JP2004079762A - Electric wave shield material - Google Patents

Electric wave shield material Download PDF

Info

Publication number
JP2004079762A
JP2004079762A JP2002237740A JP2002237740A JP2004079762A JP 2004079762 A JP2004079762 A JP 2004079762A JP 2002237740 A JP2002237740 A JP 2002237740A JP 2002237740 A JP2002237740 A JP 2002237740A JP 2004079762 A JP2004079762 A JP 2004079762A
Authority
JP
Japan
Prior art keywords
conductive
radio wave
fiber
fibers
conductive fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002237740A
Other languages
Japanese (ja)
Inventor
Yutaka Kagawa
香川 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002237740A priority Critical patent/JP2004079762A/en
Publication of JP2004079762A publication Critical patent/JP2004079762A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric wave shield material which can be remarkably improved in electric wave shielding effect, compared with the one which uses conductive fibers in the conventional form, by combining the conductive fibers under specific conditions to arrange them spatially, and which keeps sufficient translucency. <P>SOLUTION: A conductive fiber layer that the conductive fibers are arranged with intervals in one direction without being electrically connected to each other, and another conductive fiber layer that another conductive fibers are arranged with intervals in one direction without being electrically connected to each other, are stacked at a distance inside a matrix material or on a front surface thereof without being electrically connected to each other, to form a three-dimensional arrangement structure of the conductive fibers which serves as an electric wave polarizing layer. The distance between the arranged conductive fibers is equal to the wavelength of an electric wave which should be shielded, or shorter. The distance between the stacked conductive fiber layers is equal to the diameter of the conductive fibers used or larger, and an angle θ of an intersection between fiber axes of the stacked conductive fiber layers is set to 90°±30°. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、マトリックス材料の内部又は表面に導電性繊維の3次元配置構造を有する透明又は不透明な電波遮蔽材料に関する。
【0002】
【従来の技術】
最近の情報技術の進歩につれ、電波を利用したOA機器、無線通信機器等が発達している。電波を有効に利用するためには電波を良く通す材料や電波を吸収する材料とともに電波を遮蔽する材料が欠かせないものとなっている。
【0003】
電波を遮蔽する材料として、従来から金属板が多く用いられている。金属は安価であり加工も容易なために利用しやすい材料である。最近では、アモルファス金属をプラスチックスや紙などに複合化したものや金属粒子や金属繊維、又は電気伝導性を持つ炭素繊維をプラスチックスに複合化したものが電波遮蔽材料として用いられている。これらの材料系では、kHz〜GHzオーダーの実用的な電波の周波数領域で十分な電波遮蔽特性が得られている。
【0004】
しかし、これらの材料は、ほとんどが可視光領域での光透過性を有しておらず、可視光透過性が必要な建物用窓ガラス、自動車や電車などの乗り物用窓ガラス、PHP前面用フイルタなどとして用いることができない。
【0005】
ガラスの上に薄い透明導電性酸化物であるITO(Indium−Tin−Oxide)層を設けたものは、可視光領域で光透過性を有するとともに電磁波遮蔽性も有している。さらに、電子レンジやPDPの前面フイルタなどに用いられる金属メッシュも電磁波遮蔽効果がある。建築物用の窓や戸に用いられている金属のメッシュをガラスに複合化した網入り安全ガラスは透明であり、電磁波遮蔽特性がある。
【0006】
特許文献には、このような透明な電磁遮蔽材料の例として、直径数十μm程度の金属網や導電性繊維を透明プラスチックのフイルムや板に埋め込んだもの(実公平6−11598号公報、特公平8−1999号公報、特開2000−22383号公報)、透明導電性繊維を樹脂成形体の内部及び/又は表面に複数の透明導電性繊維を電気的に接触するように設けてなり、全光線透過率が60%以上である透明性電磁波遮蔽材料(特開平11−107160号公報)、導電性織布と透明な熱可塑性プラスチックとの積層物からなり、該導電性織布の表面が該熱可塑性プラスチックシート層より不連続に部分露出している電磁遮蔽積層シート(特開2001−102790号公報)、遮蔽しようとする電波の周波数に対応した特定の長さを有する金属線素子が基板上に配設された電磁波遮蔽材において、前記金属線素子が開放端を持ち、開放端間の長さが遮蔽しようとする電波波長の約2分の1である電磁波反射材(特開2002−84093号公報)など種々の工夫が見られる。
【0007】
一方、透明性を必要としないコンクリート、モルタル、石膏ボードなどを電磁シールドする方法としては、コンクリートなどの内部に導電体線や短繊維状の反射材料を混入する方法(例えば、特開平5−267880号公報、特開平9−148779号公報、特開2001−322194号公報)やメッシュ状の電磁波シールド繊維を石膏ボードの表面や内部に設ける方法(例えば、特開平11−54982号公報、特開2001−182187号公報)などが知られている。
【0008】
【発明が解決しようとする課題】
近年は、建物をはじめとする構造物の高層化による電波障害が問題になっている。さらに、電子機器が発生する不要な電磁波が他の機器や人体に及ぼす影響が問題となっている。透明で電波遮蔽効果のある従来の材料は、大きな電波遮蔽効果を得ようとすると、電波との相互作用を大きくするためにマトリックス材料中の金属線などの導電性材料の部分の占める投影面積を大きくしなければならない。その結果、材料全体としての光透過性が著しく低下するという問題がある。
【0009】
したがって、可視光領域で光透過率が十分であり、かつ電波を十分に遮蔽するという相反する要求を満足する材料は極めて少なく、透明で、かつ優れた電波遮蔽効果のある新規材料の開発が求められている。
また、光透過性が必要なく、電波遮蔽機能のみが必要な不透明なプラスチックスやガラス、もともと光透過性が必要でない石膏ボード、コンクリートなどの建築用構造壁などにおいても優れたも電波遮蔽効果のある材料が求められている。
【0010】
【課題を解決するための手段】
従来、導電性繊維は電波遮蔽材の一種として織物として用いたり、マトリックス材料の表面や内部に複合する形で用いられていたが、本発明者は、導電性繊維を特定の条件で組み合わせて空間的に配置することにより導電性繊維を従来の形で用いたものに比べて電波遮蔽効果を著しく高めることができ、かつ透光性を十分に保つことも可能であることを見出した。
【0011】
本発明は、偏光機能をあらゆる方向の電界成分を持つ電波に対して作用させることを可能にする導電性繊維の幾何学的配置を見い出したことに基づいて、このような幾何学的配置をマトリックス材料中に複合化して形成したものである。
この導電性繊維の3次元配置構造による電波の偏光機能を利用すると、平行状に並べて配列した隣り合う導電性繊維間の間隔を変化させることにより、この間隔に対して十分に短い波長は透過するが、それよりも長い波長を持つ電波は遮蔽する機能が生じる。また、導電性繊維の3次元的幾何学的配置の設計により遮蔽する電波のエネルギーを任意に変えることもできる。
【0012】
すなわち、本発明は、導電性繊維を電気的に接続させずに一方向に並べて間隔を開けて配列した導電性繊維層と、さらに、別の導電性繊維を電気的に接続させずに一方向に並べて間隔を開けて配列した導電性繊維層をマトリックス材料の内部又は表面に互いに距離をおいて電気的に接続させずに積層し、配列した導電性繊維の間隔は遮蔽を目的とする電波の周波数の波長以下とし、積層した導電性繊維層の距離は用いた導電性繊維の直径以上とし、積層した導電性繊維層のそれぞれの繊維軸間の交差角度θを90度±30度とすることにより、電波の偏光層として機能する導電性繊維の3次元配置構造を形成したことを特徴とする電波遮蔽材料である。
【0013】
また、本発明は、導電性繊維間の間隔Sを電波の波長λで割った規格化した値(S/λ)が0.2以下であることを特徴とする上記の電波遮蔽材料である。
また、本発明は、マトリックス材料として透明材料を用い、波長が500nm以上の可視光領域で導電性繊維を複合化していない該透明材料に比較して透過率が10%以内の低下であり、電波遮蔽効果が−8dB以上であることを特徴とする上記の電波遮蔽材料である。
【0014】
【作用】
電波は垂直偏波、水平偏波、又は円偏波として用いられている。電波に対する偏光板はどのような偏波に対しても、その中の一方向の直線偏波のみを通過させる機能を持つことは公知のことである。電波の中から特定の方向の直線偏波を取り出す素子や、直線偏波を円偏波(偏光)に変換する波長板がある。波長に比べて十分に長い金属棒を、波長に比べて短い間隔で配列した面に電波を当てると、棒に平行な電界成分を持つ平面波は反射され、棒に直交する電界成分を持つ平面波のみが通過することができる。このような金属棒のグリッド列は直線偏波素子として用いられている。この構造はヘルツが自由空間に放射された電波が光と同じ性質を示すために用いられたことで有名である。
【0015】
このように、電気伝導性を持つ針金などを一方向に空間に一層並べたものの偏光作用は知られていた。しかし、これらは空気中に針金や金属細線を一層並べたもので、針金のようにそれ自体が強度を持つものでは、それ自体は特殊な素子としての機能を果たすが、透明性を得るための直径が小さな繊維は強度が弱いのでそれ自体を単独で偏光材料として利用できないことは容易に想像がつく。例えば、金属線でも細いものを用いたときには空気中に並べていても少し力が加わっただけで金属線が変型したり間隔が乱れたり、又は、すぐに壊れてしまうためにその偏光機能を果たすことができなくなる。
【0016】
したがって、本発明のように繊維を一本ずつでは取り扱うことが難しく、まして
や、一層に並べた層を離して二枚以上揃えて空間で用いることはできないことは明らかである。また、金属線を用いた偏光素子では金属線の少なくとも一方は端部で電気的に接続されているが、本発明ではマトリックス中で全ての繊維は電気的に接触しているわけではない。
【0017】
本発明では、マトリックス材料中に繊維を配列することにより電波が材料中を通過する時の偏光作用による電磁波の減衰が最大になるようにする繊維の3次元的な幾何学的配置を規定している。すなわち、複数の繊維をマトリックス体材料中にそれぞれの繊維を電気的に絶縁しながら固定すると同時に使用時に繊維の配列が乱れないように繊維層の保護と繊維層間の間隔を最適にし、しかも、電磁波との相互作用により発生するエネルギーをマトリックス材料の熱伝導性で除去することを可能にしている。
【0018】
この導電性繊維の3次元配置構造による電波の偏光の機能を利用すると、隣り合う繊維の間隔を変化させることにより、繊維間の間隔に対して十分に短い波長は透過するが、それよりも長い波長を持つ電波は空間的に最適な配列を行った繊維により遮蔽される機能が生じる。また、繊維の幾何学的配置により遮蔽する電波のエネルギーを任意に変えることもできる。
【0019】
さらに、繊維の間隔が遮断を目的とする電波の波長よりも大きなことから細い繊維を用いれば、周波数が100GHzであっても実用上十分な透明性を発揮する。このような透明な光透過機能と電波遮蔽機能を合わせ持った材料は既存のものでは得られていない。
【0020】
従来の電磁波反射材料では透明な電気伝導性繊維をマトリックス材料としての透明なプラスチックスと複合化することが行われているが、両者の屈折率差が1/1000以下でないと繊維を肉眼でも識別できる程度であり、また、繊維による電磁波の反射を得るためには繊維材料の大きな体積率が必要であり、この場合、光透過性は得られるが、マトリックス材料中を光が直進することによる透明性は犠牲になり、このような材料を通して物を見ると像がゆがんだりぼけてしまう。したがって、十分な電磁波遮蔽特性と光透過性を透明性を保持したままで両立することは難しい。
【0021】
本発明では、比誘電率が2以上の透光性を持つマトリックス材料中に電気伝導性繊維を揃えた層を持ち、繊維により光が遮られる部分、すなわち投影面積はマトリックス材料の面積の30%以下と小さく、同じ厚さのマトリックス材料単体に比べて、最大でも光透過率の低下は繊維複合化前の30%であり、光が透過する部分ではマトリックス材料の持つ透明性は犠牲にならないので光透過率と透明性を両立できる点に大きな利点がある。
【0022】
日常生活で用いられている網入りガラスは電気的には金属線を互いに接続しており、本発明の重要なポイントである繊維を電気的に接続せずにガラスなどの透明な材料中に入れたものとは異なる。網入りガラスでは金属線による電波の反射を利用して主な遮蔽効果が発揮され、偏光を利用するものとは異なる。
【0023】
図1は、本発明における、導電性繊維の3次元配置構造により電波の偏光層を形成する態様を原理的に説明するための平面図である。図1に示すように、複数の導電性繊維F1を電気的に接続させずに一方向に平行状に並べた導電性繊維層をマトリックスMの内部又は表面に形成する。さらに、別の複数の導電性繊維F2を電気的に接続させずに一方向に平行状に並べた導電性繊維層を導電性繊維F1からなる導電性繊維層と異なる平面内に互いに電気的に接続せずに一定距離だけ離して形成する。それぞれの導電性繊維層の繊維軸間は交差角度θで交差させる。
【0024】
図2は、図1に示すように、導電性繊維を3次元配置した偏光層構造について、交差角度θと周波数10GHzにおける電波遮蔽特性(シールド効果)の関係を示すグラフである。この測定値は、長さ200mm、直径10μmの炭素繊維をPMMA樹脂板中に表面からの距離を1mmとして、一定の間隔3mmで並べ、二つの導電性繊維層間の距離は5mmとし、大気中のホットプレス法を用いてPMMA樹脂板に積層して複合化した複合材料についてのものである。炭素繊維を並べた2つの導電性繊維層のそれぞれの繊維軸間の交差角度θは0〜180度の間で変化させた。交差角度θが0度の場合には2つの導電性繊維層の繊維軸方向は一致する。
【0025】
図2に示すように、繊維軸間の交差角度θを90度±30度とすることにより電波遮蔽効果が−8dB以上となり、電波遮蔽特性は交差角度θを90度に近付ける程大きくなる。さらに、この複合材料の光透過率は400nm〜1000nmの波長範囲で、波長が500nm以上では導電性繊維を複合化していない同じ厚さのPMMA樹脂板に比較して同じ波長で10%以内の低下であり、窓材料として光透過性は実用的には問題がないレベルである。
【0026】
2つの導電性繊維層の繊維軸間の交差角度θが90度であるこの複合材料を、電波遮蔽が完全に行われる一辺が60mmの金属の箱の一つの面に金属箱との間にギャップがないように接着し、その箱の中に周波数2GHzで出力が1mWの発信器を入れて測定したところ、電波遮蔽板の上部の電波遮蔽板から10cm離れたところで−15dBの電波の減衰が生じた。
【0027】
並べる導電性繊維の間隔は遮蔽を目的とする周波数の波長に等しいか、又は該波長よりも短いと偏光機能が働く。電波の波長は300kHzでは1km、300MHzでは1m、3GHzでは10cm、30GHzでは1cmになる。現在利用されているテレビやラジオの電磁波の周波数はFMやVHFで76〜222MHz、UHFで470〜770MHzであるが、携帯電話の周波数は1.6GHz、無線LAN,電子レンジは2.45GHz、衛星放送(BS,CS)は11.7〜12.09GHzか12.3〜12.7GHz、ITS(高度道路交通システム)5.8GHzか60〜70GHzであり、遮蔽を目的とする周波数帯域に応じて並べる繊維の間隔を選定する。
【0028】
電波の透過率は並べた繊維の間隔に依存し、並べた繊維の間隔が狭くなるにしたがって、電波透過率が小さくなる。すなわち、大きな電波遮蔽効果を得るためには、並べた繊維の間隔を小さくすればよい。任意の周波数で目的とする遮蔽効果を得るためには並べた繊維間の間隔を調整すればよい。一方、光透過率は並べた繊維間隔が狭くなるにしたがって小さくなるが、実用上十分な電波遮蔽効果を得るために必要な繊維間隔では、光透過率の低下はおよそ10%以内で済む。
【0029】
図3は、炭素繊維を用いた複合材料について、電波透過率(シールド効果)に及ぼす導電性繊維の間隔の影響を示している。図3の横軸(S/λ)は導電性繊維間の間隔Sを電波の波長λで割った規格化した値を示している。S/λが0.2以下、特に0.15以下でシールド効果が増大する。この複合材料は、長さ500mm、直径7μmの炭素繊維をエポキシ樹脂と複合化したものである。導電性繊維の間隔を2〜10mmの間で変化させて並べた。二つの導電性繊維層と導電性繊維層の距離は10mmとし、各導電性繊維層は材料の表面から1mmの深さのところに複合化されている。
【0030】
この複合材料を一辺が50cmの正方形とし、周波数範囲20〜40GHzで透過する電波の減衰を調べた。用いた電波透過率測定装置は、誘電体レンズを持つ焦点距離が150mmのホーン型アンテナであり、複合材料の表面に波長の約4倍の大きさとしたランダム偏光電波を照射し、同じ構成のアンテナを電波の照射面と反対側に置いたものである。
炭素繊維に限らず、電気伝導性を持たないAl繊維表面にCu又はNiを無電解メッキで0.5μmコーティングした繊維を用いても電波の透過率が導電性繊維の間隔に依存する点は同様であった。
【0031】
【発明の実施の形態】
以下に、本発明の実施の形態を図を用いて説明する。図4の斜視図に示すように、導電性繊維を並べた層が一つのマトリックス材料中に2層並んでいるものが本発明の電波遮蔽材料の基本単位となる。
図4に示すように、隣りあう導電性繊維F1の中心間距離Sを開けて複数の導電性繊維を一方向に並べてマトリックスとなる材料Mの中に1つの層となるように配列する。さらに、別の複数の導電性繊維F2を導電性繊維F1を並べた層と電気的に接続せずに空間的に距離をおいて離れた層になるように、かつ導電性繊維F1の繊維軸方向と導電性繊維F2の繊維軸方向が交差角度θとなるように並べてマトリックス材料Mの中に配列する。この交差角度θは、上述のとおり、電波の偏光作用が最大になるようにするためには、90±30度の範囲、より好ましくは、90±15度の範囲とする。
【0032】
図5の斜視図に示すものは、図4に示すものの変形例であり、導電性繊維F1を並べた層と導電性繊維F2を並べた層の中間に透明導電性フイルム、導電性プラスチックフイルム、金網などの補助導電体層Pを挟んで設けて電磁遮蔽性能を高めた例を示す。例えば、直径が10〜500μmの金属繊維を網状にしたものをガラス板やプラスチックス板と複合化して網入りの板とするとともに、板の両表面側に板の表面に露出させずに導電性繊維層をそれぞれ設けるとよい。
【0033】
