (YT medium) containing an extract (0.1%) and tryptone (0.2%) under a fluorescent lamp of 2,000 to 3,000 lux at 25 to 27 ° C. and 60 rpm. It was confirmed that the contamination did not grow.
Example 4: Determination of the partial nucleotide sequence of the ferredoxin gene of the natural waterweed L.
From a natural water lily, which has been thoroughly washed with sterilized water.TM(Nippon Gene) was used to extract {DNA} as follows.
[0033]
To about 1 g of algal cells, 3 times the amount of the solution {I} of the kit was added and stirred, and then 1.5 times the amount of the solution {II} of the kit was added to the algal cells, followed by reaction at 50 ° C for 15 to 120 minutes. After adding 1.5 times the algal cells of the kit {Solution III}, the mixture was placed on ice for 15 minutes, and centrifuged at {3,000 rpm} for {10 minutes} using a centrifuge (Centrifuge 05P-21, Hitachi). Transferred to tube. A 2-fold amount of ethanol was added, and the mixture was centrifuged at {7,000 rpm} for 10 minutes in a centrifuge (SCR-20BA, rotor: RPR-20-2, Hitachi) to collect a precipitate. The precipitate was dissolved in {TE} buffer {0.5 ml}, an equal amount of phenol / chloroform (1: 1) was added, and the mixture was stirred well. After centrifugation at 12,000 rpm for 5 minutes, the aqueous layer was transferred to another microtube. The phenol / chloroform treatment was repeated until no intermediate layer derived from the gel was observed between the aqueous layer and the phenol / chloroform layer. After adding and mixing 1/10 amount of sodium acetate and 2 times amount of 100% ethanol of the aqueous layer, the mixture was allowed to stand at -20 ° C for 10 minutes. After centrifugation at {4 ° C., 15,000 rpm} for 10 minutes using a tabletop centrifuge (MTX-150, rotor: TMA-S26, TOMY), the supernatant was discarded. 100 μl of sterile water was added, and the mixture was stirred well and heated at 50 ° C. for 10 minutes to obtain a template {DNA} solution for the following amplification reaction of the ferredoxin gene of Magnaporthe oryzae by PCR.
[0034]
A primer having the following sequence was designed based on the two amino acid sequences already reported as ferredoxin proteins of L. fern, and a DNA having the following sequence was synthesized.
Figure 2004081022
Using this sequence as a primer and {DNA} prepared from L. indica as a template, the ferredoxin {I} and ferredoxin {II} genes of L. indica were amplified by {PCR}. The composition of the reaction solution and the reaction conditions are as follows.
A:
Reaction liquid composition
Template DNA 1μg
TaKaRa Taq (TaKaRa) 0.25 μl
10x PCR buffer (TaKaRa) 5μl
dNTP Mix (TaKaRa) 4 μl
Primer 1 * (0.01 mM) 1 μl
Primer {2 **} (0.01 mM) 1 μl
Sterile water up to 50μl
* {AsFd-IN}: GACTCCCCGATGGAGACAATG
Or
AsFd-IIN: GAGGTAGCAGATGATCAGAACC
** AsFd-IC: TCTCCGGGTAGGATAAGCCAC
Or
AsFd-IIC: CTCCTGTAGGATAAGCAACGC
Figure 2004081022
The {DNA} fragment amplified by this reaction was concentrated using {SUPRECTM-02 (Takara), and the desired approximately {0.3 kb} DNA fragment was separated from primers and the like by electrophoresis using 1x {TAE}-{2%} agarose gel. After that, the gel at the desired position was cut out, cut into small pieces, transferred to {SUPRECTM-01 (Takara), and centrifuged with a tabletop centrifuge to recover the amplified {DNA} fragment.
[0035]
The recovered fragment was ligated to the {pCR2.1} vector using “TA Cloning Kit” (Invitrogen) under the following reaction solution composition and reaction conditions.
B:
Reaction liquid composition
PCR prodμct 1 μl
pCR2.1TM vector (25 ng / μl) 2 μl
10 x ligation buffer 1 μl (Invitrogen)
T4 DNA Ligase (Invitrogen) 1 μl
Sterilized water up to 10 μl
Reaction conditions
16 ° C x overnight
Escherichia coli {INVαF ”(Invitrogen) (50 μl) was added with {0.5} Mβ-mercaptoethanol {2 μl} and ligation reaction solution (2 μl) attached to INVαF ′, and the mixture was placed on ice for 30 minutes. This Escherichia coli solution was treated at 42 ° C. for 30 seconds to transform, and then placed on ice for 2 minutes. {SOC} medium attached to INVαF ′ was added to the medium, and 200 μl of the medium was added thereto, followed by shaking culture at 37 ° C. and 170 rpm for 1 hour. 40 μl of a 40 mg / ml X-Gal DMFA solution was applied to {LB} agar medium containing 50 μg / μl of ampicillin, then 100 μl of Escherichia coli was sowed and cultured at 37 ° C. overnight.
[0036]
Some white colonies formed on the plate were picked and dissolved in 10 μl of Lysis buffer (20 mM Tris-HCl pH 8.0, 50 mM KCl, 0.1% Tween 20). This was treated at 95 ° C. for 5 minutes, and PCR was performed using {5 μl} as a template and the sequence on the vector as a primer. The composition of the reaction solution and the reaction conditions are as follows.
C:
Reaction liquid composition
Template DNA 5μl
TaKaRa Taq (TaKaRa) 0.25 μl
10x PCR buffer (TaKaRa) 5μl
dNTP Mix (TaKaRa) 4 μl
Primer setA * (0.01 mM each) 1 μl
Sterile water up to 50μl
Figure 2004081022
The PCR product was subjected to electrophoresis, and a sequencing reaction was carried out using a Dye Primer Cycle Sequencing Core Kit (Applied Biosystems) using a {PCR} product containing a {DNA} fragment of the desired size as a template. The composition of the reaction solution and the reaction conditions are as follows.
D:
Reaction liquid composition
Template {DNA} (10 ng / μl) 1 μl
5x Seq buffer 1µl
d / ddNTP 1μl
Dye primer (0.4 μM) 1 μl
Diluted Enzyme * 1 μl
* Diluted EnzymeAmpliTaq DNA polymerase, FS 1 μl
5x Seq buffer 1µl
Sterile water 5μl
Figure 2004081022
This reaction product was subjected to {DNA} sequencer (DSQ-1, Shimazu) to determine the nucleotide sequence, and the partial amino acid sequence deduced from this partial nucleotide sequence (see SEQ ID NOs: 1 and 2 in the sequence listing) was converted to the previously reported part of the ferredoxin protein. It was confirmed that the sequence matched the amino acid sequence (see FIGS. 1 and 2).
Example 5: Identification of isolated algae
The algae cloned in Example 2 or 3 is the main body of the water lily. Identify {sacrum}. The appearance of the algal body is consistent with the appearance of the natural water-swallow, such as that the major axis of the cells is rod-shaped with a diameter of about 6 μm, and that the cells are buried in a gel. In addition, it was confirmed whether or not the partial base sequence of the ferredoxin gene of water-crested swallowtail was detected from the alga bodies isolated by the following method.
[0037]
For the algal cells isolated in Example 2 or 3, {ISOPLANT II}TM{DNA} was extracted using (Nippon Gene) as follows.
[0038]
To about 1 g of algal cells, 3 times the amount of the solution {I} of the kit was added and stirred. After that, 1.5 times the amount of the solution {II} of the kit was added to the algal cells, and the mixture was reacted at 50 ° C for 15 to 20 minutes. Add {Solution {III-A}} of the kit to 1-fold amount of alga body and 1.2-fold amount of {Solution III-B} of the kit to alga body, place on ice for 15 minutes, and use a centrifuge (Centrifuge 05P-21, Hitachi). After centrifugation at 3,000 rpm for 10 minutes, the aqueous layer was transferred to another tube. A 2-fold amount of ethanol was added, and the mixture was centrifuged at {7,000 rpm} for 10 minutes in a centrifuge (SCR-20BA, rotor: RPR-20-2, Hitachi) to collect a precipitate. The precipitate was dissolved in {TE} buffer {0.5 ml}, an equal amount of phenol / chloroform (1: 1) was added, and the mixture was stirred well. After centrifugation at 12,000 rpm for 5 minutes, the aqueous layer was transferred to another microtube. The phenol / chloroform treatment was repeated until no intermediate layer, which is considered to be derived from gel, was found between the aqueous layer and the phenol / chloroform layer. The aqueous layer was mixed with 1/10 amount of sodium acetate and 2-2.5 times the amount of {100%} ethanol, and allowed to stand at -20 ° C for 10 minutes. After centrifugation at {4 ° C., 15,000 rpm} for 10 minutes using a tabletop centrifuge (MTX-150, rotor: TMA-S26, TOMY), the supernatant was discarded. After sufficiently removing the supernatant, 100 μl of sterilized water was added, the mixture was stirred well, and heated at 50 ° C. for 10 minutes to obtain a template {DNA} solution for the ferredoxin gene amplification reaction by the following {PCR}.
[0039]
Using the primers described in Example 4, the partial base sequence of the ferredoxin gene was amplified from {DNA} of the isolated algal cells. The composition of the reaction solution and the reaction conditions are the same as A in Example 4.
[0040]
The {DNA} fragment amplified by this reaction was ligated to the {pCR2.1} vector using "TA Cloning Kit" (Invitrogen) under the composition and reaction conditions of the reaction solution of Example B. Escherichia coli {INVαF ”(Invitrogen) (50 μl) was added with {0.5} Mβ-mercaptoethanol {2 μl} and ligation reaction solution (2 μl) attached to INVαF ′, and the mixture was placed on ice for 30 minutes. This E. coli solution was treated at 42 ° C. for 30 seconds and then placed on ice for 2 minutes. {SOC} medium attached to INVαF ′ was added to the medium, and 200 μl of the medium was added thereto, followed by shaking culture at 37 ° C. and 170 rpm for 1 hour. 40 μl of a 40 mg / ml X-Gal DMFA solution was applied to an LB agar medium containing 50 μg / μl of ampicillin, and then 50 μl of Escherichia coli was sowed and cultured at 37 ° C. overnight.
[0041]
Some white colonies formed on the plate were picked and dissolved in 10 μl of Lysis buffer (20 mM Tris-HCl pH 8.0, 50 mM KCl, 0.1% Tween 20). This was treated at 95 ° C for 5 minutes, and {PCR} was performed using {5 μl} as a template and the sequence on the pCR2.1 vector as a primer. The composition of the reaction solution and the reaction conditions are as shown in {C} of Example 4. The PCR product was electrophoresed to select a PCR product containing a DNA fragment of a desired size, and a sequencing reaction was performed using the product as a template with Dye Primer Cycle Sequencing Core Kit (Applied Biosystems). The composition of the reaction solution and the reaction conditions are as shown in {D} of Example 4. The reaction product was subjected to {DNA} sequencer (DSQ-1, Shimazu) to determine the nucleotide sequence, and it was confirmed that the partial amino acid sequence deduced from this partial nucleotide sequence matched the partial amino acid sequence of the previously reported ferredoxin protein (FIG. 3).
[0042]
The algae cloned this time has the base sequence of natural water-lily, and its appearance is similar to that of natural water-light, so it is the main body of water-powered wild-flower. {Sacrum}, which was identified as A. Sacrum KuX 3. This alga body has been deposited internationally under the Budapest Treaty with the National Institute of Advanced Industrial Science and Technology, the Ministry of Economy, Trade and Industry, under the Budapest Treaty (Accession No. FERM @ BP-7315).
Example 6: A. Analysis of partial nucleotide sequence of 16S rRNA gene of {sacrum} KuX {3}
The algal cells of interest were cloned in Example 2 or 3 {A. The partial base sequence of the {16S} rRNA} gene was analyzed as an indicator for identifying whether it was {sacrum} KuX {3}.
[0043]
The {DNA} of the isolated algae extracted in Example 5 was used as a template {DNA} solution for the amplification reaction of 16S {rRNA} gene by the following {PCR}.
[0044]
The partial base sequence of the {16S} rRNA} gene was amplified from the isolated algal DNA using universal primers for amplifying the 16S {rRNA} gene. The composition of the reaction solution and the reaction conditions are as follows.
Reaction liquid composition
Template DNA 5μl or 1μg
TaKaRa Taq (TaKaRa) 0.25 μl
10x PCR buffer (TaKaRa) 5μl
dNTP Mix (TaKaRa) 4 μl
Primer {16S-27f *} (0.01 mM) 1 μl
Primer {16S-1525r **} (0.01 mM) {1 μl
Sterile water up to 50μl
* {16S-27f}: {AGAGTTTGATCMTGGCTCAG}
** 16S-1525r: AAGGAGGTGWTCCARCC
Figure 2004081022
The {DNA} fragment amplified by this reaction was ligated to the {pCR2.1} vector using "TA Cloning Kit" (Invitrogen) under the composition and reaction conditions of the reaction solution of Example B. Escherichia coli {INVαF ”(Invitrogen) (50 μl) was added with {0.5} Mβ-mercaptoethanol {2 μl} and ligation reaction solution (2 μl) attached to INVαF ′, and the mixture was placed on ice for 30 minutes. This E. coli solution was treated at 42 ° C. for 30 seconds and then placed on ice for 2 minutes. {SOC} medium attached to INVαF ′ was added to the medium, and 200 μl of the medium was added thereto, followed by shaking culture at 37 ° C. and 170 rpm for 1 hour. 40 μl of a 40 mg / ml X-Gal DMFA solution was applied to an LB agar medium containing 50 μg / μl of ampicillin, and then 50 μl of Escherichia coli was sowed and cultured at 37 ° C. overnight.
[0045]
Some white colonies formed on the plate were picked and dissolved in 10 μl of Lysis buffer (20 mM Tris-HCl pH 8.0, 50 mM KCl, 0.1% Tween 20). This was treated at 95 ° C for 5 minutes, and {PCR} was performed using {5 μl} as a template and the sequence on the pCR2.1 vector as a primer. The composition of the reaction solution and the reaction conditions are as in C of Example 4. The PCR product was electrophoresed to select a PCR product containing a DNA fragment of a desired size, and a sequencing reaction was performed using the product as a template with Dye Primer Cycle Sequencing Core Kit (Applied Biosystems). The composition of the reaction solution and the reaction conditions are as shown in D of Example 4. This reaction product was subjected to {DNA} sequencer (DSQ-1, Shimazu) to determine the nucleotide sequence, and this partial nucleotide sequence (see SEQ ID NO: 3 in the sequence listing) was homologous to the partial nucleotide sequence of cyanobacterial {16S} rRNA} gene. Was confirmed (see FIG. 4).
Example 7: A. Pure culture of {sacrum}
Cloned A. In order to establish the conditions for pure culture of {sacrum}, the effective range of the salt concentration of nitrate and phosphate, which is a characteristic of the AST medium, was examined.
[0046]
The {AST} medium from which potassium nitrate and dipotassium hydrogen phosphate had been removed was dispensed {30 ml} into a 100 ml Erlenmeyer flask. The final concentrations are respectively {0.1 × NP, 0.5 × NP, 1 × NP, 5 × NP, 10 × NP, 50 × NP (potassium nitrate: {9.216 mg / L, dipotassium hydrogen phosphate: {5.248 mg / L}, 1 × {NP}). NP} solution was mixed in {30 ml} each, and then sterilized in an autoclave. When cooled sufficiently, the mixture was dispensed in {20 ml} portions into a {100 ml} Erlenmeyer flask which had been sterilized by autoclaving. The cell mass {0.02 g} isolated this time was added thereto, followed by shaking culture under {800 lux} continuous light conditions, 25 ° C. and 60 rpm culture conditions, and the wet weight of the cell mass was measured every week.
[0047]
As a result of culturing for 2 weeks, an increase in wet weight was observed at 0.5 × NP to 10 × NP (nitrate concentration 硝酸 2.8 mg / LL56.5 mg / L phosphate concentration 1.4 mg / L / 28.6 mg / L). (See Table 6 below).
[0048]
[Table 6]
Figure 2004081022
[0049]
[Sequence list]
Figure 2004081022
Figure 2004081022
Figure 2004081022

[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial nucleotide sequence of a ferredoxin {I} gene of a wild water lily, Lynchus vulgaris.
FIG. 2 is a partial nucleotide sequence of a ferredoxin {II} gene of a natural watermelon, L. indica.
FIG. 3. Comparison of partial nucleotide sequences of ferredoxin gene between natural water-liquorice and isolated cells (KuX # 3).
FIG. 4 shows the partial nucleotide sequence of the 16S rRNA gene of the isolated cell (KuX 3) and the result of homology search thereof.

Claims (4)

スイゼンジノリ藻体を、金属元素として少なくともCa、Cu、Fe、Mg、Mn 及びZnを下記に示す重量比
Ca             1
Cu             0.00025〜0.00049
Fe             0.017〜0.068
Mg             0.160〜0.313
Mn             0.060
Zn             0.0012
で含有し、且つ硫酸イオンを5.8mg/L〜11.7mg/Lの濃度で、硝酸イオンを2.8mg/L〜56.5mg/Lの濃度でそしてリン酸イオンを1.4mg/L〜28.6mg/Lの濃度で含有する淡水性藻類培養培地で培養することを特徴とするAphanothece sacrumの純粋培養方法。
The water-absorptive alga body is prepared by using at least Ca, Cu, Fe, Mg, Mn and Zn as metal elements in a weight ratio Ca 1 shown below.
Cu 0.00025-0.00049
Fe 0.017-0.068
Mg 0.160-0.313
Mn 0.060
Zn 0.0012
And a sulfate ion at a concentration of 5.8 mg / L to 11.7 mg / L, a nitrate ion at a concentration of 2.8 mg / L to 56.5 mg / L and a phosphate ion at 1.4 mg / L. A pure culture method of Aphanothece sacrum, characterized by culturing in a freshwater algal culture medium containing a concentration of 濃度 28.6 mg / L.
Aphanothece sacrumの純粋培養物。Pure culture of Aphanothece @ sacrum. 配列表の配列番号1及び2に示すAphanothece sacrumのフェレドキシン遺伝子の部分塩基配列。The partial base sequence of the ferredoxin gene of Aphanothece @ sacrum shown in SEQ ID NOs: 1 and 2 in the sequence listing. 配列表の配列番号3に示すAphanothece sacrumの16S rRNA遺伝子の部分塩基配列。A partial nucleotide sequence of the 16S rRNA gene of Aphanothe sacrum shown in SEQ ID NO: 3 in the sequence listing.
JP2002243145A 2002-08-23 2002-08-23 Pure culture of aphanothece sacrum Pending JP2004081022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002243145A JP2004081022A (en) 2002-08-23 2002-08-23 Pure culture of aphanothece sacrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002243145A JP2004081022A (en) 2002-08-23 2002-08-23 Pure culture of aphanothece sacrum

Publications (1)

Publication Number Publication Date
JP2004081022A true JP2004081022A (en) 2004-03-18

Family

ID=32051978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243145A Pending JP2004081022A (en) 2002-08-23 2002-08-23 Pure culture of aphanothece sacrum

Country Status (1)

Country Link
JP (1) JP2004081022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130704A (en) * 2009-12-24 2011-07-07 Fukuoka Prefecture Method and device for aquaculture of aphanothece sacrum
JP2017035051A (en) * 2015-08-12 2017-02-16 公立大学法人福井県立大学 Indoor closed culture system based on static culture using clone unialgal strain of aphanothece sacrum

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130704A (en) * 2009-12-24 2011-07-07 Fukuoka Prefecture Method and device for aquaculture of aphanothece sacrum
JP2017035051A (en) * 2015-08-12 2017-02-16 公立大学法人福井県立大学 Indoor closed culture system based on static culture using clone unialgal strain of aphanothece sacrum

Similar Documents

Publication Publication Date Title
JPS6246152B2 (en)
CN108368491A (en) The algae mutant of lipid production rate with raising
KR20220053683A (en) Strains and methods for single cell protein or biomass production
CN109750054A (en) A kind of Mycoplasma bovis protein gene MbovGdpP and its application
WO2014091718A1 (en) Culture method and culture system for microalgae
CN114015676B (en) Construction method of cellulase adapting to traditional Chinese medicine feed additive
Kozyaeva et al. Diversity of magnetotactic bacteria of the Moskva River
JP5515057B2 (en) Cryogenic bacteria producing collagen degrading enzyme, collagen degrading enzyme, method for producing the same, and method for producing softened meat using the enzyme
JP2004081022A (en) Pure culture of aphanothece sacrum
CN112011520B (en) Temperate phage VneM1 for regulating coral flora and application thereof
JP4221476B2 (en) Plasmid cloned icosapentaenoic acid biosynthesis genes and cyanobacteria producing icosapentaenoic acid
Chaudhuri et al. Microbial genetic resource mapping of East Calcutta wetlands
KR20120073724A (en) Bacteriophage t10-1, my-1, and vegetable soft rot controlling composition containing the same
CN114250172B (en) Sea bacillus and application thereof
KR102442480B1 (en) Composition for culturing chlamydomonas mutants and culture method thereof
KR101495640B1 (en) Novel leptolyngbya koreensis kiost-1 and a method of producing biomass using it
CN116891809B (en) Pseudomonas asiatica and microbial agent and application thereof
FI129574B (en) Variant bacterial strains and processes for protein or biomass production
JP2729045B2 (en) Sarcosine oxidase and method for producing the same
CN113817752B (en) Application of slr0681 gene in synthesis of synechocystis carotene
CN111363742B (en) Method for inhibiting virulence of streptococcus mutans by using point mutation based on codon bias
KR101255096B1 (en) Method for Enrichment Culture of Ammonia-Oxidizing Archaea Through Co-culturing with Sulfur-Oxidizing Bacteria and Novel Ammonia-Oxidizing Archaea Isolated from Marine By Using the Same Method
PL237601B1 (en) Method for cleanup of the environment contaminated by sulfur esters, new bacterial strains, new proteins, nucleic acid construct, vector, host cell, method for producing bacterial strains and new proteins, a composition of their application and method for the environment bioremediation
WO2024071134A1 (en) Mutant of cyanobacterium and production method thereof
KR102286087B1 (en) Chlamydomonas mutants and use thereof