JP2004079297A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2004079297A
JP2004079297A JP2002236188A JP2002236188A JP2004079297A JP 2004079297 A JP2004079297 A JP 2004079297A JP 2002236188 A JP2002236188 A JP 2002236188A JP 2002236188 A JP2002236188 A JP 2002236188A JP 2004079297 A JP2004079297 A JP 2004079297A
Authority
JP
Japan
Prior art keywords
particles
battery
average particle
lithium
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002236188A
Other languages
Japanese (ja)
Inventor
Yoshin Yagi
八木 陽心
Koji Higashimoto
東本 晃二
Yuichi Takatsuka
高塚 祐一
Kensuke Hironaka
弘中 健介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2002236188A priority Critical patent/JP2004079297A/en
Publication of JP2004079297A publication Critical patent/JP2004079297A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery which has a large output and of which degradation of life property, in particular, the input and output property caused by charge and discharge cycle at high temperatures can be suppressed. <P>SOLUTION: Lithium manganate of which the average particle size of the secondary particles, which are made of a particle A having an average particle size 0.5-1 μm and a particle B having an average particle size 2-3 μm, is made 10-30 μm, having spherical shape, is used for the positive electrode active material. The ratio N<SB>A</SB>/ N<SB>B</SB>, the ratio of quantity N<SB>A</SB>of the particle A to the quantity N<SB>B</SB>of the particle B is made to range between 5 and 20. Since lithium manganate having spherical shape of its secondary particles is used, conductive material enters into the active materials and the contact area between the active material and the conductive material is increased. Further, the specific surface area is made large by the particle A and the reaction area of the electrode is increased, and by the particle B, the cohesion between the particles becomes large, thereby, elution of manganese can be suppressed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はリチウム二次電池に係り、特に、正極活物質にリチウムマンガン複酸化物を用いた正極と負極とを有する電極群を電解液に浸潤させたリチウム二次電池に関する。
【0002】
【従来の技術】
リチウムイオン二次電池は、高エネルギー密度であるメリットを活かして、主にVTRカメラやノートパソコン、携帯電話等のポータブル機器の電源に使用されている。この電池の内部構造は、通常以下に示されるような捲回式とされている。電極は正極、負極共に活物質が金属箔に塗着された帯状であり、セパレータを挟んで正負極が直接接触しないように断面が渦巻状に捲回され、捲回群を形成している。この捲回群が電池容器となる円筒状の電池缶に収納され、電解液注液後、封口されている。
【0003】
一般的な円筒形リチウムイオン二次電池の寸法は、18650型と呼ばれる、直径が18mm、高さ65mmであり、小形民生用リチウムイオン電池として広く普及している。18650型リチウムイオン二次電池の正極活物質には、高容量、長寿命を特徴とするコバルト酸リチウムが主として用いられており、電池容量は、おおむね1.3Ah〜1.7Ah、出力はおよそ10W程度である。
【0004】
一方、自動車産業界においては環境問題に対応すべく、排出ガスのない、動力源を完全に電池のみにした電気自動車(EV)と、内燃機関エンジンと電池との両方を動力源とするハイブリッド(電気)自動車の開発が加速され、一部実用化の段階にきている。
【0005】
電気自動車の電源となる電池には当然高出力、高エネルギーが得られる特性が要求され、この要求にマッチした電池としてリチウムイオン電池が注目されている。電気自動車の普及のためには、電池の低価格化が必須であり、そのためには、低コスト電池材料が求められ、例えば、正極活物質であれば、資源的に豊富なマンガンの酸化物が特に注目され、電池の高性能化を狙った改善がなされてきた。また、電気自動車用電池には、高容量だけではなく、加速性能などを左右する高出力化、つまり電池の内部抵抗の低減が求められる。電極反応面積の増大を狙って、正極活物質の比表面積を大きくすることでこの要求に対応することができる。
【0006】
具体的に比表面積を大きくするには、正極活物質の粒子径を小さくすることである。しかし、小さな粒子径では、電極製作時に粉体が飛散したり、集電体に塗布するためのスラリ化がしにくいなどの弊害が生じる。これを改善するためには、小さな粒子径の一次粒子を凝集させて二次粒子を形成させることで対処可能である。
【0007】
【発明が解決しようとする課題】
しかしながら、正極活物質にリチウムマンガン複酸化物を用いたリチウム二次電池の場合、高出力化を狙って単純に粒子径を小さくし比表面積を大きくしたリチウムマンガン複酸化物を用いると、電解液中へのマンガンの溶出が顕著になり電流が流れにくくなるため、電池の充放電サイクルや保存に伴う容量低下が大きくなり寿命特性を損なう問題が発生する。
【0008】
これに対し、マンガン酸リチウム結晶中のマンガン原子の一部をコバルト(Co)やクロム(Cr)等の異種金属で置換することにより、寿命特性を向上させることが種々提案されており、一応の効果は認められているものの、これも十分とはいえない。
【0009】
本発明は上記事案に鑑み、高出力化と共に寿命特性、特に高温での充放電サイクルによる入出力特性の低下を抑制することができるリチウム二次電池を提供することを課題とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明は、正極活物質にリチウムマンガン複酸化物を用いた正極と負極とを有する電極群を電解液に浸潤させたリチウム二次電池であって、前記リチウムマンガン複酸化物は、平均粒子径の異なる複数種の一次粒子を含み、前記一次粒子は集合して二次粒子を形成している。
【0011】
本発明は、平均粒子径の異なる複数種の一次粒子を混在させ集合させて二次粒子を形成させたリチウムマンガン複酸化物が正極活物質として用いられる。平均粒子径の小さな一次粒子は、平均粒子径の大きな一次粒子に対して、比表面積をより増大させ、逆に、平均粒子径が大きな一次粒子は、平均粒子径の小さな一次粒子に対して、一次粒子同士の粒子間結合力をより増大させる。比表面積を増大させることにより電極反応面積が増大し電池の内部抵抗を低減させるので、高出力を得ることができ、また、粒子間結合力を増大させることにより充放電サイクルや保存に伴うマンガンの溶出を抑制することができるので、容量低下を防止することができると共に、平均粒子径の異なる複数種の一次粒子を集合させて二次粒子とすれば、正極作製時に粉体が飛散することを防止できると共に、集電体に塗布するためのスラリ化が容易になるので、正極作製の作業性を高めることができる。従って、本発明によれば、比表面積の増大と粒子間結合力の増大を同時に達成することができるので、高出力化と共に、充放電サイクルによる入出力特性の低下を抑制した長寿命の電池を実現することができる。