本発明の電波遮蔽材料において、二つの層と層との間隔は用いた導電性繊維の直径以上であることが好ましい。本発明の電波遮蔽材料において、繊維の間隔は透過する電波の強度に影響する。例えば、間隔が広ければ透過する電波の強度は大きくなる。一方、偏光層での電波の反射を考えると、繊維間隔が小さくなれば反射は増える。電波が反射する率が大きくなりすぎると偏光作用の効果が十分に働かなくなる。導電性繊維の間隔が繊維の直径よりも小さくなると電波が繊維を並べた層を透過する割り合いが極めて小さくなり、逆に、反射する割り合いが大きくなる。これが、偏光層の導電性繊維の間隔が波長の周波数以下である理由である。一方、積層した導電性繊維層の距離が用いた導電性繊維の直径以下の場合には、それぞれの層が一体となって電波を反射する効果が増えてしまい、偏光機能を利用できなくなる。すなわち、一枚の偏光層としてしか機能しなくなる。したがって、本発明の電波遮蔽材料において、二つの層と層との間隔は用いた導電性繊維の直径以上であることが好ましい。
【0034】
マトリックス材料中の導電性繊維層は2層以上であれば何層でもよい。層数が多くなれば偏光作用がより強く働くようになる。ただし、層数が4層以上になると層数を増したことによる電波遮蔽効果は層数に対して比例して大きくならず、層数を増した効果は少なくなる傾向にある。導電性繊維層を3層以上用いるときには3層目以上の層の繊維軸と1層目の繊維軸の交差角度は任意に選ぶことができる。この場合、隣接する層の交差角度の構成を0度/90度に統一すると最も大きな電磁遮蔽効果が得られる。
【0035】
導電性繊維層の占める投影面積はマトリック材料の総表面積の少なくとも30%以下であることが好ましい。導電性繊維層の層数を増せば電波遮蔽効果は大きくなる。しかし、導電性繊維層の層数を増やした場合、導電性繊維の層が重なるようにすれば光透過率は低下しないが、各層中の導電性繊維の重なりがランダムになると光透過率は低下する。したがって、電波遮蔽特性と光透過特性を同時に考えて導電性繊維層の層数を決定する必要がある。
【0036】
図6の(1)は、7層からなる導電性繊維層の間隔を全て同じにして配列したものを示している。しかし、図6の(2)に示すように、導電性繊維層と導電性繊維層との間隔がすべて同じである必要はない。また、全ての繊維軸方向が完全に平行になっている必要はない。同じ平面内にある導電性繊維が、図6の(3)に示すように、周期的に異なる間隔を持っていてもよいし、また、図6の(4)に示すように、導電性繊維層は完全な平面でなく波状などの面でもよい。さらに、マトリックス材料の表面に最も近い導電性繊維層からマトリックス材料の表面までの距離はマトリックス材料の両面側で同じでも、異なってもよい。
【0037】
マトリックス材料の両面に用いる導電性繊維層は必ずしもマトリックス材料中に複合化されている必要はなく、図7の(1)に示すように、導電性繊維F1及び導電性繊維F2をマトリックス材料Mの表面に接着剤や粘着性のあるシールDを用いて貼り付けても効果を発揮する。この場合、貼りつけられた導電性繊維層のそれぞれの繊維の軸は必ずしも同一の平面上にある必要はなく、繊維間隔の1/2以内のズレならば導電性繊維が同じ平面にある場合と同じく一つの偏光層としての偏光効果を発揮する。
【0038】
さらに、図7の(2)に示すように、薄いプラスチックスフィルムEに導電性繊維F1及び導電性繊維F2を平行状に並べたものをガラスやプラスチックスのマトリックス材料Mの両面に貼りつけてもよい。また、図8の(1)に示すように、隣接する導電性繊維層の距離は一定でなく傾斜していてもよい。さらに、図8の(2)に示すように、繊維の軸が完全に同一平面上に並んでいないで、波状の面となっていてもよい。
【0039】
導電性繊維とマトリックスの複合化は、導電性繊維を等間隔に並べたものを用意して、粘性の小さなガラスと複合化したり、合わせガラス用中間膜と複合化したり、ガラスや高分子材料の板を用意して、板の上に導電性繊維を等間隔で並べ、それを同じガラスや高分子材料ではさみ、ガラスや高分子材料の軟化点又はそれ以下の温度で圧力を加えてプレス成形してもよい。高分子材料を用いる場合には、導電性繊維を等間隔で並べて3次元的に配列したものをフッ素樹脂などの型に入れて、その中に高分子材料を流し込み、成形してもよい。このように、多くの成型方法により材料を作成することが可能である。
【0040】
図9は、電気伝導性繊維の配列に用いる繊維織物の一例を示す側面図(a)及び平面図(b)であり、導電性繊維F1と高分子繊維などの非導電性繊維F3を一定の間隔で周期的に三次元織物にしたものである。導電性繊維を一定の間隔で周期的に繊維軸が一つの平面にないような織物構造にしても導電性繊維又は繊維束同士がお互いに接触していないものを用いても同様な効果が得られる。このように、導電性繊維を三次元織物にした場合には電子機器のケースなどにも容易に成形することができる。
【0041】
導電性繊維には金属、炭化物、窒化物、酸化物、金属間化合物や炭素又は誘電体のものなどが用いられる。好ましくは、金属や炭素のように電気抵抗が小さなものが良い。複合化前の繊維の電気伝導率は100Ωm以下のものが好ましい。
【0042】
電気伝導性のない透明又は不透明の繊維を用いる場合には、表面に金属や炭素などの電気伝導性のある物質をコーティングして用いることができる。また、透明導電性酸化物膜をコーティングしてもよい。金属をコーティングして電気伝導性を付与する場合、金属コーティングの厚さは、3μm以下が好ましい。また、半導体の性質を持つSiCを主成分とする繊維などでも同様の効果を発揮する。この場合、繊維の熱処理により、繊維表面に炭素に富む層を設けたものでもよい。
【0043】
また、導電性繊維はガラス繊維など可視光領域で光を通すものの表面に導電性金属酸化物のコーティングを行い、光透過率が60%以上であり、比抵抗が10−1Wcm以下のものでもよい。2層の導電性繊維層のそれぞれに異なる導電性繊維を用いてもよい。
【0044】
繊維の直径は3mm以下であればよい。ただし、光透過性を犠牲にしないためには、繊維の直径は光透過性と透明性を共に保つために0.3mm以下であることが好ましい。現存する導電性をもつ繊維の最小直径は約3μmであり、このような繊維を用いてもよい。さらに、繊維を束にしたものを用いてもよい。
【0045】
炭素繊維、ステンレス鋼繊維を用いた場合には、ガラスなどと繊維との間で反応を生じるような高温での複合化を要する場合には繊維表面に反応防止のためのセラミックスコーティングや濡れ性をよくするための金属コーティングなどを施してもよい。このようにすると、高温で粘性の低いガラスと連続的に複合化することができたり、導電性繊維を並べたものの上に粘性の低いガラスを押しつけたりして容易に複合化することができる。このような複合化プロセスはガラスに限ったわけではなくポリマー材料を用いたときにも適用できる。
【0046】
マトリックス材料としては、病院の窓用材料、電車や自動車などの乗り物に用いられる窓用材料など、可視光領域で十分な光透過性を持つ用途に対しては可視光領域で30%以上の光透過率を持つ無機又は高分子材料のものが用いられる。また、透光性セラミックスでもよい。好ましくは、70%以上の可視光透過率を持ち、高分子系材料やガラス材料などの窓用材料に用いられている、力学的機能を持つものが好ましい。
【0047】
さらに、透明な材料以外にも光透過性が必要なく、電波遮蔽機能のみが必要な場合には光透過性を持たないプラスチックスやガラスでもよい。電子機器のケースに用いられているプラスチックスなどに応用することもできる。
【0048】
赤外光に対して10%以上の光透過率を有するものやガラスやプラスチックス中に金属、プラスチックス、セラミックスを含有していても良い。また、これらのもの以外にも、ガラスやプラスチックスの性質を変えたいときに、これらの材料中に直流に対する電気抵抗率が10Ωm以上の粒子、繊維、ウイスカーなどを複合化したものをマトリックス材料として用いても、ガラスやプラスチックスは導電性繊維と電気的に接続しないので、偏光による電波遮蔽機能は働く。
【0049】
プラスチック中にセラミックス粒子を含有しているものを用いても電気伝導率が10−6Ω−1−1以下であれば偏光作用が働く。さらに、光を反射するミラーや表面で光を乱反射するように加工されているものなどのガラスやプラスチックス基板上に金属やセラミックスの反射膜がコーティングされているものでもよい。さらに、モルタル、石膏やコンクリートなどの建築用構造壁などの不透明材料をマトリックス材料としてもよい。
【0050】
【実施例】
実施例1
直径10μmの炭素繊維をマトリックス材料となるPMMA樹脂板中に一定の間隔5mmで一方向に平行状に等間隔に並べた二つの繊維層をPMMA樹脂板の両表面から1mm以内の距離にそれぞれ設けた複合材料をホットプレス法で作製した。この複合材料で、炭素繊維を並べた二つの繊維層と繊維層との距離はおよそ5mmで、両繊維層の繊維軸間の交差角度は90度である。繊維を複合化した材料の総厚さは7mmである。用いたPMMA樹脂はいろいろな窓用材料として用いられている透明材料である。
【0051】
この繊維複合材料の、電波遮蔽特性を調べるために上述のホーン型アンテナを用いる電波透過率測定装置と同じものを用い、20〜30GHzの周波数範囲での電波遮蔽特性を求めた。図10は、電波遮蔽特性の結果を示すグラフである。この図10から分かるように、得られた繊維複合材料はこの周波数範囲で−18dB以上の電波遮蔽効果を有していた。また、炭素繊維材料の投影面積は0.4%であり、可視光領域での光透過性は同じ厚さの炭素繊維を複合化していないPMMA樹脂板に比べて5%以内の低下に収まっており、この材料は、電波シールド特性を持ち、かつ、光透過性を持っていることが明らかとなった。
【0052】
実施例2
直径が100μmのステンレス鋼繊維を用いてステンレス鋼繊維間の間隔が5mm、二つの繊維層の距離が10mm、交差角度θを90度とした以外は実施例1と同じとして複合材料を作製した。作製した複合材料の大きさは30cm角である。この総厚さ12mmの繊維複合材料を用いて電波遮蔽特性を測定した。電波遮蔽特性の測定は周波数範囲が20〜40GHzとした。測定した全ての周波数範囲では、全ての周波数で、−18dB以上の電波遮蔽効果が得られた。また、ステンレス鋼繊維材料の投影面積は4%であり、可視光領域での光透過率は繊維複合材料のマトリックスに用いた同じ厚さのPMMA樹脂板よりも10%低下したのみであった。
【0053】
実施例3
さらに、実施例2の繊維複合材料と同じ繊維配列構造を持つものを二枚重ねた構造になった繊維複合材料を作製した。総厚さは24mmである。この繊維複合材料の電波遮蔽特性を測定した結果、−24dB以上の減衰が認められた。この場合、可視光領域での光透過性は厚くしたにもかかわらず、実施例2よりも3%低下しただけであった。繊維層を増すことにより、電波遮蔽特性は加算的に増加する傾向が確かめられた。
【0054】
実施例4
隣り合う繊維の間隔を周期的に変化させるように直径100μmのステンレス鋼繊維を、片方の面に粘着性を持つ厚さ0.2mmのプラスチックフィルムの粘着性を持つ方の面に複合化した。繊維の間隔は基本間隔を3mmとし、隣り合う繊維間の間隔を間隔が10mmになるまで、4mm、5mm、6mm、7mm、8mm、9mm、10mmと1mm間隔で増した。繊維間隔が10mmに達した時点で、逆に9mm、8mm、7mm、6mm、5mm、4mm、3mmのように隣り合う繊維間の間隔を減少させた。この周期を繰り返した繊維を設けたプラスチックフィルムを図7の(2)に示す構造のようにし、厚さ5mmで30cm角のマトリックス材料となるソーダー石灰ガラス板の両面に貼りつけた。両面でのそれぞれの繊維層のなす交差角度θは90度とした。
【0055】
この繊維複合材料を用いて、実施例2と同様な方法で電波透過率を測定したところ周波数が10GHz〜40GHzにおいて−16dB以下の電波遮蔽効果が確認された。また、ステンレス鋼繊維材料の投影面積は最大で6.6%であり、用いたプラスチックフィルムをガラス板に貼り付けた後でも繊維複合材料の平均光透過率は21%以内の低下であった。
【0056】
実施例5
さらに、ガラス板の表面に電気伝導性を持つ透明ITO膜を蒸着したものを実施例4のガラス板の代わりに用い、ITO膜と繊維を貼り付けたプラスチックフィルムが電気的に接続しないようにしたものを用いて実施例2と同様な方法で電波遮蔽特性を測定したところ、−18dBの減衰が見られた。このように、透明な基板にはITO膜などの透明電気伝導性膜を付与したものを用いても、繊維層と電気伝導性膜が電気的に接続されていなければよく、例えば、電気伝導層を透明基板の中央部や端部などの場所に施せばよい。
【0057】
実施例6
直径0.5mmのステンレス鋼繊維を一つのます目が10mmとなるように板厚方向の中央部に複合化されている厚さ10mmの網入りガラス板の両面に、直径が7μmの炭素繊維を5mm間隔で並べた繊維層を実施例4と同様な粘着層を持つプラスチックフィルムを用いて設けた。両面に設けた繊維軸のなす交差角度θは80〜90度の範囲にあるようにした。
【0058】
この材料を50cm角にし、全ての面が金属よりなり、金属が導電性のある金属で接地されている金属製箱の一面に取り付けた。箱の内部に周波数が2GHzで出力が1mWの電波発信機を置き、箱の外部でこの材料からなる電波遮蔽材料から10cm離れた位置で電界を測定したところ−14dBであり、電波が弱くなっていることを確認した。この電波遮蔽特性は実用的に十分であり、また、この材料は可視光領域で光透過率が70%以上あり、電波を遮蔽することができるとともに光を透過することができる窓ガラスとして用いることができることが確認された。
【0059】
【発明の効果】
近時、社会問題になってきた電波障害に対する対応策の一つとして、極めて実用性の高い透明又は不透明の電波遮蔽材料を提供し得る。特に、本発明によって、窓用材料としての機能を持つ材料を光透過性に対する低下を最小限にし、光は透過するが電波は透過しないという複合材料を得ることができ、特に、病院や公共の乗り物で電波を外部から遮蔽したり、構造体内部からの電波を外部へ広がることを防止することができる。また、熱反射ガラス、半透明ミラーや赤外線透過プラスチックスなどへの応用が可能である。
【図面の簡単な説明】
【図1】図1は、本発明における、導電性繊維の3次元配置構造により電波の偏光層を形成する態様を原理的に説明するための平面図である。
【図2】図2は、導電性繊維を3次元配置した偏光層構造について、交差角度θと周波数10GHzにおける電波遮蔽特性の関係の一例を示すグラフである。
【図3】図3は、導電性繊維層の隣接する導電性繊維の間隔(S)(電波の周波数(λ)で規格化)と電波透過率(シールド効果)との関係を示すグラフである。
【図4】図4は、本発明の電波遮蔽材料の基本構成を概念的に示す斜視図である。
【図5】図5は、図4に示す基本構成の一変形例であり、導電性繊維層の積層構造の中間に透明導電性プラスチックフイルムなどを挟んだものである。
【図6】図6は、本発明の電磁遮蔽材料の一実施形態を示す側面図である。
【図7】図7は、本発明の電磁遮蔽材料の別の実施形態を示す側面図である。
【図8】図8は、本発明の電磁遮蔽材料のさらに別の実施形態を示す側面図である。
【図9】図9は、 導電性繊維の配列に用いる繊維織物の一例を示す側面図(a)及び平面図(b)である。
【図10】図10は、実施例1の電波遮蔽特性の測定結果を示すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transparent or opaque radio wave shielding material having a three-dimensional arrangement of conductive fibers inside or on the surface of a matrix material.
[0002]
[Prior art]
With the recent advance of information technology, OA equipment, radio communication equipment and the like using radio waves have been developed. In order to use radio waves effectively, materials that block radio waves as well as materials that transmit radio waves well and materials that absorb radio waves are indispensable.
[0003]
Conventionally, a metal plate is often used as a material for shielding radio waves. Metals are inexpensive materials that are easy to process because they are easy to process. Recently, a composite material of an amorphous metal with plastics or paper, a composite material of metal particles or metal fibers, or a carbon fiber having electrical conductivity with plastics has been used as a radio wave shielding material. In these material systems, sufficient radio wave shielding characteristics are obtained in a practical radio frequency range on the order of kHz to GHz.
[0004]
However, most of these materials do not have a light transmittance in a visible light region, and a window glass for a building that requires a visible light transmittance, a window glass for a vehicle such as an automobile or a train, and a filter for a front surface of a PHP. It cannot be used as such.
[0005]
A thin glass substrate provided with an ITO (Indium-Tin-Oxide) layer, which is a thin transparent conductive oxide, has a light transmittance in a visible light region and an electromagnetic wave shielding property. Further, a metal mesh used for a microwave oven or a front filter of a PDP also has an electromagnetic wave shielding effect. Netted safety glass, which is a composite of metal mesh used in windows and doors for buildings, is transparent and has electromagnetic wave shielding properties.
[0006]
In the patent document, as an example of such a transparent electromagnetic shielding material, a metal net or a conductive fiber having a diameter of about several tens of μm embedded in a transparent plastic film or plate (Japanese Utility Model Publication No. 6-11598; JP-A-8-1999, JP-A-2000-22383), a plurality of transparent conductive fibers are provided on the inside and / or the surface of the resin molded body so as to make electrical contact with the plurality of transparent conductive fibers. It is composed of a transparent electromagnetic wave shielding material having a light transmittance of 60% or more (Japanese Patent Laid-Open No. 11-107160), a laminate of a conductive woven fabric and a transparent thermoplastic plastic, and the surface of the conductive woven fabric is An electromagnetic shielding laminated sheet (JP-A-2001-102790), which is partially exposed discontinuously from a thermoplastic sheet layer, has a specific length corresponding to the frequency of a radio wave to be shielded An electromagnetic wave shielding material having a metal wire element disposed on a substrate, wherein the metal wire element has an open end, and a length between the open ends is about one half of a radio wave wavelength to be shielded. (JP-A-2002-84093).
[0007]
On the other hand, as a method of electromagnetically shielding concrete, mortar, gypsum board or the like which does not require transparency, a method of mixing a conductive wire or a short fiber-like reflective material into concrete or the like (for example, Japanese Patent Application Laid-Open No. 5-267880). JP, JP-A-9-148779, JP-A-2001-322194) or a method of providing a mesh-shaped electromagnetic wave shielding fiber on or inside a gypsum board (for example, JP-A-11-54982, JP-A-2001) No. 182187) is known.
[0008]
[Problems to be solved by the invention]
In recent years, there has been a problem of radio interference due to the rise of structures such as buildings. Further, there is a problem that an unnecessary electromagnetic wave generated by an electronic device affects other devices and a human body. Conventional materials that are transparent and have a radio wave shielding effect, in order to obtain a large radio wave shielding effect, increase the projected area occupied by the conductive material such as metal wires in the matrix material in order to increase the interaction with radio waves. Must be bigger. As a result, there is a problem that the light transmittance of the entire material is significantly reduced.
[0009]
Therefore, very few materials satisfy the conflicting requirements of having sufficient light transmittance in the visible light region and sufficiently shielding radio waves, and the development of new materials that are transparent and have an excellent radio wave shielding effect is required. Have been.
It is also excellent for opaque plastics and glass, which do not need light transmission and only radio wave shielding function is required, and for gypsum board and concrete construction walls which do not originally need light transmission, etc. Certain materials are needed.
[0010]
[Means for Solving the Problems]
Conventionally, conductive fibers have been used as a kind of radio wave shielding material as a woven fabric, or used in the form of a composite on the surface or inside of a matrix material. By arranging them electrically, it has been found that the radio wave shielding effect can be remarkably enhanced as compared with the case where the conductive fiber is used in a conventional form, and that the translucency can be sufficiently maintained.
[0011]
The present invention has developed such a geometry into a matrix based on the discovery of a conductive fiber geometry that allows the polarization function to act on radio waves having electric field components in all directions. It is formed by compounding in a material.
When the polarization function of radio waves by the three-dimensional arrangement structure of the conductive fibers is used, by changing the interval between adjacent conductive fibers arranged in parallel, a wavelength sufficiently short with respect to this interval is transmitted. However, there is a function of blocking radio waves having a longer wavelength. Further, the energy of the radio wave to be shielded can be arbitrarily changed by designing the three-dimensional geometric arrangement of the conductive fibers.
[0012]
That is, the present invention relates to a conductive fiber layer arranged in one direction and spaced apart without electrically connecting the conductive fibers, and further, one direction without electrically connecting another conductive fiber. Conductive fiber layers arranged side by side and spaced apart are laminated on the inside or surface of the matrix material at a distance from each other without being electrically connected to each other, and the distance between the arranged conductive fibers is The frequency shall be less than the wavelength of the frequency, the distance between the laminated conductive fiber layers shall be greater than or equal to the diameter of the conductive fiber used, and the intersection angle θ between each fiber axis of the laminated conductive fiber layers shall be 90 degrees ± 30 degrees. Thus, a radio wave shielding material characterized in that a three-dimensional arrangement structure of conductive fibers functioning as a polarization layer of radio waves is formed.
[0013]
Further, the present invention is the above-mentioned radio wave shielding material, wherein a normalized value (S / λ) obtained by dividing a distance S between the conductive fibers by a wavelength λ of the radio wave is 0.2 or less.
Further, the present invention uses a transparent material as a matrix material, and has a transmittance of 10% or less as compared with a transparent material in which a conductive fiber is not compounded in a visible light region having a wavelength of 500 nm or more. The above radio wave shielding material, wherein the shielding effect is -8 dB or more.
[0014]
[Action]
Radio waves are used as vertically polarized waves, horizontally polarized waves, or circularly polarized waves. It is well known that a polarizing plate for radio waves has a function of passing only one-way linearly polarized wave among any polarized waves. There are devices that extract linearly polarized waves in a specific direction from radio waves, and wavelength plates that convert linearly polarized waves into circularly polarized waves (polarized light). When a metal rod that is sufficiently long compared to the wavelength is irradiated with radio waves on a surface that is arranged at an interval that is short compared to the wavelength, a plane wave that has an electric field component parallel to the rod is reflected, and only a plane wave that has an electric field component perpendicular to the rod Can pass through. Such a grid row of metal rods is used as a linear polarization element. This structure is famous for the fact that Hertz was used to radiate radio waves into free space to exhibit the same properties as light.
[0015]
As described above, wires having electric conductivity and the like are further arranged in a space in one direction, but the polarizing action has been known. However, these are layers of wires and thin metal wires arranged in the air, and if the wires themselves have strength, such as wires, they themselves function as special elements, but in order to obtain transparency, It is easy to imagine that the small diameter fiber cannot be used as a polarizing material by itself because of its low strength. For example, when a thin metal wire is used, even if it is arranged in the air, it will perform its polarization function because the metal wire is deformed, the interval is disturbed, or it is broken immediately with a slight force applied. Can not be done.
[0016]
Therefore, it is difficult to handle fibers one by one as in the present invention, much less.
It is clear that two or more layers cannot be used in a space by separating one layer from another layer. In a polarizing element using a metal wire, at least one of the metal wires is electrically connected at an end, but not all fibers in the matrix are electrically connected in the present invention.
[0017]
In the present invention, the three-dimensional geometric arrangement of the fibers is defined by arranging the fibers in the matrix material so that the attenuation of the electromagnetic wave due to the polarization action when the radio wave passes through the material is maximized. I have. In other words, a plurality of fibers are fixed in a matrix body material while electrically insulating each fiber, and at the same time, the protection of the fiber layers and the spacing between the fiber layers are optimized so that the arrangement of the fibers is not disturbed during use, and furthermore, the electromagnetic wave It is possible to remove the energy generated by the interaction with the thermal conductivity of the matrix material.
[0018]
By utilizing the function of polarization of radio waves by the three-dimensional arrangement structure of the conductive fibers, by changing the distance between adjacent fibers, a wavelength sufficiently shorter than the distance between the fibers is transmitted, but longer. Radio waves having wavelengths have a function of being shielded by fibers that are spatially optimally arranged. Further, the energy of the radio wave to be shielded can be arbitrarily changed by the geometrical arrangement of the fibers.
[0019]
Further, since the spacing between the fibers is larger than the wavelength of the radio wave for the purpose of blocking, if thin fibers are used, practically sufficient transparency is exhibited even at a frequency of 100 GHz. Such a material having both a transparent light transmitting function and a radio wave shielding function has not been obtained by existing materials.
[0020]
In conventional electromagnetic wave reflection materials, transparent electrically conductive fibers are combined with transparent plastics as a matrix material. However, if the refractive index difference between the two is not less than 1/1000, the fibers can be identified with the naked eye. In order to obtain the reflection of electromagnetic waves by the fibers, a large volume ratio of the fiber material is necessary.In this case, light transmission is obtained, but transparency is achieved by light traveling straight through the matrix material. Sex is sacrificed, and seeing through such materials can distort or blur the image. Therefore, it is difficult to achieve sufficient electromagnetic wave shielding characteristics and light transmittance while maintaining transparency.
[0021]
In the present invention, a layer in which electrically conductive fibers are arranged in a translucent matrix material having a relative dielectric constant of 2 or more is provided, and a portion where light is blocked by the fibers, that is, a projected area is 30% of the area of the matrix material. As compared with a matrix material having the same thickness and smaller than the following, the maximum decrease in light transmittance is 30% before the fiber composite, and the transparency of the matrix material is not sacrificed in the portion where light is transmitted. There is a great advantage in that both light transmittance and transparency can be achieved.
[0022]
The meshed glass used in everyday life electrically connects metal wires to each other, and the important point of the present invention is to place fibers in a transparent material such as glass without electrically connecting them. Different from The netted glass exhibits a main shielding effect by using the reflection of radio waves by a metal wire, and is different from the one using polarized light.
[0023]
FIG. 1 is a plan view for explaining in principle the mode of forming a polarization layer of a radio wave by a three-dimensional arrangement structure of conductive fibers in the present invention. As shown in FIG. 1, a conductive fiber layer in which a plurality of conductive fibers F <b> 1 are arranged in parallel in one direction without being electrically connected is formed inside or on the surface of the matrix M. Further, a conductive fiber layer in which another plurality of conductive fibers F2 are arranged in parallel in one direction without being electrically connected to each other in a plane different from the conductive fiber layer made of the conductive fiber F1. They are formed at a certain distance without connection. The fiber axes of the conductive fiber layers intersect at an intersection angle θ.
[0024]
FIG. 2 is a graph showing the relationship between the crossing angle θ and the radio wave shielding characteristic (shielding effect) at a frequency of 10 GHz for a polarizing layer structure in which conductive fibers are three-dimensionally arranged as shown in FIG. The measured values are as follows: carbon fibers having a length of 200 mm and a diameter of 10 μm are arranged in a PMMA resin plate at a constant distance of 3 mm with a distance from the surface of 1 mm, and a distance between two conductive fiber layers is set to 5 mm. This is a composite material obtained by laminating a composite material on a PMMA resin plate using a hot press method. The intersection angle θ between the fiber axes of the two conductive fiber layers in which the carbon fibers were arranged was changed between 0 and 180 degrees. When the intersection angle θ is 0 degree, the fiber axis directions of the two conductive fiber layers match.
[0025]
As shown in FIG. 2, by setting the crossing angle θ between the fiber axes to 90 degrees ± 30 degrees, the radio wave shielding effect becomes −8 dB or more, and the radio wave shielding characteristics become larger as the crossing angle θ approaches 90 degrees. Further, the light transmittance of this composite material is within a wavelength range of 400 nm to 1000 nm. When the wavelength is 500 nm or more, the light transmittance is reduced by 10% or less at the same wavelength as compared with a PMMA resin plate of the same thickness in which conductive fibers are not compounded. Thus, the light transmittance of the window material is at a practically acceptable level.
[0026]
This composite material, in which the crossing angle θ between the fiber axes of the two conductive fiber layers is 90 degrees, is placed on one surface of a metal box 60 mm on a side where radio wave shielding is completely performed. When a transmitter with a frequency of 2 GHz and an output of 1 mW was put into the box and measured, the radio wave attenuation of -15 dB occurred 10 cm away from the radio wave shield above the radio wave shield. Was.
[0027]
If the spacing between the conductive fibers is equal to or shorter than the wavelength of the frequency to be shielded, the polarizing function is activated. The wavelength of the radio wave is 1 km at 300 kHz, 1 m at 300 MHz, 10 cm at 3 GHz, and 1 cm at 30 GHz. The frequency of electromagnetic waves of television and radio currently used is 76 to 222 MHz for FM and VHF and 470 to 770 MHz for UHF, but the frequency of mobile phones is 1.6 GHz, wireless LAN, microwave oven is 2.45 GHz, and satellite Broadcasting (BS, CS) is 11.7 to 12.09 GHz or 12.3 to 12.7 GHz, ITS (Intelligent Transport System) 5.8 GHz or 60 to 70 GHz, depending on the frequency band for which shielding is desired. Select the spacing between the fibers to be arranged.
[0028]
The radio wave transmittance depends on the interval between the arranged fibers, and the radio wave transmittance decreases as the interval between the arranged fibers becomes smaller. That is, in order to obtain a large radio wave shielding effect, the spacing between the arranged fibers may be reduced. In order to obtain a desired shielding effect at an arbitrary frequency, the spacing between the arranged fibers may be adjusted. On the other hand, the light transmittance becomes smaller as the spacing between the arranged fibers becomes narrower. However, at the fiber spacing necessary for obtaining a practically sufficient radio wave shielding effect, the decrease in the light transmittance can be reduced to about 10% or less.
[0029]
FIG. 3 shows the effect of the spacing of the conductive fibers on the radio wave transmittance (shielding effect) of a composite material using carbon fibers. The horizontal axis (S / λ) in FIG. 3 indicates a normalized value obtained by dividing the distance S between the conductive fibers by the wavelength λ of the radio wave. When S / λ is 0.2 or less, particularly 0.15 or less, the shielding effect increases. This composite material is obtained by compounding carbon fiber having a length of 500 mm and a diameter of 7 μm with an epoxy resin. The spacing between the conductive fibers was varied between 2 and 10 mm. The distance between the two conductive fiber layers is 10 mm, and each conductive fiber layer is composited at a depth of 1 mm from the surface of the material.
[0030]
This composite material was formed into a square having a side of 50 cm, and attenuation of radio waves transmitted in a frequency range of 20 to 40 GHz was examined. The radio wave transmittance measuring device used is a horn-type antenna having a dielectric lens and a focal length of 150 mm, and irradiates the surface of the composite material with a randomly polarized radio wave having a size about four times the wavelength, and an antenna having the same configuration. Is placed on the opposite side of the radio wave irradiation surface.
Al not having electric conductivity, not limited to carbon fiber 2 O 3 Even in the case of using a fiber whose surface is coated with Cu or Ni by electroless plating at a thickness of 0.5 μm, the point that the radio wave transmittance depends on the distance between the conductive fibers was the same.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings. As shown in the perspective view of FIG. 4, one in which two layers of conductive fibers are arranged in one matrix material is a basic unit of the radio wave shielding material of the present invention.
As shown in FIG. 4, a plurality of conductive fibers are arranged in one direction with a center-to-center distance S between adjacent conductive fibers F <b> 1 so as to form one layer in a material M serving as a matrix. Further, another plurality of conductive fibers F2 are not electrically connected to the layer in which the conductive fibers F1 are arranged, and are separated from each other in a spatially separated layer. The directions are arranged in the matrix material M such that the direction and the fiber axis direction of the conductive fibers F2 are at an intersection angle θ. As described above, the crossing angle θ is in the range of 90 ± 30 degrees, more preferably in the range of 90 ± 15 degrees, in order to maximize the polarization action of the radio wave.
[0032]
The perspective view of FIG. 5 is a modification of the one shown in FIG. 4, in which a transparent conductive film, a conductive plastic film, and a conductive fiber F1 are arranged between a layer in which the conductive fibers F1 are arranged and a layer in which the conductive fibers F2 are arranged. An example is shown in which an auxiliary conductor layer P such as a wire net is interposed to enhance the electromagnetic shielding performance. For example, a mesh made of metal fibers having a diameter of 10 to 500 μm is combined with a glass plate or a plastics plate to form a netted plate, and the conductive material is exposed on both surface sides of the plate without being exposed to the surface of the plate. Preferably, a fiber layer is provided.
[0033]
In the radio wave shielding material of the present invention, the distance between the two layers is preferably equal to or larger than the diameter of the conductive fiber used. In the radio wave shielding material of the present invention, the spacing between the fibers affects the intensity of the transmitted radio wave. For example, if the interval is wide, the intensity of the transmitted radio wave increases. On the other hand, considering the reflection of radio waves on the polarizing layer, the reflection increases as the fiber spacing decreases. If the rate of radio wave reflection is too high, the effect of the polarization action will not work sufficiently. When the spacing between the conductive fibers is smaller than the diameter of the fibers, the rate at which radio waves pass through the layer in which the fibers are arranged becomes extremely small, and conversely, the rate at which the waves are reflected increases. This is the reason why the spacing between the conductive fibers of the polarizing layer is equal to or less than the frequency of the wavelength. On the other hand, if the distance between the stacked conductive fiber layers is smaller than the diameter of the conductive fiber used, the effect of reflecting the radio waves by integrating the respective layers is increased, and the polarization function cannot be used. That is, it functions only as one polarizing layer. Therefore, in the radio wave shielding material of the present invention, the distance between the two layers is preferably equal to or larger than the diameter of the conductive fiber used.
[0034]
The number of conductive fiber layers in the matrix material may be two or more. As the number of layers increases, the polarization action becomes stronger. However, when the number of layers becomes four or more, the radio wave shielding effect by increasing the number of layers does not increase in proportion to the number of layers, and the effect of increasing the number of layers tends to decrease. When three or more conductive fiber layers are used, the intersection angle between the fiber axis of the third or more layers and the fiber axis of the first layer can be arbitrarily selected. In this case, the greatest electromagnetic shielding effect can be obtained by unifying the configuration of the crossing angles of the adjacent layers to 0 degrees / 90 degrees.
[0035]
The projected area occupied by the conductive fiber layer is preferably at least 30% or less of the total surface area of the matrix material. Increasing the number of conductive fiber layers increases the radio wave shielding effect. However, when the number of conductive fiber layers is increased, the light transmittance does not decrease if the conductive fiber layers are overlapped, but the light transmittance decreases if the conductive fiber overlap in each layer becomes random. I do. Therefore, it is necessary to determine the number of conductive fiber layers in consideration of radio wave shielding characteristics and light transmission characteristics simultaneously.
[0036]
FIG. 6A shows an arrangement in which all the conductive fiber layers composed of seven layers are arranged at the same interval. However, as shown in FIG. 6 (2), the intervals between the conductive fiber layers need not be all the same. Also, not all fiber axis directions need to be completely parallel. Conductive fibers in the same plane may have periodically different intervals as shown in FIG. 6 (3), or as shown in FIG. 6 (4). The layer may not be perfectly flat but may be wavy or the like. Further, the distance from the conductive fiber layer closest to the surface of the matrix material to the surface of the matrix material may be the same or different on both sides of the matrix material.
[0037]
The conductive fiber layers used on both sides of the matrix material do not necessarily need to be composited in the matrix material. As shown in FIG. 7A, the conductive fibers F1 and the conductive fibers F2 are formed of the matrix material M. The effect is exerted even when the surface is adhered using an adhesive or a sticky seal D. In this case, the axes of the fibers of the attached conductive fiber layer do not necessarily have to be on the same plane, and if the fibers are displaced within 繊 維 of the fiber spacing, the conductive fibers are on the same plane. Similarly, it exerts a polarizing effect as one polarizing layer.
[0038]
Further, as shown in FIG. 7 (2), a thin plastic film E in which conductive fibers F1 and conductive fibers F2 are arranged in parallel is attached to both surfaces of a matrix material M of glass or plastics. Is also good. Further, as shown in FIG. 8A, the distance between adjacent conductive fiber layers is not constant and may be inclined. Furthermore, as shown in (2) of FIG. 8, the axes of the fibers may not be completely aligned on the same plane, but may be a wavy surface.
[0039]
Conductive fiber and matrix composites are prepared by preparing conductive fibers arranged at equal intervals and compounding with low-viscosity glass, compounding with an interlayer film for laminated glass, and combining glass and polymer materials. Prepare a board, arrange conductive fibers on the board at equal intervals, sandwich it with the same glass or polymer material, and apply pressure at the softening point of the glass or polymer material or below and press molding May be. When a polymer material is used, three-dimensionally arranged conductive fibers arranged at equal intervals may be put into a mold such as a fluororesin, and the polymer material may be poured into the mold and molded. Thus, it is possible to produce a material by many molding methods.
[0040]
FIG. 9 is a side view (a) and a plan view (b) showing an example of a fiber woven fabric used for the arrangement of the electrically conductive fibers, in which the conductive fiber F1 and the non-conductive fiber F3 such as a polymer fiber are fixed. This is a three-dimensional woven fabric that is periodically formed at intervals. The same effect can be obtained even if the conductive fibers or the fiber bundles are not in contact with each other even in a woven structure in which the conductive fibers are periodically arranged at regular intervals and the fiber axes are not in one plane. Can be As described above, when the conductive fiber is formed into a three-dimensional fabric, it can be easily formed into a case of an electronic device or the like.
[0041]
As the conductive fibers, metals, carbides, nitrides, oxides, intermetallic compounds, carbon or dielectric materials, and the like are used. Preferably, a material having small electric resistance such as metal or carbon is good. The electric conductivity of the fiber before compounding is preferably 100 Ωm or less.
[0042]
When a transparent or opaque fiber having no electric conductivity is used, the surface may be coated with a material having electric conductivity such as metal or carbon. Further, a transparent conductive oxide film may be coated. When a metal is coated to provide electrical conductivity, the thickness of the metal coating is preferably 3 μm or less. Further, the same effect can be obtained with a fiber mainly composed of SiC having semiconductor properties. In this case, a layer rich in carbon may be provided on the fiber surface by heat treatment of the fiber.
[0043]
The conductive fiber is coated with a conductive metal oxide on the surface of a material such as glass fiber that transmits light in the visible light region, and has a light transmittance of 60% or more and a specific resistance of 10%. -1 It may be less than Wcm. Different conductive fibers may be used for each of the two conductive fiber layers.
[0044]
The diameter of the fiber may be 3 mm or less. However, in order not to sacrifice light transmittance, the diameter of the fiber is preferably 0.3 mm or less in order to maintain both light transmittance and transparency. The smallest diameter of existing conductive fibers is about 3 μm, and such fibers may be used. Further, a bundle of fibers may be used.
[0045]
When carbon fiber or stainless steel fiber is used, if it is necessary to form a composite at a high temperature such that a reaction occurs between glass and the fiber, a ceramic coating or wettability to prevent the reaction is applied to the fiber surface. A metal coating or the like may be applied to improve the quality. By doing so, it is possible to form a composite with glass having a low viscosity at a high temperature continuously, or to form a composite easily by pressing a glass having a low viscosity on an array of conductive fibers. Such a compounding process is not limited to glass, and can be applied when a polymer material is used.
[0046]
As a matrix material, 30% or more of light in the visible light region is used for applications having sufficient light transmittance in the visible light region, such as window materials for hospitals and window materials used in vehicles such as trains and automobiles. An inorganic or polymer material having a transmittance is used. Further, translucent ceramics may be used. Preferably, those having a visible light transmittance of 70% or more and having a mechanical function used for window materials such as polymer materials and glass materials are preferable.
[0047]
Further, when a material other than a transparent material does not require light transmittance and only a radio wave shielding function is required, plastics or glass having no light transmittance may be used. The present invention can also be applied to plastics used for electronic device cases.
[0048]
Metals, plastics, and ceramics may be contained in glass or plastics having a light transmittance of 10% or more to infrared light. In addition to these materials, when it is desired to change the properties of glass or plastics, these materials have an electric resistivity to DC of 10%. 3 Even if a composite material of particles, fibers, whiskers, and the like having a size of Ωm or more is used as a matrix material, glass and plastics do not electrically connect to conductive fibers, so that the function of shielding electric waves by polarized light works.
[0049]
Even if plastic containing ceramic particles is used, the electrical conductivity is 10 -6 Ω -1 n -1 If it is below, a polarizing action works. Further, a glass or plastics substrate, such as a mirror that reflects light or a surface that is processed so as to diffusely reflect light on the surface, may be coated with a metal or ceramic reflection film. Further, an opaque material such as a mortar, a structural wall such as gypsum or concrete may be used as the matrix material.
[0050]
【Example】
Example 1
Two fiber layers in which carbon fibers having a diameter of 10 μm are arranged in a PMMA resin plate serving as a matrix material at a constant interval of 5 mm and in parallel in one direction at equal intervals are respectively provided within a distance of 1 mm from both surfaces of the PMMA resin plate. The composite material was prepared by a hot press method. In this composite material, the distance between two fiber layers in which carbon fibers are arranged is approximately 5 mm, and the intersection angle between the fiber axes of both fiber layers is 90 degrees. The total thickness of the fiber composite material is 7 mm. The PMMA resin used is a transparent material used as various window materials.
[0051]
In order to examine the radio wave shielding characteristics of this fiber composite material, the same radio wave transmittance measuring device using the above-mentioned horn type antenna was used, and the radio wave shielding characteristics in a frequency range of 20 to 30 GHz were obtained. FIG. 10 is a graph showing the results of the radio wave shielding characteristics. As can be seen from FIG. 10, the obtained fiber composite material had a radio wave shielding effect of -18 dB or more in this frequency range. The projected area of the carbon fiber material is 0.4%, and the light transmittance in the visible light region falls within 5% of that of a PMMA resin plate in which carbon fibers of the same thickness are not combined. Thus, it was found that this material had a radio wave shielding property and a light transmittance.
[0052]
Example 2
Using a stainless steel fiber having a diameter of 100 μm, a composite material was produced in the same manner as in Example 1 except that the interval between the stainless steel fibers was 5 mm, the distance between the two fiber layers was 10 mm, and the intersection angle θ was 90 degrees. The size of the produced composite material is 30 cm square. Using the fiber composite material having a total thickness of 12 mm, the radio wave shielding characteristics were measured. The frequency range of the measurement of the radio wave shielding characteristics was 20 to 40 GHz. In all measured frequency ranges, a radio wave shielding effect of -18 dB or more was obtained at all frequencies. The projected area of the stainless steel fiber material was 4%, and the light transmittance in the visible light region was only 10% lower than that of the same thickness PMMA resin plate used for the matrix of the fiber composite material.
[0053]
Example 3
Further, a fiber composite material having a structure in which two fibers having the same fiber arrangement structure as the fiber composite material of Example 2 were stacked was produced. The total thickness is 24 mm. As a result of measuring the radio wave shielding characteristics of this fiber composite material, attenuation of -24 dB or more was recognized. In this case, although the light transmittance in the visible light region was increased, it was only 3% lower than that of Example 2. It was confirmed that the radio wave shielding characteristics tended to increase incrementally by increasing the number of fiber layers.
[0054]
Example 4
A stainless steel fiber having a diameter of 100 μm was compounded on a sticky surface of a 0.2 mm thick plastic film having stickiness on one side so as to periodically change the spacing between adjacent fibers. The basic spacing of the fibers was 3 mm, and the spacing between adjacent fibers was increased by 1 mm at intervals of 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, and 10 mm until the spacing became 10 mm. When the fiber spacing reached 10 mm, the space between adjacent fibers, such as 9 mm, 8 mm, 7 mm, 6 mm, 5 mm, 4 mm, and 3 mm, was reduced. A plastic film provided with fibers repeating this cycle was adhered to both sides of a soda-lime glass plate having a thickness of 5 mm and a matrix material of 30 cm square as shown in FIG. 7 (2). The intersection angle θ between the respective fiber layers on both sides was 90 degrees.
[0055]
Using this fiber composite material, a radio wave transmittance was measured in the same manner as in Example 2, and a radio wave shielding effect of -16 dB or less was confirmed at a frequency of 10 GHz to 40 GHz. The projected area of the stainless steel fiber material was 6.6% at the maximum, and the average light transmittance of the fiber composite material was reduced to within 21% even after the used plastic film was attached to the glass plate.
[0056]
Example 5
Further, a transparent ITO film having electrical conductivity deposited on the surface of the glass plate was used in place of the glass plate of Example 4, so that the ITO film and the plastic film to which the fiber was attached were not electrically connected. When a radio wave shielding characteristic was measured by the same method as in Example 2, an attenuation of -18 dB was observed. As described above, even when a transparent substrate provided with a transparent electric conductive film such as an ITO film is used as long as the fiber layer and the electric conductive film are not electrically connected, for example, the electric conductive layer may be used. May be applied to a place such as the center or the end of the transparent substrate.
[0057]
Example 6
A carbon fiber with a diameter of 7 μm is placed on both sides of a 10 mm thick netted glass plate that is made of a stainless steel fiber with a diameter of 0.5 mm and compounded at the center in the plate thickness direction so that one square becomes 10 mm. Fiber layers arranged at 5 mm intervals were provided using a plastic film having the same adhesive layer as in Example 4. The crossing angle θ between the fiber axes provided on both surfaces was set to be in the range of 80 to 90 degrees.
[0058]
This material was made into a square of 50 cm, and was attached to one surface of a metal box in which all surfaces were made of metal and the metal was grounded with a conductive metal. A radio wave transmitter with a frequency of 2 GHz and an output of 1 mW was placed inside the box, and the electric field was measured at a position 10 cm away from the radio wave shielding material made of this material outside the box. I confirmed that. This radio wave shielding property is practically sufficient, and this material has a light transmittance of 70% or more in the visible light region, and can be used as a window glass capable of shielding radio waves and transmitting light. It was confirmed that it was possible.
[0059]
【The invention's effect】
As one of the countermeasures against radio interference, which has recently become a social problem, an extremely practical transparent or opaque radio shielding material can be provided. In particular, according to the present invention, it is possible to obtain a composite material which transmits a light but does not transmit a radio wave by minimizing a reduction in light transmittance of a material having a function as a window material. The vehicle can be prevented from shielding radio waves from the outside and from spreading radio waves from inside the structure to the outside. In addition, it can be applied to heat reflection glass, translucent mirrors, and infrared transparent plastics.
[Brief description of the drawings]
FIG. 1 is a plan view for describing in principle the mode of forming a polarization layer of radio waves by a three-dimensional arrangement structure of conductive fibers in the present invention.
FIG. 2 is a graph showing an example of a relationship between an intersection angle θ and a radio wave shielding characteristic at a frequency of 10 GHz for a polarizing layer structure in which conductive fibers are three-dimensionally arranged.
FIG. 3 is a graph showing a relationship between a distance (S) (normalized by a radio wave frequency (λ)) between adjacent conductive fibers of a conductive fiber layer and a radio wave transmittance (shielding effect). .
FIG. 4 is a perspective view conceptually showing a basic configuration of a radio wave shielding material of the present invention.
FIG. 5 is a modification of the basic configuration shown in FIG. 4, in which a transparent conductive plastic film or the like is interposed between stacked layers of conductive fiber layers.
FIG. 6 is a side view showing an embodiment of the electromagnetic shielding material of the present invention.
FIG. 7 is a side view showing another embodiment of the electromagnetic shielding material of the present invention.
FIG. 8 is a side view showing still another embodiment of the electromagnetic shielding material of the present invention.
FIG. 9 is a side view (a) and a plan view (b) showing an example of a fiber fabric used for arranging conductive fibers.
FIG. 10 is a graph showing measurement results of radio wave shielding characteristics of Example 1.

Claims (3)

導電性繊維を電気的に接続させずに一方向に並べて間隔を開けて配列した導電性繊維層と、さらに、別の導電性繊維を電気的に接続させずに一方向に並べて間隔を開けて配列した導電性繊維層をマトリックス材料の内部又は表面に互いに距離をおいて電気的に接続させずに積層し、配列した導電性繊維の間隔は遮蔽を目的とする電波の周波数の波長以下とし、積層した導電性繊維層の距離は用いた導電性繊維の直径以上とし、積層した導電性繊維層のそれぞれの繊維軸間の交差角度θを90度±30度とすることにより、電波の偏光層として機能する導電性繊維の3次元配置構造を形成したことを特徴とする電波遮蔽材料。A conductive fiber layer arranged in one direction without a conductive fiber electrically connected and arranged at intervals, and further, a conductive fiber layer arranged in one direction without an electrical connection and spaced apart from each other. The arranged conductive fiber layer is laminated without being electrically connected to the inside or surface of the matrix material at a distance from each other, and the distance between the arranged conductive fibers is set to be equal to or less than the wavelength of the frequency of the radio wave for shielding, The distance between the laminated conductive fiber layers is equal to or greater than the diameter of the conductive fiber used, and the intersection angle θ between the fiber axes of the laminated conductive fiber layers is set to 90 ° ± 30 °, so that the radio wave polarization layer is formed. A radio wave shielding material comprising a three-dimensionally arranged structure of conductive fibers functioning as a material. 導電性繊維間の間隔Sを電波の波長λで割った規格化した値(S/λ)が0.2以下であることを特徴とする請求項1記載の電波遮蔽材料。2. The radio wave shielding material according to claim 1, wherein a normalized value (S / [lambda]) obtained by dividing an interval S between the conductive fibers by a wavelength [lambda] of the radio wave is 0.2 or less. マトリックス材料として透明材料を用い、波長が500nm以上の可視光領域で導電性繊維を複合化していない該透明材料に比較して透過率が10%以内の低下であり、電波遮蔽効果が−8dB以上であることを特徴とする請求項1記載の電波遮蔽材料。A transparent material is used as the matrix material, the transmittance is reduced by 10% or less compared with the transparent material in which the conductive fiber is not compounded in the visible light region having a wavelength of 500 nm or more, and the radio wave shielding effect is -8 dB or more. The radio wave shielding material according to claim 1, wherein
JP2002237740A 2002-08-19 2002-08-19 Electric wave shield material Pending JP2004079762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002237740A JP2004079762A (en) 2002-08-19 2002-08-19 Electric wave shield material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002237740A JP2004079762A (en) 2002-08-19 2002-08-19 Electric wave shield material

Publications (1)

Publication Number Publication Date
JP2004079762A true JP2004079762A (en) 2004-03-11

Family

ID=32021352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002237740A Pending JP2004079762A (en) 2002-08-19 2002-08-19 Electric wave shield material

Country Status (1)

Country Link
JP (1) JP2004079762A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026861A (en) * 2006-07-19 2008-02-07 Lg Electronics Inc Plasma display apparatus and filter
JP2011216560A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Electromagnetic wave shielding structure
JP2014057069A (en) * 2012-09-13 2014-03-27 Visteon Global Technologies Inc Electric field shield for wireless charger
WO2014115312A1 (en) * 2013-01-25 2014-07-31 Wakitani Kiyotaka Phase conversion device for electromagnetic waves
WO2017130652A1 (en) * 2016-01-28 2017-08-03 国立大学法人名古屋工業大学 Radio wave shield material, mortar, snow melting device, radio wave shield, and structure
JP2019062017A (en) * 2017-09-25 2019-04-18 日本電気株式会社 Radio wave shielding component and radio wave shielding case
KR20220141084A (en) * 2021-04-12 2022-10-19 와이엠티 주식회사 High-frequency EMI shielding material with high flexibility and manufacturing thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026861A (en) * 2006-07-19 2008-02-07 Lg Electronics Inc Plasma display apparatus and filter
JP2011216560A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Electromagnetic wave shielding structure
JP2014057069A (en) * 2012-09-13 2014-03-27 Visteon Global Technologies Inc Electric field shield for wireless charger
WO2014115312A1 (en) * 2013-01-25 2014-07-31 Wakitani Kiyotaka Phase conversion device for electromagnetic waves
CN104937776A (en) * 2013-01-25 2015-09-23 脇谷清隆 Phase conversion device for electromagnetic waves
WO2017130652A1 (en) * 2016-01-28 2017-08-03 国立大学法人名古屋工業大学 Radio wave shield material, mortar, snow melting device, radio wave shield, and structure
JP2019062017A (en) * 2017-09-25 2019-04-18 日本電気株式会社 Radio wave shielding component and radio wave shielding case
KR20220141084A (en) * 2021-04-12 2022-10-19 와이엠티 주식회사 High-frequency EMI shielding material with high flexibility and manufacturing thereof
KR102496017B1 (en) * 2021-04-12 2023-02-06 와이엠티 주식회사 High-frequency EMI shielding material with high flexibility and manufacturing thereof

Similar Documents

Publication Publication Date Title
CN107946763B (en) Wave-absorbing and wave-transmitting integrated metamaterial antenna housing and application thereof
JP3243789B2 (en) Radio wave absorbing panel
KR101598989B1 (en) Heat blocking system utilizing particulates
CN102067743B (en) Electromagnetic wave absorptive film and electromagnetic wave absorbent
JP2002506596A (en) Transparent sheets, especially windowpanes with coatings and radiation windows
CN106413359B (en) Bidirectional wave-absorbing strong electromagnetic shielding optical window with multilayer graphene grid/metal grid laminated structure
JP2005057093A (en) Radio wave absorber and method for manufacturing the same
CN103249290A (en) Single-layered composite element wideband periodic wave-absorbing structure
JP2004079762A (en) Electric wave shield material
WO1998035542A1 (en) Novel conductive loop pattern and frequency selective electromagnetic wave shielding material
Lin et al. An ultra-wideband reflective phase gradient metasurface using pancharatnam-berry phase
CN109799551B (en) Fully-polarized and ultra-wideband electromagnetic wave angle selection transparent structure
JPH09148782A (en) Transparent electromagnetic wave absorbing/shielding material
US7528905B2 (en) Light polarizing film, a method of continuously fabricating same, and reflective optical devices using same
US5493126A (en) LWIR-transmitting windows
CN214280217U (en) Wave-absorbing metamaterial
CN106659099B (en) Transparent electromagnetic shielding device for graphene grids and double-layer metal grids
CN111864402B9 (en) Wave-transparent structure and wave-transparent device
CN111478057B (en) Electromagnetic wave absorbing material, preparation method, application, coating and block material
CN106413357B (en) Electromagnetic shielding optical window based on graphene grid and transparent conductive film laminated structure
CN104934720B (en) Low-permeability wave metamaterial, antenna housing and antenna system
JP6089625B2 (en) Sheet material for radio wave absorber and radio wave absorber using the same
CN106385791B (en) Strong electromagnetic shielding optical window with graphene grid and double-layer metal grid composite laminated structure
DAloia et al. Closed-form analytical design of optically transparent wideband absorbers for 5G technology
CN114447622A (en) Design of broadband ultrathin transparent wave absorber

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20031031

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Effective date: 20060718

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060915

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20061212

Free format text: JAPANESE INTERMEDIATE CODE: A02