JP2004079313A - Sample holder supporting device - Google Patents

Sample holder supporting device Download PDF

Info

Publication number
JP2004079313A
JP2004079313A JP2002237025A JP2002237025A JP2004079313A JP 2004079313 A JP2004079313 A JP 2004079313A JP 2002237025 A JP2002237025 A JP 2002237025A JP 2002237025 A JP2002237025 A JP 2002237025A JP 2004079313 A JP2004079313 A JP 2004079313A
Authority
JP
Japan
Prior art keywords
axis
bearing
axis direction
holder
sample holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002237025A
Other languages
Japanese (ja)
Other versions
JP4073271B2 (en
Inventor
Shunji Deguchi
出口 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2002237025A priority Critical patent/JP4073271B2/en
Publication of JP2004079313A publication Critical patent/JP2004079313A/en
Application granted granted Critical
Publication of JP4073271B2 publication Critical patent/JP4073271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the shift of a sample observation part on a Z axis from a field of vision when a sample holder H is rotated around its axis, and to make a straight line which links a spherical surface center O1 of a spherical bearing of a rotating central of the sample holder to the Z axis coincide with the axis of the rotation member in the plan perpendicular to a charged particle line along the Z axis. <P>SOLUTION: The sample holder supporting device comprises a goniometer mounting hole 2b by which the inside and outside of a lens-barrel 2 surrounding a passage of the charged particle beam along the Z axis perpendicular to orthgonal X and Y axes communicate with each other in an X axis direction; the spherical bearing 8 which is provided at an inner end of the goniometer mounting hole 2b and is rotatably supported around a pivot 8a perpendicular to a XY plane, and in which the spherical surface center O1 is movably supported in the XY plane in rotation; and a goniometer GM which supports a holder mounting member where the sample holder H is mounted and has a bearing member 16 supported so as to adjust positions in a Y-axis direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、荷電粒子線装置の試料ホルダ支持装置に関し、特に、試料傾斜時の試料の観察部分の移動量(像逃げ)を少なくした試料ホルダ支持装置に関する。
【0002】
【従来の技術】
次の図面により透過型電子顕微鏡の従来例について説明する。
なお、以後の説明の理解を容易にするために、図面において、前後方向をX軸方向、右左方向をY軸方向、上下方向をZ軸方向とし、矢印X,−X,Y,−Y,Z,−Zで示す方向または示す側をそれぞれ、前方、後方、右方、左方、上方、下方、または、前側、後側、右側、左側、上側、下側とする。
また、図中、「○」の中に「・」が記載されたものは紙面の裏から表に向かう矢印を意味し、「○」の中に「×」が記載されたものは紙面の表から裏に向かう矢印を意味するものとする。
【0003】
(従来例1)
図5は荷電粒子線装置で使用されている試料ホルダ支持装置の従来例1の説明図で、比較的小型の試料ホルダ支持装置の要部平断面図である。
図5において、透過型電子顕微鏡(荷電粒子線装置)01は、内部を真空に保持される鏡筒02を有し、鏡筒02の前側部分(X側部分)にはブロック貫通孔02aが形成され、後側部分(−X側部分)にはゴニオメータ装着孔02bが形成されている。鏡筒02上端部(Z軸方向上端部)に配置した電子銃(図示せず)から下方(−Z方向)に出射される電子ビームの中心線に沿ってZ軸が設定される。電子ビームは収束レンズ(図示せず)により収束位置F1に配置された試料を透過してから結像レンズ(図示せず)により鏡筒02下端部の撮像位置(図示せず)に結像する。撮像位置には撮像装置が配置されており、撮像した顕微鏡画像は図示しないディスプレイで観察することができる。
【0004】
鏡筒02により位置調節可能に支持されたステージGSは、水平面内(XY平面内)で移動可能なステージ本体03を有しており、ステージ本体03には上下方向に延びるZ軸(上下軸)に沿った荷電粒子ビームの通路が形成されている。ステージ本体03の前部(X側部分)にはピボット軸受04を収容するX軸方向に延びるピボット軸受収容孔03aが形成されている。ピボット軸受04は複数のバネを介して、ピボット軸受収容孔03a内に移動可能に支持されている。ステージ本体03の後部(−X側部分)には円筒部03bが形成されており、円筒部03bは前記ゴニオメータ装着孔02bを貫通して鏡筒02の後側に突出している。円筒部03bの内端部(X端部)には軸受用球面03cが形成されており、前記軸受用球面03cの球面中心Oは円筒部03bの軸線上に配置されている。
前記ステージ本体03の前端部(X側端部)にはブロック06が連結されている。ブロック06は前記ブロック貫通孔02aを貫通して鏡筒02の外部に突出している。前記ブロック06は前後方向(X軸方向)に位置調節可能なホルダ位置決め部材07を支持しており、前記ホルダ位置決め部材07は、前記ピボット軸受04の前端の位置決めを行うために前記ピボット軸受04の前端(X端)に当接している。
【0005】
前記符号03〜07で示された要素によりステージGSが構成されており、前記ステージGSは前記鏡筒02にXY面内で移動可能に支持されている。
前記鏡筒02には4本の位置調節用スクリュー08が貫通して支持されており、前記位置調節用スクリュー08の先端部には球08aが装着されている。前記位置調節用スクリュー08を鏡筒02外部から回転させて進退移動させることにより、前記ステージGSのXY面内の位置を調節することができる。
【0006】
前記ステージGSの円筒部03bの後部(−X側部分)には軸受部材010が装着されており、軸受部材010は前後方向(X軸方向)に延びる軸受孔010aを有する。前記軸受孔010aには回転部材011が回転可能に支持されている。
前記回転部材011にはX軸方向に延びる貫通孔011aが形成されている。貫通孔011aを貫通する筒状のホルダ装着部材012の内端部の外側面には球面012aが形成されている。前記ホルダ装着部材012の球面012aは前記軸受用球面03cにより、球面中心O回りに回動可能に支持されている。また、ホルダ装着部材012には円筒状のホルダ装着孔012bが形成されている。
【0007】
前記ホルダ装着部材012のホルダ装着孔012bには円筒状外周面を有する試料ホルダHが嵌合状態でスライド可能に装着されており、前記ホルダ装着孔012bの軸と試料ホルダHの軸とは一致している。したがって、ホルダ装着部材012の軸を傾斜させることにより、試料ホルダHの軸を傾斜させることができるようになっている。試料ホルダHはその外端部に作用する大気圧により常時内方(X方向)に押圧されている。この試料ホルダHの内端に当接する前記ピボット軸受04のX軸方向の位置を調節することにより、試料ホルダHのX軸方向の位置決めが行われる。
前記回転部材011の外周面にはギヤ011cが形成されている。前記ギヤ011cに噛み合う図示しないウォームギヤを回転させることにより、回転部材011はX軸回りに回転する。前記ホルダ装着部材012および試料ホルダHも、前記回転部材011と一体的に回転して、X軸回りの回転位置が調節される。試料ホルダHの回転により、試料ホルダHの内端部に保持された試料はX軸回りに傾斜(回転)する。
【0008】
前記回転部材011には、Y軸方向押圧部材013およびY軸方向位置調節用スクリュー014が互いに対向する位置に支持されており、それらの先端は、ホルダ装着部材012の筒状の外側面に当接している。前記Y軸方向位置調節用スクリュー014の先端の位置を調節することにより、前記ホルダ装着部材012を前記球面中心O回りに左右方向(Y軸方向)に旋回させることができる。このとき、試料ホルダHの内端部のY軸方向の位置を調節することができる。
なお詳細は省略するが、前記ホルダ装着部材012を前記球面中心O回りにZ軸方向(上下方向)に回動させることにより、試料ホルダHの内端部のZ軸方向の位置を調節することができるように構成されている。試料ホルダHの内端部のZ軸方向の位置を調節する機構は従来公知(特開2000−268758号公報参照)である。
【0009】
前記試料ホルダHの内端部のX軸方向の位置は前記ホルダ位置決め部材(X軸方向位置決め部材)07をX軸方向に位置調節することにより位置決めされ、Y軸方向の位置はY軸方向位置調節用スクリュー014により位置決めされる。したがって、前記試料ホルダHの内端部に保持された試料は、前記ホルダ位置決め部材07および前記Y軸方向位置調節用スクリュー014により、電子ビームの通路上(Z軸上)の位置(試料観察位置)に配置することができる。なお、電子ビームのZ軸上の収束位置F1は図示しない電子レンズに印加する電流を調節することにより調節される。
前記試料観察位置に配置した試料を傾斜させる場合には、回転部材011を回転させることにより、回転部材011、ホルダ装着部材012および円筒状外周面を有する試料ホルダHを同時に回転させる。このとき、円筒状の試料ホルダHの内端部に保持された試料は傾斜する。
前記符号010〜014等で示す要素により前記試料ホルダHのX軸回りの傾斜および前記球面中心O回りのY軸方向およびZ軸方向の傾斜を行うゴニオメータGMが構成されている。
【0010】
回転部材011の中心線と試料ホルダHの中心線(ホルダ軸)とが一致している場合には、前記試料の傾斜時に、試料の観察位置(電子ビームが照射されている位置)は傾斜するだけで移動しない。しかしながら、前記試料の傾斜時に、回転部材011の中心線と試料ホルダHの中心線とが一致していない場合には、試料の観察位置は移動して視野から外れる。
したがって、試料を傾斜させる場合には、次の条件(a),(b)を満たすことが必要となる。
(a)回転部材011の中心線と試料ホルダHの中心線とが一致しなければならない。
(b)前記回転部材011および試料ホルダHの中心線が光軸(電子ビームの通路、すなわち、Z軸)と垂直に交差しなければならない。
【0011】
前記図5に示す試料ホルダ支持装置の従来例1では、前記ステージ本体03に円筒部03bおよび軸受用球面03cを同時に加工することにより、前記ステージ本体03の円筒部03bの軸線上に軸受用球面03cの球面中心Oを配置している。前記円筒部03bに装着する軸受部材010の軸受孔010aの中心線は前記円筒部03bの中心線と一致するので、軸受部材010の軸受孔010aの中心線上に前記球面中心Oが配置される。さらに、前記軸受部材010に支持された回転部材011の中心線は前記球面中心Oを通るように配置され、且つ、前記試料ホルダHの軸は前記球面中心Oを通るように配置される。
したがって、前記球面中心O回りに、前記ホルダ装着部材012をY軸方向およびZ軸方向に回動させることにより、ホルダ装着部材012に装着された試料ホルダHの軸を前記回転部材011の軸と一致させることができる。すなわち、前記条件(a)を満たすことができる。
また、前記試料ホルダHおよび前記回転部材011の軸が一致した状態で、前記4個の位置調節用スクリュー08を調節して、ステージGSを移動させることにより前記条件(b)を満たすことができる。
【0012】
【発明が解決しようとする課題】
前記図5に示すゴニオメータGMを使用した試料ホルダ支持装置の従来例1では、ステージGSおよび前記ステージに装着されたゴニオメータGMを一体的に移動させる必要がある。このため前記図5の試料ホルダ支持装置は、荷電粒子線装置が小型の装置である場合には、使用可能である。しかしながら、荷電粒子線装置が大型の透過型電子顕微鏡装置の場合等には、移動させる部材の重量が大きいので、使用することが困難である。
図6は荷電粒子線装置で使用されている試料ホルダ支持装置の従来例2の説明図で、比較的大型の試料ホルダ支持装置の要部平断面図である。
図7は前記図6のVII−VII線断面図である。
図6、図7に示した従来の試料ホルダ支持装置の説明において、前記図5に示した要素に対応する要素には同一の符号を付して詳細な説明は省略する。
【0013】
この図6、図7に示す試料ホルダ支持装置の従来例2は、下記の点で前記図5に示す従来例1と相違しているが、他の点では前記従来例1と同様に構成されている。
図6、図7において、鏡筒02の前部にはブロック貫通孔02aが形成され、後部にはゴニオメータ装着孔02bが形成されている。
ステージ本体03は前記鏡筒02内部に固定支持されている。ステージ本体03の前部(X側部分)にはブロック06が固定されており、ブロック06は前記鏡筒02のブロック貫通孔02aを貫通している。ステージ本体03の後部(−X側部分)には球面軸受収容孔03dが形成されている。球面軸受収容孔03dに収容された球面軸受05は、下方(−Z方向)に突出する旋回軸05a(図7参照)により旋回中心O2(図6参照)回りに旋回可能に支持されている。前記球面軸受05の後端部(−X端部)は前記円筒状の球面軸受支持部材09の内周面に装着されたOリングにより、前記旋回軸05a回りに旋回可能に保持されている。
【0014】
前記図6、図7に示す試料ホルダ支持装置の従来例2は、球面軸受05を旋回中心O2(旋回軸05aの平面図(図6)での位置)回りに旋回させることにより球面軸受05の球面中心O1の位置を変更できる。しかしながら、回転部材011の軸の位置をY軸方向に調節することができないので、平面図(図6参照)において、Z軸、O1,O2を一直線上に配置することができない。また、側面図(図7参照)において、前記回転部材011の軸線上から前記球面軸受05の球面中心O1がずれて構成された場合、前記回転部材011および前記球面軸受05の位置を調節できないので、前記回転部材011の軸線上に前記球面軸受05の球面中心O1を配置するように調節することもできない。
したがって、図6、図7に示す従来例2では、平面図および側面図の両方において、前記回転部材011の軸線上に前記球面軸受05の球面中心O1を配置することができず、また、平面図において、前記Z軸および球面中心O1を結ぶ直線と前記回転部材011の軸線とを一致させることも不可能である。このため、前記回転部材011を回転させて試料ホルダHをその軸回りに回転させたときに、Z軸上の試料観察部分が視野から大きく逃げる。
【0015】
本発明は、前述の事情に鑑み、下記の記載内容(O01),(O02)を課題とする。
(O01)前記試料ホルダHをその軸回りに回転させたときのZ軸上の試料観察部分が視野から逃げる量を少なくすることが可能な、構成が簡単なホルダ支持装置を提供すること。
(O02)Z軸に沿う荷電粒子線に垂直な平面図において、前記試料ホルダの回動中心である球面軸受の球面中心O1とZ軸とを結ぶ直線と、前記回転部材011の軸線とを一致させることが可能な試料ホルダ支持装置を提供すること。
【0016】
【課題を解決するための手段】
次に、前記課題を解決するために案出した本発明を説明するが、本発明の要素には、後述の実施例の要素との対応を容易にするため、実施例の要素の符号をカッコで囲んだものを付記する。
また、本発明を後述の実施例の符号と対応させて説明する理由は、本発明の理解を容易にするためであり、本発明の範囲を実施例に限定するためではない。
【0017】
(本発明)
前記課題を解決するために、本発明の試料ホルダ支持装置は、下記の構成要件(A01)〜(A06)を備えたことを特徴とする、
(A01)直交するX軸およびY軸に垂直なZ軸に沿う荷電粒子ビームの通路を囲む鏡筒(2)に固定されたゴニオ装着用ステージ(GS)であって、X軸方向に延び且つ前記鏡筒(2)の内外を連通させるゴニオメータ装着孔(2b)と、前記ゴニオメータ装着孔(2b)の内端部に設けられた球面軸受(8)とを有するゴニオ装着用ステージ(GS)、
(A02)XY平面に垂直な旋回軸(8a)回りに旋回可能に支持され且つ旋回時に球面中心(O1)がXY平面内で移動可能に支持された前記球面軸受(8)、(A03)前記ゴニオメータ装着孔(2b)の外端部に支持され且つ前記X軸方向に延びる軸受孔(16a)を有する軸受部材(16)と、前記軸受孔(16a)により回転可能に支持され且つホルダ装着部材貫通孔(21b)を有する回転部材(21)と、前記ホルダ装着部材貫通孔(21b)を貫通して配置され且つ内端部が前記球面軸受(8)に回動可能に支持されるとともに試料ホルダ(H)が着脱可能に装着されるホルダ装着孔(22a)を有するホルダ装着部材(22)と、前記ホルダ装着部材(22)の外端部を前記Y軸方向に位置調節するY軸方向位置調節部材(34)と、前記Z軸方向に位置調節するZ軸方向位置調節部材(28)とを備えたゴニオメータ(GM)、
(A04)前記Y軸方向に位置調節可能に支持された前記軸受部材(16)、
(A05)前記旋回軸(8a)回りに前記球面軸受(8)の旋回位置を調節する球面軸受位置調節部材(14)、
(A06)前記軸受部材(16)を前記Y軸方向に位置調節する軸受位置調節部材(41,42)。
【0018】
(本発明の作用)
前述の特徴を備えた本発明の荷電粒子線装置では、直交するX軸およびY軸に垂直なZ軸に沿う荷電粒子ビームの通路を囲む鏡筒(2)にはゴニオ装着用ステージ(GS)が固定される。ゴニオメータ装着孔(2b)は、X軸方向に延び且つ前記鏡筒(2)の内外を連通させる。前記ゴニオメータ装着孔(2b)の内端部に設けられた球面軸受(8)は、XY平面に垂直な旋回軸(8a)回りに回転可能であり、回転時に球面中心(O1)がXY平面内で移動する。
前記ゴニオメータ装着孔(2b)の外端部には軸受部材(16)が前記Y軸方向に位置調節可能に支持される。前記軸受部材(16)のX軸方向に延びる軸受孔(16a)は、回転部材(21)を回転可能に支持する。
回転部材(21)のホルダ装着部材貫通孔(21b)を貫通するホルダ装着部材(22)は、内端部が前記球面軸受(8)に回動可能に支持される。ホルダ装着部材(22)のホルダ装着孔(22a)には試料ホルダ(H)が着脱可能に装着される。
【0019】
軸受位置調節部材(41,42)は、前記軸受部材(16)を前記Y軸方向に位置調節するので、軸受部材(16)および前記軸受部材(16)に支持された回転部材(21)の軸をY軸方向に調節することができる。したがって、前記軸受位置調節部材(41,42)により、Z軸に垂直な平面内において、軸受部材(16)および回転部材(21)の回転軸を前記Z軸に交差させることができる。
球面軸受位置調節部材(14)は、前記旋回軸(8a)回りに前記球面軸受(8)の旋回位置を調節するので、球面軸受位置調節部材(14)により、球面軸受(8)の球面中心(O1)の位置をY軸方向に調節することができる。したがって前記Z軸に垂直な平面図において、前記球面軸受位置調節部材(14)は、前記Z軸に交差する前記回転部材(21)の回転軸上に、球面中心(O1)を配置することができる。すなわち、前記Z軸に垂直な平面図において、前記球面中心(O1)を通る回転部材(21)の軸を前記Z軸と交差させることができる。
【0020】
Y軸方向位置調節部材(34)は前記ホルダ装着部材(22)の外端部を前記Y軸方向に位置調節する。このとき、前記球面中心(O1)を通るホルダ装着部材(22)のホルダ装着孔(22a)の軸およびホルダ装着孔(22a)に装着された試料ホルダ(H)のホルダ軸は球面中心(O1)回りに旋回し、且つ試料ホルダ(H)内端部に保持された試料はY軸方向に位置調節される。
したがって、前記Z軸に垂直な平面図において、前記球面中心(O1)を通り且つ前記Z軸に交差する前記回転部材(21)の軸と、ホルダ装着部材(22)および試料ホルダ(H)の軸を一致させることができる。このため、前記回転部材(21)および試料ホルダ(H)をそれらの軸回りに回転させたときのZ軸上の試料観察部分が視野から逃げる量を少なくすることが可能となる。
また、前記試料ホルダの回動中心である球面軸受の球面中心O1とZ軸とを結ぶ直線と、前記回転部材011の軸線とを、Z軸に垂直なXY平面内においてのみ位置調節可能としてそれらを一致させているが、XZ面内では一致させていないので、比較的簡単な構成とすることができる。
【0021】
Z軸方向位置調節部材(28)は前記ホルダ装着部材(22)の外端部を前記Z軸方向に位置調節する。このとき、前記球面中心(O1)を通るホルダ装着部材(22)のホルダ装着孔(22a)の軸およびホルダ装着孔(22a)に装着された試料ホルダ(H)のホルダ軸は球面中心(O1)回りにZ軸方向に回動し、試料ホルダ(H)内端部に保持された試料はZ軸方向に位置調節される。したがって、前記Z軸方向位置調節部材(28)により、球面中心(O1)回りの試料ホルダ(H)の軸のZ軸方向の回動位置および前記試料のZ軸方向の位置を調節することができる。
【0022】
【実施の形態】
次に図面を参照しながら、本発明の試料ホルダ支持装置の実施の形態1を備えた電子顕微鏡(荷電粒子線装置)を説明するが、本発明は以下の実施例に限定されるものではない。
(実施の形態1)
図1は本発明のホルダ支持装置の実施の形態1の説明図で、ホルダ支持装置を備えた透過型電子顕微鏡の要部の平断面図である。
図2は同実施の形態1の要部縦断面図で、前記図1のII−II線断面図である。
図3は前記図2のIII−III線断面図である。
図4は前記図2のIV−IV線断面図である。
図1〜3において、透過型電子顕微鏡(荷電粒子線装置)1は、内部を真空に保持される鏡筒2を有し、鏡筒2の前側(X側)部分にはブロック貫通孔2aが形成され、後側(−X側)部分にはゴニオメータ装着孔2bが形成されている。鏡筒2上端部(Z軸方向上端部)に配置した電子銃(図示せず)から下方に出射される電子ビームの中心線に沿ってZ軸が設定される。電子ビームは収束レンズ(図示せず)により収束位置F1に配置された試料を透過してから結像レンズ(図示せず)により鏡筒2下端部の撮像位置(図示せず)に結像する。撮像位置には撮像装置が配置されており、撮像した顕微鏡画像は図示しないディスプレイで観察することができる。
【0023】
鏡筒2により支持されたゴニオ装着用のステージGSは、ステージ本体3を有しており、ステージ本体3の中央部には上磁極5a、下磁極5bを有する対物レンズ5が支持されている。対物レンズ5には上下方向に延びるZ軸(上下軸)に沿った荷電粒子ビームの通路が形成されている。
ステージ本体3の前部(X側部分)にはピボット軸受4を収容するX軸方向に延びるピボット軸受収容孔3aが形成されている。ステージ本体3の前部(X側部分)にはブロック6が固定されており、ブロック6は前記鏡筒2のブロック貫通孔2aを貫通している。前記ブロック6は前後方向(X軸方向)に位置調節可能なホルダ位置決め部材7を支持しており、前記ホルダ位置決め部材7は、前記ピボット軸受4の前端の位置決めを行うために前記ピボット軸受4の前端(X端)に当接している。
【0024】
ステージ本体3の後部(−X側部分)には球面軸受収容孔3dが形成されている。球面軸受収容孔3dに収容された球面軸受8は球面中心O1を中心とする球面を有している。前記球面軸受8は、後端部(−X側端部)は円筒状であり、その前側部分(X側部分)は円筒状部材の上部および下部の外側面を平面状に削った形状をしている。前記球面軸受8は、その下面から下方(−Z方向)に突出する旋回軸8a(図2参照)により旋回中心O2(旋回軸8aの平面図(図1)における位置)回りに旋回可能に支持されている。なお、球面軸受8の姿勢を安定させ且つ旋回時の摩擦抵抗を小さくするため、球面軸受8の下面の平面状部分には低摩擦剤により形成された3個のブシュ9(2個のみ図2に図示)が3角形の頂点に固着されている。球面軸受8の上面は押圧部材11により押圧されている。
【0025】
前記ゴニオメータ装着孔2bには筒状の球面軸受支持部材12が支持されている。球面軸受支持部材12の内径は前記球面軸受8の円筒状後端部の外径よりもやや大きい形状に形成されている。球面軸受8の後端部の外周面は前記筒状の球面軸受支持部材12の内周面に装着されたOリングにより、前記旋回軸8a回りに旋回可能に保持されている。
図1において、前記球面軸受8の前端部(X側部分)の右側面(Y側面)は押圧部材(スプリング)13により押圧されている。前記球面軸受8の前端部(X側部分)の左側面(−Y側面)にはスクリューにより構成された球面軸受位置調節部材14の先端部が当接している。前記球面軸受位置調節部材14を回転させてその軸方向(Y軸方向)に進退移動させることにより前記球面軸受8を前記旋回軸8a回り(旋回中心O2回り)に旋回させることが可能である。
前記符号3〜14で示された要素によりゴニオ装着用ステージGSが構成されている。
【0026】
前記ゴニオメータ装着孔2bの後部(−X側部分)には、軸受孔16aを有する軸受部材16が図示しないガイド部材沿ってY軸方向に移動可能に連結されている。前記軸受部材16をY軸方向に移動させると、前記軸受部材16の軸受孔16aの軸がZ軸に交差する状態とすることができる。前記状態の時の、軸受孔16aの軸に沿ってX軸が設定される。
図2において、前記軸受部材16にはギヤホルダ17(図2、図4参照)が支持されており、ギヤホルダ17内のウォームギヤ18はX軸周り駆動用モータ19(図4参照)の回転により回転する。
【0027】
前記軸受部材16により、回転部材21が回転可能に支持されている。前記軸受部材16および前記回転部材21の軸は同軸である。前記回転部材21は、その外周部に前記ウォームギヤ18と噛み合うギヤ21a(図2、図4参照)を有しており、前記X軸周り駆動用モータ19によりギヤ21aを回転させて軸受部材16および回転部材21の軸回りの回転位置を調節することができる。
【0028】
図2において、前記回転部材21のホルダ装着部材貫通孔21bを貫通するホルダ装着部材22はホルダ装着孔22aを有する円筒状部材でその内端部に球面22bを有している。前記球面22bは前記球面軸受8により球面中心O1回りに回動可能に支持されている。前記ホルダ装着孔22aは円筒状外側面を有する試料ホルダHが装着される孔である。ホルダ装着孔22aの軸はホルダ軸(試料ホルダHの軸)と同一であり、前記球面軸受8の球面中心O1を通る。
【0029】
前記ホルダ装着部材22の軸をその軸回りまたは前記球面中心回りにY軸方向またはZ軸方向に旋回させることにより、試料ホルダHの軸をY軸方向またはZ軸方向に旋回させることができるようになっている。このとき、試料ホルダHの内端部に保持された試料はY軸方向(左右方向)またはZ軸方向(上下方向)に移動する。
また、試料ホルダHはその外端部に作用する大気圧により常時内方(X方向)に押圧されている。この試料ホルダHの内端に当接する前記ピボット軸受4のX軸方向の位置を調節することにより、試料ホルダHのX軸方向の位置決めが行われる。
【0030】
なお、前記回転部材21を回転させたとき、前記ホルダ装着部材22および試料ホルダHは前記回転部材21および軸受部材16の軸回りに回転する。前記試料ホルダHが回転部材21の軸回りに回転するとき、回転部材21の軸と試料ホルダの軸とが一致している場合には、試料ホルダHの内端部に支持された試料は前記回転部材21の軸と一致するホルダ軸回りに傾斜するだけである。前記試料ホルダHが回転部材21の軸回りに回転するとき、回転部材21の軸と試料ホルダの軸とが一致していない場合には、試料ホルダHの内端部に支持された試料は傾斜しながら前記回転部材21の軸回りに移動する。
以後、前記回転部材21の軸を試料傾斜軸(試料ホルダHに保持された試料を傾斜させるときの回転軸)ともいう。
【0031】
図1、図3において、ホルダ装着部材22の外端部にはY軸(左右軸)方向に延びる突出部材22cが設けられており、突出部材22cの上面中央部はZ軸方向押圧部材24(図1、図3参照)により下方に押圧されている。図3において、前記突出部材22cの両端部下面には、前記回転部材21(図2参照)により軸25(図2参照)回りに揺動可能に支持された揺動部材26の左右一対のアーム26a,26a(図2、図4参照)の上端に設けた球27,27が当接している。
【0032】
図2において、前記揺動部材26には、前記回転部材21に支持されたZ軸方向位置調節用スクリュー28の先端が当接しており、Z軸方向位置調節用スクリュー(Z軸方向位置調節部材)28を回転させてその軸方向に進退移動させと、前記揺動部材26は軸25回りに揺動する。前記Z軸方向位置調節用スクリュー28はギヤ28aと一体に構成されており、前記ギヤ28aに噛み合うギヤ29は、前記回転部材21に支持された上下動用モータ(Z軸方向位置調節モータ)31の出力軸に固着されている。したがって、上下動用モータ31が回転するとギヤ29およびこのギヤ29と噛み合う前記ギヤ28aおよび前記Z軸方向位置調節用スクリュー28が回転する。このとき、前記Z軸方向位置調節用スクリュー28が進退移動し、前記揺動部材26が軸25回りに揺動して前記球27,27が突出部材22cを上下に移動させる。このとき、ホルダ軸(ホルダ装着部材22および試料ホルダHの軸)が前記球面中心O1の回りに上下に回動する。
前記符号24〜31で示された要素により前記ホルダ装着部材22の外端部のZ軸方向の位置調節を行うホルダ装着部材Z軸方向位置調節装置(24〜31)が構成されている。
【0033】
図1において、ホルダ装着部材22の外端部は前記Y軸(左右軸)方向の一側面(右側面)が、前記回転部材21に支持されたY軸方向押圧部材33により左方(−Y方向)に押圧されており、他側面(左側面)には前記回転部材21に支持されたY軸方向位置調節用スクリュー34(Y軸方向位置調節部材)の先端が当接している。前記Y軸方向位置調節用スクリュー34にはギヤ34aが一体に形成されており、前記ギヤ34aにはギヤ35が噛み合っている。ギヤ35は、前記回転部材21に支持された左右動用モータ(Y軸方向位置調節モータ)36の出力軸に固着されている。したがって、左右動用モータ36が回転するとギヤ35およびこのギヤ35と噛み合う前記ギヤ34aと一体成形された前記Y軸方向位置調節用スクリュー34が回転する。このとき、前記Y軸方向位置調節用スクリュー34が進退移動し、前記ホルダ軸(ホルダ装着部材22および試料ホルダHの軸)が左右(Y軸方向)に旋回する。このとき、試料ホルダHの内端部のY軸方向の位置を調節することができる。
【0034】
前記符号33〜36で示された要素により前記ホルダ装着部材22の外端部のY軸方向の位置調節を行うホルダ装着部材Y軸方向位置調節装置(33〜36)が構成されている。
前記符号16〜36等で示された要素により前記試料ホルダHのX軸回りの傾斜および前記球面中心O回りのY軸方向およびZ軸方向の傾斜を行うゴニオメータGMが構成されている。
【0035】
図1において、前記鏡筒2に左右方向(Y軸方向)に移動可能に支持された前記軸受部材16の左右には、スクリュー支持部材38,39が配置されている。スクリュー支持部材38,39は前記鏡筒2に支持されている。スクリュー支持部材38,39には、スクリュー(軸受位置置調節部材)41,42が螺合して貫通するネジ孔が形成されている。スクリュー41,42の先端部は、軸受部材16の左右の側面に当接している。したがって、スクリュー41,42を回転させて軸方向に進退移動させることにより、前記軸受部材16を左右方向(Y軸方向)に移動させて位置調節することができる。
前記軸受部材16に支持された前記回転部材21は、軸受部材16と一体的にY軸方向に移動するので、前記スクリュー41,42により左右方向の位置が調節される。すなわち、スクリュー41,42は軸受部材16および回転部材21の軸をY軸方向に位置調節する軸受位置置調節部材として構成されている。
【0036】
(実施の形態1の作用)
前記構成を備えた試料ホルダ支持装置において、試料ホルダHをそのホルダ軸回りに回転させて試料を傾斜させた時に、回転部材21の中心線と試料ホルダHの中心線とが一致している場合には、試料は傾斜するだけで移動しない。しかしながら、前記試料の傾斜時に、回転部材21の中心線と試料ホルダHの中心線とが一致していない場合には、試料が傾斜すると同時に移動する。このときには、試料の観察部分が視野から逃げてしまう。
【0037】
この実施の形態1は、図2の側断面図では、前記軸受部材16および回転部材21の軸(ホルダ傾斜軸)上に球面軸受8の中心O1が配置されるように、機械加工されている。その場合、前記回転部材21によりホルダ装着部材22を介して支持された試料ホルダHの内端部に支持された試料位置に電子ビームが収束ずくように収束レンズ(図示せず)への印加電流が調節される。
しかし、図1の平面図では機械加工のみによって、前記軸受部材16および回転部材21の軸(ホルダ傾斜軸)上に球面軸受8の中心O1を配置し且つ試料ホルダHの内端部に支持された試料位置を電子ビームの通路上(光軸上)に配置することは困難である。したがって、この実施の形態1では、前記スクリュー(軸受け位置調節部材)41,42および球面軸受位置調節部材14が設けられている。
【0038】
図1の平面図において、前記スクリュー(軸受位置調節部材)41,42により前記軸受部材16を左右方向に位置調節することができる。したがって、前記スクリュー41,42により、前記軸受部材16および回転部材21の軸をY軸方向に移動させてZ軸と交差させることができる。
また図1の平面図において、前記球面軸受位置調節部材14を回転させてその軸方向(Y軸方向)に進退移動させることにより前記球面軸受8を前記旋回軸8a回りに旋回させて、球面中心O1を前記軸受部材16および回転部材21の軸上に配置することができる。
また、前記Y軸方向位置調節用スクリュー(Y軸方向位置調節部材)34によりホルダ装着部材22および試料ホルダHを前記球面中心O1回りに、Y軸方向に回動させることができる。
【0039】
したがって図1の平面図において、前記スクリュー41,42および球面軸受位置調節部材14により、軸受部材16および回転部材21の軸(試料傾斜軸)をZ軸と交差させるとともに、その軸上に球面中心O1を配置することができる。また、図1の平面図において、Y軸方向位置調節用スクリュー(Y軸方向位置調節部材)34により、ホルダ装着部材22および試料ホルダHの軸を前記軸受部材16および回転部材21の軸(ホルダ傾斜軸)に一致させることができる。したがって、図1の平面図では、軸受部材16および回転部材21の軸(ホルダ傾斜軸)を試料ホルダHの軸と一致させるとともに、その軸上にZ軸との交点および前記球面中心O1を配置することができる。
【0040】
すなわち、この実施の形態1では、前記図2の側断面図および図1の平面図において、軸受部材16および回転部材21の軸上に球面中心O1を配置することができる。このため、前記回転部材21を回転させたときの試料の逃げを少なくすることができる。
【0041】
前記実施の形態1では平面図(図1)において、軸受部材16および回転部材21の軸(ホルダ回転軸)を試料ホルダHの軸と一致させるとともに、その軸上にZ軸との交点および前記球面中心O1を配置するためには、次の作業を行う。
(1)前記回転部材21をその軸(試料傾斜軸)回りに±θ°回転させたときに、CRT等の画像表示面に表示された撮像画像が、画像表示面の中心点(光軸)に対してどのように変位するかを確認する。例えば、片側のみに変位する場合は、平面図(図1)において、回転部材21の軸(試料傾斜軸)がZ軸と交差していないことを意味する。
(2)次に、前記撮像画像が、画像表示面の中心点(光軸)に対して対称に変位するように、軸受部材16および回転部材21の軸(試料傾斜軸)の位置および球面中心O1の位置を調節する。前記調節は、前記スクリュー(軸受位置置調節部材)41,42および球面軸受位置調節部材14により行う。
(3)前記(2)の作業を行って、ユーセントリックを合わせ込む(最終的には回転部材21を回転させた時に像の変位が0に近づくように調節する)。そして、試料位置で焦点が合うように対物レンズの電流を調節する。
【0042】
(変更例)
以上、本発明の実施例を詳述したが、本発明は、前記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内で、種々の変更を行うことが可能である。本発明の変更実施例を下記に例示する。
(H01)前記スクリューにより構成された球面軸受位置調節部材14、Z軸方向位置調節用スクリュー28、Y軸方向位置調節用スクリュー(Y軸方向位置調節部材)34、スクリュー(軸受位置置調節部材)41,42等の軸の先端部をピエゾ素子により構成することが可能である。その場合、前記ピエゾ素子をスクリューの軸方向に伸縮させることにより、位置調節を高精度に行うことができる。
【0043】
【発明の効果】
前述の本発明の荷電粒子線装置は、下記の効果(E01),(E02)を奏することができる。
(E01)前記試料ホルダHをその軸回りに回転させたときのZ軸上の試料観察部分が視野から逃げる量を少なくすることが可能な、構成が簡単なホルダ支持装置を提供することができる。
(E02)Z軸に沿う荷電粒子線に垂直な平面図において、前記試料ホルダの回動中心である球面軸受の球面中心O1とZ軸とを結ぶ直線と、前記回転部材011の軸線とを一致させることが可能な試料ホルダ支持装置を提供することができる。
【図面の簡単な説明】
【図1】図1は本発明のホルダ支持装置の実施の形態1の説明図で、ホルダ支持装置を備えた透過型電子顕微鏡の要部の平断面図である。
【図2】図2は同実施の形態1の要部縦断面図で、前記図1のII−II線断面図である。
【図3】図3は前記図2のIII−III線断面図である。
【図4】図4は前記図2のIV−IV線断面図である。
【図5】図5は荷電粒子線装置で使用されている試料ホルダ支持装置の従来例1の説明図で、比較的小型の試料ホルダ支持装置の要部平断面図である。
【図6】図6は荷電粒子線装置で使用されている試料ホルダ支持装置の従来例2の説明図で、比較的大型の試料ホルダ支持装置の要部平断面図である。
【図7】図7は前記図6のVII−VII線断面図である。
【符号の説明】
GM…ゴニオメータ、
GS…ゴニオ装着用ステージ、
H…試料ホルダ、
O1…球面中心、
2…鏡筒、
2b…ゴニオメータ装着孔、
8…球面軸受、
8a…旋回軸、
14…球面軸受位置調節部材、
16…軸受部材、
16a…軸受孔、
21…回転部材、
21b…ホルダ装着部材貫通孔、
22a…ホルダ装着孔、
22…ホルダ装着部材、
28…Z軸方向位置調節部材、
34…Y軸方向位置調節部材、
41,42…軸受位置調節部材。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sample holder support device of a charged particle beam device, and more particularly, to a sample holder support device in which a moving amount (image escape) of an observation portion of a sample when the sample is tilted is reduced.
[0002]
[Prior art]
A conventional example of a transmission electron microscope will be described with reference to the following drawings.
In order to facilitate understanding of the following description, in the drawings, the front-rear direction is the X-axis direction, the right and left directions are the Y-axis direction, and the up-down direction is the Z-axis direction, and arrows X, -X, Y, -Y, The directions or sides indicated by Z and -Z are front, rear, right, left, upper, lower, or front, rear, right, left, upper, and lower, respectively.
Also, in the figure, those with “•” in “を” mean an arrow pointing from the back of the paper to the front, and those with “x” in “○” indicate the front of the paper. From the back to the back.
[0003]
(Conventional example 1)
FIG. 5 is an explanatory view of a conventional example 1 of a sample holder supporting device used in a charged particle beam apparatus, and is a plan sectional view of a main part of a relatively small sample holder supporting device.
In FIG. 5, a transmission electron microscope (charged particle beam device) 01 has a lens barrel 02 whose inside is kept in a vacuum, and a block through hole 02a is formed in a front part (X side part) of the lens barrel 02. A goniometer mounting hole 02b is formed in the rear part (-X side part). The Z-axis is set along the center line of the electron beam emitted downward (-Z direction) from an electron gun (not shown) disposed at the upper end of the lens barrel 02 (the upper end in the Z-axis direction). The electron beam passes through the sample placed at the convergence position F1 by a converging lens (not shown), and then forms an image at an imaging position (not shown) at the lower end of the lens barrel 02 by an imaging lens (not shown). . An imaging device is arranged at the imaging position, and the captured microscope image can be observed on a display (not shown).
[0004]
The stage GS supported so as to be position-adjustable by the lens barrel 02 has a stage main body 03 movable in a horizontal plane (XY plane), and the stage main body 03 has a Z axis (vertical axis) extending vertically. Is formed along the path of the charged particle beam. A pivot bearing accommodation hole 03a that extends in the X-axis direction and accommodates the pivot bearing 04 is formed in a front portion (X side portion) of the stage main body 03. The pivot bearing 04 is movably supported in the pivot bearing housing hole 03a via a plurality of springs. A cylindrical portion 03b is formed at a rear portion (−X side portion) of the stage main body 03, and the cylindrical portion 03b protrudes to the rear side of the lens barrel 02 through the goniometer mounting hole 02b. A bearing spherical surface 03c is formed at an inner end (X end) of the cylindrical portion 03b, and a spherical center O of the bearing spherical surface 03c is arranged on an axis of the cylindrical portion 03b.
A block 06 is connected to a front end (X-side end) of the stage main body 03. The block 06 protrudes outside the lens barrel 02 through the block through hole 02a. The block 06 supports a holder positioning member 07 whose position can be adjusted in the front-rear direction (X-axis direction). The holder positioning member 07 moves the pivot bearing 04 in order to position the front end of the pivot bearing 04. It is in contact with the front end (X end).
[0005]
A stage GS is constituted by the elements indicated by the reference numerals 03 to 07, and the stage GS is supported by the lens barrel 02 so as to be movable in the XY plane.
The lens barrel 02 is supported with four position adjusting screws 08 penetrating therethrough, and a ball 08a is attached to the tip of the position adjusting screw 08. The position of the stage GS in the XY plane can be adjusted by rotating the position adjusting screw 08 from the outside of the lens barrel 02 and moving it forward and backward.
[0006]
A bearing member 010 is mounted on a rear portion (−X side portion) of the cylindrical portion 03b of the stage GS, and the bearing member 010 has a bearing hole 010a extending in the front-rear direction (X-axis direction). A rotating member 011 is rotatably supported in the bearing hole 010a.
The rotating member 011 has a through hole 011a extending in the X-axis direction. A spherical surface 012a is formed on the outer surface of the inner end of the cylindrical holder mounting member 012 that passes through the through hole 011a. The spherical surface 012a of the holder mounting member 012 is supported by the bearing spherical surface 03c so as to be rotatable around the center O of the spherical surface. The holder mounting member 012 has a cylindrical holder mounting hole 012b.
[0007]
A sample holder H having a cylindrical outer peripheral surface is slidably mounted in the holder mounting hole 012b of the holder mounting member 012 in a fitted state, and the axis of the holder mounting hole 012b and the axis of the sample holder H are identical. I do. Therefore, by inclining the axis of the holder mounting member 012, the axis of the sample holder H can be inclined. The sample holder H is constantly pressed inward (X direction) by the atmospheric pressure acting on its outer end. The position of the sample bearing H in the X-axis direction is adjusted by adjusting the position of the pivot bearing 04 in contact with the inner end of the sample holder H in the X-axis direction.
A gear 011c is formed on the outer peripheral surface of the rotating member 011. By rotating a worm gear (not shown) that meshes with the gear 011c, the rotating member 011 rotates around the X axis. The holder mounting member 012 and the sample holder H also rotate integrally with the rotating member 011 to adjust the rotational position about the X axis. Due to the rotation of the sample holder H, the sample held at the inner end of the sample holder H tilts (rotates) around the X axis.
[0008]
The rotating member 011 supports a Y-axis direction pressing member 013 and a Y-axis direction position adjusting screw 014 at positions facing each other, and the tips of the members correspond to the cylindrical outer surface of the holder mounting member 012. In contact. By adjusting the position of the tip of the Y-axis direction position adjusting screw 014, the holder mounting member 012 can be turned in the left-right direction (Y-axis direction) around the spherical center O. At this time, the position of the inner end of the sample holder H in the Y-axis direction can be adjusted.
Although not described in detail, the position of the inner end of the sample holder H in the Z-axis direction is adjusted by rotating the holder mounting member 012 in the Z-axis direction (vertical direction) around the center O of the spherical surface. It is configured to be able to. A mechanism for adjusting the position of the inner end of the sample holder H in the Z-axis direction is conventionally known (see JP-A-2000-268758).
[0009]
The position of the inner end of the sample holder H in the X axis direction is determined by adjusting the position of the holder positioning member (X axis direction positioning member) 07 in the X axis direction, and the position in the Y axis direction is the Y axis direction position. It is positioned by the adjusting screw 014. Therefore, the sample held at the inner end of the sample holder H is positioned on the electron beam path (on the Z axis) (sample observation position) by the holder positioning member 07 and the Y-axis direction position adjusting screw 014. ). The convergence position F1 of the electron beam on the Z axis is adjusted by adjusting a current applied to an electron lens (not shown).
When tilting the sample placed at the sample observation position, the rotating member 011 is rotated to simultaneously rotate the rotating member 011, the holder mounting member 012, and the sample holder H having a cylindrical outer peripheral surface. At this time, the sample held at the inner end of the cylindrical sample holder H is inclined.
A goniometer GM that tilts the sample holder H around the X-axis and tilts the sample holder H around the spherical center O in the Y-axis direction and the Z-axis direction by the elements denoted by reference numerals 010 to 014 and the like.
[0010]
When the center line of the rotating member 011 coincides with the center line (holder axis) of the sample holder H, the observation position of the sample (the position where the electron beam is irradiated) is tilted when the sample is tilted. Just don't move. However, when the center line of the rotating member 011 does not match the center line of the sample holder H when the sample is tilted, the observation position of the sample moves and is out of the field of view.
Therefore, when tilting the sample, it is necessary to satisfy the following conditions (a) and (b).
(A) The center line of the rotating member 011 must coincide with the center line of the sample holder H.
(B) The center lines of the rotating member 011 and the sample holder H must intersect perpendicularly with the optical axis (the electron beam path, that is, the Z axis).
[0011]
In the first conventional example of the sample holder supporting device shown in FIG. 5, the cylindrical portion 03b and the spherical surface 03c for the bearing are simultaneously formed on the stage main body 03 so that the spherical surface for the bearing is formed on the axis of the cylindrical portion 03b of the stage main body 03. The spherical center O of 03c is arranged. Since the center line of the bearing hole 010a of the bearing member 010 mounted on the cylindrical portion 03b coincides with the center line of the cylindrical portion 03b, the spherical center O is arranged on the center line of the bearing hole 010a of the bearing member 010. Further, the center line of the rotating member 011 supported by the bearing member 010 is arranged to pass through the center O of the spherical surface, and the axis of the sample holder H is arranged to pass through the center O of the spherical surface.
Therefore, by rotating the holder mounting member 012 in the Y-axis direction and the Z-axis direction around the spherical center O, the axis of the sample holder H mounted on the holder mounting member 012 and the axis of the rotating member 011. Can be matched. That is, the condition (a) can be satisfied.
The condition (b) can be satisfied by moving the stage GS by adjusting the four position adjusting screws 08 in a state where the axes of the sample holder H and the rotating member 011 are aligned. .
[0012]
[Problems to be solved by the invention]
In the first conventional example of the sample holder supporting apparatus using the goniometer GM shown in FIG. 5, it is necessary to move the stage GS and the goniometer GM mounted on the stage integrally. Therefore, the sample holder supporting device of FIG. 5 can be used when the charged particle beam device is a small device. However, when the charged particle beam apparatus is a large transmission electron microscope apparatus or the like, it is difficult to use because the weight of the moving member is large.
FIG. 6 is an explanatory diagram of a second conventional example of the sample holder supporting device used in the charged particle beam device, and is a plan sectional view of a main part of a relatively large sample holder supporting device.
FIG. 7 is a sectional view taken along the line VII-VII of FIG.
In the description of the conventional sample holder supporting device shown in FIGS. 6 and 7, elements corresponding to the elements shown in FIG. 5 are denoted by the same reference numerals, and detailed description is omitted.
[0013]
The second conventional example of the sample holder supporting device shown in FIGS. 6 and 7 is different from the first conventional example shown in FIG. 5 in the following points, but is configured similarly to the first conventional example in other points. ing.
6 and 7, a block through hole 02a is formed at the front of the lens barrel 02, and a goniometer mounting hole 02b is formed at the rear.
The stage body 03 is fixedly supported inside the lens barrel 02. A block 06 is fixed to a front portion (X side portion) of the stage main body 03, and the block 06 passes through a block through hole 02a of the lens barrel 02. A spherical bearing housing hole 03d is formed in the rear portion (−X side portion) of the stage main body 03. The spherical bearing 05 housed in the spherical bearing housing hole 03d is supported by a swivel shaft 05a (see FIG. 7) projecting downward (-Z direction) so as to be swivelable about a swing center O2 (see FIG. 6). The rear end portion (-X end portion) of the spherical bearing 05 is held by the O-ring mounted on the inner peripheral surface of the cylindrical spherical bearing support member 09 so as to be able to turn around the turning shaft 05a.
[0014]
In the second conventional example of the sample holder supporting apparatus shown in FIGS. 6 and 7, the spherical bearing 05 is swung around the center of rotation O2 (the position of the swivel axis 05a in the plan view (FIG. 6)). The position of the spherical center O1 can be changed. However, since the position of the axis of the rotating member 011 cannot be adjusted in the Y-axis direction, the Z-axis, O1, and O2 cannot be arranged on a straight line in the plan view (see FIG. 6). In the side view (see FIG. 7), when the spherical center O1 of the spherical bearing 05 is shifted from the axis of the rotating member 011, the positions of the rotating member 011 and the spherical bearing 05 cannot be adjusted. Also, it cannot be adjusted so that the spherical center O1 of the spherical bearing 05 is arranged on the axis of the rotating member 011.
Therefore, in Conventional Example 2 shown in FIGS. 6 and 7, the spherical center O1 of the spherical bearing 05 cannot be disposed on the axis of the rotating member 011 in both the plan view and the side view, and In the drawing, it is also impossible to make the straight line connecting the Z axis and the spherical center O1 coincide with the axis of the rotating member 011. Therefore, when the rotation member 011 is rotated to rotate the sample holder H around its axis, the sample observation portion on the Z axis largely escapes from the visual field.
[0015]
In view of the above circumstances, the present invention has the following contents (O01) and (O02).
(O01) To provide a holder support device with a simple configuration, which can reduce the amount of a sample observation portion on the Z-axis which escapes from a visual field when the sample holder H is rotated around its axis.
(O02) In a plan view perpendicular to the charged particle beam along the Z axis, a straight line connecting the spherical axis O1 of the spherical bearing, which is the center of rotation of the sample holder, to the Z axis is coincident with the axis of the rotating member 011. Provided is a sample holder support device capable of causing the sample holder to perform the operation.
[0016]
[Means for Solving the Problems]
Next, the present invention devised to solve the above problem will be described. Elements of the present invention are indicated by parentheses in the elements of the embodiment in order to facilitate correspondence with the elements of the embodiments described later. Add the items enclosed in.
The reason why the present invention is described in correspondence with the reference numerals of the embodiments described below is to facilitate understanding of the present invention, and not to limit the scope of the present invention to the embodiments.
[0017]
(The present invention)
In order to solve the above problems, a sample holder supporting device of the present invention includes the following constituent elements (A01) to (A06).
(A01) A gonio mounting stage (GS) fixed to a lens barrel (2) surrounding a path of a charged particle beam along a Z-axis perpendicular to the X-axis and the Y-axis orthogonal to each other, extending in the X-axis direction, A goniometer mounting stage (GS) having a goniometer mounting hole (2b) communicating the inside and the outside of the lens barrel (2), and a spherical bearing (8) provided at an inner end of the goniometer mounting hole (2b);
(A02) The spherical bearing (8), which is supported so as to be able to turn around a turning axis (8a) perpendicular to the XY plane and the center of the spherical surface (O1) is movably supported within the XY plane during turning. A bearing member (16) supported by the outer end of the goniometer mounting hole (2b) and having a bearing hole (16a) extending in the X-axis direction; and a holder mounting member rotatably supported by the bearing hole (16a). A rotating member (21) having a through-hole (21b); a sample arranged through the holder-mounting member through-hole (21b); and an inner end rotatably supported by the spherical bearing (8). A holder mounting member (22) having a holder mounting hole (22a) in which a holder (H) is removably mounted, and a Y-axis direction for adjusting an outer end of the holder mounting member (22) in the Y-axis direction; Position adjustment member And 34), and a Z-axis direction position adjustment member (28) for adjusting the position in the Z axis direction goniometer (GM),
(A04) the bearing member (16) supported so as to be adjustable in position in the Y-axis direction;
(A05) a spherical bearing position adjusting member (14) for adjusting a turning position of the spherical bearing (8) around the turning shaft (8a);
(A06) A bearing position adjusting member (41, 42) for adjusting the position of the bearing member (16) in the Y-axis direction.
[0018]
(Operation of the present invention)
In the charged particle beam apparatus according to the present invention having the above-described features, the lens barrel (2) surrounding the path of the charged particle beam along the Z axis orthogonal to the X axis and the Y axis orthogonal to each other is provided with a gonio mounting stage (GS). Is fixed. The goniometer mounting hole (2b) extends in the X-axis direction and communicates the inside and outside of the lens barrel (2). The spherical bearing (8) provided at the inner end of the goniometer mounting hole (2b) is rotatable around a turning axis (8a) perpendicular to the XY plane, and the center of the spherical surface (O1) in the XY plane during rotation. Move with.
A bearing member (16) is supported at the outer end of the goniometer mounting hole (2b) so as to be adjustable in position in the Y-axis direction. A bearing hole (16a) extending in the X-axis direction of the bearing member (16) rotatably supports the rotating member (21).
An inner end of the holder mounting member (22) penetrating through the holder mounting member through hole (21b) of the rotating member (21) is rotatably supported by the spherical bearing (8). A sample holder (H) is detachably mounted in the holder mounting hole (22a) of the holder mounting member (22).
[0019]
Since the bearing position adjusting members (41, 42) adjust the position of the bearing member (16) in the Y-axis direction, the bearing member (16) and the rotating member (21) supported by the bearing member (16) are adjusted. The axis can be adjusted in the Y-axis direction. Therefore, the rotation axes of the bearing member (16) and the rotating member (21) can intersect the Z axis in a plane perpendicular to the Z axis by the bearing position adjusting members (41, 42).
The spherical bearing position adjusting member (14) adjusts the turning position of the spherical bearing (8) about the turning shaft (8a). Therefore, the spherical bearing position adjusting member (14) adjusts the spherical center of the spherical bearing (8). The position of (O1) can be adjusted in the Y-axis direction. Therefore, in a plan view perpendicular to the Z axis, the spherical bearing position adjusting member (14) may arrange the center of the spherical surface (O1) on the rotation axis of the rotating member (21) crossing the Z axis. it can. That is, in a plan view perpendicular to the Z axis, the axis of the rotating member (21) passing through the center of the spherical surface (O1) can intersect the Z axis.
[0020]
The Y-axis direction position adjusting member (34) adjusts the position of the outer end of the holder mounting member (22) in the Y-axis direction. At this time, the axis of the holder mounting hole (22a) of the holder mounting member (22) passing through the center of the spherical surface (O1) and the holder axis of the sample holder (H) mounted on the holder mounting hole (22a) are centered on the spherical center (O1). ) The sample that is turned around and held at the inner end of the sample holder (H) is adjusted in the Y-axis direction.
Therefore, in a plan view perpendicular to the Z axis, the axis of the rotating member (21) passing through the center of the spherical surface (O1) and intersecting the Z axis, the holder mounting member (22) and the sample holder (H) The axes can be matched. For this reason, when the rotating member (21) and the sample holder (H) are rotated around their axes, the amount of the sample observation portion on the Z axis that escapes from the visual field can be reduced.
Further, the position of a straight line connecting the spherical center O1 of the spherical bearing, which is the center of rotation of the sample holder, to the Z axis and the axis of the rotating member 011 can be adjusted only in an XY plane perpendicular to the Z axis. However, since they are not matched in the XZ plane, a relatively simple configuration can be achieved.
[0021]
The Z-axis position adjusting member (28) adjusts the position of the outer end of the holder mounting member (22) in the Z-axis direction. At this time, the axis of the holder mounting hole (22a) of the holder mounting member (22) passing through the center of the spherical surface (O1) and the holder axis of the sample holder (H) mounted on the holder mounting hole (22a) are centered on the spherical center (O1). ), The sample held at the inner end of the sample holder (H) is adjusted in the Z-axis direction. Therefore, the Z-axis direction position adjusting member (28) adjusts the rotation position of the axis of the sample holder (H) about the center of the spherical surface (O1) in the Z-axis direction and the position of the sample in the Z-axis direction. it can.
[0022]
Embodiment
Next, an electron microscope (charged particle beam device) including the sample holder supporting device according to the first embodiment of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples. .
(Embodiment 1)
FIG. 1 is an explanatory view of Embodiment 1 of a holder supporting device of the present invention, and is a plan sectional view of a main part of a transmission electron microscope provided with the holder supporting device.
FIG. 2 is a longitudinal sectional view of a main part of the first embodiment, and is a sectional view taken along line II-II of FIG.
FIG. 3 is a sectional view taken along line III-III of FIG.
FIG. 4 is a sectional view taken along line IV-IV of FIG.
1 to 3, a transmission electron microscope (charged particle beam device) 1 has a lens barrel 2 whose inside is kept in a vacuum, and a block through hole 2a is provided at a front side (X side) of the lens barrel 2. A goniometer mounting hole 2b is formed at the rear side (−X side). The Z axis is set along the center line of an electron beam emitted downward from an electron gun (not shown) disposed at the upper end of the lens barrel 2 (the upper end in the Z-axis direction). The electron beam passes through the sample placed at the convergence position F1 by a converging lens (not shown) and then forms an image at an imaging position (not shown) at the lower end of the lens barrel 2 by an imaging lens (not shown). . An imaging device is arranged at the imaging position, and the captured microscope image can be observed on a display (not shown).
[0023]
The gonio mounting stage GS supported by the lens barrel 2 has a stage body 3, and an objective lens 5 having an upper magnetic pole 5 a and a lower magnetic pole 5 b is supported at the center of the stage body 3. The objective lens 5 has a charged particle beam path formed along the Z axis (vertical axis) extending in the vertical direction.
A pivot bearing accommodation hole 3 a that extends in the X-axis direction and accommodates the pivot bearing 4 is formed in a front portion (X side portion) of the stage main body 3. A block 6 is fixed to a front portion (X side portion) of the stage main body 3, and the block 6 penetrates through a block through hole 2 a of the lens barrel 2. The block 6 supports a holder positioning member 7 whose position can be adjusted in the front-rear direction (X-axis direction). The holder positioning member 7 moves the pivot bearing 4 in order to position the front end of the pivot bearing 4. It is in contact with the front end (X end).
[0024]
A spherical bearing housing hole 3d is formed in the rear portion (−X side portion) of the stage main body 3. The spherical bearing 8 accommodated in the spherical bearing accommodation hole 3d has a spherical surface centered on the spherical center O1. The spherical bearing 8 has a cylindrical rear end portion (-X side end portion), and a front portion (X side portion) formed by shaping the upper and lower outer surfaces of a cylindrical member into a planar shape. ing. The spherical bearing 8 is supported so as to be pivotable about a pivot O2 (a position in the plan view (FIG. 1) of the pivot 8a) by a pivot 8a (see FIG. 2) projecting downward (-Z direction) from a lower surface thereof. Have been. In order to stabilize the attitude of the spherical bearing 8 and reduce the frictional resistance during turning, three bushes 9 (only two bushes 9 made of a low-friction agent) are formed on the flat portion on the lower surface of the spherical bearing 8. Are fixed to the vertices of the triangle. The upper surface of the spherical bearing 8 is pressed by a pressing member 11.
[0025]
A cylindrical spherical bearing support member 12 is supported in the goniometer mounting hole 2b. The inner diameter of the spherical bearing support member 12 is formed to be slightly larger than the outer diameter of the cylindrical rear end of the spherical bearing 8. The outer peripheral surface of the rear end portion of the spherical bearing 8 is held by the O-ring mounted on the inner peripheral surface of the cylindrical spherical bearing support member 12 so as to be able to turn around the turning shaft 8a.
In FIG. 1, the right side surface (Y side surface) of the front end portion (X side portion) of the spherical bearing 8 is pressed by a pressing member (spring) 13. The front end of the spherical bearing 8 (X side portion) is in contact with the left side surface (−Y side surface) of the spherical bearing position adjusting member 14 formed by a screw. The spherical bearing 8 can be turned around the turning shaft 8a (around the turning center O2) by rotating the spherical bearing position adjusting member 14 and moving it forward and backward in the axial direction (Y-axis direction).
A gonio mounting stage GS is constituted by the elements indicated by the reference numerals 3 to 14.
[0026]
A bearing member 16 having a bearing hole 16a is connected to a rear portion (−X side portion) of the goniometer mounting hole 2b so as to be movable in the Y-axis direction along a guide member (not shown). When the bearing member 16 is moved in the Y-axis direction, a state in which the axis of the bearing hole 16a of the bearing member 16 intersects the Z axis can be achieved. In this state, the X axis is set along the axis of the bearing hole 16a.
In FIG. 2, a gear holder 17 (see FIGS. 2 and 4) is supported on the bearing member 16, and a worm gear 18 in the gear holder 17 is rotated by rotation of a drive motor 19 (see FIG. 4) around the X axis. .
[0027]
The rotating member 21 is rotatably supported by the bearing member 16. The axes of the bearing member 16 and the rotating member 21 are coaxial. The rotating member 21 has a gear 21a (see FIGS. 2 and 4) that meshes with the worm gear 18 on the outer peripheral portion. The gear 21a is rotated by the X-axis driving motor 19 to rotate the bearing member 16 and The rotation position of the rotation member 21 around the axis can be adjusted.
[0028]
In FIG. 2, a holder mounting member 22 penetrating through the holder mounting member through hole 21b of the rotating member 21 is a cylindrical member having a holder mounting hole 22a and having a spherical surface 22b at an inner end thereof. The spherical surface 22b is rotatably supported by the spherical bearing 8 around a spherical center O1. The holder mounting hole 22a is a hole in which a sample holder H having a cylindrical outer surface is mounted. The axis of the holder mounting hole 22a is the same as the holder axis (the axis of the sample holder H), and passes through the spherical center O1 of the spherical bearing 8.
[0029]
By rotating the axis of the holder mounting member 22 around the axis or the center of the spherical surface in the Y axis direction or the Z axis direction, the axis of the sample holder H can be rotated in the Y axis direction or the Z axis direction. It has become. At this time, the sample held at the inner end of the sample holder H moves in the Y-axis direction (lateral direction) or the Z-axis direction (vertical direction).
The sample holder H is constantly pressed inward (X direction) by the atmospheric pressure acting on the outer end thereof. The position of the sample bearing H in the X-axis direction is adjusted by adjusting the position of the pivot bearing 4 in contact with the inner end of the sample holder H in the X-axis direction.
[0030]
When the rotating member 21 is rotated, the holder mounting member 22 and the sample holder H rotate around the rotating member 21 and the bearing member 16. When the sample holder H rotates around the axis of the rotating member 21, if the axis of the rotating member 21 and the axis of the sample holder coincide, the sample supported on the inner end of the sample holder H is It only tilts about a holder axis that coincides with the axis of the rotating member 21. When the sample holder H rotates around the axis of the rotating member 21 and the axis of the rotating member 21 does not match the axis of the sample holder, the sample supported on the inner end of the sample holder H is tilted. While rotating around the axis of the rotating member 21.
Hereinafter, the axis of the rotating member 21 is also referred to as a sample tilt axis (rotation axis for tilting the sample held in the sample holder H).
[0031]
1 and 3, a projecting member 22c extending in the Y-axis (left-right axis) direction is provided at the outer end of the holder mounting member 22, and the center of the upper surface of the projecting member 22c is a Z-axis direction pressing member 24 ( (See FIGS. 1 and 3). 3, a pair of left and right arms of a swinging member 26 supported on the lower surface of both ends of the protruding member 22c around a shaft 25 (see FIG. 2) by the rotating member 21 (see FIG. 2). Balls 27, 27 provided at the upper ends of 26a, 26a (see FIGS. 2 and 4) are in contact with each other.
[0032]
In FIG. 2, the tip of a Z-axis direction position adjusting screw 28 supported by the rotating member 21 abuts on the swing member 26, and the Z-axis direction position adjusting screw (Z-axis direction position adjusting member). ) 28 is rotated so as to advance and retreat in the axial direction thereof, so that the swinging member 26 swings around the shaft 25. The screw 28 for adjusting the position in the Z-axis direction is integrally formed with a gear 28a, and a gear 29 meshing with the gear 28a is provided with a motor 31 for a vertical movement (Z-axis direction position adjustment motor) It is fixed to the output shaft. Therefore, when the motor 31 for vertical movement rotates, the gear 29, the gear 28a meshing with the gear 29, and the screw 28 for adjusting the position in the Z-axis direction rotate. At this time, the Z-axis position adjusting screw 28 moves forward and backward, the swinging member 26 swings around the shaft 25, and the balls 27, 27 move the projecting member 22c up and down. At this time, the holder shaft (the shaft of the holder mounting member 22 and the sample holder H) rotates up and down around the spherical center O1.
A holder mounting member Z-axis direction position adjusting device (24 to 31) for adjusting the position of the outer end of the holder mounting member 22 in the Z-axis direction is constituted by the elements indicated by the reference numerals 24 to 31.
[0033]
In FIG. 1, one side surface (right side surface) of the outer end portion of the holder mounting member 22 in the Y-axis (left-right axis) direction is leftward (−Y) by a Y-axis direction pressing member 33 supported by the rotating member 21. Direction, and the other side (left side) is in contact with the tip of a Y-axis direction position adjusting screw 34 (Y-axis direction position adjusting member) supported by the rotating member 21. A gear 34a is integrally formed with the Y-axis direction position adjusting screw 34, and a gear 35 meshes with the gear 34a. The gear 35 is fixed to an output shaft of a left-right movement motor (Y-axis direction position adjustment motor) 36 supported by the rotating member 21. Therefore, when the left-right movement motor 36 rotates, the Y-axis direction position adjusting screw 34 integrally formed with the gear 35 and the gear 34a meshing with the gear 35 rotates. At this time, the Y-axis direction position adjusting screw 34 moves forward and backward, and the holder shaft (the shaft of the holder mounting member 22 and the sample holder H) turns left and right (Y-axis direction). At this time, the position of the inner end of the sample holder H in the Y-axis direction can be adjusted.
[0034]
The elements indicated by reference numerals 33 to 36 constitute holder mounting member Y-axis direction position adjusting devices (33 to 36) for adjusting the position of the outer end of the holder mounting member 22 in the Y-axis direction.
A goniometer GM that tilts the sample holder H around the X axis and tilts the sample holder H around the center O in the Y axis direction and the Z axis direction by the elements indicated by the reference numerals 16 to 36 and the like is configured.
[0035]
In FIG. 1, screw support members 38 and 39 are arranged on the left and right sides of the bearing member 16 supported movably in the left and right direction (Y axis direction) by the lens barrel 2. The screw support members 38 and 39 are supported by the lens barrel 2. The screw support members 38 and 39 are formed with screw holes through which screws (bearing position adjustment members) 41 and 42 are screwed and penetrated. The distal ends of the screws 41 and 42 are in contact with the left and right side surfaces of the bearing member 16. Therefore, by rotating the screws 41 and 42 to move forward and backward in the axial direction, the bearing member 16 can be moved in the left-right direction (Y-axis direction) to adjust the position.
Since the rotating member 21 supported by the bearing member 16 moves in the Y-axis direction integrally with the bearing member 16, the position in the left-right direction is adjusted by the screws 41 and 42. That is, the screws 41 and 42 are configured as bearing position adjusting members that adjust the positions of the shafts of the bearing member 16 and the rotating member 21 in the Y-axis direction.
[0036]
(Operation of Embodiment 1)
In the sample holder supporting apparatus having the above configuration, when the sample holder H is rotated around the holder axis and the sample is tilted, the center line of the rotating member 21 and the center line of the sample holder H match. In this case, the sample only tilts and does not move. However, when the center line of the rotating member 21 does not coincide with the center line of the sample holder H when the sample is tilted, the sample moves simultaneously with the tilt. At this time, the observation part of the sample escapes from the visual field.
[0037]
The first embodiment is machined so that the center O1 of the spherical bearing 8 is arranged on the axis (holder tilt axis) of the bearing member 16 and the rotating member 21 in the side sectional view of FIG. . In this case, the current applied to the converging lens (not shown) such that the electron beam does not converge on the sample position supported on the inner end of the sample holder H supported by the rotating member 21 via the holder mounting member 22. Is adjusted.
However, in the plan view of FIG. 1, the center O <b> 1 of the spherical bearing 8 is arranged on the shaft (holder tilt axis) of the bearing member 16 and the rotating member 21 only by machining, and is supported by the inner end of the sample holder H. It is difficult to arrange the sample position on the electron beam path (on the optical axis). Therefore, in the first embodiment, the screws (bearing position adjusting members) 41 and 42 and the spherical bearing position adjusting member 14 are provided.
[0038]
In the plan view of FIG. 1, the position of the bearing member 16 can be adjusted in the left-right direction by the screws (bearing position adjusting members) 41 and 42. Therefore, the axes of the bearing member 16 and the rotating member 21 can be moved in the Y-axis direction by the screws 41 and 42 to intersect the Z-axis.
In the plan view of FIG. 1, the spherical bearing 8 is turned around the turning shaft 8 a by rotating the spherical bearing position adjusting member 14 and moving it forward and backward in the axial direction (Y-axis direction). O1 can be arranged on the shaft of the bearing member 16 and the rotating member 21.
Further, the holder mounting member 22 and the sample holder H can be turned around the spherical center O1 in the Y-axis direction by the Y-axis direction position adjusting screw (Y-axis direction position adjusting member).
[0039]
Therefore, in the plan view of FIG. 1, the axes of the bearing member 16 and the rotating member 21 (sample tilt axis) intersect with the Z axis by the screws 41 and 42 and the spherical bearing position adjusting member 14, and the spherical center is located on the axis. O1 can be arranged. In the plan view of FIG. 1, the Y axis direction position adjustment screw (Y axis direction position adjustment member) 34 is used to connect the axes of the holder mounting member 22 and the sample holder H to the axes of the bearing member 16 and the rotating member 21 (holder). Tilt axis). Therefore, in the plan view of FIG. 1, the axes of the bearing member 16 and the rotating member 21 (holder tilt axes) are made to coincide with the axis of the sample holder H, and the intersection with the Z axis and the spherical center O1 are arranged on the axes. can do.
[0040]
That is, in the first embodiment, the spherical center O1 can be arranged on the axis of the bearing member 16 and the rotating member 21 in the side sectional view of FIG. 2 and the plan view of FIG. Therefore, the escape of the sample when the rotating member 21 is rotated can be reduced.
[0041]
In the first embodiment, in the plan view (FIG. 1), the axes of the bearing member 16 and the rotating member 21 (the holder rotation axis) are made to coincide with the axis of the sample holder H, and the intersection of the axis with the Z axis is shown on the axis. The following operation is performed to arrange the spherical center O1.
(1) When the rotating member 21 is rotated by ± θ ° about its axis (sample tilt axis), the captured image displayed on the image display surface such as a CRT becomes the center point (optical axis) of the image display surface. Check how it is displaced with respect to. For example, a displacement to one side only means that the axis of the rotating member 21 (sample tilt axis) does not intersect the Z axis in the plan view (FIG. 1).
(2) Next, the positions of the axes (sample tilt axes) of the bearing member 16 and the rotating member 21 and the center of the spherical surface are shifted so that the captured image is displaced symmetrically with respect to the center point (optical axis) of the image display surface. Adjust the position of O1. The adjustment is performed by the screws (bearing position adjusting members) 41 and 42 and the spherical bearing position adjusting member 14.
(3) The eucentricity is adjusted by performing the operation (2) (finally, the displacement of the image approaches zero when the rotating member 21 is rotated). Then, the current of the objective lens is adjusted so as to focus on the sample position.
[0042]
(Example of change)
As mentioned above, although the Example of this invention was described in full detail, this invention is not limited to the said Example, Various changes are made within the range of the gist of this invention described in the claim. It is possible. Modified embodiments of the present invention are exemplified below.
(H01) Spherical bearing position adjustment member 14, Z-axis direction position adjustment screw 28, Y-axis direction position adjustment screw (Y-axis direction position adjustment member) 34, screw (bearing position adjustment member) constituted by the screw. The distal ends of the shafts such as 41 and 42 can be constituted by piezo elements. In this case, the position can be adjusted with high accuracy by expanding and contracting the piezo element in the axial direction of the screw.
[0043]
【The invention's effect】
The above-described charged particle beam device of the present invention can provide the following effects (E01) and (E02).
(E01) It is possible to provide a holder support device with a simple configuration, which can reduce the amount of the sample observation portion on the Z axis that escapes from the visual field when the sample holder H is rotated around its axis. .
(E02) In a plan view perpendicular to the charged particle beam along the Z axis, a straight line connecting the spherical axis O1 of the spherical bearing, which is the center of rotation of the sample holder, to the Z axis, and the axis of the rotating member 011 coincide. It is possible to provide a sample holder supporting device capable of being operated.
[Brief description of the drawings]
FIG. 1 is an explanatory view of Embodiment 1 of a holder supporting device of the present invention, and is a plan sectional view of a main part of a transmission electron microscope provided with the holder supporting device.
FIG. 2 is a longitudinal sectional view of a main part of the first embodiment, and is a sectional view taken along line II-II of FIG. 1;
FIG. 3 is a sectional view taken along line III-III of FIG. 2;
FIG. 4 is a sectional view taken along the line IV-IV of FIG. 2;
FIG. 5 is an explanatory view of Conventional Example 1 of a sample holder supporting device used in a charged particle beam device, and is a plan sectional view of a main part of a relatively small sample holder supporting device.
FIG. 6 is an explanatory view of a second conventional example of a sample holder supporting apparatus used in a charged particle beam apparatus, and is a plan sectional view of a main part of a relatively large sample holder supporting apparatus.
FIG. 7 is a sectional view taken along the line VII-VII in FIG. 6;
[Explanation of symbols]
GM: Goniometer,
GS ... Gonio mounting stage,
H: sample holder,
O1 ... Spherical center,
2 ... Barrel,
2b: Goniometer mounting hole,
8 spherical bearing,
8a: turning axis,
14 ... Spherical bearing position adjusting member,
16 ... Bearing member,
16a: bearing hole,
21 ... rotating member,
21b: Holder mounting member through hole,
22a: Holder mounting hole,
22 ... holder mounting member
28 ... Z-axis direction position adjustment member
34 ... Y-axis direction position adjustment member,
41, 42 ... bearing position adjusting members.

Claims (1)

下記の構成要件(A01)〜(A06)を備えたことを特徴とする試料ホルダ支持装置、
(A01)直交するX軸およびY軸に垂直なZ軸に沿う荷電粒子ビームの通路を囲む鏡筒に固定されたゴニオ装着用ステージであって、X軸方向に延び且つ前記鏡筒の内外を連通させるゴニオメータ装着孔と、前記ゴニオメータ装着孔の内端部に設けられた球面軸受けとを有するゴニオ装着用ステージ、
(A02)XY平面に垂直な旋回軸回りに旋回可能に支持され且つ旋回時に球面中心がXY平面内で移動可能に支持された前記球面軸受け、
(A03)前記ゴニオメータ装着孔の外端部に支持され且つ前記X軸方向に延びる軸受孔を有する軸受部材と、前記軸受孔により回転可能に支持され且つホルダ装着部材貫通孔を有する回転部材と、前記ホルダ装着部材貫通孔を貫通して配置され且つ内端部が前記球面軸受けに回動可能に支持されるとともに試料ホルダが着脱可能に装着されるホルダ装着孔を有するホルダ装着部材と、前記ホルダ装着部材の外端部を前記Y軸方向に位置調節するY軸方向位置調節部材と、前記Z軸方向に位置調節するZ軸方向位置調節部材とを備えたゴニオメータ、
(A04)前記Y軸方向に位置調節可能に支持された前記軸受部材、
(A05)前記旋回軸回りに前記球面軸受けの旋回位置を調節する球面軸受位置調節部材、
(A06)前記軸受部材を前記Y軸方向に位置調節する軸受位置調節部材。
A sample holder supporting device comprising the following constituent requirements (A01) to (A06):
(A01) A gonio mounting stage fixed to a lens barrel surrounding a path of a charged particle beam along a Z-axis perpendicular to the X-axis and the Y-axis orthogonal to each other, extending in the X-axis direction and moving inside and outside the lens-barrel. A goniometer mounting stage having a goniometer mounting hole to be communicated with, and a spherical bearing provided at an inner end of the goniometer mounting hole,
(A02) the spherical bearing supported so as to be able to turn around a turning axis perpendicular to the XY plane, and the center of the sphere being movably supported in the XY plane during the turning;
(A03) a bearing member supported by an outer end of the goniometer mounting hole and having a bearing hole extending in the X-axis direction; a rotating member rotatably supported by the bearing hole and having a holder mounting member through-hole; A holder mounting member disposed through the holder mounting member through-hole and having a holder mounting hole in which an inner end portion is rotatably supported by the spherical bearing and a sample holder is removably mounted; and the holder A goniometer including a Y-axis direction position adjustment member for adjusting the position of the outer end of the mounting member in the Y-axis direction, and a Z-axis direction position adjustment member for adjusting the position in the Z-axis direction;
(A04) the bearing member supported so as to be adjustable in the Y-axis direction;
(A05) a spherical bearing position adjusting member for adjusting a turning position of the spherical bearing around the turning axis;
(A06) A bearing position adjusting member for adjusting the position of the bearing member in the Y-axis direction.
JP2002237025A 2002-08-15 2002-08-15 Sample holder support device Expired - Fee Related JP4073271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002237025A JP4073271B2 (en) 2002-08-15 2002-08-15 Sample holder support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002237025A JP4073271B2 (en) 2002-08-15 2002-08-15 Sample holder support device

Publications (2)

Publication Number Publication Date
JP2004079313A true JP2004079313A (en) 2004-03-11
JP4073271B2 JP4073271B2 (en) 2008-04-09

Family

ID=32020972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002237025A Expired - Fee Related JP4073271B2 (en) 2002-08-15 2002-08-15 Sample holder support device

Country Status (1)

Country Link
JP (1) JP4073271B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331979A (en) * 2005-05-30 2006-12-07 Jeol Ltd Test piece holder of electron microscope
WO2011011659A2 (en) * 2009-07-24 2011-01-27 Omniprobe, Inc. Variable-tilt tem specimen holder for charged-particle beam instruments
KR101212001B1 (en) 2009-11-25 2012-12-13 한국표준과학연구원 Moving System and Method of Sample Holder
KR101910404B1 (en) * 2017-04-14 2018-10-22 주식회사 에스엘이노베이션 Focused Ion Beam Apparatus
US11164717B2 (en) 2018-03-23 2021-11-02 Hitachi High-Tech Corporation Electron microscope

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331979A (en) * 2005-05-30 2006-12-07 Jeol Ltd Test piece holder of electron microscope
JP4616701B2 (en) * 2005-05-30 2011-01-19 日本電子株式会社 Sample holder for electron microscope
WO2011011659A2 (en) * 2009-07-24 2011-01-27 Omniprobe, Inc. Variable-tilt tem specimen holder for charged-particle beam instruments
WO2011011659A3 (en) * 2009-07-24 2011-04-28 Omniprobe, Inc. Variable-tilt tem specimen holder for charged-particle beam instruments
KR101212001B1 (en) 2009-11-25 2012-12-13 한국표준과학연구원 Moving System and Method of Sample Holder
KR101910404B1 (en) * 2017-04-14 2018-10-22 주식회사 에스엘이노베이션 Focused Ion Beam Apparatus
US11164717B2 (en) 2018-03-23 2021-11-02 Hitachi High-Tech Corporation Electron microscope
DE112018006293B4 (en) 2018-03-23 2023-01-19 Hitachi High-Tech Corporation electron microscope

Also Published As

Publication number Publication date
JP4073271B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
US3762796A (en) Adjustable support or stand for an optical observation instrument
US3891301A (en) Adjustable support or stand for an optical observation instrument
JP5981924B2 (en) Objective lens assembly for a surgical microscope having pitch and roll rotation
JP3273084B2 (en) Medical device holder device
US3762797A (en) Adjustable support for optical observation instrument
US4815832A (en) Tilting device for surgical microscopes
US3582178A (en) Dual viewing teaching microscope with universal reticle projection unit
JP2005134876A (en) Microscopy system and method
KR100724792B1 (en) Robot eye-ball device
JP2004079313A (en) Sample holder supporting device
JPH0719555B2 (en) Goniometer table
JP2015132748A (en) Projector support device
KR102277148B1 (en) Eye surgery apparatus and method for controlling the same
US20220401168A1 (en) Slave Device and Control Method Therefor, and Eye Surgery Device and Control Method Therefor
KR20200145377A (en) Slave device and method for controliing the same
WO2021199262A1 (en) Rotation adjustment mechanism and headlight device
WO2021199257A1 (en) Rotation adjustment mechanism and headlight device
JPS5810040A (en) Laser beam scanning mechanism
JP2000315471A (en) Sample holder supporting apparatus
JP2001238096A (en) Operating device for three-axis driven photographing device
JP7144255B2 (en) ophthalmic equipment
JPH0817380A (en) Biaxial tilt sample fine adjuster and method for correcting escape of image
JPH10253894A (en) Microscope device
JP4907203B2 (en) Eyepiece pupil spacing adjustment device
JPH1026730A (en) Microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees