JP2004078288A - Marking-off method, system and program for raw material - Google Patents

Marking-off method, system and program for raw material Download PDF

Info

Publication number
JP2004078288A
JP2004078288A JP2002233667A JP2002233667A JP2004078288A JP 2004078288 A JP2004078288 A JP 2004078288A JP 2002233667 A JP2002233667 A JP 2002233667A JP 2002233667 A JP2002233667 A JP 2002233667A JP 2004078288 A JP2004078288 A JP 2004078288A
Authority
JP
Japan
Prior art keywords
scoring
shape
final product
data
shape data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002233667A
Other languages
Japanese (ja)
Other versions
JP3897658B2 (en
Inventor
Ken Fujita
藤田 憲
Toshiaki Shoji
小路 利明
Takahiro Ota
太田 高裕
Seiji Haraguchi
原口 清治
Tatsuki Ienaka
家中 竜紀
Keisuke Ihara
伊原 圭祐
Morihiko Tanaka
田中 盛彦
Shusuke Kamiyoshi
神吉 秀典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002233667A priority Critical patent/JP3897658B2/en
Publication of JP2004078288A publication Critical patent/JP2004078288A/en
Application granted granted Critical
Publication of JP3897658B2 publication Critical patent/JP3897658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a marking-off system for a raw material that can automate a marking-off operation for machining to a final product form and execute simultaneous measurement of wall thickness distribution and the like, on a raw material of a large casting such as a turbine casing or a diesel engine. <P>SOLUTION: A raw material form is measured with a three-dimensional form measuring instrument, and three-dimensional form data on the raw material are created from the measurement result. Three-dimensional form data with a machining allowance added to final product form data are created and compared with the three-dimensional form data on the raw material to produce a position with maximum overlap. In the position, marking-off is based on the final product form data, which automates a marking-off operation. The comparison of the three-dimensional form data with the machining allowance added to the final product form data and the three-dimensional form data on the raw material can also reveal wall thickness distribution of the raw material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、素材の罫書き方法及びシステムとそのプログラムに関し、特に、タービン車室のような大型鋳造品などの素材に対する加工位置確認のための罫書き作業を自動的に行えるようにした、素材の罫書き方法及びシステムとそのプログラムに関するものである。
【0002】
【従来の技術】
タービン車室やディーゼルエンジン等の大型鋳造品は、その高さが2〜3m、長さが5〜8mに達するものがあるが、これらの鋳造品は一般的に最終仕上げを前提に最終製品形状より大きく鋳造されており、最終仕上がり寸法への精密な二次加工を行うに際し、素材形状の取り代の確認、あるいは素材に対する加工位置確認のため、製品上に削り代を罫書くことが行われている。
【0003】
そしてこの罫書き作業は、鋳造された鋳物の外径寸法を人が測定して最終仕上がり寸法と比較し、どの部分を削るか検討して罫書くという方法を取っていたため、鋳物形状における最終仕上がり形状の設定に熟練を要して難しく、作業時間が大幅にかかると共に、鋳造メーカにフィードバックするための肉厚分布などの形状寸法が計測できていなかった。
【0004】
こういった大規模な材料を用いて精密な二次加工をする必要のある、例えば造船、橋梁築造などの分野では、加工作業の能率、精度の向上ばかりでなく、材料の歩留まりを改善するためにも罫書き工程の重要性が大きく、そのため、現尺罫書き法、投影罫書き法と呼ばれる手罫書きや、一部では電子写真による罫書きが行われている。
【0005】
このうち現尺罫書き法は、建造物の実寸の正面図、側面図、平面図を広大な床の上に広げてそれを元に定規型に写し取り、罫書き作業所へ運んで材料上に罫書くもので、投影罫書き法は、原寸図面の展開をせずに1/5〜1/10の縮尺の図面を材料面上に投影機を用いて投影し、実寸に拡大された画像の輝線をたどって罫書くものである。また電子写真罫書き法は、導電性の材料表面に感光剤ショッププライマを塗装して乾燥後にコロナ放電によって塗膜を帯電させ、この上に画像を投影して潜像を形成した後トナーを含む現像剤を散布してからエアーナイフ等で潜像のない部分からトナーを除去し、トナー像を作って最後に溶剤または熱を加えてこのトナー像を材料上に定着するものである。
【0006】
一方こういった大型部品ではなく、比較的小型の鋳造品、鍛造品、板金などにおいては、例えば特開平7−9364号公報に示されているように、測定具と罫書き具を前後左右、及び垂直方向に移動できるようにし、鋳造品、鍛造品などのワークの取り付け状態を測定してワークの基準軸を演算して求め、機械系座標軸とワーク基準軸のズレ分を換算しながらワークの形状を測定し、罫書き具によって自動的に罫書きが行えるようにした装置がある。
【0007】
【発明が解決しようとする課題】
しかしながら現尺罫書き法は、定規として角材やスチールテープなどを用いるため作業速度が遅く、また精度も不十分である。また投影罫書き法は、作業性と精度に大きな進歩をもたらしたが、人力に頼る手罫書き法である点で現尺罫書き法と同様作業速度が遅いことは否めない。さらに電子写真罫書き法は、作業速度と精度は向上したが、高価な感光剤ショッププライマを用いるため罫書き作業が高価になり、また電子写真法を用いるため手順が複雑で、作業性が悪かった。
【0008】
しかもこれらの現尺罫書き法、投影罫書き法、電子写真罫書き法は、造船、橋梁築造などの比較的平面的な構造物の罫書きには有効であるが、タービン車室やディーゼルエンジン等の大型で複雑な形状の鋳造品の場合、罫書き線そのものが形状の複雑さに対応して複雑となり、あまり有効な方法ではない。
【0009】
また、特開平7−9364号公報に示された装置は比較的小型の鋳造品や鍛造品が対象であるのに対し、タービン車室やディーゼルエンジン等の大型鋳造品は前記したようにその高さが2〜3m、長さが5〜8mに達するものがあると共に複雑な形状をしていてそのまま使うことは難しく、またこの特開平7−9364号公報に示された装置における罫書き位置の決定は、余肉の有無を計算してワーク系の基準軸を修正する必要があるかどうかを判断してキーボードやジョイスティックで構成される罫書き位置設定手段で設定するようにしており、このようにした場合、測定した鋳造品の実際形状の中に最終仕上がり形状がうまくフィッティングしているかどうかがわからない。そのため、場合によっては位置ズレが生じて必要な部分が削られてしまうということが起こる可能性があり、また、各部分の肉厚のデータが得られないので、鋳造メーカに肉厚分布をフィードバックするといったことができない。
【0010】
そのため本発明においては、タービン車室などの大型鋳造品における最適な罫書き位置を自動的に算出して自動的に罫書きを行え、しかも罫書きに際して罫書き装置が空走しないようにすると共に、肉厚分布算出ができるようにして鋳造メーカにフィードバックが可能な素材の罫書き方法及びシステムとそのプログラムを提供することが課題である。
【0011】
【課題を解決するための手段】
上記課題を解決するため本発明においては、方法発明である請求項1、その方法発明を実施するシステムの発明である請求項3、そしてそのシステムにおけるプログラムの発明である請求項5に記載したように、
素材形状を測定する三次元形状測定器と、前記素材上に最終製品形状の罫書きを行う罫書き装置とを有し、素材の形状を測定して罫書きを行う素材の罫書き方法において、
前記最終製品形状のデータと素材に設ける加工代のデータを記憶しておき、前記三次元形状測定器で前記素材の形状を測定して素材の三次元形状データを作成すると共に、前記最終製品形状のデータと加工代を加えた三次元形状データを作成し、該加工代を加えた製品の三次元形状データと前記素材の三次元形状データとを比較して重なりが最大となる位置を求め、該位置において前記最終製品形状データで前記罫書き装置に罫書きを行わせて測定した素材形状から罫書き位置を自動的に設定できるようにしたことを特徴とする。
及び請求項3は、
素材形状を測定する三次元形状測定器と、前記素材上に最終製品形状の罫書きを行う罫書き装置とを有し、素材の形状を測定して罫書きを行う素材の罫書きシステムにおいて、
前記素材の形状を測定するプログラムと罫書きプログラムと前記最終製品形状データと素材に設ける加工代をそれぞれ記憶した記憶装置を有し、前記素材形状測定プログラムを前記記憶装置から読み出して前記三次元形状測定器に前記素材の形状を測定させると共に測定結果から素材の三次元形状データを作成し、前記記憶装置から罫書きプログラムと最終製品形状データ、及び加工代を読み出して罫書きプログラムに最終製品形状データに加工代を加えた三次元形状データを作成させると共に該加工代を加えた製品の三次元形状データと前記素材の三次元形状データとを比較して重なりが最大となる位置を求めさせ、該位置において前記最終製品形状データで前記罫書き装置に罫書きを行わせ、素材の形状を測定して罫書き位置を自動的に設定できるようにしたことを特徴とする。
及び請求項5は、
素材形状を測定する三次元形状測定器と、前記素材上に最終製品形状の罫書きを行う罫書き装置とを有し、素材の形状を測定して罫書きを行うための罫書きプログラムであって、
前記三次元形状測定器を駆動し、前記素材の形状を測定すると共に測定結果から素材の三次元形状データを作成する第1のステップと、前記最終製品形状データと素材に設ける加工代をそれぞれ記憶した記憶装置から最終製品形状データと加工代を読み出し、製品形状データに加工代を加えた三次元形状データを作成する第2のステップと、該第2のステップで作成した最終製品形状データに加工代を加えた三次元形状データと前記第1のステップで作成した素材の三次元形状データとを比較して重なりが最大となる位置を求める第3のステップと、該第3のステップで求めた位置において前記罫書き装置に前記最終製品形状データによる罫書きを行わせる第4のステップとからなり、素材の形状を測定して罫書き位置を自動的に設定して罫書きをおこなわせるようにしたことを特徴とする。
【0012】
このように素材の罫書き方法及びシステムとそのプログラムを構成することにより、どのような大型の素材であっても正確な罫書き位置を自動的に求めることができる。また、素材の形状を測定して最終製品形状に加工代を加えたデータと比較しているから、素材における各位置の肉厚分布を知ることができ、例えばその肉厚分布を鋳造メーカにフィードバックしてさらに良好な鋳造品を得るなどのことが可能となり、素材の自動罫書きが可能となることと相俟って、より良好な製品を得ることができる。
【0013】
そしてその罫書きに際しては、請求項2、4、6に記載したように、
前記罫書きは同一面における連続した罫書き線を連続して罫書き、罫書き線が不連続な場合は罫書き線の終点に最も近い始点を持つ罫書き線を選択して連続して罫書くと共に、複数面にわたって罫書く場合、最初に罫書く面における罫書きの始点位置を前記複数の面が互いに接する頂点に最も近い位置とし、罫書きに際する空走を最小とすることを特徴とする。
及び請求項4は、
前記罫書きプログラムは同一面における連続した罫書き線を連続して罫書き、罫書き線が不連続な場合は罫書き線の終点に最も近い始点を持つ罫書き線を選択して連続して罫書くと共に、複数面にわたって罫書く場合、最初に罫書く面における罫書きの始点位置を前記複数の面が互いに接する頂点に最も近い位置とし、罫書きに際する空走を最小とすることを特徴とする。
及び請求項6は、
前記罫書きプロマグラムは前記第4ステップにおける罫書きに際し、同一面における連続した罫書き線を連続して罫書き、罫書き線が不連続な場合は罫書き線の終点に最も近い始点を持つ罫書き線を選択して連続して罫書くと共に、複数面にわたって罫書く場合、最初に罫書く面における罫書きの始点位置を前記複数の面が互いに接する頂点に最も近い位置とし、罫書きに際する空走を最小とすることを特徴とする。
【0014】
このように罫書きにあたって罫書き装置の空走を最小にすることにより、罫書きが最小の時間で行われ、効率的な罫書きが可能となる。
【0015】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を例示的に詳しく説明する。但し、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りはこの発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。
【0016】
図1は本発明になる素材の罫書きシステムにおける罫書き方法の一実施例の概略フロー図、図2は本発明になる素材の罫書きシステムの一実施形態の概略ブロック図、図3は実際に罫書きを行う場合の罫書き順序を罫書き時間が最小となるようにする方法の概略フロー図である。
【0017】
図2において20は形状測定と罫書きを一台で行う形状測定/罫書き装置で、図2(A)は正面図、図2(B)は側面図を表す。そして1は上面が基準平面となる定盤、2はこの定盤1上に図2(A)においては図上紙面に垂直な方向に、図2(B)においては左右方向(以下y軸方向という)に延びたガイドレール、3は摺動台で、ガイドレ−ル2によりy軸方向に摺動自在に支持案内され、かつy軸モ−タ4の正逆転によりボール・スクリュウ等を介してy軸方向に往復移動となっている。5は摺動台3上に垂直に立設された支柱で、この支柱5に昇降台6が上下方向(以下z軸方向という)に摺動自在に支持案内されている。昇降台6はz軸モ−タ7を有し、このz軸モ−タ7の正逆転によりボール・スクリュウ等を介してz軸方向に往復移動自在である。
【0018】
8は左右方向(以下x軸方向という)の支持ア−ムで、昇降台6にx軸方向に摺動自在に支持されており、x軸モ−タ9の正逆転によりx軸方向に往復移動自在である。そして支持ア−ム8の先端部には、x軸方向の第1軸10の周りに回転可能な回転ブラケット11が設けられると共に、この回転ブラケット11に軸10と直交する方向の第2軸12の周りに回転可能にヘッド13が設けられている。そして、ヘッド13に取り付け台15を介して測定具16と罫書き具17とが取り付けられ、罫書き具17は素材18に罫書き線を入れるためのもので、罫書き針等により構成されている。なお、測定具16及び罫書き具17は、一方の使用時に他方が素材18と接触しないように出退又は退避可能に取り付けられている。19は素材18を載置する台である。
【0019】
なお以上の説明では、三次元形状を測定する装置と罫書き装置を一緒とした装置で構成するよう説明したが、素材18をまたいでy軸方向に移動する門型の装置を設け、素材18側に三次元形状測定器と罫書き装置を設けるようにしても良い。また、これら三次元形状測定器と罫書き装置も、素材18に測定具16や罫書き具17を接触させ、そのときの三次元座標を記憶して測定したり罫書きを行う装置や、レーザ光を照射して反射光を受けるレーザユニットを設け、レーザユニットを被測定物に接近させて反射光が所定の大きさになったときの座標を記憶することで測定を行う装置や、マーキングヘッドにマーキング用レーザヘッドを設け、熱転写材を用いてレーザ光による熱でマーキングできるようにした装置を用いたりすることもできる。またレーザ光そのもので罫書く装置や、インクジェットにより罫書く装置などを用いることも可能である。
【0020】
21はこのように構成した形状測定と罫書きを行う装置をx軸、y軸、z軸方向に駆動し、測定具16が素材18に接触した時の座標を取得したり、演算処理装置(以下CPUと略称する)22からの罫書き指令で素材18上に罫書き線が罫書けるよう駆動する形状測定/罫書き装置駆動回路、23は素材18の形状測定プログラムの記憶装置、24は罫書きプログラムの記憶装置、25は素材の最終製品形状データと素材の加工代の記憶装置で、この最終製品形状データは、設計時のCADデータなどを用いる。26はこの製品形状データに余肉などの加工代を加えて作成したデータの記憶装置、27は素材18の形状測定データの記憶装置である。
【0021】
このように構成した本発明においては、まずタービン車室などの大型鋳造品からなる素材18を台19に載置し、図1におけるステップS1で素材形状測定プログラム23をCPU22に読み出す。そしてこの素材形状測定プログラム23により形状測定/罫書き装置駆動回路21に指示し、摺動台3をガイドレール2やy軸モータ4、ボールスクリューなどを介してy軸方向に、昇降台6をz軸モータ7やボールスクリューなどによって支柱上でz軸方向に、支持アーム8を昇降台6に内蔵されたx軸モータ9やボールスクリューなどによりx軸方向に摺動し、さらに測定具16が取り付けられたヘッド13を第1軸10、第2軸12により回転させ、測定具16が素材18の表面に垂直に当たるようにしながら形状を測定する。そしてその測定結果は、形状測定/罫書き装置駆動回路21を介してCPU22に送られる。
【0022】
そして次にステップS2でCPU22は、この測定結果を基に鋳造品などの素材18の形状を素材形状データとしてCADデータに変換し、素材形状データ記憶装置27に記憶する。これは、あとで説明する素材18の形状と設計上の最終製品形状をフィッティングさせるためのものである。そしてステップS3でCPU22は、今度は製品形状/加工代データ記憶装置25から製品形状データを読み出してCADデータに変換し、ステップS4で加工代(余肉)を加えてこの最終製品形状のCADデータを修正し、製品形状データに加工代を加えたデータの記憶装置26に記憶する。そしてステップS5でCPU22は、罫書きプログラム記憶装置24から罫書きプログラムを読み出し、この製品形状に加工代(余肉)を加えたデータの記憶装置26の内容と、測定結果を基に作成した素材形状データを記憶した記憶装置27の内容とを比較し、重なりが最大になる位置関係を求める。そしてこの結果を基に、ステップS6で鋳造品の形状上の罫書き位置を定め、ステップS7で罫書きデータを作成する。
【0023】
そして次のステップS8において、この罫書きデータを用いて実際の罫書きを行う。この罫書きは、前記したようにCPU22から形状測定/罫書き装置駆動回路21に指示し、摺動台3をガイドレール2やy軸モータ4、ボールスクリューなどを介してy軸方向に、昇降台6をz軸モータ7やボールスクリューなどによって支柱上でz軸方向に、支持アーム8を昇降台6に内蔵されたx軸モータ9やボールスクリューなどによりx軸方向に摺動し、罫書き具17が取り付けられた取り付け台15を第1軸10、第2軸12により回転させ、罫書き具17が素材18の表面に垂直に当たるようにしながら罫書いてゆく。なおこの罫書きは、前記したようにレーザ光やインクジェットなどを用いても良いことはもちろんである。
【0024】
そしてこの罫書きに際して本発明においては、罫書き用ヘッドが空走して時間がかかったりしないよう、図3に示したフロー図のようにして罫書き時間を最小となる制御をしている。すなわち今図3のステップS20において、前記図1のステップS7のように罫書きデータが生成されると、次のステップS21においてその罫書きデータを同一平面、例えばxy平面、xz平面、yz平面のそれぞれで平面毎にまとめて罫書くため、それぞれの平面にある罫書き線をグループ化する。そして例えば罫書きが複数面にわたる場合、ステップS22においてそれぞれの面への移動が最小距離で行われるようにする。例えば今、xy平面とxz平面とyz平面の三面において罫書きを行うとすると、最初に描く罫書き線の始点または終点が、この三面の交点近傍にあれば最初の面から次の面に移るとき、最小の移動距離で移ることができる。そのため今、最初にxy平面を罫書くとした場合は、このxy平面とxz平面及びyz平面の三面の交点近傍に始点または終点のある罫書き線を見つけそれを登録してLとする。
【0025】
そして次に、ステップS23において今登録した罫書き線Lにつながっており、かつ、まだ未登録の罫書き線を探す。そしてステップS24でその条件に合う罫書き線が見つかった場合は、ステップS25において見つかった罫書き線を登録してLと置き換え、またステップS23に戻る。そして同様にしてステップS23で罫書き線Lとつながった未登録の罫書き線を探し、ステップS24でそれが見つかった場合はステップS25でこの見つかった罫書き線を登録してLと置き換え、これを繰り返す。
【0026】
そしてステップS24で、罫書き線Lとつながった未登録の罫書き線が見つからなかったら、今度はステップS26に行き、罫書き線Lの終点に一番近く、かつ、未登録の罫書き線を探す。そしてステップS27において全ての罫書き線が登録済みかどうか確認し、未登録の罫書き線がある場合はステップS25に戻って以上のことを繰り返し、全て登録済みの場合はステップS28で他の面についても同様な処理を行う。そしてステップS29で各平面の関係を考慮し、グループ毎の罫書き順序を決めるが、この順序は、最初に注目した例えば今の場合はxy平面と同じ方向(表裏を区別して)の平面があればそれを優先し、次に直角方向の平面を選ぶという具合にして面から面に写るときの罫書き装置の移動量を少なくして順序を決める。そして連続した罫書き線は全て連続して罫書き、罫書き線が不連続な場合は罫書き線の終点に最も近い始点を持つ罫書き線を選択して連続して罫書くようにする。
【0027】
このように素材の罫書きシステムを構成することにより、素材18の形状計測から罫書きまでが自動化でき、また、素材の形状と最終製品形状に加工代を加えた形状を比較しているから、素材の各面における肉厚などを容易に算出することができ、こういった情報を鋳造メーカにフィードバックすることで、さらに精度の高い鋳造品を得ることができる。
【0028】
【発明の効果】
以上記載の如く請求項1、3、5に記載した本発明によれば、どのような大型の素材であっても正確な罫書き位置を自動的に求めることができる。また、素材の形状を測定して最終製品形状に加工代を加えたデータと比較しているから、素材における各位置の肉厚分布を知ることができ、例えばその肉厚分布を鋳造メーカにフィードバックしてさらに良好な鋳造品を得るなどのことが可能となり、素材の自動罫書きが可能となることと相俟って、より良好な製品を得ることができる。
【0029】
そして請求項2、4、6に記載した本発明によれば、罫書きにあたって罫書き装置の空走を最小にすることにより、罫書きが最小の時間で行われ、効率的な罫書きが可能となる。
【図面の簡単な説明】
【図1】本発明になる素材の罫書きシステムにおける罫書き方法の一実施例の概略フロー図である。
【図2】本発明になる素材の罫書きシステムの一実施形態の概略ブロック図である。
【図3】実際に罫書きを行う場合の罫書き順序を罫書き時間が最小となるようにする方法の概略フロー図である。
【符号の説明】
1 定盤
2 ガイドレール
3 摺動台
4 y軸モ−タ
5 支柱
6 昇降台
7 z軸モ−タ
8 支持ア−ム
9 x軸モ−タ
10 第1軸
11 回転ブラケット
12 第2軸
13 ヘッド
15 取り付け台
16 測定具
17 罫書き具
18 素材
19 台
20 形状測定/罫書き装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and a system for scoring a material, and a program therefor. In particular, a scoring operation for confirming a processing position on a material such as a large casting such as a turbine casing is automatically performed. And a system and a program therefor.
[0002]
[Prior art]
Large castings such as turbine casings and diesel engines have a height of 2-3m and a length of 5-8m, but these castings are generally finished products on the premise of final finishing. Larger castings are used, and when performing precise secondary processing to the final finished dimensions, scribing allowances are made on the product to check the stock removal of the material shape or the processing position on the material. ing.
[0003]
And, in this scoring work, a person measures the outer diameter dimension of the cast casting, compares it with the final finished dimension, examines which part to cut, and scoring, so the final finish in the casting shape Setting of the shape requires skill and is difficult, and it takes a lot of work time, and it has not been possible to measure the shape and dimensions such as the thickness distribution for feeding back to the casting manufacturer.
[0004]
In the fields that require precise secondary processing using such large-scale materials, such as shipbuilding and bridge construction, not only the efficiency and accuracy of processing work but also the improvement of material yield The importance of the scoring process is also great, and therefore, manual scoring called the full scale scoring method and projection scoring method, and in some cases, scoring by electronic photography are performed.
[0005]
Among them, the actual scale scoring method is to spread the actual front, side, and plan views of a building on a vast floor, copy it to a ruler based on it, transport it to a scoring work place, and put it on the material. The projection scoring method uses a projector to project a drawing at a scale of 1/5 to 1/10 on a material surface without developing an original drawing, and enlarges the image to an actual size. It traces the bright line and draws a rule. In addition, the electrophotographic scoring method involves applying a photosensitive agent shop primer on the surface of a conductive material, drying and charging the coating film by corona discharge, projecting an image thereon, forming a latent image, and then including toner. After the developer is sprayed, the toner is removed from a portion having no latent image with an air knife or the like, a toner image is formed, and finally a solvent or heat is applied to fix the toner image on the material.
[0006]
On the other hand, instead of such large parts, in relatively small cast products, forged products, sheet metal, etc., as shown in, for example, Japanese Patent Application Laid-Open No. And move it vertically, measure the mounting state of the work such as castings and forgings, calculate the reference axis of the work, calculate the deviation between the machine system coordinate axis and the work reference axis, and convert There is a device that measures a shape and enables automatic scoring with a scoring tool.
[0007]
[Problems to be solved by the invention]
However, the actual scale scoring method uses a square bar or a steel tape as a ruler, so that the working speed is slow and the accuracy is insufficient. Although the projection scoring method has made great progress in workability and accuracy, it cannot be denied that the work speed is as slow as the full scale scoring method in that it is a manual scoring method relying on human power. Further, the electrophotographic scoring method has improved work speed and accuracy, but the expensive scoring work is expensive due to the use of expensive photosensitizer shop primer, and the procedure is complicated and the workability is poor because the electrophotographic method is used. Was.
[0008]
In addition, the actual scale scribing method, projection scoring method, and electrophotographic scoring method are effective for scoring relatively flat structures such as shipbuilding and bridge construction. In the case of a cast product having a large and complicated shape such as, for example, the scored line itself becomes complicated corresponding to the complexity of the shape, and is not a very effective method.
[0009]
The apparatus disclosed in Japanese Patent Application Laid-Open No. 7-9364 is intended for relatively small castings and forgings, whereas large castings such as turbine casings and diesel engines have high heights as described above. Some have a height of 2-3 m and a length of 5-8 m, and have a complicated shape, making it difficult to use as it is. The decision is made by calculating the presence or absence of excess thickness, determining whether it is necessary to correct the reference axis of the work system, and setting it with scoring position setting means consisting of a keyboard and a joystick. In this case, it is not known whether or not the final finished shape fits well in the measured actual shape of the casting. Therefore, depending on the case, there is a possibility that a position shift may occur and a necessary part may be cut off, and since thickness data of each part cannot be obtained, a thickness distribution is fed back to a casting maker. I cannot do it.
[0010]
Therefore, in the present invention, the optimum scoring position in a large cast product such as a turbine casing is automatically calculated and scoring can be performed automatically. It is an object of the present invention to provide a method and a system for marking a material, which can calculate a thickness distribution and can feed back to a casting maker, and a program therefor.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, the invention is described in claim 1 which is a method invention, claim 3 which is an invention of a system for implementing the method invention, and claim 5 which is an invention of a program in the system. To
A three-dimensional shape measuring device for measuring the shape of the material, and a scoring device for scoring the final product shape on the material, a method for scoring and scoring the material by measuring the shape of the material,
The data of the final product shape and the data of the processing allowance to be provided on the material are stored, and the shape of the material is measured by the three-dimensional shape measuring device to create three-dimensional shape data of the material. The data and the processing allowance are added to create three-dimensional shape data, and the position where the overlap is maximized by comparing the three-dimensional shape data of the product with the processing allowance and the three-dimensional shape data of the material, At the position, the scoring device performs scoring with the final product shape data, and the scoring position can be automatically set from the measured material shape.
And Claim 3
A three-dimensional shape measuring device for measuring the material shape, and a scoring device for scoring the final product shape on the material, a material scoring system for scoring and measuring the shape of the material,
A storage device that stores a program for measuring the shape of the material, a scribing program, the final product shape data, and a machining allowance provided for the material, and reads the material shape measurement program from the storage device to read the three-dimensional shape. The measuring device measures the shape of the material, creates three-dimensional shape data of the material from the measurement result, reads the scoring program and the final product shape data from the storage device, and the processing allowance, and sends the final product shape to the scoring program. The three-dimensional shape data obtained by adding the processing allowance to the data and the three-dimensional shape data of the product to which the processing allowance has been added are compared with the three-dimensional shape data of the material to determine the position where the overlap is the maximum, At this position, the scoring device performs scoring with the final product shape data, measures the shape of the material, and automatically sets the scoring position. Characterized in that to allow a constant.
And Claim 5
A scribing program for measuring a material shape, and a scoring device for scoring the final product shape on the material, and measuring and scoring the shape of the material. hand,
The first step of driving the three-dimensional shape measuring instrument to measure the shape of the material and creating three-dimensional shape data of the material from the measurement result, and storing the final product shape data and the processing allowance provided for the material, respectively. A second step of reading the final product shape data and the processing allowance from the stored storage device and creating three-dimensional shape data obtained by adding the processing allowance to the product shape data; and processing the final product shape data created in the second step. A third step of comparing the three-dimensional shape data to which the allowance has been added and the three-dimensional shape data of the material created in the first step to determine the position where the overlap is maximum, and the third step A fourth step of causing the scoring device to perform scoring based on the final product shape data at a position. Characterized in that so as to perform the can.
[0012]
By configuring the material scoring method and system and the program thereof in this manner, an accurate scoring position can be automatically obtained for any large material. Also, since the shape of the material is measured and compared with the data obtained by adding the processing allowance to the final product shape, the thickness distribution at each position in the material can be known, for example, the thickness distribution is fed back to the casting manufacturer. As a result, it is possible to obtain a better cast product, etc., and it is possible to obtain a better product in combination with the automatic scoring of the material.
[0013]
And, at the time of the scoring, as described in claims 2, 4, and 6,
In the scoring, continuous scoring lines on the same surface are continuously scored, and if the scribing lines are discontinuous, a scoring line having a starting point closest to the end point of the scoring line is selected and successively scored. When writing and scoring over a plurality of surfaces, the starting point of the scoring on the first scoring surface is set to the position closest to the vertex where the plurality of surfaces are in contact with each other, and idle running at the time of scoring is minimized. And
And Claim 4
The scoring program continuously scribes continuous scoring lines on the same surface, and when the scoring lines are discontinuous, selects a scoring line having a start point closest to the end point of the scoring line to continuously When scoring over a plurality of surfaces together with scoring, the starting point of scoring on the scoring surface should be the position closest to the vertex where the plurality of surfaces are in contact with each other to minimize idle running during scoring. Features.
And claim 6
In the scoring program in the scoring in the fourth step, a continuous scoring line on the same surface is continuously scored. If the scoring line is discontinuous, a rule having a start point closest to the end point of the scoring line is used. In the case of selecting a writing line and successively scoring and scoring over a plurality of surfaces, the starting point position of the scoring on the first scoring surface is set to the position closest to the vertex where the plurality of surfaces are in contact with each other. It is characterized by minimizing idle running.
[0014]
By minimizing the idle running of the scoring device in scoring in this way, scoring is performed in a minimum time, and efficient scoring can be performed.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be illustratively described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention to them unless otherwise specified, and are merely mere descriptions. This is just an example.
[0016]
FIG. 1 is a schematic flowchart of an embodiment of a scoring method in a material scoring system according to the present invention, FIG. 2 is a schematic block diagram of an embodiment of a material scoring system according to the present invention, and FIG. FIG. 9 is a schematic flowchart of a method for setting a score order to minimize the score time when the score is written on the.
[0017]
In FIG. 2, reference numeral 20 denotes a shape measuring / scoring apparatus for performing shape measurement and scoring by one unit. FIG. 2 (A) is a front view, and FIG. 2 (B) is a side view. Reference numeral 1 denotes a surface plate having an upper surface serving as a reference plane, and 2 denotes a surface on the surface plate 1 in a direction perpendicular to the paper surface in FIG. 2A, and in a horizontal direction (hereinafter, y-axis direction) in FIG. The guide rail 3 extends in a sliding manner. The guide rail 3 is slidably supported and guided in the y-axis direction by a guide rail 2, and is rotated by a forward / reverse rotation of the y-axis motor 4 via a ball screw or the like. It reciprocates in the y-axis direction. Reference numeral 5 denotes a column vertically erected on the slide table 3, and the lifting table 6 is supported and guided by the column 5 so as to be slidable in the vertical direction (hereinafter referred to as the z-axis direction). The lift 6 has a z-axis motor 7, and is reciprocally movable in the z-axis direction via a ball screw or the like by forward / reverse rotation of the z-axis motor 7.
[0018]
Reference numeral 8 denotes a support arm in the left-right direction (hereinafter referred to as the x-axis direction), which is slidably supported in the x-axis direction by the lift 6 and reciprocates in the x-axis direction by the forward / reverse rotation of the x-axis motor 9. It is movable. A rotating bracket 11 rotatable around the first axis 10 in the x-axis direction is provided at the distal end of the support arm 8, and a second axis 12 perpendicular to the axis 10 is provided on the rotating bracket 11. The head 13 is provided rotatably around the head. Then, a measuring tool 16 and a scribing tool 17 are attached to the head 13 via a mounting table 15, and the scribing tool 17 is for making a scribing line on the material 18, and is composed of a scribing needle or the like. I have. The measuring tool 16 and the scribing tool 17 are attached so as to be able to move in and out so that the other does not come into contact with the material 18 when one is used. Reference numeral 19 denotes a table on which the material 18 is placed.
[0019]
In the above description, the apparatus for measuring the three-dimensional shape and the scoring apparatus are described as being combined. However, a portal-type apparatus that moves in the y-axis direction across the material 18 is provided. A three-dimensional shape measuring device and a scoring device may be provided on the side. In addition, these three-dimensional shape measuring instruments and scoring devices also include devices for measuring and scoring by contacting a measuring tool 16 or scoring tool 17 with a material 18 and storing the three-dimensional coordinates at that time, or a laser. A laser unit that irradiates light and receives reflected light, a device that performs measurement by bringing the laser unit close to the object to be measured and storing coordinates when the reflected light reaches a predetermined size, and a marking head Alternatively, an apparatus may be used in which a marking laser head is provided, and marking can be performed by heat using laser light using a thermal transfer material. It is also possible to use a device for scoring with laser light itself, a device for scoring with ink jet, or the like.
[0020]
Reference numeral 21 denotes a device for performing shape measurement and scoring configured as described above, which is driven in the x-axis, y-axis, and z-axis directions, to acquire coordinates when the measuring tool 16 comes into contact with the material 18, and to calculate an arithmetic processing unit ( (Hereinafter abbreviated as CPU) A shape measuring / scribing device driving circuit for driving a scoring line on the material 18 in accordance with a scoring command from 22; a storage device 23 for a shape measuring program of the material 18; A storage device for the writing program, 25 is a storage device for the final product shape data of the material and the processing allowance for the material, and the final product shape data uses CAD data at the time of design. 26 is a storage device for data created by adding a processing allowance such as excess thickness to the product shape data, and 27 is a storage device for shape measurement data of the material 18.
[0021]
In the present invention configured as described above, first, the material 18 made of a large cast product such as a turbine casing is placed on the table 19, and the material shape measurement program 23 is read out to the CPU 22 in step S 1 in FIG. The material shape measurement program 23 instructs the shape measurement / scribing device drive circuit 21 to move the slide 3 in the y-axis direction via the guide rail 2, the y-axis motor 4, the ball screw, and the like. The support arm 8 is slid in the z-axis direction on the support column by the z-axis motor 7 and a ball screw, and the x-axis direction is moved by the x-axis motor 9 and a ball screw incorporated in the lift 6. The attached head 13 is rotated by the first shaft 10 and the second shaft 12, and the shape is measured while the measuring tool 16 is vertically contacting the surface of the material 18. The measurement result is sent to the CPU 22 via the shape measurement / scribing device driving circuit 21.
[0022]
Then, in step S2, the CPU 22 converts the shape of the material 18 such as a casting into CAD data as material shape data based on the measurement result, and stores it in the material shape data storage device 27. This is for fitting the shape of the material 18 described later and the final product shape in design. Then, in step S3, the CPU 22 reads the product shape data from the product shape / machining allowance data storage device 25 and converts it into CAD data. In step S4, a machining allowance (surplus) is added, and the CAD data of this final product shape is added. Is corrected, and the data obtained by adding the processing allowance to the product shape data is stored in the storage device 26. In step S5, the CPU 22 reads out the scribing program from the scribing program storage device 24, and stores the contents of the data storage device 26 obtained by adding a processing allowance (surplus) to the product shape and the material created based on the measurement results. By comparing the data with the contents of the storage device 27 storing the shape data, a positional relationship that maximizes the overlap is obtained. Based on the result, a scoring position on the shape of the casting is determined in step S6, and scoring data is created in step S7.
[0023]
Then, in the next step S8, an actual rule is written using the ruled data. This scoring is instructed from the CPU 22 to the shape measuring / scoring device driving circuit 21 as described above, and the slide 3 is moved up and down in the y-axis direction via the guide rail 2, the y-axis motor 4, the ball screw, and the like. The table 6 is slid in the z-axis direction on a support column by a z-axis motor 7 and a ball screw, and the support arm 8 is slid in the x-axis direction by an x-axis motor 9 and a ball screw built in the elevating table 6. The mounting table 15 on which the tool 17 is mounted is rotated by the first shaft 10 and the second shaft 12, and scoring is performed while the scribing tool 17 is perpendicular to the surface of the material 18. In addition, as a matter of course, the scoring may be performed using laser light, ink jet, or the like as described above.
[0024]
In this scoring, in the present invention, control is performed to minimize the scoring time as shown in the flowchart of FIG. 3 so that the scribing head does not run idle and take time. That is, in step S20 of FIG. 3, when the scored data is generated as in step S7 of FIG. 1, in step S21, the scored data is converted to the same plane, for example, the xy plane, the xz plane, and the yz plane. In order to collectively scribe each plane, the scribe lines on each plane are grouped. Then, for example, when the score is formed on a plurality of surfaces, the movement to each surface is performed at a minimum distance in step S22. For example, if it is assumed that scoring is performed on three surfaces of an xy plane, an xz plane, and a yz plane, if the start point or the end point of the first scribing line is near the intersection of these three surfaces, the first surface moves to the next surface. Sometimes it is possible to move with a minimum moving distance. Therefore, if it is assumed that the xy plane is first scored, a ruled line having a start point or an end point near the intersection of the three planes of the xy plane, the xz plane, and the yz plane is found and registered as L.
[0025]
Then, in step S23, a search is made for a ruled line that is connected to the currently registered ruled line L and that has not been registered yet. If a ruled line meeting the condition is found in step S24, the ruled line found in step S25 is registered and replaced with L, and the process returns to step S23. Similarly, in step S23, an unregistered ruled line connected to the ruled line L is searched, and if it is found in step S24, the found ruled line is registered and replaced with L in step S25. repeat.
[0026]
If no unregistered ruled line connected to the ruled line L is found in step S24, the process goes to step S26, and the unregistered ruled line closest to the end point of the ruled line L is selected. look for. In step S27, it is checked whether or not all ruled lines have been registered. If there are unregistered ruled lines, the process returns to step S25 to repeat the above steps. If all registered lines have been registered, another surface is determined in step S28. The same processing is performed for. Then, in step S29, the scoring order for each group is determined in consideration of the relationship between the planes. For example, in this case, there is a plane in the same direction as the xy plane (in this case, the front and back sides are distinguished). For example, the priority is given first, and then the plane in the perpendicular direction is selected, so that the moving amount of the scribing apparatus when the image is projected from one surface to another is reduced to determine the order. Then, all the continuous score lines are continuously scored. If the score lines are discontinuous, a rule line having a start point closest to the end point of the score line is selected to continuously score.
[0027]
By configuring the material scoring system in this way, from the shape measurement of the material 18 to the scoring can be automated, and the shape of the material and the shape obtained by adding the processing allowance to the final product shape are compared. The thickness and the like of each surface of the material can be easily calculated, and by feeding back such information to a casting maker, a casting with higher accuracy can be obtained.
[0028]
【The invention's effect】
As described above, according to the first, third, and fifth aspects of the present invention, an accurate scoring position can be automatically obtained for any large material. Also, since the shape of the material is measured and compared with the data obtained by adding the processing allowance to the final product shape, the thickness distribution at each position in the material can be known, for example, the thickness distribution is fed back to the casting manufacturer. As a result, it is possible to obtain a better cast product, etc., and it is possible to obtain a better product in combination with the automatic scoring of the material.
[0029]
According to the present invention described in claims 2, 4 and 6, scoring is performed in a minimum time by minimizing idle running of the scoring device in scoring, and efficient scoring is possible. It becomes.
[Brief description of the drawings]
FIG. 1 is a schematic flow chart of an embodiment of a scoring method in a material scoring system according to the present invention.
FIG. 2 is a schematic block diagram of an embodiment of a material scoring system according to the present invention.
FIG. 3 is a schematic flowchart of a method for setting a scoring order in a case of actually performing scoring so as to minimize the scoring time.
[Explanation of symbols]
Reference Signs List 1 surface plate 2 guide rail 3 slide 4 y-axis motor 5 support 6 elevating platform 7 z-axis motor 8 support arm 9 x-axis motor 10 first shaft 11 rotating bracket 12 second shaft 13 Head 15 Mounting table 16 Measuring tool 17 Marking tool 18 Material 19 Table 20 Shape measurement / scriber

Claims (6)

素材形状を測定する三次元形状測定器と、前記素材上に最終製品形状の罫書きを行う罫書き装置とを有し、素材の形状を測定して罫書きを行う素材の罫書き方法において、
前記最終製品形状のデータと素材に設ける加工代のデータを記憶しておき、前記三次元形状測定器で前記素材の形状を測定して素材の三次元形状データを作成すると共に、前記最終製品形状のデータと加工代を加えた三次元形状データを作成し、該加工代を加えた製品の三次元形状データと前記素材の三次元形状データとを比較して重なりが最大となる位置を求め、該位置において前記最終製品形状データで前記罫書き装置に罫書きを行わせて測定した素材形状から罫書き位置を自動的に設定できるようにしたことを特徴とする素材の罫書き方法。
A three-dimensional shape measuring device for measuring the shape of the material, and a scoring device for scoring the final product shape on the material, a method for scoring and scoring the material by measuring the shape of the material,
The data of the final product shape and the data of the processing allowance to be provided on the material are stored, and the shape of the material is measured by the three-dimensional shape measuring device to create three-dimensional shape data of the material. The data and the processing allowance are added to create three-dimensional shape data, and the position where the overlap is maximized by comparing the three-dimensional shape data of the product with the processing allowance and the three-dimensional shape data of the material, A scoring method for a material, wherein the scoring position is automatically set from the measured material shape by causing the scoring device to perform scoring with the final product shape data at the position.
前記罫書きは同一面における連続した罫書き線を連続して罫書き、罫書き線が不連続な場合は罫書き線の終点に最も近い始点を持つ罫書き線を選択して連続して罫書くと共に、複数面にわたって罫書く場合、最初に罫書く面における罫書きの始点位置を前記複数の面が互いに接する頂点に最も近い位置とし、罫書きに際する空走を最小とすることを特徴とする請求項1に記載した素材の罫書き方法。In the scoring, continuous scoring lines on the same surface are continuously scored, and if the scribing lines are discontinuous, a scoring line having a starting point closest to the end point of the scoring line is selected and successively scored. When writing and scoring over a plurality of surfaces, the starting point of the scoring on the first scoring surface is set to the position closest to the vertex where the plurality of surfaces are in contact with each other, and idle running at the time of scoring is minimized. 2. The method for scribing a material according to claim 1, wherein: 素材形状を測定する三次元形状測定器と、前記素材上に最終製品形状の罫書きを行う罫書き装置とを有し、素材の形状を測定して罫書きを行う素材の罫書きシステムにおいて、
前記素材の形状を測定するプログラムと罫書きプログラムと前記最終製品形状データと素材に設ける加工代をそれぞれ記憶した記憶装置を有し、前記素材形状測定プログラムを前記記憶装置から読み出して前記三次元形状測定器に前記素材の形状を測定させると共に測定結果から素材の三次元形状データを作成し、前記記憶装置から罫書きプログラムと最終製品形状データ、及び加工代を読み出して罫書きプログラムに最終製品形状データに加工代を加えた三次元形状データを作成させると共に該加工代を加えた製品の三次元形状データと前記素材の三次元形状データとを比較して重なりが最大となる位置を求めさせ、該位置において前記最終製品形状データで前記罫書き装置に罫書きを行わせ、素材の形状を測定して罫書き位置を自動的に設定できるようにしたことを特徴とする素材の罫書きシステム。
A three-dimensional shape measuring device for measuring the material shape, and a scoring device for scoring the final product shape on the material, a material scoring system for scoring and measuring the shape of the material,
A storage device that stores a program for measuring the shape of the material, a scribing program, the final product shape data, and a machining allowance provided for the material, and reads the material shape measurement program from the storage device to read the three-dimensional shape. The measuring device measures the shape of the material, creates three-dimensional shape data of the material from the measurement result, reads the scoring program and the final product shape data from the storage device, and the processing allowance, and sends the final product shape to the scoring program. The three-dimensional shape data obtained by adding the processing allowance to the data and the three-dimensional shape data of the product to which the processing allowance has been added are compared with the three-dimensional shape data of the material to determine the position where the overlap is the maximum, At this position, the scoring device performs scoring with the final product shape data, measures the shape of the material, and automatically sets the scoring position. Material scoring system, characterized in that to allow a constant.
前記罫書きプログラムは同一面における連続した罫書き線を連続して罫書き、罫書き線が不連続な場合は罫書き線の終点に最も近い始点を持つ罫書き線を選択して連続して罫書くと共に、複数面にわたって罫書く場合、最初に罫書く面における罫書きの始点位置を前記複数の面が互いに接する頂点に最も近い位置とし、罫書きに際する空走を最小とすることを特徴とする請求項3に記載した素材の罫書きシステム。The scoring program continuously scribes continuous scoring lines on the same surface, and when the scoring lines are discontinuous, selects a scoring line having a start point closest to the end point of the scoring line to continuously When scoring over a plurality of surfaces together with scoring, the starting point of scoring on the scoring surface should be the position closest to the vertex where the plurality of surfaces are in contact with each other to minimize idle running during scoring. The material scoring system according to claim 3, characterized in that: 素材形状を測定する三次元形状測定器と、前記素材上に最終製品形状の罫書きを行う罫書き装置とを有し、素材の形状を測定して罫書きを行うための罫書きプログラムであって、
前記三次元形状測定器を駆動し、前記素材の形状を測定すると共に測定結果から素材の三次元形状データを作成する第1のステップと、前記最終製品形状データと素材に設ける加工代をそれぞれ記憶した記憶装置から最終製品形状データと加工代を読み出し、製品形状データに加工代を加えた三次元形状データを作成する第2のステップと、該第2のステップで作成した最終製品形状データに加工代を加えた三次元形状データと前記第1のステップで作成した素材の三次元形状データとを比較して重なりが最大となる位置を求める第3のステップと、該第3のステップで求めた位置において前記罫書き装置に前記最終製品形状データによる罫書きを行わせる第4のステップとからなり、素材の形状を測定して罫書き位置を自動的に設定して罫書きをおこなわせるようにしたことを特徴とする素材の罫書きプログラム。
A scribing program for measuring a material shape, and a scoring device for scoring the final product shape on the material, and measuring and scoring the shape of the material. hand,
The first step of driving the three-dimensional shape measuring instrument to measure the shape of the material and creating three-dimensional shape data of the material from the measurement result, and storing the final product shape data and the processing allowance provided for the material, respectively. A second step of reading the final product shape data and the processing allowance from the stored storage device and creating three-dimensional shape data obtained by adding the processing allowance to the product shape data; and processing the final product shape data created in the second step. A third step of comparing the three-dimensional shape data to which the allowance has been added and the three-dimensional shape data of the material created in the first step to determine the position where the overlap is maximum, and the third step A fourth step of causing the scoring device to perform scoring based on the final product shape data at a position. Material scoring program, characterized in that so as to perform the can.
前記罫書きプログラムは前記第4ステップにおける罫書きに際し、同一面における連続した罫書き線を連続して罫書き、罫書き線が不連続な場合は罫書き線の終点に最も近い始点を持つ罫書き線を選択して連続して罫書くと共に、複数面にわたって罫書く場合、最初に罫書く面における罫書きの始点位置を前記複数の面が互いに接する頂点に最も近い位置とし、罫書きに際する空走を最小とすることを特徴とする請求項5に記載した素材の罫書きプログラム。In the scoring program in the fourth step, a continuous scoring line on the same surface is continuously scored. If the scoring line is discontinuous, the scoring program having a start point closest to the end point of the scoring line is used. In the case of selecting a writing line and successively scoring and scoring over a plurality of surfaces, the starting point position of the scoring on the first scoring surface is set to the position closest to the vertex where the plurality of surfaces are in contact with each other. 6. A program for scoring a material according to claim 5, wherein idle running is minimized.
JP2002233667A 2002-08-09 2002-08-09 Material marking method and system Expired - Fee Related JP3897658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233667A JP3897658B2 (en) 2002-08-09 2002-08-09 Material marking method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233667A JP3897658B2 (en) 2002-08-09 2002-08-09 Material marking method and system

Publications (2)

Publication Number Publication Date
JP2004078288A true JP2004078288A (en) 2004-03-11
JP3897658B2 JP3897658B2 (en) 2007-03-28

Family

ID=32018744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233667A Expired - Fee Related JP3897658B2 (en) 2002-08-09 2002-08-09 Material marking method and system

Country Status (1)

Country Link
JP (1) JP3897658B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139832A (en) * 2014-01-27 2015-08-03 三菱重工業株式会社 Marking-off work support system, marking-off work method, and machined component
CN109262308A (en) * 2018-11-14 2019-01-25 徐州万有机械科技有限公司 A kind of fork-lift truck counterweight Mechanical processing of casting tooling
CN109931899A (en) * 2019-02-28 2019-06-25 武汉船用机械有限责任公司 Flange face machining allowance detection method
CN114152234A (en) * 2021-10-28 2022-03-08 安徽应流航源动力科技有限公司 Method for determining machining allowance of large thin-wall case

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104097195B (en) * 2014-07-03 2016-08-31 沪东重机有限公司 3 D stereo scribble method for large-scale diesel engine frame
CN104589298B (en) * 2014-11-21 2016-04-20 沪东重机有限公司 A kind of scribble method for V-type diesel frame blank
CN105643586B (en) * 2016-03-22 2017-09-19 上海中船三井造船柴油机有限公司 Laser datum scribble method for marine low speed diesel engine frame

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139832A (en) * 2014-01-27 2015-08-03 三菱重工業株式会社 Marking-off work support system, marking-off work method, and machined component
CN109262308A (en) * 2018-11-14 2019-01-25 徐州万有机械科技有限公司 A kind of fork-lift truck counterweight Mechanical processing of casting tooling
CN109931899A (en) * 2019-02-28 2019-06-25 武汉船用机械有限责任公司 Flange face machining allowance detection method
CN114152234A (en) * 2021-10-28 2022-03-08 安徽应流航源动力科技有限公司 Method for determining machining allowance of large thin-wall case

Also Published As

Publication number Publication date
JP3897658B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US10328411B2 (en) Apparatuses and methods for accurate structure marking and marking-assisted structure locating
CN109489580A (en) A kind of processing of complex surface in machine point cloud detection and compensation method
CN101733558B (en) Intelligent laser cutting system provided with master-slave camera and cutting method thereof
TWI640382B (en) Laser processing method and laser processing device
CN103465246B (en) Spray groove labeling method and groove labelling apparatus
CN201596852U (en) Master-slave mode camera allocated intelligent laser cutting system
CN109332886B (en) A kind of laser processing and device of unlimited breadth
JP2008049407A (en) Method and apparatus for machining crankshaft, control system, and control program
JP3897658B2 (en) Material marking method and system
JP5001330B2 (en) Curved member measurement system and method
US20060032348A1 (en) Method of cutting a sheet and reducing the remnant material
CN207147428U (en) A kind of axle scanning means of dot laser four
JPH11262712A (en) Paste application method and apparatus therefor
JP4841716B2 (en) Laser processing equipment
JP3093192B2 (en) Work processing apparatus and computer-readable recording medium
JP2008157646A (en) Optical measurement apparatus and processing system
CN109822575A (en) A kind of robot system and method carrying out mobile processing using projection properties image
WO2022014042A1 (en) Numerical control device and numerical control method
Qiu et al. Autonomous form measurement on machining centers for free-form surfaces
JP2023006501A (en) Laser processing device, laser processing system, and laser processing method
CN112719632A (en) Positioning cutting method and device and cutting equipment
JP7388999B2 (en) marking robot
CN106706666A (en) Detecting and marking device for large cement component surface defects
JP2519444B2 (en) Work line tracking device
JP3088218B2 (en) Control device for laser beam machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061219

LAPS Cancellation because of no payment of annual fees