【0012】
この場合において、一次粒子に平均粒子径が0.5μm乃至1μmの粒子Aと平均粒子径が2μm乃至3μmの粒子Bとを含むようにすれば、粒子Aにより比表面積を増大させるので、高出力を得ることができ、粒子Bにより粒子間結合力を増大させるので、マンガン溶出を抑制して容量低下を防止することができる。粒子Bの数量に対する粒子Aの数量の比N/Nが5に満たないときは、粒子Aの割合が少なく、比表面積が減少して出力の低下を招く。逆に、比N/Nが20を超えるときは、粒子Bの割合が少なく、粒子間結合力が低下してマンガン溶出が多くなるため容量の低下を招くので、比N/Nを5乃至20とすることにより、高出力かつ長寿命の電池を得ることができる。更に、二次粒子の平均粒子径が10μmに満たないときは、粉体の飛散を生じ、30μmを超えるときは、二次粒子中に電解液が均一に浸潤しなくなり充放電を妨げることとなるため出力や容量の低下を招くので、二次粒子の平均粒子径を10μm乃至30μmとすることにより、一層粉体の飛散防止やスラリ化が容易となる。更にまた、二次粒子の形状が塊状であると、活物質と活物質とが接触する割合が高くなり、接触部分では導電経路を確保することができないため、二次粒子の形状を球状にすることにより活物質間の空隙率が増加され空隙部分に導電材が入り込むことができるので、電極反応面積が増大し高出力を得ることができる。
【0013】
【発明の実施の形態】
以下、本発明のリチウム二次電池をハイブリッド電気自動車用の円筒形リチウムイオン電池に適用した実施の形態について説明する。
【0014】
(正極)
正極活物質にリチウムマンガン複酸化物としてのマンガン酸リチウムを用い、マンガン酸リチウムは、一次粒子の平均粒子径0.5〜1μmの粒子Aと一次粒子の平均粒子径2〜3μmの粒子Bとを、粒子Bの数量に対する粒子Aの数量の比N/Nが後述する所定範囲となるように混合し、粒子A及び粒子Bからなる二次粒子の平均粒子径を10〜30μmとした。また、二次粒子の形状が塊状又は球状のものを用いた。マンガン酸リチウム100重量部に、導電材として10重量部の鱗片状黒鉛と、結着剤として10重量部のポリフッ化ビニリデン(PVDF)を添加し、これに分散溶媒としてN−メチルピロリドン(NMP)を添加、混練した正極合材(スラリ)を作製した。作製したスラリを厚さ20μmのアルミニウム箔(正極集電体)の両面に塗布、乾燥し、その後プレス、裁断してアルミニウム箔を含まない正極活物質塗布部厚さ90μmの正極を作製した。なお、粒子A、粒子Bの平均粒子径及び比N/Nは、電子顕微鏡観察により上記範囲であることを確認した。また、二次粒子の平均粒子径及び形状も同様の方法で確認した。なお、二次粒子の形状は、電子顕微鏡で2000倍に拡大して塊状又は球状の判定を行った。図1に、塊状と判定された二次粒子、図2に、球状と判定された二次粒子の電子顕微鏡写真をそれぞれ示す。
【0015】
(負極)
負極活物質として非晶質炭素粉末100重量部に、結着剤として10重量部のPVDFを添加し、これに分散溶媒としてNMPを添加、混練したスラリを厚さ10μmの圧延銅箔の両面に塗布し、その後乾燥、プレス、裁断することにより圧延銅箔を含まない負極活物質塗布部厚さ70μmの負極を作製した。
【0016】
(電池の組立)
図3に示すように、上記作製した正極と負極とを、これら両極が直接接触しないように幅90mm、厚さ40μmのポリエチレン製セパレータと共に捲回し捲回群(電極群)6とした。このとき、正極リード片と負極リード片とが、それぞれ捲回群6の互いに反対側の両端面に位置するようにした。また、正極、負極、セパレータの長さを調整し、捲回群6の直径を38±0.1mmとした。
【0017】
正極リード片を変形させ、その全てを、捲回群6の軸芯のほぼ延長線上にある正極集電リングの周囲から一体に張り出している鍔部周面付近に集合、接触させた後、正極リード片と鍔部周面とを超音波溶接して正極リード片を鍔部周面に接続した。一方、負極集電リングと負極リード片との接続操作も、正極集電リングと正極リード片との接続操作と同様に実施した。
【0018】
その後、正極集電リングの鍔部周面全周に絶縁被覆を施した。この絶縁被覆には、基材がポリイミドで、その片面にヘキサメタアクリレートからなる粘着剤を塗布した粘着テープを用いた。この粘着テープを鍔部周面から捲回群6外周面に亘って一重以上巻いて絶縁被覆とし、捲回群6をニッケルメッキが施されたスチール製の電池容器内に挿入した。電池容器の外径は40mm、内径は39mmである。
【0019】
負極集電リングには予め電気的導通のための負極リード板が溶接されており、電池容器内に捲回群6を挿入後、電池容器の底部と負極リード板とを溶接した。
【0020】
一方、正極集電リングには、予め複数枚のアルミニウム製のリボンを重ね合わせて構成した正極リードを溶接しておき、正極リードの他端を、電池容器を封口するための電池蓋の下面に溶接した。電池蓋には、円筒形リチウムイオン電池20の内圧上昇に応じて開裂する内圧開放機構の開裂弁が設けられている。開裂弁の開裂圧は、約9×10Paに設定した。電池蓋は、蓋ケースと、気密を保つ弁押さえと、開裂弁とで構成されており、これらが積層されて蓋ケースの周縁をカシメることによって組立てられている。
【0021】
非水電解液を所定量電池容器内に注入し、その後、正極リードを折りたたむようにして電池蓋で電池容器に蓋をし、EPDM樹脂製ガスケットを介してカシメて密封することにより設計容量4.0Ahの円筒形リチウムイオン電池20を完成させた。
【0022】
非水電解液には、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートの体積比1:1:1の混合溶液中へ6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものを用いた。
【0023】
本実施形態によれば、マンガン酸リチウムに平均粒子径の異なる2種類の一次粒子を用いることで、比表面積増大と粒子間結合力増大の効果を併せ持つことができるので、高出力、長寿命の電池を実現することができる。一次粒子は、平均粒子径が0.5〜1μmの粒子A及び平均粒子径が2〜3μmの粒子Bとしたので、粒子Aにより比表面積を増大させることができ、粒子Bにより粒子間結合力を増大させることができる。このとき、比N/Nを5〜20とすれば、粒子Aによる比表面積の増大と粒子Bによる粒子間結合力の増大をバランスよく行うことができるので、高出力、長寿命でバランスのよい電池を得ることができる。上述したように、比N/Nが5に満たないと出力の低下を招き、逆に、比N/Nが20を超えると充放電サイクルによる容量の低下を招く。また、粒子Aと粒子Bを凝集させた二次粒子を用いているので、上述したように電極作製を容易に行うことができる。更に、二次粒子の平均粒子径を10〜30μmとしているので、粉体の飛散を防止しスラリ化を容易に行うことができる。上述したように二次粒子の平均粒子径が10μmに満たないときには粉体の飛散を生じ、30μmを超えるときには出力や容量の低下を招く。また、二次粒子の形状を球状にすることにより、活物質間の空隙率が増大し、活物質と活物質間に入り込んだ導電材との接触が効率よく行われるので、更に高出力の優れた電池を得ることができる。
【0024】
【実施例】
次に、本実施形態に従って作製した円筒形リチウムイオン電池20の実施例について説明する。なお、比較のために作製した比較例の電池についても併記する。
【0025】
(実施例1)
下表1に示すように、実施例1では、比N/Nを5とし、二次粒子の平均粒子径を15μmとし、二次粒子の形状が球状のマンガン酸リチウムを用いて、電池を作製した。
【0026】
【表1】

Figure 2004079297
【0027】
(実施例2〜実施例3)
表1に示すように、実施例2〜実施例3では、比N/Nを、実施例2では10、実施例3では20とし、二次粒子の平均粒子径を、実施例2、実施例3共に15μmとした以外は実施例1と同様に電池を作製した。
【0028】
(実施例4〜実施例5)
表1に示すように、実施例4〜実施例5では、比N/Nを、実施例4、実施例5共に10とし、二次粒子の平均粒子径を、実施例4では10μm、実施例5では30μmとした以外は実施例1と同様に電池を作製した。
【0029】
(実施例6)
表1に示すように、実施例6では、比N/Nを5とし、二次粒子の平均粒子径を15μmとし、二次粒子の形状が塊状のマンガン酸リチウムを用いて、電池を作製した。
【0030】
(実施例7〜実施例8)
表1に示すように、実施例7〜実施例8では、比N/Nを、実施例7では10、実施例8では20とし、二次粒子の平均粒子径を、実施例7、実施例8共に15μmとした以外は実施例6と同様に電池を作成した。
【0031】
(実施例9〜実施例10)
表1に示すように、実施例9〜実施例10では、比N/Nを、実施例9、実施例10共に10とし、二次粒子の平均粒子径を、実施例9では10μm、実施例10では30μmとした以外は実施例6と同様に電池を作成した。
【0032】
(比較例1)
表1に示すように、比較例1では、比N/Nを50とし、二次粒子の平均粒子径を15μmとし、二次粒子の形状が塊状のマンガン酸リチウムを用いた以外は実施例1と同様に電池を作製した。
【0033】
(比較例2)
表1に示すように、比較例2では、一次粒子を粒子Aのみとし、二次粒子の平均粒子径を15μmとし、二次粒子の形状が塊状のマンガン酸リチウムを用いた以外は実施例1と同様に電池を作製した。
【0034】
(比較例3)
表1に示すように、比較例3では、一次粒子を粒子Bのみとし、二次粒子の平均粒子径を15μmとし、二次粒子の形状が塊状のマンガン酸リチウムを用いた以外は実施例1と同様に電池を作製した。
【0035】
(比較例4〜比較例5)
表1に示すように、比較例4〜比較例5では、比N/Nを、実施例4、実施例5共に10とし、二次粒子の平均粒子径を、実施例4では8μm、実施例5では35μmとし、二次粒子の形状が塊状のマンガン酸リチウムを用いた以外は実施例1と同様に電池を作製した。
【0036】
以上のように作製した実施例及び比較例の各(複数個の)電池について充放電試験を実施し、初期及びパルスサイクル試験後の出力並びに容量維持率を測定した。
【0037】
出力の測定は、25±2°Cの雰囲気において4.1Vの満充電状態から10A、30A、90Aの電流値で各10秒間放電し、横軸電流に対して、各5秒目の電池電圧を縦軸にプロットし、3点を直線近似した直線が終止電圧である2.7Vと交差する点の電流値を読み取り、この電流値と2.7Vとの積をその電池の出力とした。
【0038】
また、50±3°Cの雰囲気において各電池に約50Aの高負荷電流を充電方向と放電方向ともに約5秒通電し、休止時間も含め1サイクル約30秒のパルスサイクル試験を連続して10万回繰り返した後、上述の方法で出力を測定した。
【0039】
放電容量の測定は、25±2°Cの雰囲気において充電した後放電し、初期の放電容量を測定した。充電条件は、4.1V定電圧、制限電流5A、3.5時間とし、放電条件は、1A定電流、終止電圧2.7Vとした。上述のパルスサイクル試験後の放電容量を測定し、初期の放電容量に対する維持率を百分率で示した。一連の試験結果を下表2に示す。
【0040】
【表2】
Figure 2004079297
【0041】
表2に示すように、比N/Nを5〜20とし、二次粒子の平均粒子径を15μmとし、二次粒子の形状を球状とした実施例1〜実施例3の電池では、出力は初期が850W以上、パルスサイクル試験後でも680W以上で、容量維持率も90%以上であり、高出力で長寿命の優れた電池であった。これに対して、比N/Nが20を超え、二次粒子の形状を塊状とした比較例1の電池及び粒子Aのみを用いた比較例2の電池では、初期の出力は900W以上と優れているものの、パルスサイクル試験後の出力が550W以下、容量維持率が80%以下であり、十分な性能を確保することができなかった。反対に、比N/Nを5未満とした比較例3の電池では、容量維持率は90%と優れていたものの、初期及びパルスサイクル試験後の出力がそれぞれ630W、550Wであり、十分な出力を得ることができなかった。
【0042】
また、比N/Nを10とし、二次粒子の平均粒子径を10μm、30μmとし、形状を球状とした実施例4、実施例5の電池は、初期の出力が860W以上、パルスサイクル試験後の出力も680W以上で、容量維持率も92%以上であり、高出力で長寿命の優れた電池であった。しかしながら、二次粒子の平均粒子径を8μm、35μmとした比較例4、比較例5の電池は、初期の出力が730W以下、パルスサイクル試験後の出力が550W以下であり、更には容量維持率も85%以下と大きく劣る結果であった。
【0043】
更に、比N/N及び二次粒子の平均粒子径を実施例1〜実施例5と同様とし、形状を塊状とした実施例6〜実施例10の電池では、出力は初期及びパルスサイクル試験後共に10%程度低下するものの、パルスサイクル試験後でも650W以上で、容量維持率は90%以上であり、高出力で長寿命の優れた電池を得ることができた。
【0044】
以上の試験結果から、比N/Nを5〜20とし、二次粒子の平均粒子径を10〜30μmとしたマンガン酸リチウムを正極活物質に用いた実施例1〜実施例10の各電池は、出力特性、寿命特性共に大きく向上することが判った。また、二次粒子の形状を球状としたマンガン酸リチウムを正極活物質に用いることにより、寿命特性を維持したまま、更に高出力の電池とすることができた。
【0045】
上述のように、本実施例の円筒形リチウムイオン電池20は、マンガン酸リチウムに平均粒子径が0.5〜1μmの粒子Aと平均粒子径が2〜3μmの粒子Bとの一次粒子を用い、比表面積増大の効果と粒子間結合力増大の効果を併せ持つようにしたので、高出力、長寿命を実現することができた。また、比N/Nを5〜20とし、粒子Aによる比表面積の増大と粒子Bによる粒子間結合力の増大をバランスよく行ったので、一層高出力で容量維持率の高バランスのよい電池を得ることができた。比N/Nが5に満たないと、粒子間結合力が増大して容量維持率の高い電池とすることはできるが、比表面積が減少するため出力が低下し、逆に、比N/Nが20を超えると、比表面積が増大し出力の高い電池とすることはできるが、粒子間結合力が低下し、マンガン酸リチウムからのマンガンの溶出が多くなるため容量が低下した。また、粒子Aと粒子Bを凝集させた二次粒子を用いたので、正極作製時に粉体が飛散することを防止でき、集電体に塗布するためのスラリ化が容易になり、正極作製の作業性を高めることができた。更に、二次粒子の平均粒子径を10〜30μmとしたので、一層粉体の飛散防止やスラリ化が容易となった。二次粒子の平均粒子径が10μmに満たないと、粉体の飛散を生じ、30μmを超えると、二次粒子中に電解液が均一に浸潤しなくなり充放電を妨げるため出力、容量が低下した。また、正極における導電材の役割は活物質と集電体との導電経路を確保させ電極反応面積を増大させることである。二次粒子の形状を塊状から球状とすることにより、活物質同士の接触面積が減少し反対に活物質と導電材との接触面積が増大されると共に、活物質と集電体との導電経路が確保されるため、電極反応面積が増大するので、更に高出力とすることができた。
【0046】
なお、本実施形態では、円筒形電池について例示したが、本発明は電池の形状については限定されず、角形、その他の多角形の電池にも適用可能である。また、本発明の適用可能な構造としては、上述した電池容器に電池蓋がカシメによって封口されている構造の電池以外であっても構わない。このような構造の一例として正負外部端子が電池蓋を貫通し、電池容器内で軸芯を介して正負外部端子が押し合っている状態の電池を挙げることができる。更に本発明は、正極及び負極を捲回式の構造とせず、積層式の構造としたリチウム二次電池にも適用可能である。
【0047】
また、本実施形態以外で用いることのできるリチウム二次電池用正極活物質としては、リチウムイオンを挿入・脱離可能な材料であり、予め十分な量のリチウムイオンを挿入したリチウムマンガン複酸化物であればよく、スピネル構造を有したマンガン酸リチウム(LiMn)のほか、層状岩塩型構造を有するマンガン酸リチウム(LiMnO)、結晶中のリチウムやマンガンの一部をそれら以外の元素、例えば、Fe、Co、Ni、Cr、Al、Mg等の元素で置換あるいはドープした材料や結晶中の酸素の一部をS、P等で置換あるいはドープした材料を使用するようにしてもよい。また、本実施形態では、正極活物質のマンガン酸リチウムに平均粒子径の異なる2種の一次粒子を用いた例を示したが、これらの一次粒子とは平均粒子径の異なる1種以上の一次粒子を更に補足的に用いるようにしてもよい。
【0048】
更に、本実施形態では、負極活物質に、晶質の炭素材料を用いた場合と比べて負極集電体への密着性に優れる非晶質炭素を用いた例を示したが、天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素材料等を使用してもよく、その粒子形状についても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。このような炭素材を負極活物質に用いると、断面渦巻状に捲回して電極群を形成するときの可撓性に優れ、負極からの負極活物質層の剥離離脱を防止することができる。
【0049】
また、本発明は、本実施形態で例示した導電材、バインダ(結着剤)には限定されず、通常用いられているいずれのものも使用可能である。本実施形態以外で用いることのできるリチウム二次電池用極板活物質結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体及びこれらの混合体などがある。
【0050】
更にまた、本実施形態では、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートを体積比1:1:1で混合した混合溶媒にLiPFを溶解した非水電解液を例示したが、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液を用いてもよく、本発明は用いられるリチウム塩や有機溶媒には特に制限されない。例えば、電解質としては、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を用いることができる。また、有機溶媒としては、プロピレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等、又はこれらの2種類以上を混合した混合溶媒を用いることができ、更に、混合配合比についても限定されるものではない。このような非水電解液を用いることにより電池容量の向上や寒冷地での使用にも適合させることが可能となる。
【0051】
【発明の効果】
以上説明したように、本発明によれば、リチウムマンガン複酸化物として平均粒子径の異なる複数種の一次粒子を混在させ集合させて二次粒子を形成させることで、リチウムマンガン複酸化物の比表面積を増大させるため、電極反応面積を増大させて電池の内部抵抗を低減することができると共に、粒子間結合力を増大させてマンガン溶出を抑制することができるので、高出力化と共に、充放電サイクルによる入出力特性の低下を抑制した長寿命のリチウム二次電池を実現することができると共に、正極作製時に粉体が飛散することを防止でき、集電体に塗布するためのスラリ化が容易になるので、正極作製の作業性を高めることができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な円筒形リチウムイオン電池に用いられる、二次粒子の形状が塊状のマンガン酸リチウムの電子顕微鏡写真である。
【図2】本発明が適用可能な円筒形リチウムイオン電池に用いられる、二次粒子の形状が球状のマンガン酸リチウムの電子顕微鏡写真である。
【図3】本発明が適用可能な実施形態の円筒形リチウムイオン電池の断面図である。
【符号の説明】
6 捲回群(電極群)
20 円筒形リチウムイオン電池(リチウム二次電池)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery in which an electrode group having a positive electrode using a lithium manganese double oxide as a positive electrode active material and a negative electrode is immersed in an electrolytic solution.
[0002]
[Prior art]
Lithium-ion secondary batteries are mainly used as power supplies for portable devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of their high energy density. The internal structure of this battery is usually of a wound type as shown below. The electrode has a band shape in which an active material is applied to a metal foil for both the positive electrode and the negative electrode. The cross section is spirally wound so that the positive electrode and the negative electrode do not directly contact each other with a separator interposed therebetween, thereby forming a wound group. The wound group is housed in a cylindrical battery can serving as a battery container, and is sealed after the electrolyte is injected.
[0003]
A typical cylindrical lithium ion secondary battery has a diameter of 18 mm and a height of 65 mm, which is called 18650 type, and is widely used as a small consumer lithium ion battery. As the positive electrode active material of the 18650 type lithium ion secondary battery, lithium cobalt oxide characterized by high capacity and long life is mainly used. The battery capacity is approximately 1.3 Ah to 1.7 Ah, and the output is about 10 W. It is about.
[0004]
On the other hand, in the automotive industry, in order to cope with environmental problems, an electric vehicle (EV) having no exhaust gas and a power source entirely using only batteries, and a hybrid (power source using both an internal combustion engine and a battery) ( The development of electric vehicles has been accelerated and some of them are now at the stage of practical use.
[0005]
A battery serving as a power source of an electric vehicle is required to have characteristics capable of obtaining high output and high energy, and a lithium ion battery has attracted attention as a battery that meets these requirements. For the spread of electric vehicles, it is essential to lower the price of batteries, and for that purpose, low-cost battery materials are required.For example, in the case of a positive electrode active material, a resource-rich manganese oxide is used. Particular attention has been paid to improvements aimed at improving the performance of batteries. In addition, batteries for electric vehicles are required to have not only high capacity but also high output that affects acceleration performance and the like, that is, reduction of internal resistance of the battery. This requirement can be met by increasing the specific surface area of the positive electrode active material with the aim of increasing the electrode reaction area.
[0006]
To increase the specific surface area specifically, it is necessary to reduce the particle diameter of the positive electrode active material. However, if the particle diameter is small, adverse effects such as scattering of powder at the time of manufacturing the electrode and difficulty in forming a slurry for coating the current collector are caused. In order to improve this, primary particles having a small particle diameter can be coagulated to form secondary particles.
[0007]
[Problems to be solved by the invention]
However, in the case of a lithium secondary battery using a lithium manganese double oxide as the positive electrode active material, if a lithium manganese double oxide with a small particle diameter and a large specific surface area is used simply for the purpose of high output, the electrolytic solution Since manganese elutes into the remarkable portion and the current becomes difficult to flow, a decrease in capacity due to charge / discharge cycles and storage of the battery increases, and a problem occurs that the life characteristics are impaired.
[0008]
On the other hand, various proposals have been made to improve the life characteristics by replacing a part of the manganese atoms in the lithium manganate crystal with a different metal such as cobalt (Co) or chromium (Cr). Although effective, this is not enough.
[0009]
The present invention has been made in view of the above circumstances, and has as its object to provide a lithium secondary battery capable of suppressing deterioration of input / output characteristics due to charge / discharge cycling at a high temperature while achieving high output.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a lithium secondary battery in which an electrode group having a positive electrode and a negative electrode using a lithium manganese double oxide as a positive electrode active material is infiltrated in an electrolyte solution, The double oxide includes a plurality of types of primary particles having different average particle diameters, and the primary particles are aggregated to form secondary particles.
[0011]
In the present invention, a lithium manganese double oxide in which a plurality of types of primary particles having different average particle diameters are mixed and aggregated to form secondary particles is used as a positive electrode active material. Primary particles having a small average particle diameter increase the specific surface area for primary particles having a large average particle diameter, and conversely, primary particles having a large average particle diameter are relatively small for primary particles having a small average particle diameter. The bonding force between the primary particles is further increased. By increasing the specific surface area, the electrode reaction area is increased and the internal resistance of the battery is reduced, so that high output can be obtained. Since elution can be suppressed, it is possible to prevent a decrease in capacity, and if a plurality of types of primary particles having different average particle diameters are aggregated to form secondary particles, it is possible to prevent powder from scattering at the time of manufacturing the positive electrode. In addition, the slurry can be easily applied to the current collector, so that the operability of producing the positive electrode can be improved. Therefore, according to the present invention, an increase in specific surface area and an increase in interparticle binding force can be achieved at the same time. Can be realized.
[0012]
In this case, if the primary particles include the particles A having an average particle size of 0.5 μm to 1 μm and the particles B having an average particle size of 2 μm to 3 μm, the specific surface area is increased by the particles A. Can be obtained, and the bonding force between the particles is increased by the particles B, so that manganese elution can be suppressed to prevent a decrease in capacity. Ratio N of the number of particles A to the number of particles B A / N B Is less than 5, the ratio of the particles A is small, the specific surface area is reduced, and the output is reduced. Conversely, the ratio N A / N B Exceeds 20, the proportion of the particles B is small, the bonding force between the particles is reduced, and the manganese elution is increased, resulting in a decrease in the capacity. A / N B Is 5 to 20, a high-output and long-life battery can be obtained. Furthermore, when the average particle diameter of the secondary particles is less than 10 μm, the powder is scattered, and when the average particle diameter exceeds 30 μm, the electrolyte does not uniformly infiltrate into the secondary particles, thereby preventing charge and discharge. Therefore, the output and the capacity are reduced. By setting the average particle diameter of the secondary particles to 10 μm to 30 μm, the scattering of the powder and the formation of a slurry can be further facilitated. Furthermore, when the shape of the secondary particles is a lump, the ratio of contact between the active material and the active material increases, and a conductive path cannot be secured at the contact portion, so that the shape of the secondary particles is spherical. As a result, the porosity between the active materials is increased, and the conductive material can enter the void portions, so that the electrode reaction area increases and high output can be obtained.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the lithium secondary battery of the present invention is applied to a cylindrical lithium ion battery for a hybrid electric vehicle will be described.
[0014]
(Positive electrode)
Lithium manganate as a lithium manganese double oxide is used as the positive electrode active material, and lithium manganate is composed of particles A having an average primary particle diameter of 0.5 to 1 μm and particles B having an average primary particle diameter of 2 to 3 μm. Is the ratio of the number of particles A to the number of particles B, N A / N B Was mixed so as to fall within a predetermined range described later, and the average particle diameter of the secondary particles composed of particles A and B was set to 10 to 30 μm. In addition, a secondary particle having a massive or spherical shape was used. To 100 parts by weight of lithium manganate, 10 parts by weight of flaky graphite as a conductive material and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder are added, and N-methylpyrrolidone (NMP) is used as a dispersion solvent. Was added and kneaded to prepare a positive electrode mixture (slurry). The prepared slurry was applied to both sides of a 20-μm-thick aluminum foil (positive electrode current collector), dried, and then pressed and cut to prepare a positive electrode having a positive-electrode-active-material-applied-portion-thickness of 90 μm without an aluminum foil. The average particle diameter and the ratio N of the particles A and B A / N B Was confirmed to be within the above range by observation with an electron microscope. Further, the average particle size and shape of the secondary particles were also confirmed by the same method. In addition, the shape of the secondary particles was determined to be lumpy or spherical with an electron microscope magnifying 2000 times. FIG. 1 shows electron micrographs of the secondary particles determined to be massive, and FIG. 2 shows electron micrographs of the secondary particles determined to be spherical.
[0015]
(Negative electrode)
To 100 parts by weight of amorphous carbon powder as a negative electrode active material, 10 parts by weight of PVDF was added as a binder, NMP was added as a dispersion solvent, and the kneaded slurry was applied to both sides of a 10 μm-thick rolled copper foil. The negative electrode was coated, and then dried, pressed, and cut to produce a negative electrode having a negative electrode active material application portion thickness of 70 μm that did not include a rolled copper foil.
[0016]
(Battery assembly)
As shown in FIG. 3, the positive electrode and the negative electrode produced above were wound together with a polyethylene separator having a width of 90 mm and a thickness of 40 μm so that these two electrodes did not directly contact each other to form a winding group (electrode group) 6. At this time, the positive electrode lead piece and the negative electrode lead piece were respectively positioned on opposite end surfaces of the winding group 6. The length of the positive electrode, the negative electrode, and the separator was adjusted, and the diameter of the winding group 6 was set to 38 ± 0.1 mm.
[0017]
The positive electrode lead pieces are deformed, and all of them are gathered and brought into contact with the vicinity of the flange peripheral surface integrally projecting from the periphery of the positive electrode current collecting ring substantially on the extension of the axis of the winding group 6, and then contacted with the positive electrode. The lead piece and the flange peripheral surface were ultrasonically welded to connect the positive electrode lead piece to the flange peripheral surface. On the other hand, the connection operation between the negative electrode current collector ring and the negative electrode lead piece was also performed in the same manner as the connection operation between the positive electrode current collector ring and the positive electrode lead piece.
[0018]
Thereafter, an insulating coating was applied to the entire peripheral surface of the flange of the positive electrode current collecting ring. For this insulating coating, a pressure-sensitive adhesive tape was used in which the base material was polyimide and one side thereof was coated with a pressure-sensitive adhesive composed of hexamethacrylate. This adhesive tape was wound one or more times from the peripheral surface of the flange to the outer peripheral surface of the winding group 6 to form an insulating coating, and the winding group 6 was inserted into a nickel-plated steel battery container. The outer diameter of the battery container is 40 mm and the inner diameter is 39 mm.
[0019]
A negative electrode lead plate for electrical conduction was previously welded to the negative electrode current collector ring. After inserting the winding group 6 into the battery container, the bottom of the battery container and the negative electrode lead plate were welded.
[0020]
On the other hand, a positive electrode lead formed by laminating a plurality of aluminum ribbons in advance is welded to the positive electrode current collecting ring, and the other end of the positive electrode lead is attached to the lower surface of a battery lid for sealing a battery container. Welded. The battery lid is provided with a cleavage valve of an internal pressure release mechanism that is cleaved according to an increase in the internal pressure of the cylindrical lithium ion battery 20. The cleavage pressure of the cleavage valve is about 9 × 10 5 Pa was set. The battery lid is composed of a lid case, a valve retainer for maintaining airtightness, and a cleavage valve, and these are stacked and assembled by caulking the periphery of the lid case.
[0021]
3. Inject a predetermined amount of non-aqueous electrolyte into the battery container, and then cover the battery container with the battery cover so that the positive electrode lead is folded, and then crimp and seal it via an EPDM resin gasket to design capacity. A 0 Ah cylindrical lithium ion battery 20 was completed.
[0022]
The non-aqueous electrolyte contains lithium hexafluorophosphate (LiPF) in a mixed solution of ethylene carbonate, dimethyl carbonate and diethyl carbonate at a volume ratio of 1: 1: 1. 6 ) Was dissolved at 1 mol / l.
[0023]
According to this embodiment, by using two types of primary particles having different average particle sizes for lithium manganate, it is possible to have both the effect of increasing the specific surface area and the effect of increasing the bonding force between particles. A battery can be realized. Since the primary particles are particles A having an average particle diameter of 0.5 to 1 μm and particles B having an average particle diameter of 2 to 3 μm, the specific surface area can be increased by the particles A, and the bonding force between the particles can be increased by the particles B. Can be increased. At this time, the ratio N A / N B Is 5 to 20, it is possible to increase the specific surface area by the particles A and increase the inter-particle binding force by the particles B in a well-balanced manner, so that a well-balanced battery with high output and long life can be obtained. As mentioned above, the ratio N A / N B Is less than 5, the output decreases, and conversely, the ratio N A / N B Exceeds 20, the capacity is reduced due to charge / discharge cycles. In addition, since the secondary particles obtained by aggregating the particles A and the particles B are used, the electrode can be easily manufactured as described above. Furthermore, since the average particle diameter of the secondary particles is set to 10 to 30 μm, scattering of the powder can be prevented and the slurry can be easily formed. As described above, when the average particle diameter of the secondary particles is less than 10 μm, the powder is scattered, and when it exceeds 30 μm, the output and the capacity are reduced. In addition, by making the shape of the secondary particles spherical, the porosity between the active materials is increased, and the contact between the active materials and the conductive material that has entered between the active materials is efficiently performed, so that an even higher output is excellent. Battery can be obtained.
[0024]
【Example】
Next, an example of the cylindrical lithium-ion battery 20 manufactured according to the present embodiment will be described. Note that a battery of a comparative example manufactured for comparison is also described.
[0025]
(Example 1)
As shown in Table 1 below, in Example 1, the ratio N A / N B Was set to 5, the average particle diameter of the secondary particles was set to 15 μm, and a battery was produced using lithium manganate whose secondary particles had a spherical shape.
[0026]
[Table 1]
Figure 2004079297
[0027]
(Examples 2 and 3)
As shown in Table 1, in Examples 2 and 3, the ratio N A / N B Was set to 10 in Example 2 and 20 in Example 3, and a battery was produced in the same manner as in Example 1 except that the average particle diameter of the secondary particles was set to 15 μm in both Examples 2 and 3.
[0028]
(Examples 4 and 5)
As shown in Table 1, in Examples 4 and 5, the ratio N A / N B Was set to 10 in both Examples 4 and 5, and a battery was produced in the same manner as in Example 1 except that the average particle diameter of the secondary particles was 10 μm in Example 4 and 30 μm in Example 5.
[0029]
(Example 6)
As shown in Table 1, in Example 6, the ratio N A / N B Was set to 5, the average particle diameter of the secondary particles was set to 15 μm, and a battery was produced using lithium manganate in which the shape of the secondary particles was massive.
[0030]
(Examples 7 and 8)
As shown in Table 1, in Examples 7 and 8, the ratio N A / N B Was set to 10 in Example 7 and 20 in Example 8, and a battery was prepared in the same manner as in Example 6, except that the average particle diameter of the secondary particles was 15 μm in both Examples 7 and 8.
[0031]
(Examples 9 to 10)
As shown in Table 1, in Examples 9 and 10, the ratio N A / N B Was set to 10 in Examples 9 and 10, and the battery was prepared in the same manner as in Example 6, except that the average particle diameter of the secondary particles was 10 μm in Example 9 and 30 μm in Example 10.
[0032]
(Comparative Example 1)
As shown in Table 1, in Comparative Example 1, the ratio N A / N B Was set to 50, the average particle diameter of the secondary particles was set to 15 μm, and a lithium secondary battery was used in the same manner as in Example 1 except that lithium manganate was used.
[0033]
(Comparative Example 2)
As shown in Table 1, in Comparative Example 2, the primary particles were only particles A, the average particle diameter of the secondary particles was 15 μm, and the shape of the secondary particles was agglomerated lithium manganate. A battery was produced in the same manner as in the above.
[0034]
(Comparative Example 3)
As shown in Table 1, in Comparative Example 3, the primary particles were only particles B, the average particle diameter of the secondary particles was 15 μm, and the shape of the secondary particles was agglomerated lithium manganate. A battery was produced in the same manner as in the above.
[0035]
(Comparative Example 4 to Comparative Example 5)
As shown in Table 1, in Comparative Examples 4 and 5, the ratio N A / N B In each of Examples 4 and 5, the average particle diameter of the secondary particles was set to 8 μm in Example 4, and 35 μm in Example 5, except that lithium manganate in which the shape of the secondary particles was massive was used. Produced a battery in the same manner as in Example 1.
[0036]
A charge / discharge test was performed on each (a plurality of) batteries of the example and the comparative example produced as described above, and the output and the capacity retention rate at the initial stage and after the pulse cycle test were measured.
[0037]
The output was measured at a current of 10 A, 30 A, and 90 A for 10 seconds each from a fully charged state of 4.1 V in an atmosphere of 25 ± 2 ° C., and the battery voltage at each 5 seconds relative to the horizontal axis current Is plotted on the vertical axis, and the current value at the point where a straight line obtained by linearly approximating the three points intersects the final voltage of 2.7 V was read, and the product of this current value and 2.7 V was taken as the output of the battery.
[0038]
In a 50 ± 3 ° C. atmosphere, a high load current of about 50 A is applied to each battery for about 5 seconds in both the charging direction and the discharging direction, and a pulse cycle test of about 30 seconds per cycle including a pause time is continuously performed for 10 seconds. After repeating 10,000 times, the output was measured by the method described above.
[0039]
The discharge capacity was measured by discharging after charging in an atmosphere of 25 ± 2 ° C., and measuring the initial discharge capacity. The charging conditions were a constant voltage of 4.1 V, a limiting current of 5 A, and 3.5 hours, and the discharging conditions were a constant current of 1 A and a final voltage of 2.7 V. The discharge capacity after the above-described pulse cycle test was measured, and the maintenance rate with respect to the initial discharge capacity was shown as a percentage. The results of a series of tests are shown in Table 2 below.
[0040]
[Table 2]
Figure 2004079297
[0041]
As shown in Table 2, the ratio N A / N B 5 to 20, the average particle diameter of the secondary particles was 15 μm, and the secondary particles had a spherical shape. In the batteries of Examples 1 to 3, the output was initially 850 W or more, and the output was 680 W even after the pulse cycle test. As described above, the capacity retention ratio was 90% or more, and the battery was excellent in high output and long life. On the other hand, the ratio N A / N B Exceeds 20 and the battery of Comparative Example 1 in which the shape of the secondary particles is agglomerated and the battery of Comparative Example 2 using only the particles A have an initial output of as high as 900 W or more. The output was 550 W or less and the capacity retention was 80% or less, and sufficient performance could not be secured. Conversely, the ratio N A / N B In the battery of Comparative Example 3 having a value of less than 5, the capacity retention rate was excellent at 90%, but the outputs at the initial stage and after the pulse cycle test were 630 W and 550 W, respectively, and a sufficient output could not be obtained. .
[0042]
Also, the ratio N A / N B And the average particle diameter of the secondary particles was 10 μm and 30 μm, and the batteries of Examples 4 and 5 having a spherical shape had an initial output of 860 W or more and an output after the pulse cycle test of 680 W or more. Also, the capacity retention ratio was 92% or more, and the battery was excellent in high output and long life. However, in the batteries of Comparative Examples 4 and 5 in which the average particle diameter of the secondary particles was 8 μm and 35 μm, the initial output was 730 W or less, the output after the pulse cycle test was 550 W or less, and the capacity retention rate was further reduced. Was also inferior to 85% or less.
[0043]
Furthermore, the ratio N A / N B In the batteries of Examples 6 to 10 in which the average particle diameter of the secondary particles was the same as in Examples 1 to 5 and the shape was massive, the output decreased by about 10% both in the initial stage and after the pulse cycle test. However, even after the pulse cycle test, the battery was 650 W or more, the capacity retention was 90% or more, and a battery with high output and excellent long life could be obtained.
[0044]
From the above test results, the ratio N A / N B And the batteries of Examples 1 to 10 using lithium manganate having a mean particle diameter of secondary particles of 10 to 30 μm as the positive electrode active material have significantly improved output characteristics and life characteristics. It turns out. Further, by using lithium manganate whose secondary particles have a spherical shape as the positive electrode active material, it was possible to obtain a higher output battery while maintaining the life characteristics.
[0045]
As described above, the cylindrical lithium ion battery 20 of the present embodiment uses primary particles of lithium manganate, particles A having an average particle diameter of 0.5 to 1 μm and particles B having an average particle diameter of 2 to 3 μm. Since both the effect of increasing the specific surface area and the effect of increasing the bonding force between particles are achieved, high output and long life can be realized. Also, the ratio N A / N B Was set to 5 to 20, and the increase in the specific surface area by the particles A and the increase in the inter-particle binding force by the particles B were performed in a well-balanced manner. Thus, a battery with higher output and a well-balanced capacity retention ratio could be obtained. Ratio N A / N B Is less than 5, the binding force between particles increases and a battery with a high capacity retention rate can be obtained, but the output decreases because the specific surface area decreases. A / N B Exceeds 20, the battery can have a high specific surface area and a high output. However, the interparticle bonding force decreases, and manganese elutes from lithium manganate. Further, since the secondary particles obtained by aggregating the particles A and the particles B are used, it is possible to prevent the powder from being scattered during the preparation of the positive electrode, to facilitate the slurrying for applying to the current collector, Workability could be improved. Furthermore, since the average particle diameter of the secondary particles was set to 10 to 30 μm, it became easier to prevent the powder from scattering and to make the powder into a slurry. When the average particle diameter of the secondary particles is less than 10 μm, powder scattering occurs. When the average particle diameter exceeds 30 μm, the electrolytic solution does not uniformly infiltrate into the secondary particles and hinders charging / discharging. . The role of the conductive material in the positive electrode is to secure a conductive path between the active material and the current collector and increase the electrode reaction area. By changing the shape of the secondary particles from a lump to a sphere, the contact area between the active materials is reduced, the contact area between the active material and the conductive material is increased, and the conductive path between the active material and the current collector is increased. As a result, the electrode reaction area increases, so that a higher output can be achieved.
[0046]
In the present embodiment, a cylindrical battery has been exemplified, but the present invention is not limited to the shape of the battery, and is applicable to a square battery and other polygon batteries. The structure to which the present invention can be applied may be a battery other than the above-described battery container in which the battery lid is sealed by caulking. An example of such a structure is a battery in which the positive and negative external terminals penetrate the battery lid and the positive and negative external terminals are pressed against each other via the shaft core in the battery container. Further, the present invention is also applicable to a lithium secondary battery having a stacked structure without using a positive electrode and a negative electrode in a wound structure.
[0047]
In addition, the positive electrode active material for a lithium secondary battery that can be used in other than this embodiment is a material capable of inserting and removing lithium ions, and a lithium manganese double oxide in which a sufficient amount of lithium ions have been inserted in advance. Lithium manganate having a spinel structure (LiMn 2 O 4 ), And lithium manganate (LiMnO) having a layered rock salt type structure 2 ), A part of lithium or manganese in the crystal is replaced with an element other than them, for example, an element such as Fe, Co, Ni, Cr, Al, Mg or the like, or a part of oxygen in the crystal is S, A material substituted or doped with P or the like may be used. Further, in the present embodiment, an example in which two kinds of primary particles having different average particle diameters are used for the lithium manganate of the positive electrode active material has been described, but one or more primary particles having different average particle diameters from these primary particles are shown. Particles may be used additionally.
[0048]
Furthermore, in the present embodiment, an example was shown in which amorphous carbon having excellent adhesion to the negative electrode current collector was used as the negative electrode active material as compared with the case where a crystalline carbon material was used. Alternatively, carbon materials such as artificial graphite materials and coke may be used, and the particle shape is not particularly limited, such as flakes, spheres, fibers, and lump. When such a carbon material is used for the negative electrode active material, it is excellent in flexibility when the electrode group is formed by spirally winding the cross section, and peeling and separation of the negative electrode active material layer from the negative electrode can be prevented.
[0049]
Further, the present invention is not limited to the conductive material and the binder (binder) exemplified in the present embodiment, and any commonly used materials can be used. Examples of the electrode active material binder for a lithium secondary battery that can be used in other than this embodiment include polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, and polysulfide. Examples include rubber, nitrocellulose, cyanoethylcellulose, various latexes, polymers such as acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, and chloroprene fluoride, and mixtures thereof.
[0050]
Furthermore, in this embodiment, LiPF is added to a mixed solvent obtained by mixing ethylene carbonate, dimethyl carbonate, and diethyl carbonate at a volume ratio of 1: 1: 1. 6 Although a non-aqueous electrolyte in which is dissolved is exemplified, a general lithium salt may be used as the electrolyte, and a non-aqueous electrolyte in which this is dissolved in an organic solvent may be used. There is no particular limitation. For example, as the electrolyte, LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li or a mixture thereof can be used. Examples of the organic solvent include propylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3-dioxolan, diethyl ether, Sulfolane, methylsulfolane, acetonitrile, propionitrile, and the like, or a mixed solvent obtained by mixing two or more thereof can be used, and the mixing ratio is not limited. By using such a non-aqueous electrolyte, it is possible to improve the battery capacity and adapt the battery to use in cold regions.
[0051]
【The invention's effect】
As described above, according to the present invention, by mixing and assembling a plurality of types of primary particles having different average particle diameters as lithium manganese composite oxides to form secondary particles, the ratio of lithium manganese composite oxides is increased. In order to increase the surface area, it is possible to increase the electrode reaction area to reduce the internal resistance of the battery, and to increase the inter-particle bonding force to suppress the elution of manganese. A long-life lithium secondary battery with reduced deterioration of input / output characteristics due to cycling can be realized, and powder can be prevented from scattering at the time of manufacturing the positive electrode, making it easy to apply a slurry to the current collector. Therefore, it is possible to obtain an effect that the workability of manufacturing the positive electrode can be improved.
[Brief description of the drawings]
FIG. 1 is an electron micrograph of lithium manganate used in a cylindrical lithium ion battery to which the present invention can be applied, in which the shape of secondary particles is massive.
FIG. 2 is an electron micrograph of lithium manganate having a spherical secondary particle shape used in a cylindrical lithium ion battery to which the present invention can be applied.
FIG. 3 is a cross-sectional view of a cylindrical lithium ion battery according to an embodiment to which the present invention can be applied.
[Explanation of symbols]
6 Winding group (electrode group)
20 Cylindrical lithium-ion battery (lithium secondary battery)

Claims (5)

正極活物質にリチウムマンガン複酸化物を用いた正極と負極とを有する電極群を電解液に浸潤させたリチウム二次電池であって、前記リチウムマンガン複酸化物は、平均粒子径の異なる複数種の一次粒子を含み、前記一次粒子は集合して二次粒子を形成していることを特徴とするリチウム二次電池。A lithium secondary battery in which an electrode group having a positive electrode and a negative electrode using a lithium manganese composite oxide as a positive electrode active material is infiltrated into an electrolytic solution, wherein the lithium manganese composite oxide has a plurality of types different in average particle diameter. A primary particle, wherein the primary particles are aggregated to form secondary particles. 前記一次粒子は、平均粒子径が0.5μm乃至1μmの粒子Aと、平均粒子径が2μm乃至3μmの粒子Bとを含むことを特徴とする請求項1に記載のリチウム二次電池。2. The lithium secondary battery according to claim 1, wherein the primary particles include particles A having an average particle diameter of 0.5 μm to 1 μm and particles B having an average particle diameter of 2 μm to 3 μm. 3. 前記粒子Bの数量に対する前記粒子Aの数量の比N/Nが5乃至20であることを特徴とする請求項2に記載のリチウム二次電池。The lithium secondary battery according to claim 2, wherein the ratio N A / N B quantity of the particles A to the quantity of said particles B is 5 to 20. 前記二次粒子の平均粒子径が、10μm乃至30μmであることを特徴とする請求項1に記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the secondary particles have an average particle diameter of 10m to 30m. 前記二次粒子の形状が、球状であることを特徴とする請求項1乃至請求項4のいずれか1項に記載のリチウム二次電池。The lithium secondary battery according to any one of claims 1 to 4, wherein the secondary particles have a spherical shape.
JP2002236188A 2002-08-14 2002-08-14 Lithium secondary battery Abandoned JP2004079297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236188A JP2004079297A (en) 2002-08-14 2002-08-14 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236188A JP2004079297A (en) 2002-08-14 2002-08-14 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2004079297A true JP2004079297A (en) 2004-03-11

Family

ID=32020437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236188A Abandoned JP2004079297A (en) 2002-08-14 2002-08-14 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2004079297A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135691A (en) * 2003-10-29 2005-05-26 Nichia Chem Ind Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery
WO2014061579A1 (en) * 2012-10-15 2014-04-24 日本碍子株式会社 Method for producing positive electrode active material for lithium secondary battery, and active material precursor powder used therein

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135691A (en) * 2003-10-29 2005-05-26 Nichia Chem Ind Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery
WO2014061579A1 (en) * 2012-10-15 2014-04-24 日本碍子株式会社 Method for producing positive electrode active material for lithium secondary battery, and active material precursor powder used therein
JP5830178B2 (en) * 2012-10-15 2015-12-09 日本碍子株式会社 Method for producing positive electrode active material for lithium secondary battery and active material precursor powder used therefor
JPWO2014061579A1 (en) * 2012-10-15 2016-09-05 日本碍子株式会社 Method for producing positive electrode active material for lithium secondary battery and active material precursor powder used therefor

Similar Documents

Publication Publication Date Title
JP3541723B2 (en) Cylindrical lithium-ion battery
US8257847B2 (en) Lithium secondary battery
JP2001143762A (en) Cylindrical lithium ion battery
JP2004006264A (en) Lithium secondary battery
JP2003308842A (en) Nonaqueous electrolyte lithium secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP2009123424A (en) Nonaqueous electrolyte secondary battery
JP2002373655A (en) Lithium secondary battery
JP3988384B2 (en) Non-aqueous electrolyte secondary battery
JP2004186130A (en) Non-aqueous lithium secondary battery
JP5254910B2 (en) Lithium ion secondary battery
JP2005100955A (en) Winding type lithium ion battery
JP2017069181A (en) Lithium ion secondary battery
JP2004164988A (en) Manufacturing method of lithium containing metal oxide and lithium secondary battery using same
JP2006338977A (en) Lithium secondary battery
JP2004079297A (en) Lithium secondary battery
JP4211542B2 (en) Lithium secondary battery
JP3624793B2 (en) Lithium ion battery
JP3719139B2 (en) Non-aqueous electrolyte secondary battery
JP3518484B2 (en) Lithium ion battery
JP3620512B2 (en) Non-aqueous electrolyte secondary battery
JP2005327521A (en) Manufacturing method of nonaqueous electrolyte secondary battery and using method of the same
JP5254722B2 (en) Lithium secondary battery
JP2002373654A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20060706