JP2004079952A - 静電気放電保護回路のシミュレーション方法 - Google Patents
静電気放電保護回路のシミュレーション方法 Download PDFInfo
- Publication number
- JP2004079952A JP2004079952A JP2002241828A JP2002241828A JP2004079952A JP 2004079952 A JP2004079952 A JP 2004079952A JP 2002241828 A JP2002241828 A JP 2002241828A JP 2002241828 A JP2002241828 A JP 2002241828A JP 2004079952 A JP2004079952 A JP 2004079952A
- Authority
- JP
- Japan
- Prior art keywords
- current
- circuit
- drain
- equivalent circuit
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
【解決手段】絶縁ゲート型電界効果トランジスタによって構成される静電放電保護素子を、ゲート電圧を入力するゲート端子Gと、バイポーラトランジスタTrを用い、3つの電流源ILeakC、ξIDS、ξICで、インパクトイオン化電流を表現した等価回路100において、ゲート依存性を考慮したスナップバック特性を回路シミュレーションする。
【選択図】 図1
Description
【発明の属する技術分野】
本発明は静電気放電保護回路のシミュレーション方法に関し、特に、半導体メモリ素子や半導体論理回路素子を静電気放電(ESD:Electrostatic Discharge)から保護するための保護回路のESD耐性を、回路シミュレータを用いてシミュレーションする静電気放電保護回路のシミュレーション方法に関する。
【0002】
【従来の技術】
従来、半導体デバイスにおいて、静電気による外部からの電荷で半導体デバイスが放電して特性の劣化や破壊を引き起こす問題があり、静電気放電(以下ESDと呼ぶ)から半導体デバイスを保護するために、ESD保護回路が用いられていた。
【0003】
なお、ESDにはいくつかのモデルが知られており、人体に帯電した電荷がデバイス端子に触れデバイスを介して放電し、熱的な破壊が主なプロセスである人体モデル(HBM)、金属製機器に帯電した電荷がデバイス端子に触れデバイスを介して放電し、電界破壊が主なプロセスであるマシンモデル(MM)、デバイス導体部が帯電し、デバイス端子が機器や冶工具に触れて放電するデバイス帯電モデル(CDM)、パッケージ表面が帯電し、デバイス端子が機器や冶工具に触れて放電するパッケージ帯電モデル(CPM)などがある。
【0004】
近年、半導体デバイスの微細化が進むなか、ESD保護回路の素子面積も縮小されESD耐性の劣化が重要な問題となってきている。
ESD耐性の劣化対策については、劣化原因と回避方法を探るために、プロセス条件を可変して制作し直してから耐圧試験を行い、ESD耐性に強いデバイスを探しているのが現状であり、多くの時間を費やしている。
【0005】
そこで、ESD保護回路の高性能化のために、シミュレーションによりESD耐性を予測することが重要である。
ESD耐性の良否は、概ねスナップバック特性に依存する。
【0006】
図4は、n型のMOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)の電流電圧特性であり、スナップバック特性を説明する図である。
ESD保護回路を構成するESD保護素子がn型のMOSFET(以下nMOSFETと呼ぶ)の場合、ESDによって発生した電流がドレイン側からESD保護素子に流れるときの電流電圧特性である。ここで、縦軸はドレイン電流Id、横軸はドレイン電圧Vdである。
【0007】
ドレイン電圧Vdを上げていくと、線形領域、飽和領域、アバランシェ領域と電流が増加する。そしてさらに、電流が増加するにつれて電圧が減少するスナップバック領域が存在する。一般に、同じドレイン電流IDをESD保護素子に流す場合は、ドレイン電圧VDが小さいほうが、ESD耐性が強いとされ、好ましい。
【0008】
ESD耐性のシミュレーション手法には、デバイスシミュレーションと回路シミュレーションを合わせて使用する場合と、回路シミュレーションだけを使用する場合がある。前者はモデルの精度が比較的良いが、解析できる範囲がトランジスタ数個レベルと狭く、計算時間が長いという欠点がある。後者はレイアウトデータを反映できて計算時間が短いが、前述のスナップバック特性を考慮したESD保護回路の等価回路モデルの検討を必要とする。
【0009】
本出願人等は、すでに、回路シミュレーションによって、ESD耐性を予測するための等価回路モデルを提案している。
図5は、従来のESD保護回路の等価回路である。
【0010】
この等価回路100aは、社団法人電子情報通信学会,信学技報,VLD2001−68,SDM2001−142(2001−09)で本出願人等が提案した等価回路モデルである。
【0011】
等価回路100aは、n型の半導体であるソース領域101、ドレイン領域102、p型の半導体のウェル103が基板104上に形成される、nMOSFET構造(破線で示した部分)により構成されるESD保護素子のものであり、ゲートがない場合を仮定している。スナップバック特性を再現するために、等価回路100aは、寄生素子であるバイポーラトランジスタTr1を有し、また、ドレイン端子Dには、抵抗RDを介して、2つの電流源ILeakC、ξIC(ξはインパクトイオン化に伴う増倍係数であり、ソース電圧VSの関数である)と、接合容量CDと、バイポーラトランジスタTr1のコレクタが並列に接続されている。さらに、これら電流源ILeakC、ξICとドレイン−基板間の接合容量CDのもう一方はバイポーラトランジスタTr1のベースに接続される。また、ベース端子Bは、平行に接続されるベース抵抗RBと、変調するベース抵抗RBSを介してバイポーラトランジスタTr1のベースと接続される。なお、デバイスの対称性を考慮すると、ソース端子Sにも抵抗RSを介して、2つの電流源ILeakE、ξIEと接合容量CEが並列に接続されているが、煩雑になるため図示を省略した。また、IEはエミッタ電流、ICはコレクタ電流、IBはベース電流、IDはドレイン電流、ISUBは基板電流を示す。
【0012】
ここで、電流源ILeakCはドレイン領域102とウェル103間の図示しない空乏層で熱的に発生した電子・正孔対によるインパクトイオン化電流を表したものであり、電流源ξICはソース−ドレイン間を流れる電子がドレイン領域102近傍の空乏層の電界で加速されて発生するインパクトイオン化電流を表したものである。なお、電流源ξICは、増倍係数ξと、ドレイン電圧VDとの関係として数値テーブルで与えられている。
【0013】
抵抗RD、RC、RB等のパラメータは、例えば、デバイスシミュレータMediciなどを用いて計算される。
また、電流源ILeakC、ξIC、接合容量CDなどは、ドレイン電圧VDの関数としてテーブル化されている。
【0014】
なお、上記のバイポーラパラメータの算出についての詳細は、例えば、社団法人電子情報通信学会,信学技報,VLD2001−68,SDM2001−142(2001−09)や、特開2001−339052号公報などに記載されている。
【0015】
変調するベース抵抗RBSは、ドレイン電圧VDの大きさによって基板電流ISUBが発生するメカニズム(基板104の正孔によるものか、ドレイン領域102近傍の空乏層でインパクトイオン化されて発生した正孔によるものか)が変わることを考慮して設けた抵抗であり、例えば、
【0016】
【数1】
RBS=RB×IKF/(IC×U(ISUB)) ・・・(1)
などの式で表せる。ここで、IKFは、高注入効果電流、U(ISUB)は、基板電流ISUBが0未満の場合に0となり、基板電流ISUBが0の場合に1/2となり、基板電流ISUBが0より大きい場合に1となる関数である。
【0017】
上記のようにして得られたパラメータを回路シミュレータに入力して、回路シミュレーションを行う。
また、図示を省略するものの、ドレイン端子Dには、Pad(パッド)を介して、人や機械などの静電気源からドレイン電圧VDを入力する。
【0018】
次に等価回路100aの動作を説明する。
ESDにより図示しないパッドを介して入力されるドレイン電圧VDが飽和領域を超えて高くなると、インパクトイオン化現象により電流源ξICや電流源ILeakCの電流がベース抵抗RBS、RBに流れ込み、ベース抵抗RB、RBSに電位差が生じる。これにより、等価的にエミッタとなるソース端子Sとベース端子B間が順バイアスとなり、寄生素子であるバイポーラトランジスタTr1がONし、スナップバック領域に達する。エミッタから電子が注入され、注入された電子の一部はコレクタに流れ込み、コレクタ電流ICとなる。
【0019】
なお、この場合の寄生素子であるバイポーラトランジスタTr1の効率は、エミッタ注入効率νと、MOSFETの実行チャネル長Leffに依存する到達率αTに依存する。
【0020】
以上の動作による、回路シミュレーション結果を示す。
図6は、図5の等価回路の電圧電流特性であり、(a)がドレイン電圧VD−ドレイン電流ID特性であり、(b)がGummel Plot(ソース電圧VSとドレイン電流ID、基板電流ISUBの特性)である。
【0021】
図6(a)において、横軸がドレイン電圧VDであり、縦軸がドレイン電流IDである。また、図6(b)において、横軸が負のソース電圧−VSであり、縦軸がドレイン電流IDと基板電流ISUBである。また、プロットはデバイスシミュレータMediciによるシミュレーション結果を示し、実線は回路シミュレータHSPICEによるシミュレーション結果である。
【0022】
図のように、ドレイン電圧VD−ドレイン電流ID特性及びGummel Plotにおいて、回路シミュレータのシミュレーション結果は、デバイスシミュレータのシミュレーション結果とよく一致することが分かった。
【0023】
上記のように、変調するベース抵抗RBSを適用した、図5の等価回路100aを用いることによって、精度よくスナップバック特性を再現することができた。
【0024】
【発明が解決しようとする課題】
しかし、従来のESD保護回路のシミュレーション方法では、スナップバック特性の再現の精度などに重きをおいたため、まず、ゲートの影響を考慮しない、ゲートを切り離した等価回路100aを用いてシミュレーションを行っていた。つまり、MOS構造の素子の等価回路でありながら、ゲートを省略した等価回路100aであったため、実際に用いられているESD保護素子とは異なるという問題があった。
【0025】
本発明はこのような点に鑑みてなされたものであり、ゲート依存性が計算可能な等価回路を用いて回路シミュレーションする、ESD保護回路のシミュレーション方法を提供することを目的とする。
【0026】
【課題を解決するための手段】
本発明では上記課題を解決するために、ESD保護回路のシミュレーション方法において、図1で示すように、絶縁ゲート型電界効果トランジスタによって構成されるESD保護素子を、ゲート電圧を入力するゲート端子Gと、バイポーラトランジスタTr1を用い、等価的にバイポーラトランジスタTr1のコレクタで表されるドレイン領域102から基板104に流れる電流と、エミッタで表されるソース領域101から基板104に流れる電流のうち、少なくともドレイン領域102から基板104に流れる電流を3つの電流源ILeakC、ξIDS、ξICによって表した等価回路100に置き換え、等価回路100で、ESD耐性を回路シミュレーションすることを特徴とするESD保護回路のシミュレーション方法が提供される。
【0027】
上記方法によれば、ゲート電圧を入力するゲート端子Gと、バイポーラトランジスタTrを用い、3つの電流源ILeakC、ξIDS、ξICで、インパクトイオン化電流を表現することで、ゲート依存性を考慮したスナップバック特性を回路シミュレーションする。
【0028】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
本発明は、ESD保護回路のシミュレーション方法において、MOSトランジスタによって構成されるESD保護素子を、寄生素子であるバイポーラトランジスタを用いた等価回路に置き換えて、ESD保護耐性を回路シミュレーションする。
【0029】
図1は、本発明の実施の形態のESD保護回路のシミュレーション方法に用いるESD保護素子の等価回路である。
等価回路100は、n型の半導体であるソース領域101、ドレイン領域102、p型の半導体であるウェル103、ゲート領域105が基板104上に形成される、nMOSFET構造(破線で示した部分)により構成されるESD保護素子のものである。スナップバック特性を再現するために、等価回路100は、寄生素子であるバイポーラトランジスタTr1を有し、ドレイン端子Dには、抵抗RDを介して、3つの電流源ILeakC、ξIC、ξIDS(ξはインパクトイオン化に伴う増倍係数)と、ドレイン−基板間の接合容量CDとバイポーラトランジスタTr1のコレクタが並列に接続されている。さらに、これら電流源ILeakC、ξIC、ξIDSと接合容量CDのもう一方には、バイポーラトランジスタTr1のベースに接続される。また、ゲート端子Gは、ゲート−ドレイン間の接合容量CGDを介してバイポーラトランジスタTr1のコレクタと、ゲート−ベース間の接合容量CGBを介してベースと、ゲート−ソース間の接合容量CGSを介してエミッタと接続される。ソース端子Sは、抵抗RSを介して、バイポーラトランジスタTr1のエミッタと接続される。さらに、コレクタ−エミッタ間には、ゲート下のチャネルによるドレイン−ソース間電流を表す電流源IDSが接続される。また、ベース端子Bには並列に接続されるベース抵抗RBと、変調するベース抵抗RBSを介してバイポーラトランジスタTr1のコレクタに接続される。また、IEはエミッタ電流、ICはコレクタ電流、IBはベース電流、IDはドレイン電流、ISUBは基板電流を示す。
【0030】
なお、図1において、図5で示した従来の等価回路100aと同じ部分は、同じ符号とした。
ここで、電流源ILeakCはドレイン領域102とウェル103間の空乏層で熱的に発生した電子・正孔対によるインパクトイオン化電流を表したものであり、電流源ξICはソース−ドレイン間を流れる電子がドレイン領域102近傍の空乏層の電界で加速されて発生するインパクトイオン化電流を表したものであり、電流源ξIDSは、ゲート領域105の下のn型反転層であるチャネル近傍の空乏層中の強電界により発生するインパクトイオン化電流を表したものである。なお、電流源ILeakCはドレイン電圧VDの関数、ξIC、ξIDSは、増倍係数ξと、ドレイン電圧VDとの関数として、例えば数値テーブルで与えられている。なお、増倍係数ξは、ソース電圧VSの関数でもある。また、数値テーブルは、実測データを用いることで、シミュレーションは簡素化され、かつ、より正確なシミュレーション結果を得ることができる。
【0031】
なお、図1の等価回路100は、基本的に、図5で示したゲートなしの等価回路100aに、例えば、回路シミュレータHSPICEのMOSトランジスタの等価回路を付加したものである。ゲートをつけたことによって、追加されたパラメータは、チャネル近傍の空乏層中の強電界によるインパクトイオン化電流を表す電流源ξIDSと、ドレイン−ソース間電流を表す電流源IDS、ゲート−ドレイン間の接合容量CGD、ゲート−ベース間の接合容量CGB、ゲート−ソース間の接合容量CGSである。これらのパラメータのうち、接合容量CGD、接合容量CGB、接合容量CGS、電流源IDSは、例えば回路シミュレータHSPICEのnMOSFETのパラメータを用いればよい。また、抵抗RD、RS、RBや、図示しない高注入効果電流IKFは、図5で示した従来の等価回路100aと同様に、例えば、デバイスシミュレータMediciにより計算されるパラメータである。変調するベース抵抗RBSは、式(1)で示した解析式によって算出される。
【0032】
次に、図1の等価回路100に入力されるドレイン電圧VDについて説明する。
図2は、ESD保護素子の等価回路及び、静電気源の等価回路である。
【0033】
等価回路100のドレイン側にパッド110を介して、前述した、人体や、機械などにより発生する静電気の発生源を示す等価回路120を接続したものである。
【0034】
等価回路120は、抵抗R1、容量C1、C2、C3、インダクタンスL1、電源電圧VCCからなり、前述した人体モデル、マシンモデル、デバイス帯電モデル、パッケージ帯電モデルによって、異なるパラメータ値を用いる。例えば、人体モデルの場合、抵抗R1=1500Ω、容量C1=100pF、C2=10pF、C3=1pF、インダクタンスL1=5μH、電源電圧VCC=2000Vを用い、マシンモデルの場合、抵抗R1=25Ω、容量C1=200pF、C2=10pF、C3=0pF、インダクタンスL1=2.5μH、電源電圧VCC=200Vを用いる。
【0035】
静電気源の等価回路120から得られた電圧は、パッド110を介して、等価回路100にドレイン電圧VDとして入力される。
次に、図1の等価回路100を用いてESD保護回路のシミュレーションを説明する。
【0036】
シミュレーションは、回路シミュレータで行う。回路シミュレータには、例えば、HSPICEなどがある。
図3は、ゲート電圧VGを、0V、0.5V、1.0V、2.0Vと変化させたときのドレイン電圧VD−ドレイン電流ID特性のシミュレーション結果である。
【0037】
ここで、横軸がドレイン電圧VDであり、縦軸がドレイン電流IDである。また、図3において、破線でデバイスシミュレータMediciの結果も合わせて載せてある。
【0038】
図3において実線で示したのが、等価回路100でのシミュレーション結果であり、このとき等価回路100のパラメータ値は、抵抗RD、RSは0.1Ω、ベース抵抗RBは1000Ω、変調するベース抵抗RBSの算出に用いる高注入効果電流IKFは0.1E−2Åを用いた。
【0039】
図からもわかるように、ドレイン電流IDが増加するにもかかわらず、ドレイン電圧VDが減少するスナップバック特性が再現できている。さらに、ゲート電圧VGが大きくなるとスナップバックするドレイン電圧VDが小さくなるゲート依存性も計算できたことが分かる。
【0040】
なお、上記ではESD保護素子が1つの場合について説明したが、複数のESD保護素子からなるESD保護回路のESD耐性をシミュレーションする場合、ESD保護回路全体の構成をCAD(Computer−Aided Design)のレイアウトデータからネットリストに取り入れて回路シミュレーションすることで、シミュレーションを迅速に行うことができるとともに、個々のESD保護素子の消費電力のレイアウト位置依存性などを解析することもでき、レイアウトの最適化が可能になる。
【0041】
なお、上記では、ドレイン側で発生するインパクトイオン化電流を考慮して、電流源ξIDS、ξIC、ILEAKを設けたが、ソース側で発生するインパクトイオン化電流を考慮してこれら3つの電流源に相当する電流源を設けてもよい。
【0042】
また、上記では、nMOSFETの等価回路を用いたが、これに限定されることはなく、ESD保護素子がp型のMOSFETの場合であっても等価回路を同様に設定して回路シミュレーションを行うことができる。
【0043】
【発明の効果】
以上説明したように本発明では、回路シミュレータを用いて回路シミュレーションを行う際に、ESD保護素子を、ゲート電圧を入力するゲート端子と、バイポーラトランジスタを含む等価回路に置き換え、少なくとも等価的にバイポーラトランジスタのコレクタで表されるドレイン側から基板に流れる電流を、3つの電流電源として設定してシミュレーションを行っているので、ゲート依存性をシミュレーションすることができ、実際のデバイスに近い構造での、ESD耐性のシミュレーションが可能である。
【図面の簡単な説明】
【図1】本発明の実施の形態のESD保護回路のシミュレーション方法に用いるESD保護素子の等価回路である。
【図2】ESD保護素子の等価回路及び、静電気源の等価回路である。
【図3】ゲート電圧VGを変化させたときのドレイン電圧VD−ドレイン電流ID特性のシミュレーション結果である。
【図4】n型のMOSFETの電流電圧特性であり、スナップバック特性を説明する図である。
【図5】従来のESD保護回路の等価回路である。
【図6】図5の等価回路の電圧電流特性であり、(a)がドレイン電圧VD−ドレイン電流ID特性であり、(b)がGummel Plot(ソース電圧VSとドレイン電流ID、基板電流ISUBの特性)である。
【符号の説明】
100 等価回路
101 ソース領域
102 ドレイン領域
103 ウェル
104 基板
105 ゲート領域
Claims (3)
- 静電気放電保護回路のシミュレーション方法において、
絶縁ゲート型電界効果トランジスタによって構成される静電放電保護素子を、ゲート電圧を入力するゲート端子と、バイポーラトランジスタを用い、等価的に前記バイポーラトランジスタのコレクタで表されるドレインから基板に流れる電流と、エミッタで表されるソースから前記基板に流れる電流のうち、少なくとも前記ドレインから前記基板に流れる前記電流を3つの電流源によって表した等価回路に置き換え、
前記等価回路で、静電放電耐性を回路シミュレーションすることを特徴とする静電気放電保護回路のシミュレーション方法。 - 前記3つの電流源は、インパクトイオン化電流を表現した前記電流源であることを特徴とする請求項1記載の静電気放電保護回路のシミュレーション方法。
- 前記等価回路において、前記ソースから注入された電子と、前記ドレイン近傍に発生した正孔の濃度に依存するベース抵抗を設けたことを特徴とする請求項1記載の静電気放電保護回路のシミュレーション方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002241828A JP4357161B2 (ja) | 2002-08-22 | 2002-08-22 | 静電気放電保護回路のシミュレーション方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002241828A JP4357161B2 (ja) | 2002-08-22 | 2002-08-22 | 静電気放電保護回路のシミュレーション方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004079952A true JP2004079952A (ja) | 2004-03-11 |
JP4357161B2 JP4357161B2 (ja) | 2009-11-04 |
Family
ID=32024203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002241828A Expired - Fee Related JP4357161B2 (ja) | 2002-08-22 | 2002-08-22 | 静電気放電保護回路のシミュレーション方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4357161B2 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7434179B2 (en) | 2004-11-26 | 2008-10-07 | Oki Electric Industry Co., Ltd. | Design and simulation methods for electrostatic protection circuits |
JP2010040670A (ja) * | 2008-08-01 | 2010-02-18 | Nec Electronics Corp | Esd耐性シミュレーション装置及びそれに用いられるesdデバイスモデル |
US8489378B2 (en) | 2010-01-05 | 2013-07-16 | International Business Machines Corporation | Silicon controlled rectifier modeling |
US8954306B2 (en) | 2010-06-30 | 2015-02-10 | International Business Machines Corporation | Component behavior modeling using separate behavior model |
CN110136763A (zh) * | 2018-02-08 | 2019-08-16 | 爱思开海力士有限公司 | 读取电阻式存储器件的方法 |
-
2002
- 2002-08-22 JP JP2002241828A patent/JP4357161B2/ja not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7434179B2 (en) | 2004-11-26 | 2008-10-07 | Oki Electric Industry Co., Ltd. | Design and simulation methods for electrostatic protection circuits |
JP2010040670A (ja) * | 2008-08-01 | 2010-02-18 | Nec Electronics Corp | Esd耐性シミュレーション装置及びそれに用いられるesdデバイスモデル |
US8489378B2 (en) | 2010-01-05 | 2013-07-16 | International Business Machines Corporation | Silicon controlled rectifier modeling |
US8954306B2 (en) | 2010-06-30 | 2015-02-10 | International Business Machines Corporation | Component behavior modeling using separate behavior model |
CN110136763A (zh) * | 2018-02-08 | 2019-08-16 | 爱思开海力士有限公司 | 读取电阻式存储器件的方法 |
Also Published As
Publication number | Publication date |
---|---|
JP4357161B2 (ja) | 2009-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Inokawa et al. | A compact analytical model for asymmetric single-electron tunneling transistors | |
Aarts et al. | Compact modeling of high-voltage LDMOS devices including quasi-saturation | |
Aarts et al. | A surface-potential-based high-voltage compact LDMOS transistor model | |
Reggiani et al. | Physics-based analytical model for HCS degradation in STI-LDMOS transistors | |
US20060001100A1 (en) | Method for simulating electrostatic discharge protective circuit | |
US20090044158A1 (en) | Method, and extensions, to couple substrate effects and compact model circuit simulation for efficient simulation of semiconductor devices and circuit | |
Sadachika et al. | Completely surface-potential-based compact model of the fully depleted SOI-MOSFET including short-channel effects | |
Tanaka et al. | Quasi-2-dimensional compact resistor model for the drift region in high-voltage LDMOS devices | |
JP3269459B2 (ja) | Misfetのオーバラップ長の測定方法、測定装置、抽出プログラムを記録した記録媒体 | |
Brisbin et al. | Optimizing the hot carrier reliability of N-LDMOS transistor arrays | |
Radhakrishna et al. | Modeling of SOI-LDMOS transistor including impact ionization, snapback, and self-heating | |
JP4357161B2 (ja) | 静電気放電保護回路のシミュレーション方法 | |
JP2006049818A (ja) | 静電気放電保護回路のシミュレーション方法 | |
JP4707801B2 (ja) | 静電破壊保護回路のシミュレーション方法 | |
Jang et al. | A unified analytical fully depleted and partially depleted SOI MOSFET model | |
Yan et al. | A compact model extending the bsim3 model for silicon carbide power mosfets | |
KR100716912B1 (ko) | 횡형 이중 확산 모스 트랜지스터의 시뮬레이션 방법 | |
Yan et al. | Adopting the bsim3 model to describe the dc-iv characteristics of a vertical power mosfet | |
Kachi et al. | Full-chip simulation analysis of power MOSFET's during unclamped inductive switching with physics-base device models | |
McAndrew et al. | Advances in ldmos compact modeling for ic design: The sp-hv model and its capabilities | |
US20100241413A1 (en) | Method and system for modeling an ldmos transistor | |
Borghese et al. | A Scalable SPICE Electrothermal Compact Model for SiC MOSFETs: A Comparative Study between the LEVEL-3 and the BSIM | |
Pinto et al. | Computer-aids for analysis and scaling of extrinsic devices | |
Gritsch et al. | Influence of generation/recombination effects in simulations of partially depleted SOI MOSFETs | |
JP5147105B2 (ja) | Igbtシミュレーション装置およびigbtシミュレーションプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050816 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090804 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090804 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |