JP2004079943A - Silicon-ferrous alloy based metal soft magnetic dust core - Google Patents
Silicon-ferrous alloy based metal soft magnetic dust core Download PDFInfo
- Publication number
- JP2004079943A JP2004079943A JP2002241753A JP2002241753A JP2004079943A JP 2004079943 A JP2004079943 A JP 2004079943A JP 2002241753 A JP2002241753 A JP 2002241753A JP 2002241753 A JP2002241753 A JP 2002241753A JP 2004079943 A JP2004079943 A JP 2004079943A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- soft magnetic
- powder
- based metal
- dust core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】
【発明の属する分野】
本発明は、珪素ー鉄合金系金属軟磁性圧粉磁心に関し、特に各種電子機器に使用される回路においての、ますます高周波領域まで拡大しつつあるノイズフィルター回路素子及び各種チョークコイルの電子部品用材料としての珪素ー鉄合金系金属軟磁性圧粉磁心及びその製造方法に関するものである。
【0002】
【従来の技術】
従来の鉄系金属軟磁性圧粉磁心においては、磁心の磁気特性改善の試みとしては鉄粉の純度に主に注力されていた。
又、原料の製造方法においても鉄粉の粒径を球形、板状形等研究されていたが、いずれも粒子一粒は一次粒子が数個から数十個の団子状の塊で、直径が数10μmの粒を形成している。
一方、粉末成型後の焼成過程では通常の再結晶をおこし、例えばJIS G 0552(鋼のフェライト結晶粒度試験法)に見られるような再結晶過程を経ていた。
この方法では特性改善に限度があった。
この改善策として、本出願人の特願2001−321701号があり、特性を大幅に改善する方法を提案しているが初透磁率の高周波化、高周波損失の面で更なる改善が求められていた。
そこで、本発明は、原料たる鉄系金属として珪素(Si)を添加した珪素ー鉄合金を使用することにより上記問題を解決せんとするものである。
【0003】
【発明が解決しようとする課題】
本発明は、電子部品用圧粉磁心において磁気特性、すなわち高透磁率、高飽和磁化、低損失且つ直流重畳特性の安定性等の特徴を持つ珪素ー鉄合金系金属軟磁性圧粉磁心及びその製造方法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明は、粒子個々の結晶内において歪を内存した一次粒子が存在していることを見出し、この歪を開放するための処理条件を選択することによって、粒子内に150〜700nm幅のサブグレインを作成することによって磁気特性が改善できることを見出した。
使用原料の珪素ー鉄粉において、粒径が75μmを越えると高周波特性が悪く制御不可能であり、よって粒径75μm以下が適切である。
又、サブグレインの形状は、球状でもある程度効果はあるが、アスペクト比(縦横比)が3以上あると磁気特性の改善効果はより大きい。
また、この製造方法は、粒径が75μm以下で、珪素含有量が0.5〜7重量%の珪素ー鉄粉の粒子に絶縁層形成処理液と防錆処理液からなる表面コーティング液を均一に表面コーティングし、該表面コーティングした珪素ー鉄粉を圧縮成型した後、大気中で加熱処理するものである。
【0005】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
本発明の珪素ー鉄合金系金属軟磁性圧粉磁心は、以下の如くして製造される。
粒径75μm以下で、珪素含有量が0.5〜7重量%の珪素ー鉄粉を温風で浮遊撹拌させた状態で無機系絶縁層形成処理液と防錆処理液とを混合した表面コーティング液をふきつけ、該表面コーティングした珪素ー鉄粉を絶縁層形成のために適正な温度で熱処理し、この工程で得られた粉末を適正な圧力で圧縮成型して得られた圧粉磁心を、大気中で適正な温度で処理を施し適正なサブグレインを生成させる。
【0006】
【実施例】
本発明の具体的な実施例について、以下に詳細に説明する。
平均粒径75μm以下で、珪素含有量が0.5〜7重量%の珪素ー鉄粉3kgを温風で浮遊撹拌させた状態中に、絶縁層形成処理液30g(燐酸3.4g、硼酸0.6g、酸化マグネシウム0.6g、水25.4g)、防錆処理液188g(1,2,3ーベンゾトリアゾール3.3g、水184.7g)を混合した表面コーテイング液を吹き付け、珪素ー鉄粉表面にコーティングし、150℃1時間熱処理を施して乾燥させ、珪素ー鉄粉表面層に絶縁層を形成させた。
さらに、表面に絶縁層を形成した珪素ー鉄粉に、成型性及び強度を上げるために水ガラス300g(水ガラス27g、水273g)で顆粒状にし、10ton/cm2で外径18mm、内径9mm、高さ6mmのトロイダル状に圧縮成型して圧粉磁心を形成し、さらに該圧粉磁心に大気中で200℃〜600℃の加熱処理を施し珪素ー鉄合金系金属軟磁性圧粉磁心を製作した。
【0007】
以上のようにして製作された珪素ー鉄合金系金属軟磁性圧粉磁心のサブグレインの状態を図1、図2に示した。
サブグレインサイズと初透磁率の関係を図3、粒径と初透磁率の周波数特性との関係を図4に示した。
又、サブグレインサイズと高周波損失の関係を図5、珪素添加量と高周波損失の関係を図6に示した。
ここでサブグレインサイズは、長手方向ではなく狭い方の幅のサイズを言う。
なお、サブグレインの状態は、高分解能透過電子顕微鏡(TEM)でArイオンミリングにより薄膜化して、焼結粉体の一部が薄片化された領域を測定した。
透磁率は、測定を行う圧粉磁心に巻線を施し、インダクタンスを測定後計算で求めた。
損失は、測定を行う圧粉磁心に巻線を施しB−Hアナライザーで測定した。
【0008】
図1、図2は実施例で製作された珪素ー鉄合金系金属軟磁性圧粉磁心の、サブグレインサイズの大きさの違いによる比較を高分解能透過電子顕微鏡(TEM)によって観察した結果をしめす。
【0009】
図3は、実施例で製作された珪素ー鉄合金系金属軟磁性圧粉磁心のサブグレインサイズの大きさの違いによる初透磁率の変化を示す。
図3より初透磁率の変化率1.0を基準にして、サブグレインサイズが150〜700nmの範囲での初透磁率の値は、150nm〜250nmの範囲で平均15%、250nm〜700nmの範囲で平均40%の初透磁率の改善となる。
サブグレインサイズが150nm以下では初透磁率の改善はなく、700nm以上になると150nm〜700nmに対して大幅に初透磁率が劣化する。
【0010】
図4は、実施例で製作された鉄系金属軟磁性圧粉磁心のサブグレインサイズの大きさの違いによる高周波損失の変化をしめす。
図4より高周波損失の変化率1.0を基準にして、サブグレインサイズが150〜700nmの範囲での高周波損失は150〜250nmの範囲で20%、250〜700nmの範囲で35%の改善となる。
150nm以下では高周波損失の改善はなく、700nm以上では大幅に劣化する。
【0011】
図5は、実施例で製作された圧粉磁心のアスペクト比(縦横比)の違いによる初透磁率の変化をしめす。
図5より初透磁率の変化率1.0を基準にして、アスペクト比(縦横比)が3以上での初透磁率の値は17%以上の改善となり、3以下では初透磁率の改善は少ない。
【0012】
図6は、実施例で製作された珪素ー鉄合金系金属軟磁性圧粉磁心の粒径の大きさの違いによる初透磁率の周波数特性の変化を示す。
図6より初透磁率の変化率1.0を基準にして、粒径が75μm以下での初透磁率の周波数特性は10MHzで5%の減少程度と大幅に周波数特性が改善できるのに対して、粒径が106μm以下では10MHzで30%の減少であり、粒径が150μm以下になると10MHzで40%の減少となる。
【0013】
図7は、実施例で製作された圧粉磁心の珪素(Si)金属添加量と高周波損失の変化を示す。
図7より高周波損失が珪素(Si)添加量0%を基準にして、珪素(Si)添加量が0.5〜7%の範囲で15%〜35%の改善となり、7%以上添加しても高周波損失の著しい改善効果は見出せないばかりか7%以上では金属粉として硬くなり、粉末成型体を作成する時に高い成型圧力となるため工業上好ましくない。
【0014】
以上の実施例の図3〜図7に基づいて説明した通り、サブグレインの大きさ、形状を制御することにより、珪素ー鉄粉の持つ磁気特性を飛躍的に向上できることが明らかとなった。
【0015】
【発明の効果】
本発明は、鉄粉を粒界絶縁してなる珪素ー鉄合金系軟磁性粉末を、圧縮成型した所定の形状において、原料製造時及び粉末成型時において各粒子個々内の一次粒子に生じた歪を開放するための処理条件を選択すること、すなわち150〜700nm幅を持ったサブグレインを作成することによって大幅な磁気特性の向上を得ることに成功したものである。
また、本発明の珪素ー鉄合金系金属軟磁性圧粉磁心の持つ磁気特性により、各種電子機器材料としての部品用途に大きく寄与することが可能となった。
【図面の簡単な説明】
【図1】サブグレインサイズ250〜700μmでの断面TEM観察によるサブグレインの写真図である。
【図2】サブグレインサイズ150〜250μmでの断面TEM観察によるサブグレインの写真図である。
【図3】サブグレインサイズの大きさと初透磁率との関係グラフ図である。
【図4】サブグレインサイズの大きさと高周波損失との関係グラフ図である。
【図5】アスペクト比と初透磁率の関係グラフ図である。
【図6】粒径の大きさと初透磁率の周波数特性との関係グラフ図である。
【図7】珪素(Si)添加量と高周波損失の関係グラフ図である。[0001]
[Field of the Invention]
The present invention relates to a silicon-iron alloy-based metal soft magnetic powder magnetic core, and particularly for a circuit used in various electronic devices, for a noise filter circuit element and an electronic component of various choke coils which are expanding to an increasingly higher frequency range. The present invention relates to a silicon-iron alloy-based metal soft magnetic powder core as a material and a method for producing the same.
[0002]
[Prior art]
In conventional iron-based soft magnetic powder magnetic cores, an attempt to improve the magnetic properties of the magnetic core has focused mainly on the purity of the iron powder.
Also, in the production method of raw materials, the particle diameter of iron powder has been studied, such as spherical, plate-like, etc., but in each case, each particle is a cluster-like mass of several to several tens of primary particles, and the diameter is Particles of several tens μm are formed.
On the other hand, in the firing process after powder molding, normal recrystallization was performed, and for example, the recrystallization process found in JIS G 0552 (test method for ferrite crystal grain size of steel) was performed.
In this method, there is a limit in improving characteristics.
As a remedy, Japanese Patent Application No. 2001-321701 of the present applicant proposes a method of greatly improving the characteristics, but further improvement is required in terms of increasing the initial magnetic permeability and the high-frequency loss. Was.
Therefore, the present invention solves the above-mentioned problem by using a silicon-iron alloy to which silicon (Si) is added as an iron-based metal as a raw material.
[0003]
[Problems to be solved by the invention]
The present invention provides a silicon-iron alloy-based metal soft magnetic powder core having characteristics such as magnetic properties, that is, high magnetic permeability, high saturation magnetization, low loss, and stability of DC superimposition characteristics in a powder core for electronic components. An object is to provide a manufacturing method.
[0004]
[Means for Solving the Problems]
The present invention has found that primary grains containing strain exist in the crystal of each grain, and by selecting processing conditions for releasing the strain, a sub-grain of 150 to 700 nm width is formed in the grains. It has been found that the magnetic properties can be improved by preparing a.
In the silicon-iron powder used as the raw material, if the particle size exceeds 75 μm, the high-frequency characteristics are poor and cannot be controlled. Therefore, a particle size of 75 μm or less is appropriate.
Even if the shape of the sub-grain is spherical, there is some effect, but if the aspect ratio (aspect ratio) is 3 or more, the effect of improving the magnetic properties is greater.
Further, in this production method, silicon-iron powder particles having a particle diameter of 75 μm or less and a silicon content of 0.5 to 7% by weight are uniformly coated with a surface coating liquid comprising an insulating layer forming treatment liquid and a rust prevention treatment liquid. Is subjected to heat treatment in the atmosphere after compression-molding the surface-coated silicon-iron powder.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The silicon-iron alloy soft magnetic powder core of the present invention is manufactured as follows.
Surface coating obtained by mixing an inorganic insulating layer forming treatment liquid and a rust prevention treatment liquid while silicon-iron powder having a particle diameter of 75 μm or less and a silicon content of 0.5 to 7% by weight is suspended and stirred with warm air. Wiping the liquid, heat-treating the surface-coated silicon-iron powder at an appropriate temperature to form an insulating layer, and compressing the powder obtained in this step at an appropriate pressure to obtain a dust core. Process at the right temperature in the atmosphere to produce the right subgrain.
[0006]
【Example】
Specific examples of the present invention will be described in detail below.
In a state where 3 kg of silicon-iron powder having an average particle diameter of 75 μm or less and having a silicon content of 0.5 to 7% by weight was suspended and stirred with warm air, 30 g of an insulating layer forming treatment liquid (3.4 g of phosphoric acid, 0 g of boric acid) 2.6 g, magnesium oxide 0.6 g, water 25.4 g), and a surface coating solution obtained by mixing 188 g of rust preventive solution (3.3 g of 1,2,3-benzotriazole, 184.7 g of water) was sprayed, and silicon-iron was sprayed. The powder surface was coated, heat-treated at 150 ° C. for 1 hour, and dried to form an insulating layer on the silicon-iron powder surface layer.
Further, the silicon-iron powder having an insulating layer formed on the surface is granulated with 300 g of water glass (27 g of water glass and 273 g of water) in order to enhance moldability and strength, and has an outer diameter of 18 mm and an inner diameter of 9 mm at 10 ton / cm 2. And compression molding into a toroidal shape having a height of 6 mm to form a dust core, and further subjecting the dust core to a heat treatment at 200 ° C. to 600 ° C. in the air to form a silicon-iron alloy-based metal soft magnetic dust core. Made.
[0007]
FIGS. 1 and 2 show the sub-grain state of the silicon-iron alloy-based metal soft magnetic powder core manufactured as described above.
FIG. 3 shows the relationship between the sub-grain size and the initial magnetic permeability, and FIG. 4 shows the relationship between the particle size and the frequency characteristics of the initial magnetic permeability.
FIG. 5 shows the relationship between the subgrain size and the high-frequency loss, and FIG. 6 shows the relationship between the silicon addition amount and the high-frequency loss.
Here, the sub-grain size refers to the size of the narrow width, not the longitudinal direction.
The state of the sub-grain was measured by Ar ion milling using a high-resolution transmission electron microscope (TEM) to measure a region where a part of the sintered powder was thinned.
The magnetic permeability was determined by calculating the inductance after measurement by winding a powder magnetic core to be measured.
The loss was measured with a BH analyzer by winding a powder magnetic core to be measured.
[0008]
FIGS. 1 and 2 show the results obtained by observing the silicon-iron alloy soft magnetic powder magnetic cores manufactured in the examples according to the difference in the sub-grain size by using a high-resolution transmission electron microscope (TEM). .
[0009]
FIG. 3 shows a change in initial magnetic permeability due to a difference in sub-grain size of a silicon-iron alloy-based metal soft magnetic powder magnetic core manufactured in the example.
From FIG. 3, based on the change rate of the initial magnetic permeability of 1.0, the value of the initial magnetic permeability when the sub-grain size is in the range of 150 to 700 nm is 15% on the average in the range of 150 nm to 250 nm, and the range of 250 nm to 700 nm. With this, the initial permeability is improved by an average of 40%.
When the sub-grain size is 150 nm or less, there is no improvement in the initial magnetic permeability. When the sub-grain size is 700 nm or more, the initial magnetic permeability significantly deteriorates from 150 nm to 700 nm.
[0010]
FIG. 4 shows a change in high-frequency loss due to a difference in the sub-grain size of the iron-based soft magnetic powder magnetic core manufactured in the example.
From FIG. 4, based on the change rate of the high-frequency loss of 1.0, the high-frequency loss when the sub-grain size is in the range of 150 to 700 nm is improved by 20% in the range of 150 to 250 nm and by 35% in the range of 250 to 700 nm. Become.
At 150 nm or less, there is no improvement in high-frequency loss, and at 700 nm or more, there is a significant deterioration.
[0011]
FIG. 5 shows a change in initial magnetic permeability due to a difference in aspect ratio (aspect ratio) of the dust core manufactured in the example.
From FIG. 5, the value of the initial magnetic permeability is improved by 17% or more when the aspect ratio (aspect ratio) is 3 or more based on the change rate of the initial magnetic permeability of 1.0. Few.
[0012]
FIG. 6 shows a change in the frequency characteristic of the initial magnetic permeability due to the difference in the particle size of the silicon-iron alloy-based metal soft magnetic powder magnetic core manufactured in the example.
Referring to FIG. 6, based on the change rate of the initial magnetic permeability of 1.0, the frequency characteristic of the initial magnetic permeability at a particle size of 75 μm or less can be greatly improved to about 5% decrease at 10 MHz. When the particle size is 106 μm or less, the reduction is 30% at 10 MHz, and when the particle size is 150 μm or less, the reduction is 40% at 10 MHz.
[0013]
FIG. 7 shows the change in the addition amount of silicon (Si) metal and the high frequency loss of the dust core manufactured in the example.
According to FIG. 7, the high-frequency loss is improved by 15% to 35% when the added amount of silicon (Si) is in the range of 0.5 to 7% based on the added amount of silicon (Si) of 0%. However, not only the remarkable improvement effect of the high-frequency loss is not found, but when it is 7% or more, the powder becomes hard as a metal powder and a high molding pressure is required when a powder molded body is produced, which is not industrially preferable.
[0014]
As described with reference to FIGS. 3 to 7 of the above embodiment, it has been clarified that the magnetic properties of the silicon-iron powder can be significantly improved by controlling the size and shape of the sub-grain.
[0015]
【The invention's effect】
The present invention provides a method for compressing silicon-iron alloy-based soft magnetic powder obtained by insulating grain boundaries of iron powder into a predetermined shape. In this case, the selection of the processing conditions for releasing the magnetic field, that is, the formation of a sub-grain having a width of 150 to 700 nm succeeded in obtaining a significant improvement in magnetic characteristics.
Further, the magnetic properties of the silicon-iron alloy-based metal soft magnetic powder core of the present invention have made it possible to greatly contribute to the use of parts as various electronic equipment materials.
[Brief description of the drawings]
FIG. 1 is a photograph of a subgrain by cross-sectional TEM observation at a subgrain size of 250 to 700 μm.
FIG. 2 is a photograph of a subgrain by cross-sectional TEM observation at a subgrain size of 150 to 250 μm.
FIG. 3 is a graph showing the relationship between the size of a sub-grain size and the initial magnetic permeability.
FIG. 4 is a graph showing the relationship between the size of a sub-grain size and high-frequency loss.
FIG. 5 is a graph showing a relationship between an aspect ratio and an initial magnetic permeability.
FIG. 6 is a graph showing the relationship between the size of the particle size and the frequency characteristic of the initial magnetic permeability.
FIG. 7 is a graph showing the relationship between the amount of added silicon (Si) and high-frequency loss.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002241753A JP3929853B2 (en) | 2002-08-22 | 2002-08-22 | Method for producing silicon-iron alloy metal soft magnetic dust core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002241753A JP3929853B2 (en) | 2002-08-22 | 2002-08-22 | Method for producing silicon-iron alloy metal soft magnetic dust core |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004079943A true JP2004079943A (en) | 2004-03-11 |
JP3929853B2 JP3929853B2 (en) | 2007-06-13 |
Family
ID=32024146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002241753A Expired - Fee Related JP3929853B2 (en) | 2002-08-22 | 2002-08-22 | Method for producing silicon-iron alloy metal soft magnetic dust core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3929853B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005095030A1 (en) * | 2004-03-30 | 2005-10-13 | Sumitomo Electric Industries, Ltd. | Method for producing soft magnetic material, soft magnetic powder and dust core |
JP2011137234A (en) * | 2011-01-17 | 2011-07-14 | Toyota Central R&D Labs Inc | Method and device for coating metal powder, film for metal powder, metal powder to be coated, and powder magnetic core and method for manufacturing the same |
-
2002
- 2002-08-22 JP JP2002241753A patent/JP3929853B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005095030A1 (en) * | 2004-03-30 | 2005-10-13 | Sumitomo Electric Industries, Ltd. | Method for producing soft magnetic material, soft magnetic powder and dust core |
US7674342B2 (en) | 2004-03-30 | 2010-03-09 | Sumitomo Electric Industries, Ltd. | Method of producing soft magnetic material, soft magnetic powder, and dust core |
JP2011137234A (en) * | 2011-01-17 | 2011-07-14 | Toyota Central R&D Labs Inc | Method and device for coating metal powder, film for metal powder, metal powder to be coated, and powder magnetic core and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3929853B2 (en) | 2007-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230081183A1 (en) | Dust core, method for manufacturing dust core, inductor including dust core, and electronic/electric device including inductor | |
EP3219825B1 (en) | Oriented electrical steel sheet having insulating coating formed on surface thereof, and preparation method therefor | |
JP5022999B2 (en) | Powder magnetic core and manufacturing method thereof | |
US7556838B2 (en) | Soft magnetic material, powder magnetic core, method for manufacturing soft magnetic material, and method for manufacturing powder magnetic core | |
JP2007019134A (en) | Method of manufacturing composite magnetic material | |
EP2153921B1 (en) | Process for producing metallic powder and a powder magnetic core | |
WO2008093430A1 (en) | High-compressibility iron powder, iron powder comprising the same for dust core, and dust core | |
JP2001011563A (en) | Manufacture of composite magnetic material | |
JP2016139748A (en) | Soft magnetic metal dust core | |
JPS63304603A (en) | Green compact of fe soft-magnetic alloy and manufacture thereof | |
JP2007092162A (en) | Highly compressive iron powder, iron powder for dust core using the same and dust core | |
JP2006287004A (en) | Magnetic core for high frequency and inductance component using it | |
KR100374292B1 (en) | Composite metal powder for power factor correction having good dc biased characteristics and method of processing soft magnetic core by thereof using | |
JPH02290002A (en) | Fe-si based alloy dust core and its manufacture | |
JP2002170707A (en) | Dust core having high electric resistance and its manufacturing method | |
JP2003109810A (en) | Dust core and its manufacturing method | |
JP3929853B2 (en) | Method for producing silicon-iron alloy metal soft magnetic dust core | |
KR101607483B1 (en) | Fe-based Amorphous Alloy Power And Fe-based Nano-Crystallization Amorphous Compressed Power Core Using the same | |
JP2003197416A (en) | Method of manufacturing powder magnetic core, and powder magnetic core manufactured by the method | |
JP3902638B2 (en) | Manufacturing method of iron-based metal soft magnetic powder magnetic core | |
JPH0479302A (en) | Dust core | |
KR101387961B1 (en) | Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof | |
JP3690562B2 (en) | Manufacturing method of high frequency powder magnetic core | |
JPH0734183A (en) | Composite dust core material and its production | |
JPH08236332A (en) | High-frequency dust core and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051007 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060316 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060419 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060519 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070307 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20100316 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20110316 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120316 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |