WO2024071134A1 - Mutant of cyanobacterium and production method thereof - Google Patents

Mutant of cyanobacterium and production method thereof Download PDF

Info

Publication number
WO2024071134A1
WO2024071134A1 PCT/JP2023/034980 JP2023034980W WO2024071134A1 WO 2024071134 A1 WO2024071134 A1 WO 2024071134A1 JP 2023034980 W JP2023034980 W JP 2023034980W WO 2024071134 A1 WO2024071134 A1 WO 2024071134A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
spoiid
mutant
amino acid
seq
Prior art date
Application number
PCT/JP2023/034980
Other languages
French (fr)
Japanese (ja)
Inventor
隆一 廣田
章夫 黒田
Original Assignee
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学 filed Critical 国立大学法人広島大学
Publication of WO2024071134A1 publication Critical patent/WO2024071134A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)

Definitions

  • the present invention relates to a cyanobacterial mutant and a method for producing the same.
  • Cyanobacteria which are single-celled organisms that perform photosynthesis, can use light energy to produce various substances (e.g., fats and oils, starch, proteins, amino acids, carotenoids, etc.) as metabolic products using water and CO2 as raw materials.
  • substances e.g., fats and oils, starch, proteins, amino acids, carotenoids, etc.
  • cyanobacteria are easy to genetically manipulate, and therefore research is being conducted extensively on them as chassis strains for bioproduction.
  • microalgae such as cyanobacteria
  • contamination of the culture system with other biological species is a major problem.
  • Damage caused by contamination can include damage caused by nutritional competition due to the introduction of protozoa such as algae and bacteria, and parasitic damage due to the introduction of viruses, mold, etc.
  • damage caused by direct predation of microalgae by the introduced protozoa is a major problem, especially when large-scale cultivation is carried out outdoors, as it can cause a significant decrease in productivity of the culture system (pond crash) (Non-Patent Documents 1 and 2).
  • Non-Patent Document 4 discloses a phenomenon in which a species of heterotrophic bacteria undergoes a morphological change in the presence of a predatory protozoan, improving its resistance to predation.
  • one aspect of the present invention aims to provide a cyanobacterial mutant that is resistant to predation by predatory protozoans.
  • the cyanobacterial mutant according to one embodiment of the present invention is a cyanobacterial mutant in which the function of the spoIID gene is reduced compared to that of the wild-type spoIID gene or is absent.
  • the method for producing a cyanobacterial mutant according to one embodiment of the present invention includes a step of reducing the function of the spoIID gene below that of the wild-type spoIID gene or deleting the spoIID gene.
  • FIG. 1 shows the appearance of a wild-type strain, a mutant strain, and a transformant of the marine cyanobacterium strain 7002.
  • FIG. 1 shows the change in appearance of cultures of wild-type, mutant and transformant strains of strain 7002 after 5 days of culture, depending on the presence or absence of predatory protozoa.
  • 1 is a graph showing the changes in cell number (OD 750 value) and chlorophyll content during culture of wild-type, mutant and transformant strains of strain 7002 in the presence or absence of predatory protists.
  • 1 is a graph showing the change in cell number of predatory protists in a culture system in which a wild-type strain, a mutant strain, or a transformant of strain 7002 was co-cultured with the predatory protists.
  • the mutant strain predominates in the culture system in which the mutant strain has been generated, even though it was contaminated with ciliate protozoa, which are known as predatory protozoans.
  • the fact that the mutant strain predominates in the culture system even in the presence of ciliate protozoans, which are predatory protozoans, means that the mutant strain has resistance to predation by predatory protozoans.
  • the inventors obtained multiple strains of the above mutant strain in independent experiments and determined the mutation points of each, leading to the new finding that the mutations were concentrated in the stage II sporulation protein D gene (hereinafter sometimes abbreviated as "spoIID gene").
  • spoIID gene stage II sporulation protein D gene
  • the cyanobacterial mutants (mutant strains and transformants) discovered by the present inventors themselves have excellent resistance to predation by predatory protozoans, and therefore can suppress damage caused by contamination by predatory protozoans, regardless of the scale of the culture system. Such mutants are extremely useful as chassis strains for bioproduction. Furthermore, the transformants have a larger cell size than normal cyanobacteria, making them highly productive in bioproduction, and because the bacterial cells can be easily collected, they are also extremely useful from the perspective of improving the production efficiency of bioproduction.
  • one embodiment of the present invention can contribute to the achievement of the Sustainable Development Goals (SDGs), such as Goal 12 "Responsible Consumption and Production,” by contributing to improving the production efficiency of bioproduction.
  • SDGs Sustainable Development Goals
  • mutant A cyanobacterial mutant according to one embodiment of the present invention (hereinafter sometimes referred to as “the mutant”; furthermore, in this specification, “mutant” refers to a cyanobacterial mutant) is a cyanobacterial mutant in which the function of the spoIID gene is reduced compared to that of the wild-type spoIID gene or is missing.
  • this mutant has the above-mentioned structure, it grows to a much larger size than wild-type cyanobacteria (cyanobacteria before the function of the spoIID gene is reduced or deleted). Therefore, it has excellent resistance to predation by predatory protozoans. Furthermore, when this mutant is used for substance production (bioproduction), due to its size, (1) an increase in the production amount of the target substance (bioproduction) can be expected, and (2) it can be easily recovered by sedimentation, etc.
  • cyanobacteria mutant refers to cyanobacteria that have genetic mutations and exhibit different characteristics (phenotypes) compared to wild-type cyanobacteria.
  • the "gene mutation” in “cyanobacteria mutant” refers to physical or structural changes in the base sequence, as well as structural or quantitative changes in the translation product (e.g., protein).
  • the “gene mutation” in this mutant may be caused by artificial gene introduction, or may be caused by mutation.
  • this mutant may be a cyanobacteria transformant (sometimes simply referred to as a "transformant”) created by artificial gene introduction, or may be a mutant strain of cyanobacteria that has arisen by mutation (sometimes simply referred to as a "mutant strain").
  • a cyanobacteria transformant sometimes simply referred to as a "transformant”
  • a mutant strain of cyanobacteria that has arisen by mutation sometimes simply referred to as a "mutant strain”
  • the cyanobacteria that can be used as a host (parent strain) for the present mutant is not particularly limited, and any organism of the Cyanobacteria can be used.
  • organisms of the Cyanobacteria include organisms of the order Synechococcales, and more particularly, In particular, examples of organisms include those in the Synechococcaceae family, such as Anabaena sp., Synechocystis sp., and Synechococcus sp. More specifically, Synechococcus sp. PCC 7002 (referred to as 7002 strain) and Synechococcus elongatus PCC 7942 (referred to as 7942 strain) can be mentioned.
  • cyanobacteria there are no known causes other than the reduction or deletion of the function of the spoIID gene. Any mutant that has been transformed (for example, to impart a desired bioproduction ability) can also be used.
  • wild-type cyanobacteria there are those that have a unicellular morphology and those that have a multicellular morphology.
  • the unicellular morphology of the cyanobacteria is the host of the present mutant.
  • the above-mentioned strains 7002 and 7942 are cyanobacteria having a unicellular morphology. Since the strains 7002 and 7942 have a unicellular morphology, they are easy to use as research subjects, and their characteristics are A huge amount of data has been accumulated about this, so it can be used favorably in, for example, bioproduction.
  • the size of the cyanobacteria that serves as the host for this mutant is, for example, a cell length (longest diameter) of 10 ⁇ m or less
  • the size of this mutant may be, for example, a cell length of 100 ⁇ m or more, 200 ⁇ m or more, 300 ⁇ m or more, 400 ⁇ m or more, 500 ⁇ m or more, or 750 ⁇ m or more. In this way, the cell length of this mutant can be several to several hundred times larger than that of the host cyanobacteria.
  • the spoIID gene refers to a gene (homologous gene) encoding a SpoIID protein (hereinafter sometimes abbreviated as "SpoIID”), which is a protein having peptidoglycan lysis activity, and its homologue. That is, the spoIID gene in the present specification is a concept that includes its homologue gene.
  • the spoIID gene (and its homologue gene) is a gene that is widely present throughout cyanobacteria, and is encoded, for example, in the 7002 strain at the SYNPCC7002_A1891 locus, and in the 7942 strain at the Synpcc7942_2012 locus.
  • the spoIID gene when the 7002 strain is used as a host for the present mutant, the spoIID gene is a gene encoded in the SYNPCC7002_A1891 locus, and (ii) when the 7942 strain is used as a host for the present mutant, the spoIID gene is a gene encoded in the Synpcc7942_2012 locus.
  • spoIID and its homologs refers to proteins having biological functions equivalent to SpoIID, i.e., proteins having the above-mentioned peptidoglycan lytic activity. Therefore, the spoIID gene according to one embodiment of the present invention can be said to be a gene encoding a protein having peptidoglycan lytic activity, or a gene encoding a polynucleotide corresponding to a protein having peptidoglycan lytic activity.
  • the spoIID gene may include a variant thereof. That is, in one embodiment of the present invention, the spoIID gene may be any of the following genes (a) to (d): (a) a polynucleotide consisting of the base sequence shown in SEQ ID NO: 1 or 2.
  • a polynucleotide that consists of a base sequence in which one or more bases are deleted, substituted, or added in the base sequence shown in SEQ ID NO: 1 or 2, and encodes a protein that has peptidoglycan lytic activity.
  • the base sequence shown in SEQ ID NO: 1 corresponds to the base sequence of the gene encoded in the SYNPCC7002_A1891 locus of strain 7002
  • the base sequence shown in SEQ ID NO: 2 corresponds to the base sequence of the gene encoded in the Synpcc7942_2012 locus of strain 7942.
  • (b) to (d) represent variants of the gene shown in (a).
  • hybridizing under stringent conditions refers to conditions in which hybridization is carried out in a hybridization solution with a salt concentration of 6x SSC at 50-60°C for 16 hours, followed by washing in a solution with a salt concentration of 0.1x SSC, followed by hybridization.
  • the identity of the base sequences is, for example, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100%.
  • the identity of the base sequences can be determined, for example, using BLASTX.
  • the upper limit of the number of bases substituted, deleted, inserted and/or added may be, for example, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1.
  • the spoIID gene is a gene encoding SpoIID and its variants.
  • the spoIID gene may be a gene encoding a protein represented by any one of the following (e) to (g): (e) a protein consisting of the amino acid sequence shown in SEQ ID NO: 3 or 4.
  • a protein having peptidoglycan lytic activity comprising an amino acid sequence in which one or more amino acid residues have been substituted, deleted, inserted and/or added from the amino acid sequence shown in SEQ ID NO: 3 or 4.
  • amino acid sequence shown in SEQ ID NO: 3 corresponds to the amino acid sequence of SpoIID in the 7002 strain
  • amino acid sequence shown in SEQ ID NO: 2 corresponds to the amino acid sequence of the SpoIID homologue protein in the 7942 strain.
  • (f) and (g) represent variants of the protein shown in (e).
  • the upper limit of the number of amino acid residues substituted, deleted, inserted and/or added may be, for example, 37, 35, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1.
  • the identity of the amino acid sequence is, for example, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100%.
  • the identity of the amino acid sequence can be determined, for example, using BLASTX.
  • the present inventors have found that the amino acid sequences of SpoIID in strains 7002 and 7942 share 40% or more identity. This suggests that the amino acid sequences of SpoIID (and its homologues) are widely conserved between different cyanobacterial species with approximately 40% or more identity. Therefore, the spoIID gene according to one embodiment of the present invention can be expressed as follows: (1) a gene encoding a protein having peptidoglycan lytic activity and having an amino acid sequence that is 40% or more identical to the amino acid sequence of a protein encoded in the SYNPCC7002_A1891 locus in Synechococcus sp.
  • PCC 7002 or (2) a gene encoding a protein having peptidoglycan lytic activity and having an amino acid sequence that is 40% or more identical to the amino acid sequence of a protein encoded in the Synpcc7942_2012 locus in Synechococcus elongatus PCC 7942.
  • the function of the spoIID gene is reduced compared to the wild-type spoIID gene or is absent means that, due to the introduction of a genetic mutation into the spoIID gene, (1) the expression level of SpoIID encoded by the spoIID gene is reduced or lost compared to the wild-type spoIID gene, and (2) the activity of the expressed SpoIID is reduced or lost compared to the wild-type spoIID gene.
  • "expression" of SpoIID means that a translation product is produced from the spoIID gene encoding the SpoIID and that it is localized at its site of action in a functional state (a state having normal activity). Therefore, a reduction or loss of expression of SpoIID means that the amount of SpoIID present in the cyanobacteria is reduced or lost due to the introduction of a genetic mutation into the spoIID gene. In addition, a reduction or loss of activity of SpoIID means that the normal function (activity) of SpoIID is partially or completely lost in the translation product produced from the spoIID gene.
  • a decrease in the expression level of SpoIID means that the expression level of SpoIID in the mutant is decreased to 50% or less, preferably 25% or less, and more preferably 10% or less, compared to the expression level of SpoIID in wild-type cyanobacteria.
  • a decrease in the activity of SpoIID means that the activity of SpoIID in the mutant is decreased to 50% or less, preferably 25% or less, and more preferably 10% or less, compared to the activity of SpoIID in wild-type cyanobacteria.
  • the expression level and activity of SpoIID can be measured by known immunological techniques, such as Western blotting and immunohistochemical staining.
  • wild type refers to the cyanobacteria that serve as the host for this mutant, in other words, the cyanobacteria before the function of the spoIID gene is reduced or deleted.
  • Wild-type spoIID gene refers to the spoIID gene in the wild-type cyanobacteria, and refers to the spoIID gene before the function of the gene is reduced or deleted.
  • the "wild-type cyanobacteria" that serves as the host for this mutant may be a wild-type cyanobacteria strain, an artificially bred cyanobacteria strain, a transformant that has been further subjected to any transformation other than the reduction or deletion of the function of the spoIID gene, or a mutant.
  • a strain that has been internationally deposited under the Budapest Treaty with the Patent Microorganism Deposit Center of the National Institute of Technology and Evaluation (address: 2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture) under the accession number NITE BP-03734 (deposit date: August 24, 2022), NITE BP-03735 (deposit date: August 24, 2022), NITE BP-03736 (deposit date: August 24, 2022) or NITE BP-03737 (deposit date: August 24, 2022) can also be used. All of the above strains are mutant strains created by the present inventors using the 7002 strain as a host and reducing or deleting the function of the spoIID gene compared to the wild-type spoIID gene.
  • a method for producing a cyanobacterial mutant which comprises a step of reducing the function of the spoIID gene below that of the wild-type spoIID gene or deleting the spoIID gene.
  • reducing the function of the spoIID gene below that of the wild-type spoIID gene may be abbreviated as “reducing the function of the spoIID gene”.
  • methods for reducing or eliminating the function of the spoIID gene include introducing a mutation into one or more bases in the base sequence of the spoIID gene, i.e., deleting part or all of the bases in the base sequence of the spoIID gene, or substituting or inserting another base sequence into the spoIID base sequence.
  • the region in which a mutation is introduced to reduce or eliminate the function of the spoIID gene may be the transcription region of the spoIID gene, as well as a transcription regulatory region such as the promoter, enhancer (transcription activation region) or terminator of the spoIID gene, with the transcription region being preferred.
  • the transcriptional regulatory region of the spoIID gene can be a region within 1000 bases, preferably within 500 bases, upstream from the 5' end and downstream from the 3' end of the transcriptional region of the spoIID gene on the chromosomal DNA.
  • the mutation introduced into the bases in the transcription region of the spoIID gene is not limited in type and number of bases, so long as it reduces or eliminates the function of the spoIID gene, and may be, for example, a deletion of one or more bases, a substitution of one or more bases, an addition of one or more bases, or any combination of these. More specifically, a mutation that reduces or eliminates the function of the spoIID gene is a mutation in which one or more amino acids are added, substituted, and/or deleted from the amino acid sequence encoded by the spoIID gene by the introduction of the mutation, and is preferably a mutation in which a frameshift mutation or a stop codon mutation is introduced.
  • the amino acid sequence of SpoIID is relatively highly conserved between species in a region of about 50 amino acids on the C-terminus (e.g., the region from positions 320 to 372 of SEQ ID NO: 3, or the region from positions 350 to 407 of SEQ ID NO: 4). From this, it is believed that the N-terminal region of SpoIID is the region that is largely involved in the part of SpoIID activity that affects the morphology of cyanobacteria.
  • the mutation that reduces or eliminates the function of the spoIID gene introduced in the method for producing this mutant is a mutation that affects the amino acid sequence on the C-terminus of SpoIID (e.g., the amino acid sequence from positions 320 to 372 of SEQ ID NO: 3, or the amino acid sequence from positions 350 to 407 of SEQ ID NO: 4).
  • the mutation is preferably one in which one or more amino acids are added, substituted, and/or deleted from the amino acid sequence within 50 amino acids from the C-terminus of SpoIID, or a frameshift mutation or a stop codon mutation is introduced, resulting in partial or complete loss of a region consisting of the amino acid sequence within 50 amino acids from the C-terminus of SpoIID from the translation product.
  • mutations that reduce or eliminate the function of the spoIID gene include the following mutations (a1) to (a10) and (b1): (a1) a mutation in which the glycine residue at position 342 in the amino acid sequence shown in SEQ ID NO: 3 is replaced with an arginine residue; (a2) a mutation in which a histidine residue and a cysteine residue are inserted between the glutamine residue at position 349 and the glycine residue at position 350 in the amino acid sequence shown in SEQ ID NO: 3, and the glycine residue at position 350 is deleted; (a3) a mutation in which the isoleucine residue at position 351 in the amino acid sequence shown in SEQ ID NO: 3 is replaced with a leucine residue; (a4) a mutation that causes a frameshift at the asparagine residue at position 352 in the amino acid sequence shown in SEQ ID NO: 3; (a5) a mutation that causes a frameshift at the tyrosine residue at position 353 in the amino acid sequence shown in
  • the mutant may be a mutant in which one or more of the mutations (a1) to (a10) described above have been introduced into the 7002 strain, or a mutant in which the mutation (b1) described above has been introduced into the 7942 strain.
  • the cyanobacterial strain internationally deposited under the Budapest Treaty with the accession number NITE BP-03734 is a cyanobacterial strain obtained by introducing the above-mentioned (a1) mutation into the 7002 strain
  • the cyanobacterial strain internationally deposited under the Budapest Treaty with the accession number NITE BP-03735 is a cyanobacterial strain obtained by introducing the above-mentioned (a6) mutation into the 7002 strain
  • the cyanobacterial strain internationally deposited under the Budapest Treaty with the accession number NITE BP-03736 is a cyanobacterial strain obtained by introducing the above-mentioned (a8) mutation into the 7002 strain
  • the cyanobacterial strain internationally deposited under the Budapest Treaty with the accession number NITE BP-03737 is a cyanobacterial strain obtained by introducing the above-mentioned (a9) mutation into the 7002 strain.
  • a method for introducing a base mutation into the spoIID gene can be, for example, a method of preparing a mutant spoIID gene with a base mutation and then homologously recombining the mutant spoIID gene with the spoIID gene in a host cell.
  • Another example is a method that utilizes bacteriophage or conjugation.
  • NTG N-methyl-N'-nitro-N-nitrosoguanidine
  • EMS ethyl methanesulfonate
  • UV light or radiation treatment
  • this mutant i.e., a mutant in which the function of the spoIID gene is reduced or deleted
  • a mutant in which the function of the spoIID gene is reduced or deleted can also be obtained by co-culturing the host cyanobacteria with a predatory protist (e.g., ochrophytes or ciliates) in an appropriate ratio (cell number ratio).
  • a method of co-culturing the host cyanobacteria with a predatory protist (e.g., ochrophytes or ciliates) in an appropriate ratio (cell number ratio) can also be used as a method for reducing or deleting the function of the spoIID gene.
  • An embodiment of the present invention may have the following configuration.
  • spoIID gene is a gene encoding a protein having an amino acid sequence that is 40% or more identical to the amino acid sequence of a protein encoded in the SYNPCC7002_A1891 locus in Synechococcus sp. PCC 7002 and has peptidoglycan lytic activity.
  • a polynucleotide that consists of a base sequence in which one or more bases are deleted, substituted, or added in the base sequence shown in SEQ ID NO: 1 or 2, and encodes a protein that has peptidoglycan lytic activity.
  • spoIID gene is a gene encoding a protein represented by any one of the following (e) to (g): (e) a protein consisting of the amino acid sequence shown in SEQ ID NO: 3 or 4.
  • a protein having peptidoglycan lytic activity comprising an amino acid sequence in which one or more amino acid residues have been substituted, deleted, inserted and/or added from the amino acid sequence shown in SEQ ID NO: 3 or 4.
  • [5] A mutant cyanobacterium according to any one of [1] to [4], wherein (i) the cyanobacterium is Synechococcus sp. PCC 7002 and the spoIID gene is a gene encoded at the SYNPCC7002_A1891 locus, or (ii) the cyanobacterium is Synechococcus elongatus PCC 7942 and the spoIID gene is a gene encoded at the Synpcc7942_2012 locus.
  • [6] A mutant of Synechococcus sp. PCC 7002, the cyanobacterium mutant according to any one of [1] to [5], having the accession number NITE BP-03734, NITE BP-03735, NITE BP-03736 or NITE BP-03737.
  • a method for producing a cyanobacterial mutant comprising a step of reducing the function of the spoIID gene below that of the wild-type spoIID gene or deleting the gene.
  • Next-generation sequence analysis was performed on these mutant strains using a next-generation sequencer (Illumina MiSeq) according to a known method, and the genetic mutation points were determined.
  • a mutant strain of S. elongatus PCC7942 (7942 strain) was obtained by co-cultivation with a predatory protozoan (Poterioochromonas malhamensis), and the mutant strain was also subjected to next-generation sequencing (NGS) to determine the genetic mutation points.
  • the results of the next-generation sequencing analysis are shown in Table 1.
  • the gene disruption was carried out by creating a DNA fragment (Gm R ) in which a gentamicin resistance gene (SEQ ID NO: 5) was inserted between about 1 kb of each of the upstream and downstream sequences of A1891 (SEQ ID NO: 1) by overlap extension-PCR, and transforming the 7002 strain with about 0.1 ⁇ g of each of the DNA fragments created.
  • the primers used were those shown in Table 2.
  • 1891 Primer1_F and 1891 Primer3_R were used to amplify the A1891 upstream fragment
  • 1891 Primer6_F and 1891 Primer2_R were used to amplify the A1891 downstream fragment
  • 1891 Primer4_F and 1891 Primer5_R were used to amplify the gentamicin resistance gene fragment.
  • the DNA fragment (SEQ ID NO: 12) for disrupting A1891 obtained by the above procedure was introduced into the 7002 strain by natural transformation. Specifically, the 7002 strain was first cultured in MA2 medium (50 mL), and after the OD750 reached about 0.7 to 1.0, the cells were harvested by centrifugation (6000 rpm, 5 min), and the harvested cells were resuspended in 1.0 mL of MA2 medium. About 0.1 ⁇ g of the DNA fragment (SEQ ID NO: 12) obtained by the above procedure was added to 400 ⁇ L of this suspension, and the mixture was mixed for 12 hours using a shaker in a 30° C. incubator while shielding from light with aluminum foil.
  • a strain was prepared by disrupting the SYNPCC7002_A1638 gene (SEQ ID NO: 13, sometimes abbreviated as A1638) in the 7002 strain by the same method.
  • the DNA fragment used for gene disruption was prepared by inserting a spectinomycin resistance gene (SEQ ID NO: 14) between approximately 1 kb of the upstream and downstream sequences of A1638 (SEQ ID NO: 13).
  • the primers used were those shown in Table 3.
  • 1638 Primer1_F and 1638 Primer3_R (SEQ ID NOs: 15 and 16) were used to amplify the A1638 upstream fragment
  • 1638 Primer6_F and 1638 Primer2_R (SEQ ID NOs: 17 and 18) were used to amplify the A1638 downstream fragment
  • 1638 Primer4_F and 1638 Primer5_R (SEQ ID NOs: 19 and 20) were used to amplify the spectinomycin resistance gene fragment.
  • the obtained DNA fragment (Spc R , SEQ ID NO: 21) was used for transformation.
  • the concentration of spectinomycin added to the medium was 40 ⁇ g/mL in all cases.
  • FIG. 1 The appearance of the prepared transformants observed under a microscope is shown in FIG. 1.
  • WT indicates the appearance of the wild-type 7002 strain
  • Mutant Y1 indicates the appearance of a mutant of 7002 strain (Mutant Y1) that arose in co-culture with a predatory protist
  • Transformant 1 indicates the appearance of a transformant (gene-disrupted strain) of 7002 strain into which Gm R was introduced by the above-mentioned homologous recombination
  • Control indicates the appearance of a transformant of 7002 strain into which Spc R was introduced by the above-mentioned homologous recombination.
  • the wild-type upper left of FIG.
  • transformant 1 lower panel of FIG. 1
  • mutant strain Y1 upper right panel of FIG. 1
  • individual cells were not separated but were connected and had a filamentous shape, and further, the cell length was elongated to 100 ⁇ m or more.
  • the transformant obtained by mutation of the spoIID gene had a shape similar to that of mutant strain Y1, which can dominate the culture system even in the presence of predatory protozoans, suggesting that it has predation resistance.
  • each cyanobacterial strain was cultured (monoculture) under the same conditions as the above culture, except that Metanophrys sinensis was not inoculated.
  • the Medium A2 (MA2) medium used in the examples was prepared according to the following composition. NaNO3 : 1.49 g, KH2PO4 : 50 mg , NaCl : 18 g , MgSO4.7H2O: 5 g, CaCl2.2H2O: 0.37 g , KCl: 0.6 g, Na2EDTA.2H2O : 32 mg, FeCl3.6H2O : 8 mg , H3BO3 : 34 mg, MnCl2.4H2O : 4.3 mg, ZnCl2 : 0.32 mg, Na2MoO4.2H2O : 50 ⁇ g, CuSO4.5H2O : 3.0 ⁇ g, CoCl2.6H2O: 0.2 mg . O: 12 ⁇ g, cobalamin: 4.0 ⁇ g, tris(hydroxymethyl)aminomethane: 8.3 mM, distilled water: 1 L.
  • the culture was fixed by adding 10 ⁇ L of formaldehyde to 500 ⁇ L of the collected culture to a final concentration of 2%, and leaving it to stand for 15 minutes. The fixed culture was stored at 4 ° C. until measurement. The OD 750 value of the culture was measured using a spectrophotometer, and the amount of chlorophyll was measured by the following procedure. 1 mL of the culture was placed in a 1.5 mL tube, the supernatant was removed, and only the bacterial components were collected.
  • the predators were measured by dropping 2 ⁇ L of the immobilized culture onto a highly water-repellent microslide glass (MATSUNAMI, TF0410) with a hole, and measuring the total number of cells in the culture using cellsens (OLYMPUS). Measurements were performed four times for each type of culture, and the cell density of the predators (cells/ml) was calculated as the average value of the four measurements.
  • Figure 2 shows the appearance of each culture system 5 days after the start of culture
  • Figure 3 shows the changes in OD 750 value and chlorophyll content in each culture system during the culture period
  • Figure 4 shows the changes in the number of predators in each culture system during the culture period.
  • the WT and control strains having normal morphology had dark green filter tubes, and the OD 750 value and chlorophyll content were also high, so that they could grow without any problems.
  • the WT and control strains lost color from the filter tubes, and the OD 750 value and chlorophyll content were also very low, so that it can be seen that the cell number is greatly reduced by predation.
  • the transformant 1 obtained by mutation of the spoIID gene like the mutant strain Y1, had dark filter tubes regardless of the presence or absence of predators, and the elongation of the cells could be confirmed with the naked eye.
  • the OD 750 value and chlorophyll content also increased over time regardless of the presence or absence of predators. In other words, it can be seen that the transformant 1 (and mutant strain 1) can increase the cell number without being affected by predators.
  • transformant 1 a mutant obtained by mutating the spoIID gene, is not preyed upon by predators and can increase cell number even in the presence of predators, i.e., it is a mutant with predation resistance.
  • the present invention can be suitably used in fields requiring cyanobacterial mutants, particularly in the field of substance production using cyanobacterial mutants.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention addresses the problem of providing a mutant of a cyanobacterium having predation resistance. This problem is solved by a mutant of a cyanobacterium in which the function of the spoIID gene is reduced or defective compared to the spoIID gene in the wild type.

Description

藍藻の変異体およびその製造方法Cyanobacterial mutants and methods for producing same
 本発明は、藍藻の変異体およびその製造方法に関する。 The present invention relates to a cyanobacterial mutant and a method for producing the same.
 近年、COの排出削減及び環境への負荷軽減の観点から、再生可能な生物資源を用いた物質生産(バイオプロダクション)が注目されている。光合成を行う単細胞生物である藍藻は、光エネルギーを利用して、水とCOを原料に様々な物質(例えば、油脂、デンプン、タンパク質、アミノ酸、カロテノイド等)を、代謝産物として産生することができる。また、藍藻は、遺伝子操作が容易であることもあり、バイオプロダクションのシャーシ株として、広く研究が進められている。 In recent years, from the viewpoint of reducing CO2 emissions and mitigating the burden on the environment, bioproduction using renewable biological resources has been attracting attention. Cyanobacteria, which are single-celled organisms that perform photosynthesis, can use light energy to produce various substances (e.g., fats and oils, starch, proteins, amino acids, carotenoids, etc.) as metabolic products using water and CO2 as raw materials. In addition, cyanobacteria are easy to genetically manipulate, and therefore research is being conducted extensively on them as chassis strains for bioproduction.
 藍藻のような微細藻類由来のバイオプロダクションの実用化にあたり、微細藻類の実用スケールでの培養(特に、屋外での大規模な培養)が求められるが、微細藻類の大規模培養では、培養系に対する他の生物種の混入(コンタミネーション)が大きな問題となる。 In order to commercialize bioproduction from microalgae such as cyanobacteria, it is necessary to cultivate the microalgae on a practical scale (especially large-scale cultivation outdoors). However, in large-scale cultivation of microalgae, contamination of the culture system with other biological species is a major problem.
 コンタミネーションによる被害としては、藻類、バクテリア等の原生生物が混入することによる栄養競合型の被害、ウイルス、カビ等が混入することによる寄生被害等が挙げられる。特に、混入した原生生物により、微細藻類が直接的に捕食される被害(捕食被害)は、培養系の甚大な生産性の低下(ポンドクラッシュ)の要因となることから、特に、屋外での大規模な培養を行う場合に大きな問題となっている(非特許文献1、2)。 Damage caused by contamination can include damage caused by nutritional competition due to the introduction of protozoa such as algae and bacteria, and parasitic damage due to the introduction of viruses, mold, etc. In particular, damage caused by direct predation of microalgae by the introduced protozoa (predation damage) is a major problem, especially when large-scale cultivation is carried out outdoors, as it can cause a significant decrease in productivity of the culture system (pond crash) (Non-Patent Documents 1 and 2).
 屋外での大規模な微細藻類の培養においては、原生生物のコンタミネーションは実質的に不可避である。これまで、実験室レベルの小規模な培養においては、超音波処理等の物理的手法、化学物質の添加等の化学的手法、競合生物を利用した生物学的手法によりコンタミネーションを制御する方法が見出されている。しかしながら、これらの方法は大規模培養では有効な制御方法とは言えない。現在、大規模培養における有効なコンタミネーションの制御方法は開発されておらず、診断的手法が開発されるのみに留まっている(非特許文献3)。 In large-scale outdoor cultivation of microalgae, contamination by protozoans is virtually unavoidable. To date, methods have been found to control contamination in small-scale laboratory-level cultivation using physical methods such as ultrasonication, chemical methods such as the addition of chemical substances, and biological methods using competing organisms. However, these methods cannot be said to be effective control methods for large-scale cultivation. At present, no effective method for controlling contamination in large-scale cultivation has been developed, and only diagnostic methods have been developed (Non-Patent Document 3).
 藍藻のような微細藻類を利用した物質生産において、コンタミネーションした原生生物による藍藻への被害、特に、原生生物による捕食被害を抑制することが、藍藻のバイオマス生産性の向上、ならびに実用化に大きく寄与できると考えられる。 In the production of substances using microalgae such as cyanobacteria, it is believed that suppressing damage to the cyanobacteria caused by contaminating protozoans, in particular damage caused by predation by protozoans, can greatly contribute to improving the biomass productivity of cyanobacteria and to their practical application.
 しかしながら、前記のように、現在の技術では、培養系への原生生物のコンタミネーションを完全に防ぐことは困難である。そこで、培養対象である藍藻そのものに捕食生物に対する捕食抵抗性を付与することが、コンタミネーションによる被害を防止するうえで、有効な手法として考えられる。 However, as mentioned above, with current technology it is difficult to completely prevent contamination of culture systems with protozoa. Therefore, endowing the cyanobacteria being cultured with resistance to predation by predatory organisms is thought to be an effective method for preventing damage caused by contamination.
 非特許文献4には、従属栄養性のバクテリアの1種において、捕食性原生生物の存在下で、バクテリアが形態変化を起こし、捕食抵抗性を向上させる現象が開示されている。 Non-Patent Document 4 discloses a phenomenon in which a species of heterotrophic bacteria undergoes a morphological change in the presence of a predatory protozoan, improving its resistance to predation.
 前記のような状況にあって、本発明の一態様は、捕食性原生生物に対する捕食抵抗性を有する藍藻の変異体を提供することを目的とする。 In light of the above-mentioned circumstances, one aspect of the present invention aims to provide a cyanobacterial mutant that is resistant to predation by predatory protozoans.
 前記の課題を解決するために、本発明の一実施形態に係る藍藻の変異体は、spoIID遺伝子の機能が野生型の前記spoIID遺伝子よりも低下しているか、または、欠損している、藍藻の変異体である。 In order to solve the above problem, the cyanobacterial mutant according to one embodiment of the present invention is a cyanobacterial mutant in which the function of the spoIID gene is reduced compared to that of the wild-type spoIID gene or is absent.
 また、本発明の一実施形態に係る藍藻の変異体の製造方法は、spoIID遺伝子の機能を野生型の前記spoIID遺伝子よりも低下させるか、または、欠損させる工程を含む、藍藻の変異体の製造方法である。 In addition, the method for producing a cyanobacterial mutant according to one embodiment of the present invention includes a step of reducing the function of the spoIID gene below that of the wild-type spoIID gene or deleting the spoIID gene.
 本発明の一態様によれば、捕食性原生生物に対する捕食抵抗性を有する藍藻の変異体を提供できる。 According to one aspect of the present invention, it is possible to provide a cyanobacterial mutant that is resistant to predation by predatory protozoans.
海洋性藍藻である7002株の野生型株、変異株および形質転換体の外観を示す図である。FIG. 1 shows the appearance of a wild-type strain, a mutant strain, and a transformant of the marine cyanobacterium strain 7002. 捕食性原生生物の有無に基づく、培養開始から5日後の7002株の野生型株、変異株および形質転換体の培養系の外観の変化を示す図である。FIG. 1 shows the change in appearance of cultures of wild-type, mutant and transformant strains of strain 7002 after 5 days of culture, depending on the presence or absence of predatory protozoa. 捕食性原生生物の有無に基づく、7002株の野生型株、変異株および形質転換体の培養中の細胞数(OD750値)およびクロロフィル(Chlorophyll)量の変化を示すグラフである。1 is a graph showing the changes in cell number (OD 750 value) and chlorophyll content during culture of wild-type, mutant and transformant strains of strain 7002 in the presence or absence of predatory protists. 7002株の野生型株、変異株または形質転換体と、捕食性原生生物とを共培養した培養系における、捕食性原生生物の細胞数の変化を示すグラフである。1 is a graph showing the change in cell number of predatory protists in a culture system in which a wild-type strain, a mutant strain, or a transformant of strain 7002 was co-cultured with the predatory protists.
 本発明の一実施形態について説明すると以下の通りであるが、本発明はこれに限定されない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能である。異なる実施形態および実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態および実施例についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが、本明細書中において参考文献として援用される。本明細書中、数値範囲に関して「A~B」と記載した場合、当該記載は「A以上B以下」を意図する。 One embodiment of the present invention is described below, but the present invention is not limited to this. The present invention is not limited to the configurations described below, and various modifications are possible within the scope of the claims. The technical scope of the present invention also includes embodiments and examples obtained by appropriately combining the technical means disclosed in the different embodiments and examples. In addition, all of the documents described in this specification are incorporated herein by reference. In this specification, when a numerical range is described as "A to B," the description intends "greater than or equal to A and less than or equal to B."
 〔1.本発明の基本原理〕
 本発明者らは、藍藻の1種であるSynechococcs sp. PCC 7002(以下、「7002株」と称する)に関する研究を進めていた。その中で、一部の培養系において、通常の藍藻が10μm程度の略球形であるのに対し、細胞長が数十~数百μm以上まで劇的に伸長する藍藻の変異株が発生していることを見出した。さらに、当該変異株は、通常の7002株が単細胞型の形態であるところ、複数の細胞が分離しないまま連なった状態で糸状化しているなど細胞の形状も大きく変化していることを見出した。加えて、当該変異株が発生した培養系には、捕食性原生生物として知られる、繊毛虫類(Ciliophora)が混入(コンタミネーション)していたにも関わらず、当該変異株は培養系を優占していることを見出した。捕食性原生生物である繊毛虫の存在下においても、培養系を優占していることは、上記の変異株が、捕食性原生生物に対する捕食抵抗性を有することを意味する。
1. Basic principle of the present invention
The present inventors have been conducting research on Synechococcs sp. PCC 7002 (hereinafter referred to as "7002 strain"), a type of cyanobacteria. In the course of research, the inventors have found that, in some culture systems, a mutant strain of cyanobacteria has been generated in which the cell length has dramatically increased to tens to hundreds of μm or more, whereas normal cyanobacteria have a roughly spherical shape of about 10 μm. Furthermore, the inventors have found that the shape of the cells of the mutant strain has also changed significantly, such that, whereas the normal 7002 strain has a single-celled form, multiple cells are connected together without being separated and become filamentous. In addition, the inventors have found that the mutant strain predominates in the culture system in which the mutant strain has been generated, even though it was contaminated with ciliate protozoa, which are known as predatory protozoans. The fact that the mutant strain predominates in the culture system even in the presence of ciliate protozoans, which are predatory protozoans, means that the mutant strain has resistance to predation by predatory protozoans.
 本発明者らは、上記の変異株を独立した実験で複数株取得し、それぞれ変異点を決定したところ、stage II sporulation protein D遺伝子(以下、「spoIID遺伝子」と略記する場合がある)に変異が集中しているとの知見を新たに得た。係る知見に基づきさらに鋭意検討を行った結果、藍藻において、spoIID遺伝子の機能を低下または欠損させることで、上記の変異株と同様の形質の変化を誘導できること、すなわち、捕食抵抗性を有する藍藻の変異体(形質転換体)を作製できることを見出し、本発明を完成させるに至った。 The inventors obtained multiple strains of the above mutant strain in independent experiments and determined the mutation points of each, leading to the new finding that the mutations were concentrated in the stage II sporulation protein D gene (hereinafter sometimes abbreviated as "spoIID gene"). As a result of further intensive research based on this finding, they discovered that by reducing or deleting the function of the spoIID gene in cyanobacteria, it is possible to induce changes in characteristics similar to those of the above mutant strain, in other words, it is possible to create a cyanobacterial mutant (transformant) that is resistant to predation, which led to the completion of the present invention.
 本発明者らの見出した藍藻の変異体(変異株および形質転換体)は、それ自体が捕食性原生生物に対する優れた捕食抵抗性を有するため、培養系の規模によらず、捕食性原生生物のコンタミネーションによる被害を抑制することができる。このような変異体は、バイオプロダクションのシャーシ株として極めて有用である。また、係る形質転換体は、通常の藍藻と比して細胞サイズが大きいことから、バイオプロダクションの生産性に優れ、かつ、菌体の回収が容易であるため、バイオプロダクションの生産効率向上の観点からも極めて有用である。 The cyanobacterial mutants (mutant strains and transformants) discovered by the present inventors themselves have excellent resistance to predation by predatory protozoans, and therefore can suppress damage caused by contamination by predatory protozoans, regardless of the scale of the culture system. Such mutants are extremely useful as chassis strains for bioproduction. Furthermore, the transformants have a larger cell size than normal cyanobacteria, making them highly productive in bioproduction, and because the bacterial cells can be easily collected, they are also extremely useful from the perspective of improving the production efficiency of bioproduction.
 このように、本発明の一実施形態によれば、バイオプロダクションの生産効率向上に寄与することで、持続可能な開発目標(SDGs)の、例えば目標12「つくる責任つかう責任」等の達成に貢献できる。 In this way, one embodiment of the present invention can contribute to the achievement of the Sustainable Development Goals (SDGs), such as Goal 12 "Responsible Consumption and Production," by contributing to improving the production efficiency of bioproduction.
 〔2.変異体〕
 本発明の一実施形態に係る藍藻の変異体(以下、「本変異体」と称する場合がある。また、本明細書における「変異体」は、藍藻の変異体を意図する)は、spoIID遺伝子の機能が、野生型の前記spoIID遺伝子よりも低下しているか、または、欠損している、藍藻の変異体である。
2. Mutants
A cyanobacterial mutant according to one embodiment of the present invention (hereinafter sometimes referred to as "the mutant"; furthermore, in this specification, "mutant" refers to a cyanobacterial mutant) is a cyanobacterial mutant in which the function of the spoIID gene is reduced compared to that of the wild-type spoIID gene or is missing.
 本変異体は、前記構成を有するために、野生型の藍藻(spoIID遺伝子の機能の低下または欠損する前の藍藻)と比して、非常に大きなサイズに伸長する。それゆえ、捕食性原生生物に対する優れた捕食抵抗性を有する。また、本変異体を物質生産(バイオプロダクションの生産)に用いる場合、本変異体は、その大きさから、(1)生産目的物質(バイオプロダクション)の生産量の増加が見込め、(2)沈降等によって容易に回収することが可能である。 Because this mutant has the above-mentioned structure, it grows to a much larger size than wild-type cyanobacteria (cyanobacteria before the function of the spoIID gene is reduced or deleted). Therefore, it has excellent resistance to predation by predatory protozoans. Furthermore, when this mutant is used for substance production (bioproduction), due to its size, (1) an increase in the production amount of the target substance (bioproduction) can be expected, and (2) it can be easily recovered by sedimentation, etc.
 本明細書において、「藍藻の変異体」とは、野生型の藍藻と比べて、遺伝子に変異を有しており、異なる形質(表現型)を呈する藍藻を意図する。ここで、「藍藻の変異体」における「遺伝子の変異」は、塩基配列の物理的もしくは構造的変化、ならびに、翻訳産物(例えば、タンパク質)の構造的もしくは量的変化を意図する。本変異体における「遺伝子の変異」は、人為的な遺伝子導入により生じたものであってもよく、突然変異によって生じたものであってもよい。すなわち、本変異体は、人為的な遺伝子導入により作製された藍藻の形質転換体(単に「形質転換体」と称する場合がある)であってもよく、突然変異によって発生した藍藻の変異株((単に「変異株」と称する場合がある))であってもよい。 In this specification, the term "cyanobacteria mutant" refers to cyanobacteria that have genetic mutations and exhibit different characteristics (phenotypes) compared to wild-type cyanobacteria. Here, the "gene mutation" in "cyanobacteria mutant" refers to physical or structural changes in the base sequence, as well as structural or quantitative changes in the translation product (e.g., protein). The "gene mutation" in this mutant may be caused by artificial gene introduction, or may be caused by mutation. In other words, this mutant may be a cyanobacteria transformant (sometimes simply referred to as a "transformant") created by artificial gene introduction, or may be a mutant strain of cyanobacteria that has arisen by mutation (sometimes simply referred to as a "mutant strain").
 <2-1.藍藻>
 本変異体の宿主(親株)となる藍藻は特に限定されず、藍藻類(Cyanobacteria)の生物を使用できる。藍藻類の生物としては、例えば、Synechococcales目(Synechococcales)等の生物が挙げられ、より詳細にはSynechococcaceae科(Synechococcaceae)等の生物を挙げることができる。より具体的には、Anabaena sp.(Anabaena属)、Synechocystis sp.(Synechocystis属)およびSynechococcus sp.(Synechococcus属)等が挙げられる。さらに具体的にはSynechococcus sp. PCC 7002(7002株と称する)およびSynechococcus elongatus PCC 7942(7942株と称する)等が挙げられる。また、これらの藍藻において、spoIID遺伝子の機能の低下または欠損以外の任意の形質転換(例えば、所望のバイオプロダクション生産能の付与)を行った変異体を用いることもできる。また、藍藻類の生物には、野生株において単細胞型の形態を有するものと、多細胞型の形態を有するものと、が存在するが、単細胞型の形態を有する藍藻が、本変異体の宿主として好ましい。なお、上記7002株および7942株は、単細胞型の形態を有する藍藻である。このような7002株および7942株は、単細胞型の形態を有することから研究対象として使用しやすく、その特性について膨大なデータが蓄積している。そのため、例えばバイオプロダクションに好適に使用できる。
<2-1. Blue-green algae>
The cyanobacteria that can be used as a host (parent strain) for the present mutant is not particularly limited, and any organism of the Cyanobacteria can be used. Examples of organisms of the Cyanobacteria include organisms of the order Synechococcales, and more particularly, In particular, examples of organisms include those in the Synechococcaceae family, such as Anabaena sp., Synechocystis sp., and Synechococcus sp. More specifically, Synechococcus sp. PCC 7002 (referred to as 7002 strain) and Synechococcus elongatus PCC 7942 (referred to as 7942 strain) can be mentioned. In these cyanobacteria, there are no known causes other than the reduction or deletion of the function of the spoIID gene. Any mutant that has been transformed (for example, to impart a desired bioproduction ability) can also be used. In addition, among wild-type cyanobacteria, there are those that have a unicellular morphology and those that have a multicellular morphology. The unicellular morphology of the cyanobacteria is the host of the present mutant. The above-mentioned strains 7002 and 7942 are cyanobacteria having a unicellular morphology. Since the strains 7002 and 7942 have a unicellular morphology, they are easy to use as research subjects, and their characteristics are A huge amount of data has been accumulated about this, so it can be used favorably in, for example, bioproduction.
 本変異体の宿主となる藍藻のサイズが、例えば、細胞長(長径)が10μm以下である場合、本変異体のサイズは、例えば、細胞長が100μm以上であり、200μm以上であってもよく、300μm以上であってもよく、400μm以上であってもよく、500μm以上であってもよく、750μm以上であってもよい。このように、本変異体は、宿主の藍藻と比して、細胞長が数倍から数百倍のサイズとなり得る。 If the size of the cyanobacteria that serves as the host for this mutant is, for example, a cell length (longest diameter) of 10 μm or less, the size of this mutant may be, for example, a cell length of 100 μm or more, 200 μm or more, 300 μm or more, 400 μm or more, 500 μm or more, or 750 μm or more. In this way, the cell length of this mutant can be several to several hundred times larger than that of the host cyanobacteria.
 <2-2.spoIID遺伝子>
 本明細書において、spoIID遺伝子とは、ペプチドグリカン溶解活性を有するタンパク質である、SpoIIDタンパク質(以下、「SpoIID」と略記する場合がある)およびそのホモログをコードする遺伝子(ホモログ遺伝子)を意図する。すなわち、本明細書におけるspoIID遺伝子とは、そのホモログ遺伝子を包含する概念である。spoIID遺伝子(およびそのホモログ遺伝子)は、藍藻類全般にわたって広く存在する遺伝子であり、例えば、7002株においては、SYNPCC7002_A1891遺伝子座に、7942株においては、Synpcc7942_2012遺伝子座にそれぞれコードされている。すなわち、本発明の一実施形態において、(i)本変異体の宿主として7002株を使用する場合、spoIID遺伝子は、SYNPCC7002_A1891遺伝子座にコードされている遺伝子であり、(ii)本変異体の宿主として7942株を使用する場合、spoIID遺伝子は、Synpcc7942_2012遺伝子座にコードされている遺伝子である。
2-2. spoIID gene
In the present specification, the spoIID gene refers to a gene (homologous gene) encoding a SpoIID protein (hereinafter sometimes abbreviated as "SpoIID"), which is a protein having peptidoglycan lysis activity, and its homologue. That is, the spoIID gene in the present specification is a concept that includes its homologue gene. The spoIID gene (and its homologue gene) is a gene that is widely present throughout cyanobacteria, and is encoded, for example, in the 7002 strain at the SYNPCC7002_A1891 locus, and in the 7942 strain at the Synpcc7942_2012 locus. That is, in one embodiment of the present invention, (i) when the 7002 strain is used as a host for the present mutant, the spoIID gene is a gene encoded in the SYNPCC7002_A1891 locus, and (ii) when the 7942 strain is used as a host for the present mutant, the spoIID gene is a gene encoded in the Synpcc7942_2012 locus.
 なお、本明細書における「SpoIIDおよびそのホモログ」とは、SpoIIDと同等の生物学的機能を有するタンパク質、すなわち、上記のペプチドグリカン溶解活性を有するタンパク質を意図する。したがって、本発明の一実施形態に係るspoIID遺伝子は、ペプチドグリカン溶解活性を有するタンパク質をコードする遺伝子であると言え、ペプチドグリカン溶解活性を有するタンパク質に対応するポリヌクレオチドをコードする遺伝子であるとも言える。 In this specification, "SpoIID and its homologs" refers to proteins having biological functions equivalent to SpoIID, i.e., proteins having the above-mentioned peptidoglycan lytic activity. Therefore, the spoIID gene according to one embodiment of the present invention can be said to be a gene encoding a protein having peptidoglycan lytic activity, or a gene encoding a polynucleotide corresponding to a protein having peptidoglycan lytic activity.
 本発明の一実施形態に係るspoIID遺伝子は、そのバリアントを含むものであってもよい。すなわち、本発明の一実施形態において、spoIID遺伝子は、以下の(a)~(d)のいずれかで示される遺伝子であってもよい:
 (a)配列番号1または2に示される塩基配列からなるポリヌクレオチド。
The spoIID gene according to one embodiment of the present invention may include a variant thereof. That is, in one embodiment of the present invention, the spoIID gene may be any of the following genes (a) to (d):
(a) a polynucleotide consisting of the base sequence shown in SEQ ID NO: 1 or 2.
 (b)配列番号1または2に示される塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズし、ペプチドグリカン溶解活性を有するタンパク質をコードするポリヌクレオチド。 (b) A polynucleotide that hybridizes under stringent conditions with a polynucleotide having a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having peptidoglycan lytic activity.
 (c)配列番号1または2に示される塩基配列と90%以上の同一性を有し、ペプチドグリカン溶解活性を有するタンパク質をコードする塩基配列からなるポリヌクレオチド。 (c) A polynucleotide having a base sequence that is 90% or more identical to the base sequence shown in SEQ ID NO: 1 or 2 and that encodes a protein having peptidoglycan lytic activity.
 (d)配列番号1または2に示される塩基配列において、1または複数個の塩基が欠失、置換または付加された塩基配列からなり、ペプチドグリカン溶解活性を有するタンパク質をコードポリヌクレオチド。 (d) A polynucleotide that consists of a base sequence in which one or more bases are deleted, substituted, or added in the base sequence shown in SEQ ID NO: 1 or 2, and encodes a protein that has peptidoglycan lytic activity.
 前記(a)に関して、配列番号1で示される塩基配列は、7002株のSYNPCC7002_A1891遺伝子座にコードされている遺伝子の塩基配列に対応し、配列番号2で示される塩基配列は、7942株のSynpcc7942_2012遺伝子座にコードされている遺伝子の塩基配列に対応する。(b)~(d)は、(a)に示される遺伝子のバリアントを表している。 With regard to (a) above, the base sequence shown in SEQ ID NO: 1 corresponds to the base sequence of the gene encoded in the SYNPCC7002_A1891 locus of strain 7002, and the base sequence shown in SEQ ID NO: 2 corresponds to the base sequence of the gene encoded in the Synpcc7942_2012 locus of strain 7942. (b) to (d) represent variants of the gene shown in (a).
 前記(b)に関して、「ストリンジェントな条件でハイブリダイズする」とは、6×SSCの塩濃度のハイブリダイゼーション溶液中、50~60℃にて16時間ハイブリダイゼーションを行い、0.1×SSCの塩濃度の溶液中で洗浄した後に、ハイブリダイズする条件を言う。 With regard to (b) above, "hybridizing under stringent conditions" refers to conditions in which hybridization is carried out in a hybridization solution with a salt concentration of 6x SSC at 50-60°C for 16 hours, followed by washing in a solution with a salt concentration of 0.1x SSC, followed by hybridization.
 前記(c)に関して、塩基配列の同一性は、例えば、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上または100%である。なお、塩基配列の同一性は、例えば、BLASTXを利用して決定することができる。 With regard to (c) above, the identity of the base sequences is, for example, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100%. The identity of the base sequences can be determined, for example, using BLASTX.
 前記(d)に関して、塩基が置換、欠失、挿入および/または付加される数の上限は、例えば、110個、100個、90個、80個、70個、60個、50個、40個、30個、20個、15個、10個、9個、8個、7個、6個、5個、4個、3個、2個または1個でありうる。 With regard to (d) above, the upper limit of the number of bases substituted, deleted, inserted and/or added may be, for example, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1.
 本発明の一実施形態に係るspoIID遺伝子は、SpoIIDおよびそのバリアントをコードする遺伝子であるとも言える。したがって、本発明の一実施形態において、spoIID遺伝子は、以下の(e)~(g)のいずれかで示されるタンパク質をコードする遺伝子であってもよい:
 (e)配列番号3または4に示されるアミノ酸配列からなるタンパク質。
It can also be said that the spoIID gene according to one embodiment of the present invention is a gene encoding SpoIID and its variants. Thus, in one embodiment of the present invention, the spoIID gene may be a gene encoding a protein represented by any one of the following (e) to (g):
(e) a protein consisting of the amino acid sequence shown in SEQ ID NO: 3 or 4.
 (f)配列番号3または4に示されるアミノ酸配列から1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、ペプチドグリカン溶解活性を有するタンパク質。 (f) A protein having peptidoglycan lytic activity, comprising an amino acid sequence in which one or more amino acid residues have been substituted, deleted, inserted and/or added from the amino acid sequence shown in SEQ ID NO: 3 or 4.
 (g)配列番号3または4に示されるアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列からなり、ペプチドグリカン溶解活性を有するタンパク質。 (g) A protein having an amino acid sequence that has 90% or more identity to the amino acid sequence shown in SEQ ID NO: 3 or 4 and has peptidoglycan lytic activity.
 前記(e)に関して、配列番号3で示されるアミノ酸配列は、7002株におけるSpoIIDのアミノ酸配列に対応し、配列番号2で示されるアミノ酸配列は、7942株におけるSpoIIDのホモログタンパク質のアミノ酸配列に対応する。(f)および(g)は、(e)に示されるタンパク質のバリアントを表している。 With regard to (e) above, the amino acid sequence shown in SEQ ID NO: 3 corresponds to the amino acid sequence of SpoIID in the 7002 strain, and the amino acid sequence shown in SEQ ID NO: 2 corresponds to the amino acid sequence of the SpoIID homologue protein in the 7942 strain. (f) and (g) represent variants of the protein shown in (e).
 前記(f)に関して、アミノ酸残基が置換、欠失、挿入および/または付加される数の上限は、例えば、37個、35個、30個、25個、20個、15個、10個、9個、8個、7個、6個、5個、4個、3個、2個または1個でありうる。 With regard to (f) above, the upper limit of the number of amino acid residues substituted, deleted, inserted and/or added may be, for example, 37, 35, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1.
 前記(g)に関して、アミノ酸配列の同一性は、例えば、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、または100%である。なお、アミノ酸配列の同一性は、例えば、BLASTXを利用して決定することができる。 With regard to (g) above, the identity of the amino acid sequence is, for example, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100%. The identity of the amino acid sequence can be determined, for example, using BLASTX.
 本発明者らは、7002株および7942株において、SpoIIDのアミノ酸配列が40%以上の同一性を有していることを見出している。これは、異なる藍藻種間において、SpoIID(およびそのホモログ)のアミノ酸配列が、40%以上程度の同一性をもって広く保存されていることを示唆している。したがって、本発明の一実施形態に係るspoIID遺伝子は、以下のように表現することもできる:(1)Synechococcus sp. PCC 7002における、SYNPCC7002_A1891遺伝子座にコードされているタンパク質のアミノ酸配列との同一性が40%以上のアミノ酸配列を有し、ペプチドグリカン溶解活性を有するタンパク質をコードする遺伝子、または、(2)Synechococcus elongatus PCC 7942における、Synpcc7942_2012遺伝子座にコードされているタンパク質のアミノ酸配列との同一性が40%以上のアミノ酸配列を有し、ペプチドグリカン溶解活性を有するタンパク質をコードする遺伝子。 The present inventors have found that the amino acid sequences of SpoIID in strains 7002 and 7942 share 40% or more identity. This suggests that the amino acid sequences of SpoIID (and its homologues) are widely conserved between different cyanobacterial species with approximately 40% or more identity. Therefore, the spoIID gene according to one embodiment of the present invention can be expressed as follows: (1) a gene encoding a protein having peptidoglycan lytic activity and having an amino acid sequence that is 40% or more identical to the amino acid sequence of a protein encoded in the SYNPCC7002_A1891 locus in Synechococcus sp. PCC 7002, or (2) a gene encoding a protein having peptidoglycan lytic activity and having an amino acid sequence that is 40% or more identical to the amino acid sequence of a protein encoded in the Synpcc7942_2012 locus in Synechococcus elongatus PCC 7942.
 本明細書において、spoIID遺伝子の機能が野生型の前記spoIID遺伝子よりも低下しているか、または、欠損しているとは、spoIID遺伝子への遺伝的変異の導入により、(1)当該spoIID遺伝子にコードされているSpoIIDの発現量が、野生型のspoIID遺伝子と比して低下または喪失すること、および、(2)発現するSpoIIDの活性が野生型のspoIID遺伝子と比して低下または喪失すること、のいずれかを意味する。 In this specification, the function of the spoIID gene is reduced compared to the wild-type spoIID gene or is absent means that, due to the introduction of a genetic mutation into the spoIID gene, (1) the expression level of SpoIID encoded by the spoIID gene is reduced or lost compared to the wild-type spoIID gene, and (2) the activity of the expressed SpoIID is reduced or lost compared to the wild-type spoIID gene.
 本明細書において、SpoIIDの「発現」とは、当該SpoIIDをコードするspoIID遺伝子から、翻訳産物が産生され、かつ機能的な状態(正常な活性を有した状態)でその作用部位に局在することを意図する。したがって、SpoIIDの発現量が低下または喪失するとは、spoIID遺伝子への遺伝的変異の導入により、藍藻内に存在するSpoIIDの量が低下または喪失することを意味する。また、SpoIIDの活性が低下または喪失するとは、spoIID遺伝子から産生される翻訳産物において、SpoIIDとしての正常な機能(活性)が部分的にまたは完全に失われることを意味する。 In this specification, "expression" of SpoIID means that a translation product is produced from the spoIID gene encoding the SpoIID and that it is localized at its site of action in a functional state (a state having normal activity). Therefore, a reduction or loss of expression of SpoIID means that the amount of SpoIID present in the cyanobacteria is reduced or lost due to the introduction of a genetic mutation into the spoIID gene. In addition, a reduction or loss of activity of SpoIID means that the normal function (activity) of SpoIID is partially or completely lost in the translation product produced from the spoIID gene.
 ここで、SpoIIDの発現量が低下するとは、野生型の藍藻におけるSpoIIDの発現量と比較して、変異体におけるSpoIIDの発現量が、50%以下、好ましくは25%以下、より好ましくは10%以下に低下することを意味する。また、SpoIIDの活性が低下するとは、野生型の藍藻におけるSpoIIDの活性と比較して、変異体におけるSpoIIDの活性が、50%以下、好ましくは25%以下、より好ましくは10%以下に低下することを意味する。なお、SpoIIDの発現量および活性は、例えば、ウェスタンブロッティング、免疫組織染色等の公知の免疫学的手法により測定することができる。 Here, a decrease in the expression level of SpoIID means that the expression level of SpoIID in the mutant is decreased to 50% or less, preferably 25% or less, and more preferably 10% or less, compared to the expression level of SpoIID in wild-type cyanobacteria. Also, a decrease in the activity of SpoIID means that the activity of SpoIID in the mutant is decreased to 50% or less, preferably 25% or less, and more preferably 10% or less, compared to the activity of SpoIID in wild-type cyanobacteria. The expression level and activity of SpoIID can be measured by known immunological techniques, such as Western blotting and immunohistochemical staining.
 本明細書において、「野生型」とは本変異体の宿主たる藍藻、換言すると、spoIID遺伝子の機能の低下または欠損を行う前の藍藻を意図する。「野生型のspoIID遺伝子」とは、前記の野生型の藍藻におけるspoIID遺伝子を意味し、当該遺伝子の機能が低下または欠損する以前のspoIID遺伝子を意味する。なお、本発明の一実施形態において、本変異体の宿主たる「野生型の藍藻」としては、野生型の藍藻株を使用してもよく、人工的に育種された藍藻株を使用してもよく、前記の各藍藻株にさらにspoIID遺伝子の機能の低下または欠損以外の任意の形質転換を行った形質転換体を使用してもよく、突然変異体を使用してもよい。 In this specification, "wild type" refers to the cyanobacteria that serve as the host for this mutant, in other words, the cyanobacteria before the function of the spoIID gene is reduced or deleted. "Wild-type spoIID gene" refers to the spoIID gene in the wild-type cyanobacteria, and refers to the spoIID gene before the function of the gene is reduced or deleted. In one embodiment of the present invention, the "wild-type cyanobacteria" that serves as the host for this mutant may be a wild-type cyanobacteria strain, an artificially bred cyanobacteria strain, a transformant that has been further subjected to any transformation other than the reduction or deletion of the function of the spoIID gene, or a mutant.
 本発明の一実施形態に係る変異体としては、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(住所:千葉県木更津市かずさ鎌足2-5-8)に、受託番号がNITE BP-03734(寄託日:2022年8月24日)、NITE BP-03735(寄託日:2022年8月24日)、NITE BP-03736(寄託日:2022年8月24日)またはNITE BP-03737(寄託日:2022年8月24日)として、ブダペスト条約に基づく国際寄託されている株を用いることもできる。上記の株は何れも、本発明者らにより、7002株を宿主とし、spoIID遺伝子の機能を野生型の前記spoIID遺伝子よりも低下させるか、または、欠損させることで作製された変異株である。 As a mutant according to one embodiment of the present invention, a strain that has been internationally deposited under the Budapest Treaty with the Patent Microorganism Deposit Center of the National Institute of Technology and Evaluation (address: 2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture) under the accession number NITE BP-03734 (deposit date: August 24, 2022), NITE BP-03735 (deposit date: August 24, 2022), NITE BP-03736 (deposit date: August 24, 2022) or NITE BP-03737 (deposit date: August 24, 2022) can also be used. All of the above strains are mutant strains created by the present inventors using the 7002 strain as a host and reducing or deleting the function of the spoIID gene compared to the wild-type spoIID gene.
 〔3.変異体の製造方法〕
 本発明の一実施形態において、spoIID遺伝子の機能を野生型の前記spoIID遺伝子よりも低下させるか、または、欠損させる工程を含む、藍藻の変異体(すなわち、本変異体)の製造方法を提供する。なお、本明細書において、「spoIID遺伝子の機能を野生型の前記spoIID遺伝子よりも低下させる」ことを、「spoIID遺伝子の機能を低下させる」と略記する場合がある。
3. Method for producing mutants
In one embodiment of the present invention, there is provided a method for producing a cyanobacterial mutant (i.e., the present mutant), which comprises a step of reducing the function of the spoIID gene below that of the wild-type spoIID gene or deleting the spoIID gene. Note that in this specification, "reducing the function of the spoIID gene below that of the wild-type spoIID gene" may be abbreviated as "reducing the function of the spoIID gene".
 本変異体の製造方法において、spoIID遺伝子の機能を低下または欠損させる方法としては、当該spoIID遺伝子の塩基配列上の1つ以上の塩基に対して変異を導入する方法、すなわち、当該spoIID遺伝子の塩基配列の一部もしくは全塩基を欠失させる方法、または、当該spoIID塩基配列に対して別の塩基配列を置換もしくは挿入させる方法が挙げられる。 In the method for producing this mutant, methods for reducing or eliminating the function of the spoIID gene include introducing a mutation into one or more bases in the base sequence of the spoIID gene, i.e., deleting part or all of the bases in the base sequence of the spoIID gene, or substituting or inserting another base sequence into the spoIID base sequence.
 本変異体の製造方法において、spoIID遺伝子の機能を低下または欠損させるために、塩基に対する変異を導入する領域としては、spoIID遺伝子の転写領域に加え、spoIID遺伝子のプロモーター、エンハンサー(転写活性化領域)もしくはターミネーターなどの転写調節領域を挙げることができるが、好ましくは転写領域である。 In the method for producing this mutant, the region in which a mutation is introduced to reduce or eliminate the function of the spoIID gene may be the transcription region of the spoIID gene, as well as a transcription regulatory region such as the promoter, enhancer (transcription activation region) or terminator of the spoIID gene, with the transcription region being preferred.
 spoIID遺伝子の転写調節領域としては染色体DNA上におけるspoIID遺伝子の転写領域の5’末端より上流側および3’末端から下流側の1000塩基以内、好ましくは500塩基以内の領域を挙げることができる。 The transcriptional regulatory region of the spoIID gene can be a region within 1000 bases, preferably within 500 bases, upstream from the 5' end and downstream from the 3' end of the transcriptional region of the spoIID gene on the chromosomal DNA.
 本変異体の製造方法において、spoIID遺伝子の転写領域の塩基に導入される変異は、当該spoIID遺伝子の機能を低下または欠損させる変異であれば、塩基の種類および数に制限はなく、例えば、1塩基以上の塩基の欠失、1塩基以上の塩基の置換および1塩基以上の塩基の付加、ならびに、これらの組み合わせの何れであってもよい。spoIID遺伝子の機能を低下または欠損させる変異とは、より具体的には、前記変異の導入により、当該spoIID遺伝子がコードするアミノ酸配列に対して、1つ以上のアミノ酸が付加、置換および/または欠失する変異であり、フレームシフト変異またはストップコドン変異が導入される変異であることが好ましい。 In the method for producing this mutant, the mutation introduced into the bases in the transcription region of the spoIID gene is not limited in type and number of bases, so long as it reduces or eliminates the function of the spoIID gene, and may be, for example, a deletion of one or more bases, a substitution of one or more bases, an addition of one or more bases, or any combination of these. More specifically, a mutation that reduces or eliminates the function of the spoIID gene is a mutation in which one or more amino acids are added, substituted, and/or deleted from the amino acid sequence encoded by the spoIID gene by the introduction of the mutation, and is preferably a mutation in which a frameshift mutation or a stop codon mutation is introduced.
 また、SpoIIDは、C末端側の50個程度のアミノ酸からなる領域(例えば、配列番号3の320位~372位、または、配列番号4の350位~407位の領域)において、そのアミノ酸配列が種間で比較的高度に保存されている。このことから、SpoIIDのN末端側の領域が、SpoIIDの活性のうち、藍藻の形態に影響する部分に大きく関与している領域であると考えられる。したがって、より効率的にSpoIIDの活性を低下または喪失させる観点から、本変異体の製造方法において導入されるspoIID遺伝子の機能を低下または欠損させる変異は、上記のSpoIIDのC末端側のアミノ酸配列(例えば、配列番号3の320位~372位、または、配列番号4の350位~407位のアミノ酸配列)に影響を及ぼす変異であることが好ましい。より具体的には、SpoIIDのC末端側から50個以内のアミノ酸配列に対して、1つ以上のアミノ酸が付加、置換および/または欠失する変異であるか、あるいは、フレームシフト変異またはストップコドン変異が導入されることにより、翻訳産物から、前記SpoIIDのC末端側から50個以内のアミノ酸配列からなる領域が部分的にまたは完全に失われる変異であることが好ましい。 Furthermore, the amino acid sequence of SpoIID is relatively highly conserved between species in a region of about 50 amino acids on the C-terminus (e.g., the region from positions 320 to 372 of SEQ ID NO: 3, or the region from positions 350 to 407 of SEQ ID NO: 4). From this, it is believed that the N-terminal region of SpoIID is the region that is largely involved in the part of SpoIID activity that affects the morphology of cyanobacteria. Therefore, from the viewpoint of more efficiently reducing or eliminating SpoIID activity, it is preferable that the mutation that reduces or eliminates the function of the spoIID gene introduced in the method for producing this mutant is a mutation that affects the amino acid sequence on the C-terminus of SpoIID (e.g., the amino acid sequence from positions 320 to 372 of SEQ ID NO: 3, or the amino acid sequence from positions 350 to 407 of SEQ ID NO: 4). More specifically, the mutation is preferably one in which one or more amino acids are added, substituted, and/or deleted from the amino acid sequence within 50 amino acids from the C-terminus of SpoIID, or a frameshift mutation or a stop codon mutation is introduced, resulting in partial or complete loss of a region consisting of the amino acid sequence within 50 amino acids from the C-terminus of SpoIID from the translation product.
 spoIID遺伝子の機能を低下または欠損させる変異の具体例としては、以下の(a1)~(a10)および(b1)で示される変異が挙げられる:
 (a1)配列番号3で示されるアミノ酸配列において、第342位のグリシン残基がアルギニン残基に置換される変異、
 (a2)配列番号3で示されるアミノ酸配列において、第349位のグルタミン残基と第350位のグリシン残基の間にヒスチジン残基およびシステイン残基が挿入され、かつ、第350位のグリシン残基が欠失する変異、
 (a3)配列番号3で示されるアミノ酸配列において、第351位のイソロイシン残基がロイシン残基に置換される変異、
 (a4)配列番号3で示されるアミノ酸配列において、第352位のアスパラギン残基においてフレームシフトが生じる変異、
 (a5)配列番号3で示されるアミノ酸配列において、第353位のチロシン残基においてフレームシフトが生じる変異、
 (a6)配列番号3で示されるアミノ酸配列において、第82位のフェニルアラニン残基においてフレームシフトが生じる変異、
 (a7)配列番号3で示されるアミノ酸配列において、第19位のバリン残基においてフレームシフトが生じる変異、
 (a8)配列番号3で示されるアミノ酸配列において、第340位のグルタミン残基がアルギニン残基に置換される変異、
 (a9)配列番号3で示されるアミノ酸配列において、第54位のイソロイシン残基においてフレームシフトが生じる変異、
 (a10)配列番号3で示されるアミノ酸配列において、第27位のアラニン残基においてフレームシフトが生じる変異、
 (b1)配列番号4で示されるアミノ酸配列において、第342位のプロリン残基がバリン残基に置換されるフレームシフトが生じる変異。
Specific examples of mutations that reduce or eliminate the function of the spoIID gene include the following mutations (a1) to (a10) and (b1):
(a1) a mutation in which the glycine residue at position 342 in the amino acid sequence shown in SEQ ID NO: 3 is replaced with an arginine residue;
(a2) a mutation in which a histidine residue and a cysteine residue are inserted between the glutamine residue at position 349 and the glycine residue at position 350 in the amino acid sequence shown in SEQ ID NO: 3, and the glycine residue at position 350 is deleted;
(a3) a mutation in which the isoleucine residue at position 351 in the amino acid sequence shown in SEQ ID NO: 3 is replaced with a leucine residue;
(a4) a mutation that causes a frameshift at the asparagine residue at position 352 in the amino acid sequence shown in SEQ ID NO: 3;
(a5) a mutation that causes a frameshift at the tyrosine residue at position 353 in the amino acid sequence shown in SEQ ID NO: 3;
(a6) a mutation that causes a frameshift at the phenylalanine residue at position 82 in the amino acid sequence shown in SEQ ID NO: 3;
(a7) a mutation that causes a frameshift at the valine residue at position 19 in the amino acid sequence shown in SEQ ID NO: 3;
(a8) a mutation in which the glutamine residue at position 340 in the amino acid sequence shown in SEQ ID NO: 3 is replaced with an arginine residue;
(a9) a mutation that causes a frameshift at the isoleucine residue at position 54 in the amino acid sequence shown in SEQ ID NO: 3;
(a10) a mutation that causes a frameshift at the alanine residue at position 27 in the amino acid sequence shown in SEQ ID NO: 3;
(b1) A mutation that causes a frameshift in the amino acid sequence of SEQ ID NO:4 in which the proline residue at position 342 is replaced with a valine residue.
 すなわち、本変異体は、7002株に前記(a1)~(a10)で示される1つ以上の変異が導入されてなる変異体であってもよく、7942株に前記(b1)で示される変異が導入されてなる変異体であってもよい。 In other words, the mutant may be a mutant in which one or more of the mutations (a1) to (a10) described above have been introduced into the 7002 strain, or a mutant in which the mutation (b1) described above has been introduced into the 7942 strain.
 なお、受託番号NITE BP-03734としてブダペスト条約に基づく国際寄託されている藍藻株は、7002株において前記(a1)の変異が導入されてなる藍藻株であり、受託番号NITE BP-03735としてブダペスト条約に基づく国際寄託されている藍藻株は、7002株において前記(a6)の変異が導入されてなる藍藻株であり、受託番号NITE BP-03736としてブダペスト条約に基づく国際寄託されている藍藻株は、7002株において前記(a8)の変異が導入されてなる株であり、受託番号NITE BP-03737としてブダペスト条約に基づく国際寄託されている藍藻株は、7002株において前記(a9)の変異が導入されてなる藍藻株である。 The cyanobacterial strain internationally deposited under the Budapest Treaty with the accession number NITE BP-03734 is a cyanobacterial strain obtained by introducing the above-mentioned (a1) mutation into the 7002 strain, the cyanobacterial strain internationally deposited under the Budapest Treaty with the accession number NITE BP-03735 is a cyanobacterial strain obtained by introducing the above-mentioned (a6) mutation into the 7002 strain, the cyanobacterial strain internationally deposited under the Budapest Treaty with the accession number NITE BP-03736 is a cyanobacterial strain obtained by introducing the above-mentioned (a8) mutation into the 7002 strain, and the cyanobacterial strain internationally deposited under the Budapest Treaty with the accession number NITE BP-03737 is a cyanobacterial strain obtained by introducing the above-mentioned (a9) mutation into the 7002 strain.
 spoIID遺伝子に塩基の変異を導入する方法としては、例えば、塩基の変異が導入された変異spoIID遺伝子を作製し、当該変異spoIID遺伝子と宿主細胞内のspoIID遺伝子とを相同組換えさせる方法を挙げることができる。また、バクテリオファージまたは接合を利用する方法を挙げることもできる。また、本変異体の製造方法においては、宿主に対してN-メチル-N’-ニトロ-N-ニトロソグアニジン(NTG)、エチルメタンスルホン酸(EMS)、紫外線もしくは放射線処理等の突然変異処理を行い、得られた変異株の遺伝子を解析し、spoIID遺伝子の変異を有する変異株をスクリーニングすることで、spoIID遺伝子の機能を低下または欠損させた変異体を得ることも可能である。 A method for introducing a base mutation into the spoIID gene can be, for example, a method of preparing a mutant spoIID gene with a base mutation and then homologously recombining the mutant spoIID gene with the spoIID gene in a host cell. Another example is a method that utilizes bacteriophage or conjugation. In addition, in the method for producing this mutant, it is also possible to obtain a mutant in which the function of the spoIID gene is reduced or lost by subjecting the host to a mutation treatment such as N-methyl-N'-nitro-N-nitrosoguanidine (NTG), ethyl methanesulfonate (EMS), ultraviolet light, or radiation treatment, analyzing the genes of the obtained mutant strain, and screening for mutant strains having a mutation in the spoIID gene.
 また、本発明者らは、宿主である藍藻と、捕食性原生生物(例えば、オクロ植物類または繊毛虫類)と、を適当な比率(細胞数比率)で共培養することによっても、本変異体、すなわち、spoIID遺伝子の機能を低下または欠損させた変異体を得ることができることを見出している。すなわち、本変異体の製造方法において、spoIID遺伝子の機能を低下または欠損させる方法としては、宿主である藍藻と、捕食性原生生物(例えば、オクロ植物類または繊毛虫類)と、を適当な比率(細胞数比率)で共培養する方法を採用することも可能である。 The inventors have also found that this mutant, i.e., a mutant in which the function of the spoIID gene is reduced or deleted, can also be obtained by co-culturing the host cyanobacteria with a predatory protist (e.g., ochrophytes or ciliates) in an appropriate ratio (cell number ratio). In other words, in the method for producing this mutant, a method of co-culturing the host cyanobacteria with a predatory protist (e.g., ochrophytes or ciliates) in an appropriate ratio (cell number ratio) can also be used as a method for reducing or deleting the function of the spoIID gene.
 (その他)
 本発明の一実施形態は、以下のような構成であってもよい。
(others)
An embodiment of the present invention may have the following configuration.
 〔1〕spoIID遺伝子の機能が野生型の前記spoIID遺伝子よりも低下しているか、または、欠損している、藍藻の変異体。 [1] A cyanobacterial mutant in which the function of the spoIID gene is reduced compared to that of the wild-type spoIID gene or the spoIID gene is absent.
 〔2〕前記spoIID遺伝子は、Synechococcus sp. PCC 7002における、SYNPCC7002_A1891遺伝子座にコードされているタンパク質のアミノ酸配列との同一性が40%以上のアミノ酸配列を有し、ペプチドグリカン溶解活性を有するタンパク質をコードする遺伝子である、〔1〕に記載の藍藻の変異体。 [2] The cyanobacterium mutant described in [1], wherein the spoIID gene is a gene encoding a protein having an amino acid sequence that is 40% or more identical to the amino acid sequence of a protein encoded in the SYNPCC7002_A1891 locus in Synechococcus sp. PCC 7002 and has peptidoglycan lytic activity.
 〔3〕前記spoIID遺伝子が、以下の(a)~(d)のいずれかで示される、〔1〕または〔2〕に記載の藍藻の変異体:
 (a)配列番号1または2に示される塩基配列からなるポリヌクレオチド。
[3] The cyanobacterium mutant according to [1] or [2], wherein the spoIID gene is represented by any one of the following (a) to (d):
(a) a polynucleotide consisting of the base sequence shown in SEQ ID NO: 1 or 2.
 (b)配列番号1または2に示される塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズし、ペプチドグリカン溶解活性を有するタンパク質をコードするポリヌクレオチド。 (b) A polynucleotide that hybridizes under stringent conditions with a polynucleotide having a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having peptidoglycan lytic activity.
 (c)配列番号1または2に示される塩基配列と90%以上の同一性を有し、ペプチドグリカン溶解活性を有するタンパク質をコードする塩基配列からなるポリヌクレオチド。 (c) A polynucleotide having a base sequence that is 90% or more identical to the base sequence shown in SEQ ID NO: 1 or 2 and that encodes a protein having peptidoglycan lytic activity.
 (d)配列番号1または2に示される塩基配列において、1または複数個の塩基が欠失、置換または付加された塩基配列からなり、ペプチドグリカン溶解活性を有するタンパク質をコードポリヌクレオチド。 (d) A polynucleotide that consists of a base sequence in which one or more bases are deleted, substituted, or added in the base sequence shown in SEQ ID NO: 1 or 2, and encodes a protein that has peptidoglycan lytic activity.
 〔4〕前記spoIID遺伝子が、以下の(e)~(g)のいずれかで示されるタンパク質をコードする遺伝子である、〔1〕~〔3〕のいずれか1つに記載の藍藻の変異体:
 (e)配列番号3または4に示されるアミノ酸配列からなるタンパク質。
[4] The cyanobacterium mutant according to any one of [1] to [3], wherein the spoIID gene is a gene encoding a protein represented by any one of the following (e) to (g):
(e) a protein consisting of the amino acid sequence shown in SEQ ID NO: 3 or 4.
 (f)配列番号3または4に示されるアミノ酸配列から1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、ペプチドグリカン溶解活性を有するタンパク質。 (f) A protein having peptidoglycan lytic activity, comprising an amino acid sequence in which one or more amino acid residues have been substituted, deleted, inserted and/or added from the amino acid sequence shown in SEQ ID NO: 3 or 4.
 (g)配列番号3または4に示されるアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列からなり、ペプチドグリカン溶解活性を有するタンパク質。 (g) A protein having an amino acid sequence that has 90% or more identity to the amino acid sequence shown in SEQ ID NO: 3 or 4 and has peptidoglycan lytic activity.
 〔5〕(i)前記藍藻がSynechococcus sp. PCC 7002であり、前記spoIID遺伝子がSYNPCC7002_A1891遺伝子座にコードされている遺伝子であるか、または、(ii)前記藍藻がSynechococcus elongatus PCC 7942であり、前記spoIID遺伝子がSynpcc7942_2012遺伝子座にコードされている遺伝子である、〔1〕~〔4〕のいずれか1つに記載の藍藻の変異体。 [5] A mutant cyanobacterium according to any one of [1] to [4], wherein (i) the cyanobacterium is Synechococcus sp. PCC 7002 and the spoIID gene is a gene encoded at the SYNPCC7002_A1891 locus, or (ii) the cyanobacterium is Synechococcus elongatus PCC 7942 and the spoIID gene is a gene encoded at the Synpcc7942_2012 locus.
 〔6〕Synechococcus sp. PCC 7002の変異株であって、受託番号がNITE BP-03734、NITE BP-03735、NITE BP-03736またはNITE BP-03737である、〔1〕~〔5〕のいずれか1つに記載の藍藻の変異体。 [6] A mutant of Synechococcus sp. PCC 7002, the cyanobacterium mutant according to any one of [1] to [5], having the accession number NITE BP-03734, NITE BP-03735, NITE BP-03736 or NITE BP-03737.
 〔7〕spoIID遺伝子の機能を野生型の前記spoIID遺伝子よりも低下させるか、または、欠損させる工程を含む、藍藻の変異体の製造方法。 [7] A method for producing a cyanobacterial mutant, comprising a step of reducing the function of the spoIID gene below that of the wild-type spoIID gene or deleting the gene.
 以下、実施例により本発明の一実施形態をさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。 Below, one embodiment of the present invention will be explained in more detail using examples, but the present invention is not limited to these examples.
 <1.細胞の伸長をもたらす遺伝子変異の特定>
 海洋性藍藻であるSynechococcs sp. PCC 7002(7002株)と、捕食性原生生物である海洋性繊毛虫(Uronema marinum)とを特定の細胞数比率で共培養したところ、細胞の形態が大きく変化し、細胞のサイズが長さは数十~百μm程度まで伸長した変異株が複数出現した。当該変異株は、捕食性原生生物の存在下であっても培養系を優占しており、捕食抵抗性を有する変異株であると考えられた。このような変異株を独立した実験系で計12株取得した。これらの変異株について、公知の手法に従い次世代シークエンサー(Illumina社製MiSeq)を用いた次世代シークエンス解析(NGS)を行い、遺伝子上の変異点を決定した。また、S. elongatus PCC7942(7942株)についても、捕食性原生生物(Poterioochromonas malhamensis)との共培養により変異株を取得し、当該変異株についても、同様に次世代シークエンス解析(NGS)を行い、遺伝子上の変異点を決定した。次世代シークエンス解析の結果を表1に示す。
1. Identification of gene mutations that lead to cell elongation
When marine cyanobacteria Synechococcus sp. PCC 7002 (7002 strain) and a marine ciliate Uronema marinum, a predatory protist, were co-cultured at a specific cell number ratio, the cell morphology changed significantly, and multiple mutant strains appeared in which the cell size extended to several tens to hundreds of μm in length. These mutant strains dominated the culture system even in the presence of predatory protists, and were considered to be mutant strains with predation resistance. A total of 12 such mutant strains were obtained in independent experimental systems. Next-generation sequence analysis (NGS) was performed on these mutant strains using a next-generation sequencer (Illumina MiSeq) according to a known method, and the genetic mutation points were determined. In addition, a mutant strain of S. elongatus PCC7942 (7942 strain) was obtained by co-cultivation with a predatory protozoan (Poterioochromonas malhamensis), and the mutant strain was also subjected to next-generation sequencing (NGS) to determine the genetic mutation points. The results of the next-generation sequencing analysis are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
 表1より明らかなように、計12株の7002株の変異株(変異株Y1~Y12)のうち、11株においてspoIID遺伝子の変異が発生していることが示された。また、7942株の変異株(変異株Y1’)についても、spoIID(ホモログ)遺伝子に変異が発生していることが示された。これらの結果より、藍藻における糸状性形態への形質転換に、spoIID遺伝子が強く関与していることが示唆された。なお、上記の変異株においては複数の遺伝子変異が生じているため、他の遺伝子変異の関与も考えられるが、機能的にspoIID遺伝子に対する変異の影響が最も大きいと考えられる。
Figure JPOXMLDOC01-appb-T000001

As is clear from Table 1, it was shown that a mutation occurred in the spoIID gene in 11 of the 12 mutant strains of 7002 (mutants Y1 to Y12). It was also shown that a mutation occurred in the spoIID (homolog) gene in the mutant strain of 7942 (mutant Y1'). These results suggest that the spoIID gene is strongly involved in the transformation of cyanobacteria into a filamentous form. Note that multiple gene mutations occurred in the mutant strains described above, and therefore other gene mutations may also be involved, but it is believed that the mutation in the spoIID gene has the greatest functional impact.
 <2.spoIID遺伝子の変異による形質転換体の作製>
 細胞形態変化におけるSpoIID遺伝子の関与を調べるため、7002株のspoIID遺伝子(SYNPCC7002_A1891、A1891と略記する場合がある)の破壊を行った。Kazusa Genome Resourceにおいて公開されている7942株のゲノムデータ(シアノベース:http://genome.microbedb.jp/cyanobase/)より、PCC7002のA1891遺伝子配列(配列番号1)を取得した。そこで、これらの遺伝子を、相同組換えを利用して破壊した。遺伝子破壊は、A1891(配列番号1)の上流および下流の各々の配列約1kbの間にゲンタマイシン耐性遺伝子(配列番号5)を挿入したDNA断片(Gm)を、Overlap extension-PCRにより作製し、作製したDNA断片の各々約0.1μgを用いて7002株を形質転換することによって行った。プライマーは、表2に示すものを使用した。A1891上流側断片の増幅は1891 Primer1_F,1891 Primer3_R(配列番号6、7)を、A1891下流側断片の増幅は1891 Primer6_F,1891 Primer2_R(配列番号8、9)を、ゲンタマイシン耐性遺伝子断片の増幅には、1891 Primer4_F,1891 Primer5_R(配列番号10、11)を使用した。
2. Preparation of transformants by mutation of spoIID gene
To investigate the involvement of the SpoIID gene in the cell morphological change, the SpoIID gene (SYNPCC7002_A1891, sometimes abbreviated as A1891) of the 7002 strain was disrupted. The A1891 gene sequence (SEQ ID NO: 1) of PCC7002 was obtained from the genome data of the 7942 strain published in the Kazusa Genome Resource (Cyanobase: http://genome.microbedb.jp/cyanobase/). These genes were then disrupted using homologous recombination. The gene disruption was carried out by creating a DNA fragment (Gm R ) in which a gentamicin resistance gene (SEQ ID NO: 5) was inserted between about 1 kb of each of the upstream and downstream sequences of A1891 (SEQ ID NO: 1) by overlap extension-PCR, and transforming the 7002 strain with about 0.1 μg of each of the DNA fragments created. The primers used were those shown in Table 2. 1891 Primer1_F and 1891 Primer3_R (sequence numbers 6 and 7) were used to amplify the A1891 upstream fragment, 1891 Primer6_F and 1891 Primer2_R (sequence numbers 8 and 9) were used to amplify the A1891 downstream fragment, and 1891 Primer4_F and 1891 Primer5_R (sequence numbers 10 and 11) were used to amplify the gentamicin resistance gene fragment.
Figure JPOXMLDOC01-appb-T000002
 
 上記の操作で得られたA1891破壊用のDNA断片(配列番号12)を、自然形質転換により7002株に導入した。具体的には、まず、該7002株をMA2培地(50mL)で培養し、OD750が0.7~1.0程度になった後、遠心分離処理(6000rpm、5min)によって集菌し、MA2培地1.0mLに集菌した細胞を再懸濁した。この懸濁液400μLに上記の操作で得られたDNA断片(配列番号12)を約0.1μg加え、アルミホイルで遮光して、30℃インキュベーター中で、シェーカーを用いて12時間混合させた。
Figure JPOXMLDOC01-appb-T000002

The DNA fragment (SEQ ID NO: 12) for disrupting A1891 obtained by the above procedure was introduced into the 7002 strain by natural transformation. Specifically, the 7002 strain was first cultured in MA2 medium (50 mL), and after the OD750 reached about 0.7 to 1.0, the cells were harvested by centrifugation (6000 rpm, 5 min), and the harvested cells were resuspended in 1.0 mL of MA2 medium. About 0.1 μg of the DNA fragment (SEQ ID NO: 12) obtained by the above procedure was added to 400 μL of this suspension, and the mixture was mixed for 12 hours using a shaker in a 30° C. incubator while shielding from light with aluminum foil.
 その後、アルミホイルを除いてさらに1時間混合させ、菌体とプラスミドとの混合液を得た。この混合液を、ゲンタマイシン(25μg/mL)を含むMA2平板培地上に塗布し、植物インキュベーター内(照度:2000-3000Lux、温度:30℃)で培養した。約10日後に出現したコロニーをコロニーピッカーで取得し、上記平板培地と同じ組成を有するMA2平板培地にコロニーをストリークした。遺伝子破壊の確認は、PCRにより行い、7002株に複数コピー存在する染色体上に存在する全てのA1891遺伝子が破壊されていることを確認した。得られた遺伝子破壊株はゲンタマイシンを添加したMA2液体培地で培養し、形態観察等の実験に用いた。 Then, the aluminum foil was removed and the mixture was mixed for another hour to obtain a mixture of bacteria and plasmid. This mixture was spread on an MA2 plate containing gentamicin (25 μg/mL) and cultured in a plant incubator (illuminance: 2000-3000 Lux, temperature: 30°C). Colonies that appeared after about 10 days were picked with a colony picker and streaked onto an MA2 plate having the same composition as the above plate. Gene disruption was confirmed by PCR, and it was confirmed that all A1891 genes present on the chromosome, of which multiple copies exist in the 7002 strain, had been disrupted. The resulting gene-disrupted strain was cultured in MA2 liquid medium supplemented with gentamicin and used for experiments such as morphological observation.
 コントロールとして、7002株においてSYNPCC7002_A1638遺伝子(配列番号13、A1638と略記する場合がある)を同様の方法により遺伝子破壊した株を作製した。遺伝子破壊に用いたDNA断片は、A1638(配列番号13)の上流および下流の各々の配列約1kbの間にスペクチノマイシン耐性遺伝子(配列番号14)を挿入して作製した。プライマーは、表3に示すものを使用した。A1638上流側断片の増幅は1638 Primer1_F,1638 Primer3_R(配列番号15、16)を、A1638下流側断片の増幅は1638 Primer6_F,1638 Primer2_R(配列番号17、18)を、スペクチノマイシン耐性遺伝子断片の増幅には、1638 Primer4_F,1638 Primer5_R(配列番号19、20)を使用した。得られたDNA断片(Spc、配列番号21)を形質転換に用いた。培地に添加するスペクチノマイシン濃度は全て40μg/mLとした。 As a control, a strain was prepared by disrupting the SYNPCC7002_A1638 gene (SEQ ID NO: 13, sometimes abbreviated as A1638) in the 7002 strain by the same method. The DNA fragment used for gene disruption was prepared by inserting a spectinomycin resistance gene (SEQ ID NO: 14) between approximately 1 kb of the upstream and downstream sequences of A1638 (SEQ ID NO: 13). The primers used were those shown in Table 3. 1638 Primer1_F and 1638 Primer3_R (SEQ ID NOs: 15 and 16) were used to amplify the A1638 upstream fragment, 1638 Primer6_F and 1638 Primer2_R (SEQ ID NOs: 17 and 18) were used to amplify the A1638 downstream fragment, and 1638 Primer4_F and 1638 Primer5_R (SEQ ID NOs: 19 and 20) were used to amplify the spectinomycin resistance gene fragment. The obtained DNA fragment (Spc R , SEQ ID NO: 21) was used for transformation. The concentration of spectinomycin added to the medium was 40 μg/mL in all cases.
Figure JPOXMLDOC01-appb-T000003
 
 顕微鏡により観察した、作製した形質転換体の外観を図1に示す。図1において、(1)WTは野生型の7002株の外観を、(2)変異株Y1は、捕食性原生生物との共培養で発生した7002株の変異株(変異株Y1)の外観を、(3)形質転換体1は、上記の相同組換えによりGmを導入した7002株の形質転換体(遺伝子破壊株)の外観を、(4)コントロールは、上記の相同組換えにおいてA1638にSpcを導入した7002株の形質転換体の外観を、それぞれ示している。図1より明らかなように、野生型(図1左上図)およびコントロール(図1右下図)の細胞は、単細胞型の形状であり、その細胞長も20μm未満であった。それに対し、形質転換体1(図1下図)においては、変異株Y1(図1右上図)の細胞と同様に、個々の細胞が分離せず、連結した状態で糸状化した形状であり、さらに、細胞長が100μm以上まで伸長していた。この結果より、spoIID遺伝子の変異により、藍藻の糸状性形態への形質転換が誘導できることが示された。また、spoIID遺伝子の変異により得られた形質転換体(形質転換体1)は、捕食性原生生物の存在下であっても培養系を優占できる変異株Y1と同様の形状を有していることから、捕食抵抗性を有していることが示唆された。
Figure JPOXMLDOC01-appb-T000003

The appearance of the prepared transformants observed under a microscope is shown in FIG. 1. In FIG. 1, (1) WT indicates the appearance of the wild-type 7002 strain, (2) Mutant Y1 indicates the appearance of a mutant of 7002 strain (Mutant Y1) that arose in co-culture with a predatory protist, (3) Transformant 1 indicates the appearance of a transformant (gene-disrupted strain) of 7002 strain into which Gm R was introduced by the above-mentioned homologous recombination, and (4) Control indicates the appearance of a transformant of 7002 strain into which Spc R was introduced by the above-mentioned homologous recombination. As is clear from FIG. 1, the wild-type (upper left of FIG. 1) and control (lower right of FIG. 1) cells had a unicellular shape and their cell length was less than 20 μm. In contrast, in transformant 1 (lower panel of FIG. 1), like the cells of mutant strain Y1 (upper right panel of FIG. 1), individual cells were not separated but were connected and had a filamentous shape, and further, the cell length was elongated to 100 μm or more. This result showed that the mutation of the spoIID gene can induce the transformation of cyanobacteria into a filamentous form. In addition, the transformant obtained by mutation of the spoIID gene (transformant 1) had a shape similar to that of mutant strain Y1, which can dominate the culture system even in the presence of predatory protozoans, suggesting that it has predation resistance.
 <3.spoIID遺伝子の変異により得られた形質転換体の捕食抵抗性の検討>
 上記のspoIID遺伝子の変異により得られた糸状性形態を示す藍藻株(変異株Y1および形質転換体1)の捕食抵抗性を検討するため、当該変異株および形質転換体と、海洋性の捕食性原生生物である海洋性繊毛虫Metanophrys sinensis(以下、「Metanophrys sinensis」と略記する場合がある)との共培養を行った。具体的な手順は以下の通りであった。
<3. Examination of predation resistance of transformants obtained by mutation of spoIID gene>
In order to examine the predation resistance of the cyanobacterial strains (mutant Y1 and transformant 1) exhibiting a filamentous morphology obtained by the above-mentioned mutation of the spoIID gene, the mutant and transformant were co-cultured with the marine ciliate Metanophrys sinensis (hereinafter sometimes abbreviated as "Metanophrys sinensis"), a marine predatory protist. The specific procedure was as follows.
 濾綿管(培養用試験管を加工して作製したアダプターに布団綿を詰め、シリコ栓をつけ、培養用試験管にセットしたものを意図する)に50mLのMediumA2(MA2)培地を加え、当該濾綿管に、0.5%容量(0.25mL)となるように、OD750=1の藍藻の培養液を加えることで、前記MA2培地に各藍藻株(WT、変異株Y1、形質転換体1およびコントロール)それぞれ個別に植菌した。ここで、藍藻培養液のOD750値は分光光度計を用いて測定された値であり、OD750値=1の場合の藍藻培養液の菌体濃度は、約10cells・mL-1である。このMA2培地に、2000細胞のMetanophrys sinensisの培養液2μLをさらに加えた。なお、Metanophrys sinensisの細胞数は、蛍光顕微鏡(OLYMPUS BX51)を用いて、cellsens(OLYMPUS)によって直接計測した値である。上記の濾綿管を光照射棚に設置し、50μE/m/s(4000lx)の光照射下で、培地の温度が約30℃になるよう温度調整し、ガス混合装置KOFLOC BR-2Cを用いて、2%COガスを前記培地中に通気した状態で、共培養(濾綿管中の藍藻およびMetanophrys sinensisの培養)を行った。この培養系を、捕食者ありの培養系とした。 50 mL of Medium A2 (MA2) medium was added to a filter tube (intended to be an adapter made by processing a culture test tube, stuffed with cotton wool, fitted with a silicone stopper, and set in the culture test tube), and a cyanobacterial culture solution with OD 750 = 1 was added to the filter tube to make 0.5% volume (0.25 mL), thereby inoculating each cyanobacterial strain (WT, mutant strain Y1, transformant 1, and control) into the MA2 medium. Here, the OD 750 value of the cyanobacterial culture solution was a value measured using a spectrophotometer, and the bacterial cell concentration of the cyanobacterial culture solution when the OD 750 value = 1 is about 10 8 cells·mL -1 . 2 μL of a culture solution of Metanophrys sinensis with 2000 cells was further added to this MA2 medium. The cell count of Metanophrys sinensis was measured directly using a fluorescent microscope (OLYMPUS BX51) and Cellsens (OLYMPUS). The filter tube was placed on a light irradiation shelf, and the temperature of the medium was adjusted to about 30°C under light irradiation of 50 μE/ m2 /s (4000 lx). Co-culture (culture of blue-green algae and Metanophrys sinensis in the filter tube) was performed under a state in which 2% CO2 gas was aerated into the medium using a gas mixing device KOFLOC BR-2C. This culture system was a culture system with predators.
 また、対照(捕食なしの培養系)として、Metanophrys sinensisを植菌しなかったこと以外は、前記の培養と同様の条件で、各藍藻株の培養(単独培養)を行った。 In addition, as a control (culture system without predation), each cyanobacterial strain was cultured (monoculture) under the same conditions as the above culture, except that Metanophrys sinensis was not inoculated.
 なお、実施例で使用したMediumA2(MA2)培地は下記組成に従って調製した。
NaNO:1.49g、KHPO:50mg、NaCl:18g、MgSO・7HO:5g、CaCl・2HO:0.37g、KCl:0.6g、NaEDTA・2HO:32mg、FeCl・6HO:8mg、HBO:34mg、MnCl・4HO:4.3mg、ZnCl:0.32mg、NaMoO・2HO:50μg、CuSO・5HO:3.0μg、CoCl・6HO:12μg、cobalamin:4.0μg、tris(hydroxymethyl)aminomethane:8.3mM、蒸留水:1L。
The Medium A2 (MA2) medium used in the examples was prepared according to the following composition.
NaNO3 : 1.49 g, KH2PO4 : 50 mg , NaCl : 18 g , MgSO4.7H2O: 5 g, CaCl2.2H2O: 0.37 g , KCl: 0.6 g, Na2EDTA.2H2O : 32 mg, FeCl3.6H2O : 8 mg , H3BO3 : 34 mg, MnCl2.4H2O : 4.3 mg, ZnCl2 : 0.32 mg, Na2MoO4.2H2O : 50 μg, CuSO4.5H2O : 3.0 μg, CoCl2.6H2O: 0.2 mg . O: 12 μg, cobalamin: 4.0 μg, tris(hydroxymethyl)aminomethane: 8.3 mM, distilled water: 1 L.
 培養期間中、2日ごとに培養液の一部を採取および固定し、当該培養液について、OD750値、クロロフィル(Chlorophyll)量および培養液中の捕食者(Metanophrys sinensis)の数(細胞数)を計測した。培養液の固定は、採取した培養液500μLに終濃度が2%になるようにホルムアルデヒド10μLを加え、15分間静置することによって行った。固定した培養液は計測まで4℃で保存した。培養液のOD750値は分光光度計を用いて測定し、クロロフィル量は、以下の手順で測定した。培養液1mLを1.5mLチューブに入れ、上清を除き菌体成分のみを回収した。つづいて、100%メタノール1mLを前記チューブに入れてボルテックスミキサーで攪拌した。攪拌後、5分程静置した後、室温、12,000rpm、10minの条件で遠心分離し、得られた上清のOD665を測定した。このOD665の測定値に13.4を乗じたものをクロロフィル量(μgChl/mL)とした。捕食者の計測は、穴の開いた高撥水性マイクロスライドガラス(MATSUNAMI,TF0410)に、固定した培養液2μLを滴下し、当該培養液中の全細胞数をcellsens(OLYMPUS)によって計測することによって行った。計測は1種類の培養液に対して4回行い、計4回の測定の平均値として、捕食者の細胞密度(cells/ml)を算出した。 During the culture period, a portion of the culture was collected and fixed every two days, and the OD 750 value, the amount of chlorophyll, and the number of predators (Metanophrys sinensis) in the culture were measured. The culture was fixed by adding 10 μL of formaldehyde to 500 μL of the collected culture to a final concentration of 2%, and leaving it to stand for 15 minutes. The fixed culture was stored at 4 ° C. until measurement. The OD 750 value of the culture was measured using a spectrophotometer, and the amount of chlorophyll was measured by the following procedure. 1 mL of the culture was placed in a 1.5 mL tube, the supernatant was removed, and only the bacterial components were collected. Next, 1 mL of 100% methanol was placed in the tube and stirred with a vortex mixer. After stirring, the mixture was left to stand for about 5 minutes, and then centrifuged at room temperature, 12,000 rpm, and 10 min, and the OD 665 of the resulting supernatant was measured. The OD665 measurement value was multiplied by 13.4 to obtain the amount of chlorophyll (μgChl/mL). The predators were measured by dropping 2 μL of the immobilized culture onto a highly water-repellent microslide glass (MATSUNAMI, TF0410) with a hole, and measuring the total number of cells in the culture using cellsens (OLYMPUS). Measurements were performed four times for each type of culture, and the cell density of the predators (cells/ml) was calculated as the average value of the four measurements.
 培養開始から5日後の各培養系の外観を図2に、培養期間中の各培養系におけるOD750値およびクロロフィル量の変化を図3に、培養期間中の各培養系における捕食者数の変化を図4に、それぞれ示す。 Figure 2 shows the appearance of each culture system 5 days after the start of culture, Figure 3 shows the changes in OD 750 value and chlorophyll content in each culture system during the culture period, and Figure 4 shows the changes in the number of predators in each culture system during the culture period.
 図2および図3より、捕食者の存在しない培養系においては、通常の形態を有するWTおよびコントロールの株は、濾綿管が濃い緑色を呈しており、また、OD750値およびクロロフィル量も高い値であることから、問題なく増殖することができていた。一方で、捕食者の存在する培養系においては、WTおよびコントロールの株は、濾綿管からは色味が失われており、また、OD750値およびクロロフィル量も非常に低い値となっていたことから、捕食により細胞数が大きく減少することが分かる。一方で、spoIID遺伝子の変異により得られた形質転換体1は、変異株Y1と同様、捕食者の存在の有無に関わらず、濾綿管は濃い色を呈しており、また、細胞が伸長していることが肉眼でも確認することができた。それに加えて、OD750値およびクロロフィル量も捕食者の存在の有無に関わらず経時的に増加していた。すなわち、形質転換体1(および変異株1)は、捕食者の影響を受けず、細胞数を増加できることが分かる。 2 and 3, in the culture system without predators, the WT and control strains having normal morphology had dark green filter tubes, and the OD 750 value and chlorophyll content were also high, so that they could grow without any problems. On the other hand, in the culture system with predators, the WT and control strains lost color from the filter tubes, and the OD 750 value and chlorophyll content were also very low, so that it can be seen that the cell number is greatly reduced by predation. On the other hand, the transformant 1 obtained by mutation of the spoIID gene, like the mutant strain Y1, had dark filter tubes regardless of the presence or absence of predators, and the elongation of the cells could be confirmed with the naked eye. In addition, the OD 750 value and chlorophyll content also increased over time regardless of the presence or absence of predators. In other words, it can be seen that the transformant 1 (and mutant strain 1) can increase the cell number without being affected by predators.
 また、図4に示す培養期間中の捕食者の細胞数の変化から、捕食者は、WTまたはコントロールの株と共培養した培養系においては、細胞数を大きく増加させていることが分かる。一方で、変異株Y1または形質転換体1と共培養した培養系においては、細胞数を増加できていないことが分かる。WTまたはコントロールの株と共培養した培養系においては、捕食者の細胞数が増加した要因は、これらの藍藻株を捕食することで、捕食者が多量の資源を獲得できたためであると考えられる。一方で、変異株Y1または形質転換体1と共培養した培養系においては、これらの藍藻株を捕食することが出来なかったため、細胞数を増加できなかったと考えられる。 Furthermore, from the change in predator cell number during the culture period shown in Figure 4, it can be seen that the predator significantly increased the cell number in the culture system co-cultured with the WT or control strain. On the other hand, it can be seen that the cell number was not increased in the culture system co-cultured with the mutant strain Y1 or transformant 1. The reason for the increase in the predator cell number in the culture system co-cultured with the WT or control strain is thought to be that the predator was able to obtain a large amount of resources by preying on these cyanobacterial strains. On the other hand, in the culture system co-cultured with the mutant strain Y1 or transformant 1, it is thought that the cell number was not increased because it was not able to prey on these cyanobacterial strains.
 以上より、spoIID遺伝子の変異により得られた変異体である形質転換体1は、捕食者に捕食されず、また、捕食者の存在下でも細胞数を増加できること、すなわち、捕食抵抗性を有する変異体であることが示された。 The above results show that transformant 1, a mutant obtained by mutating the spoIID gene, is not preyed upon by predators and can increase cell number even in the presence of predators, i.e., it is a mutant with predation resistance.
 本発明は、藍藻の変異体を必要とする分野、特に、藍藻の変異体を用いた物質生産の分野に、好適に利用することができる。 The present invention can be suitably used in fields requiring cyanobacterial mutants, particularly in the field of substance production using cyanobacterial mutants.
[規則26に基づく補充 23.10.2023]
Figure WO-DOC-RO134

Figure WO-DOC-RO134a
[Rule 26, amendment 23.10.2023]
Figure WO-DOC-RO134

Figure WO-DOC-RO134a

Claims (7)

  1.  spoIID遺伝子の機能が、野生型の前記spoIID遺伝子よりも低下しているか、または、欠損している、藍藻の変異体。 A mutant of cyanobacteria in which the function of the spoIID gene is reduced compared to that of the wild-type spoIID gene or is absent.
  2.  前記spoIID遺伝子は、Synechococcus sp. PCC 7002における、SYNPCC7002_A1891遺伝子座にコードされているタンパク質のアミノ酸配列との同一性が40%以上のアミノ酸配列を有し、ペプチドグリカン溶解活性を有するタンパク質をコードする遺伝子である、請求項1に記載の藍藻の変異体。 The cyanobacterium mutant according to claim 1, wherein the spoIID gene is a gene encoding a protein having an amino acid sequence that is 40% or more identical to the amino acid sequence of a protein encoded at the SYNPCC7002_A1891 locus in Synechococcus sp. PCC 7002 and has peptidoglycan lytic activity.
  3.  前記spoIID遺伝子が、以下の(a)~(d)のいずれかで示される、請求項1または2に記載の藍藻の変異体:
     (a)配列番号1または2に示される塩基配列からなるポリヌクレオチド。
     (b)配列番号1または2に示される塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズし、ペプチドグリカン溶解活性を有するタンパク質をコードするポリヌクレオチド。
     (c)配列番号1または2に示される塩基配列と90%以上の同一性を有する塩基配列からなり、ペプチドグリカン溶解活性を有するタンパク質をコードするポリヌクレオチド。
     (d)配列番号1または2に示される塩基配列において、1または複数個の塩基が欠失、置換または付加された塩基配列からなり、ペプチドグリカン溶解活性を有するタンパク質をコードするポリヌクレオチド。
    The cyanobacterium mutant according to claim 1 or 2, wherein the spoIID gene is represented by any one of the following (a) to (d):
    (a) a polynucleotide consisting of the base sequence shown in SEQ ID NO: 1 or 2.
    (b) a polynucleotide that hybridizes under stringent conditions to a polynucleotide having a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 2 and encodes a protein having peptidoglycan lytic activity.
    (c) a polynucleotide having a base sequence having 90% or more identity to the base sequence shown in SEQ ID NO: 1 or 2, and encoding a protein having peptidoglycan lytic activity.
    (d) A polynucleotide consisting of a base sequence in which one or more bases have been deleted, substituted or added in the base sequence shown in SEQ ID NO: 1 or 2, and encoding a protein having peptidoglycan lytic activity.
  4.  前記spoIID遺伝子が、以下の(e)~(g)のいずれかで示されるタンパク質をコードする遺伝子である、請求項1または2に記載の藍藻の変異体:
     (e)配列番号3または4に示されるアミノ酸配列からなるタンパク質。
     (f)配列番号3または4に示されるアミノ酸配列から1または数個のアミノ酸残基が置換、欠失、挿入および/または付加されたアミノ酸配列からなり、ペプチドグリカン溶解活性を有するタンパク質。
     (g)配列番号3または4に示されるアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列からなり、ペプチドグリカン溶解活性を有するタンパク質。
    The cyanobacterium mutant according to claim 1 or 2, wherein the spoIID gene is a gene encoding a protein represented by any one of the following (e) to (g):
    (e) a protein consisting of the amino acid sequence shown in SEQ ID NO: 3 or 4.
    (f) A protein consisting of an amino acid sequence in which one or more amino acid residues have been substituted, deleted, inserted and/or added from the amino acid sequence shown in SEQ ID NO: 3 or 4, and having peptidoglycan lytic activity.
    (g) A protein consisting of an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 3 or 4, and having peptidoglycan lytic activity.
  5.  (i)前記藍藻がSynechococcus sp. PCC 7002であり、前記spoIID遺伝子がSYNPCC7002_A1891遺伝子座にコードされている遺伝子であるか、または、
     (ii)前記藍藻がSynechococcus elongatus PCC 7942であり、前記spoIID遺伝子がSynpcc7942_2012遺伝子座にコードされている遺伝子である、請求項1または2に記載の藍藻の変異体。
    (i) the cyanobacterium is Synechococcus sp. PCC 7002, and the spoIID gene is a gene encoded by the SYNPCC7002_A1891 locus; or
    (ii) The cyanobacterium mutant according to claim 1 or 2, wherein the cyanobacterium is Synechococcus elongatus PCC 7942 and the spoIID gene is a gene encoded by the Synpcc7942_2012 locus.
  6.  Synechococcus sp. PCC 7002の変異株であって、受託番号がNITE BP-03734、NITE BP-03735、NITE BP-03736またはNITE BP-03737である、請求項1または2に記載の藍藻の変異体。 The cyanobacterium mutant according to claim 1 or 2, which is a mutant strain of Synechococcus sp. PCC 7002 and has the accession number NITE BP-03734, NITE BP-03735, NITE BP-03736 or NITE BP-03737.
  7.  spoIID遺伝子の機能を野生型の前記spoIID遺伝子よりも低下させるか、または、欠損させる工程を含む、藍藻の変異体の製造方法。 A method for producing a cyanobacterial mutant, comprising a step of reducing the function of the spoIID gene below that of the wild-type spoIID gene or deleting the gene.
PCT/JP2023/034980 2022-09-30 2023-09-26 Mutant of cyanobacterium and production method thereof WO2024071134A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158914 2022-09-30
JP2022-158914 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071134A1 true WO2024071134A1 (en) 2024-04-04

Family

ID=90478041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034980 WO2024071134A1 (en) 2022-09-30 2023-09-26 Mutant of cyanobacterium and production method thereof

Country Status (1)

Country Link
WO (1) WO2024071134A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296268A (en) * 2005-04-19 2006-11-02 Kao Corp Recombinant microorganism
JP2023041639A (en) * 2021-09-13 2023-03-24 国立大学法人広島大学 Method for culturing cyanobacterium and method for screening mutant of cyanobacterium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296268A (en) * 2005-04-19 2006-11-02 Kao Corp Recombinant microorganism
JP2023041639A (en) * 2021-09-13 2023-03-24 国立大学法人広島大学 Method for culturing cyanobacterium and method for screening mutant of cyanobacterium

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MARTIAL MARBOUTY: "ZipN, an FtsA‐like orchestrator of divisome assembly in the model cyanobacterium Synechocystis PCC6803", MOLECULAR MICROBIOLOGY, WILEY-BLACKWELL PUBLISHING LTD, GB, vol. 74, no. 2, 1 October 2009 (2009-10-01), GB , pages 409 - 420, XP093157349, ISSN: 0950-382X, DOI: 10.1111/j.1365-2958.2009.06873.x *
MARTIN W. HAHN: "Bacterial Filament Formation, a Defense Mechanism against Flagellate Grazing, Is Growth Rate Controlled in Bacteria of Different Phyla", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 65, no. 1, 1 January 1999 (1999-01-01), US , pages 25 - 35, XP093157372, ISSN: 0099-2240, DOI: 10.1128/AEM.65.1.25-35.1999 *
NICOLAS JACQUIER: "A SpoIID Homolog Cleaves Glycan Strands at the Chlamydial Division Septum", MBIO, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 10, no. 4, 27 August 2019 (2019-08-27), US , XP093157338, ISSN: 2161-2129, DOI: 10.1128/mBio.01128-19 *
TODA, NARUMI, KURODA, AKIO, HIROTA, RYUICHI ET AL.: "1A06-11 Analysis and application of the morphological changes of cyanobacteria under grazing pressure", ANNUAL MEETING OF THE JAPAN SOCIETY FOR BIOSCIENCE , BIOTECHNOLOGY AND AGROCHEMISTRY, JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, JP, vol. 2023, 5 March 2023 (2023-03-05) - 5 March 2023 (2023-03-05), JP , pages 97 - 97, XP009554367, ISSN: 2186-7976 *
吉田亮介, 黒田章夫, 廣田隆一ほか, 原生生物の捕食圧下における海洋性藍藻Synechococcus sp. PCC7002の形態変化メカニズムの解析, 第74回日本生物工学会大会講演要旨集, vol. 74, 03 October 2022, page 114, 2F04-01, (YOSHIDA, Ryosuke, KURODA, Akio, HIROTA, Ryuichi et al. Analysis of the morphological changes of the marine cyanobacterium Synechococcus sp. PCC 7002 under grazing pressure by protozoa.), non-official translation (Proceedings of the 74th Japan Society of Bioengineering Conference.) entire text *
戸田成美ほか, 原生生物の捕食圧下における藍藻の形態変化とその解析, 日本生物工学会西日本支部大会2020(第5回講演会)講演要旨集, 14 November 2020, page 39, non-official translation (TODA, Narumi et al. Morphological changes and analysis of blue-green algae under protist predation pressure. Proceedings of Japanese Society of Bioengineering West Japan Branch Conference 2020 (5th Lecture).) D-7 *

Similar Documents

Publication Publication Date Title
DE60130447T2 (en) TROPHICAL CONVERSION OF OBLIGAT PHOTOTROPIC ALGAE BY METABOLIC MANIPULATION
KR101544650B1 (en) Alga in which production of photosynthetic products is improved, and use for said alga
CN111527101A (en) Photosynthetic organism gene regulation for improved growth
EP2256194A1 (en) Flocculent yeast and method for production thereof
US8232088B2 (en) Genetically engineered herbicide resistance for maintaining axenic cultures
KR102006904B1 (en) Microorganism including genetic modification that increase productivity of deoxyviolacein and method for producing deoxyviolacein using the same
WO2024071134A1 (en) Mutant of cyanobacterium and production method thereof
JP2023041639A (en) Method for culturing cyanobacterium and method for screening mutant of cyanobacterium
US9902963B2 (en) Modified microorganism having enhanced biomass synthesis capacity and a method thereof
Chaiklahan et al. Response of Spirulina platensis C1 to high temperature and high light intensity
Yoshikawa et al. Physiological and genomic analysis of newly-isolated polysaccharide synthesizing cyanobacterium Chroococcus sp. FPU101 and chemical analysis of the exopolysaccharide
KR102286087B1 (en) Chlamydomonas mutants and use thereof
Bhattacharjya et al. Depiction of growth specific changes in concentration of storage products in centric marine diatom Chaetoceros gracilis
JP6893820B2 (en) Methods to improve resistance of nitric acid to substrate analogs in microalgae
KR20200098424A (en) Method for gene editing in microalgae using particle bombardment
CN111433219A (en) Increasing algal lipid productivity by genetically modifying signaling proteins
KR101495640B1 (en) Novel leptolyngbya koreensis kiost-1 and a method of producing biomass using it
Hucklenbroich et al. Rhizobiales commensal bacteria promote Arabidopsis thaliana root growth via host sulfated peptide pathway
Parrow et al. The taxonomy and growth of a Crypthecodinium species (Dinophyceae) isolated from a brackish-water fish aquarium
JP2014193154A (en) Transformant of euglena
Ahamed et al. Growth promotion of Pavlova viridis by bacteria isolated from the microalga
KR102163257B1 (en) Novel microalgae having high productivity for violaxanthin
Shi et al. Hierarchical recognition on the taxonomy of Nitzschia closterium f. minutissima
CN116848228A (en) Recombinant algae with high lipid productivity
강민희 Influence of genomic structure and nutrient stress on the occurrence of quorum sensing-dependent gene-regulating mutations in Burkholderia glumae

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872357

Country of ref document: EP

Kind code of ref document: A1