JP2004078241A - Display - Google Patents

Display Download PDF

Info

Publication number
JP2004078241A
JP2004078241A JP2003346877A JP2003346877A JP2004078241A JP 2004078241 A JP2004078241 A JP 2004078241A JP 2003346877 A JP2003346877 A JP 2003346877A JP 2003346877 A JP2003346877 A JP 2003346877A JP 2004078241 A JP2004078241 A JP 2004078241A
Authority
JP
Japan
Prior art keywords
reflection
image
optical system
original image
eye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003346877A
Other languages
Japanese (ja)
Other versions
JP3833207B2 (en
Inventor
Shoichi Yamazaki
山崎 章市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003346877A priority Critical patent/JP3833207B2/en
Publication of JP2004078241A publication Critical patent/JP2004078241A/en
Application granted granted Critical
Publication of JP3833207B2 publication Critical patent/JP3833207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors

Abstract

<P>PROBLEM TO BE SOLVED: To make picture quality of a display excellent and to attain miniaturization and weight reduction in a head-up display by which video picture can be observed after attaching to a head in a goggle form or a headgear form. <P>SOLUTION: In an apparatus which has a catoptric system for guiding an original picture displayed on an indicator 12 to eye-balls and which makes the original picture observable, the catoptric system has a reflecting surface R4 having different power according to an azimuth direction and a refraction surface R3 which adjoins the original picture without via another member and which has different power according to the azimuth direction. Both the reflecting surface R4 and the refraction surface R3 are made to have shapes having aspherical action in a plane crossing the original picture, the reflecting surface, the refraction surface and eye-balls. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、ヘッドアップディスプレイ及びはヘルメットディスプレイ、めがね型ディスプレイ、バーチャルリアリィティディスプレイに適した表示装置に関するもので、特にコンパクトな反射光学系に関するものである。 The present invention relates to a head-up display and a display device suitable for a helmet display, a glasses-type display, and a virtual reality display, and particularly to a compact reflective optical system.

 従来ヘッドアップディスプレイに関しては、多くの特許文献が存在し、航空機用のヘルメットに関するものが多い。まず第1に特許文献1のようにCRT等の画像をレンズ系を通して1回結像させる1次結像タイプ。第2としては、特許文献2のように画像から光を結像させずに眼球に導き虚像を作る虚像タイプ。またこの特許は、反射光学系の反射鏡のパワーをやや強くし、眼球の直前に一般的に置かれる、像を拡大する凸レンズを取り除き、さらにCRT画面が人間の頭の方向に傾くよう、反射鏡とCRTを設定し、コンパクト化している。第3のタイプとしては特許文献3のように、反射光学系をコンパクトにするためにプリズムを利用したプリズムタイプ。またプリズムを利用した1次結像タイプとしては特許文献4、プリズムを利用した虚像タイプとしては特許文献5等がある。 Conventional head-up displays include many patent documents, many of which relate to helmets for aircraft. First, as in Patent Document 1, a primary imaging type in which an image on a CRT or the like is formed once through a lens system. The second is a virtual image type in which light is guided from an image to an eyeball to form a virtual image without forming light from an image as in Patent Literature 2. This patent also makes the power of the reflecting mirror of the reflecting optical system slightly stronger, removes the convex lens that magnifies the image, which is generally placed just before the eyeball, and furthermore, reflects the CRT screen so that it tilts toward the human head. The mirror and CRT are set for compactness. The third type is a prism type using a prism to make the reflection optical system compact, as in Patent Document 3. Patent Document 4 discloses a primary image forming type using a prism, and Patent Document 5 describes a virtual image type using a prism.

 処でゴーグル形ディスプレイの様な小型で軽い構造を求めている場合には前述した1次結像タイプは光学性能はよいが、多くのレンズ枚数が必要で大型化してしまう、またプリズムタイプはコンパクトにはなるが重くなってしまう。そこで小型軽量の点では虚像タイプが好ましいが、光学性能はあまりよくはない。この点前述した特許文献2は、反射光学系の反射面をトーリック面、さらにオリジナル画像面自体をトーリック面として良好な光学性能を得ている。しかしながらCRT等のフラットな画像面を、トーリック面に変換するにはグラスファイバー等により行わなければならず、技術的にむずかしく、コスト的に高い。また実施例では、最終面からアイポイントまでの距離IPが60mm以上あり、コンパクト化を防げる1つの原因になっている。 When a small and light structure such as a goggle-type display is required, the above-mentioned primary imaging type has good optical performance, but requires a large number of lenses and is large, and the prism type is compact. It becomes heavy but becomes heavy. Therefore, the virtual image type is preferable in terms of small size and light weight, but the optical performance is not so good. In this regard, Patent Document 2 described above obtains good optical performance by using the reflecting surface of the reflecting optical system as a toric surface and using the original image surface itself as a toric surface. However, a flat image surface such as a CRT must be converted to a toric surface by glass fiber or the like, which is technically difficult and costly. Further, in the embodiment, the distance IP from the final surface to the eye point is 60 mm or more, which is one of the causes of preventing compactness.

 尚、本出願では、アイポイントは後述の図2に示すように、像の長辺方向最大像高光束のうち、その中心光束が目の光軸と交わる点をアイポイントと定義している。そして目の光軸上で最終有効面からアイポイントまでの距離をIPとしている。尚、最終有効面は防塵用窓のガラスなどは含まない。
米国特許第3940204号明細書 米国特許第4026641号明細書 米国特許第4969724号明細書 米国特許第4859030号明細書 米国特許第4081209号明細書
In the present application, as shown in FIG. 2 described later, the eye point is defined as the point at which the center light beam intersects the optical axis of the eye among the maximum image height light beams in the long side direction of the image. The distance from the final effective plane to the eye point on the optical axis of the eye is defined as IP. The final effective surface does not include the glass of the dustproof window.
U.S. Pat. No. 3,940,204 U.S. Pat. No. 4,026,641 U.S. Pat. No. 4,969,724 U.S. Pat. No. 4,589,030 U.S. Pat. No. 4,081,209

 本発明は、頭部に装着できる程度に小型で軽量化が可能でありながら像性能の良好な表示装置の提供を課題としている。 An object of the present invention is to provide a display device which is small and light enough to be mounted on the head and has good image performance.

 上記課題を解決するため、本発明では、オリジナル画像を眼球に導く反射光学系を有し、そのオリジナル画像を観察可能とする装置において、反射光学系は、アジムス(azimuth)の方向によりパワーが異なる反射面と、他の部材を介することなくオリジナル画像に隣接し、アジムスの方向によりパワーが異なる屈折面とを有し、その反射面と屈折面が共に、オリジナル画像、反射面、屈折面、そして眼球と交わる平面内で非球面作用を持つ形状とした。 In order to solve the above-mentioned problem, the present invention has a reflection optical system for guiding an original image to an eyeball, and in a device that enables the observation of the original image, the power of the reflection optical system varies depending on the direction of azimuth. Reflecting surface, adjacent to the original image without intervening other members, having a refracting surface having different power depending on the direction of the azimuth, the reflecting surface and the refracting surface together, the original image, the reflecting surface, the refracting surface, and The shape has an aspherical action in the plane intersecting the eyeball.

 尚、付言すればこの装置は、一般にフラットな基準面としてのオリジナル画像を反射光学系を介して虚像とするもので、その中の反射面はパワーを持ち、眼の直前に像を拡大する正レンズを設けなくても良い。一方、別の観点で言えば、オリジナル画像を反射光学系を介して眼球に導き、観察可能とする装置において、反射光学系中にはアジムスの方向によりパワーが異なる部材を1つ以上設け、且つ反射光学系を通して得られる像が歪みを生じない様にオリジナル画像を形成する。更に以下の構成を考慮することが望ましい。 It should be noted that this apparatus generally converts an original image as a flat reference plane into a virtual image via a reflection optical system, and the reflection plane in the apparatus has power and corrects the image immediately before the eyes. It is not necessary to provide a lens. On the other hand, from another viewpoint, in an apparatus that guides an original image to an eyeball through a reflective optical system and enables observation, one or more members having different power depending on the azimuth direction are provided in the reflective optical system, and An original image is formed such that an image obtained through the reflection optical system does not cause distortion. Further, it is desirable to consider the following configuration.

 即ち眼に導きかれる像中心光束の中で、眼球直前の反射部材の入射中心光線とその射出光線のなす角度θを望ましくは10°以上80°以下に設定することにより、オリジナル画像を提供する陰極線管(CRT)あるいは液晶ディスプレイ(LCD)を人間の頭の方に近づけコンパクト化するのに有効である。
   10°≦θ≦80°  ・・・・・(1)
That is, in the image center luminous flux guided to the eye, the angle θ between the incident central ray of the reflecting member immediately before the eyeball and the exit ray is desirably set to 10 ° or more and 80 ° or less, thereby providing a cathode ray for providing an original image. This is effective for bringing a tube (CRT) or a liquid crystal display (LCD) closer to the human head and making it compact.
10 ° ≦ θ ≦ 80 ° (1)

 この時、反射鏡はパワーを持っているため、θが大きくなれば成る程、偏芯収差(特に偏芯非点収差、偏芯像面湾曲)が発する。この偏芯収差を小さくするために、反射面をトーリック面のようなアジムス方向によりパワーが違う部材を使用する。図1はトーリック面の説明図でアジムス角ω(0≦ω≦180°)により曲率半径が異なる。 At this time, since the reflecting mirror has power, as θ becomes larger, eccentric aberration (especially eccentric astigmatism and eccentric field curvature) occurs. In order to reduce this eccentric aberration, a member having a different power depending on the azimuth direction, such as a toric surface, is used for the reflection surface. FIG. 1 is an explanatory diagram of the toric surface, and the radius of curvature differs depending on the azimuth angle ω (0 ≦ ω ≦ 180 °).

 またコンパクトなゴーグル型ディスプレイの場合、めがねをかけた人でも、前述したIPの距離は50mmあれば十分である。そこでIPを50mm以下に設定すると、コンパクト化できるだけでなく、特許文献2のように反射鏡において軸外光束が中心光束に比べかなり周辺付近で反射されるのに対し、軸外光束がかなり反射鏡の中心付近で反射されるため、前述した偏芯収差の発生を少なくすることができた。
   5mm≦IP≦50mm ・・・・・(2)
を満足するのが好ましい。
Also, in the case of a compact goggle type display, even for a person wearing glasses, the above-mentioned IP distance of 50 mm is sufficient. Therefore, if the IP is set to 50 mm or less, not only the size can be reduced, but also the off-axis light beam is reflected near the periphery of the reflector as compared with the center light beam as in Patent Document 2, whereas the off-axis light beam is considerably reflected by the reflector. Is reflected in the vicinity of the center, the occurrence of the eccentric aberration described above can be reduced.
5 mm ≦ IP ≦ 50 mm (2)
Is preferably satisfied.

 また反射光学系で発生した偏芯ディストーションを像上でキャンセルするようオリジナル画像を図7の形状に補正すれば、反射光学系では偏芯ディストーションを放置(free)できる。そのため反射光学系のレンズ枚数を少なくできコンパクト化ができ、かつ平面の画像を拡大投影して虚像を作ってもディストーション及び諸収差が小さいものができる。更に反射鏡に、少なくとも1つ以上のアジムス方向の断面で、非球面作用を持たせたことにより、前述した偏芯収差を少なくすることも可能にした。尚、図8は観察する画面の形状である。図7の形状は、液晶表示器の表示面自体がこの形状を映出する様に各画素を配置して製造するか、あるいはビデオ信号に電気的処理を施して歪みを与えておく方法などを採用できる。 If the original image is corrected to the shape shown in FIG. 7 so that the eccentric distortion generated in the reflective optical system is canceled on the image, the eccentric distortion can be free in the reflective optical system. For this reason, the number of lenses in the reflection optical system can be reduced, the size can be reduced, and even if a virtual image is created by enlarging and projecting a plane image, distortion and various aberrations can be reduced. Further, by providing the reflecting mirror with an aspheric surface effect in at least one cross section in the azimuth direction, the above-described eccentric aberration can be reduced. FIG. 8 shows the shape of the screen to be observed. The shape shown in FIG. 7 may be produced by arranging each pixel so that the display surface itself of the liquid crystal display reflects this shape, or may be subjected to electrical processing to a video signal to give distortion. Can be adopted.

 以上述べた様に光学系の最終光学面からアイポイントまでの距離IPを短かめに設定し、オリジナル画像からの画像補正にトーリック非球面(トーリック面を基礎面として非球面化した面)を採用したことにより、グラスファイバーの様な変換素子を使用せず、例えフラットなオリジナル画像を投影した場合でも良好な性能を得ることができた。 As described above, the distance IP from the final optical surface of the optical system to the eye point is set short, and a toric aspherical surface (a surface that has been made aspherical with the toric surface as the basic surface) is used for image correction from the original image. As a result, good performance could be obtained even when a flat original image was projected without using a conversion element such as glass fiber.

 上述した条件式の極値の意味であるが、条件式(1)の下限については、10°よりも小さくなると、IPの値をかなり大きな値にしないとオリジナル画像の部分(LCD、CRT)が人間の顔にぶつかってしまい、大型化してしまう。また上限は、この値を越えると、偏芯収差の発生が多きすぎ、これを補正しようとするとやはり大型化してしまう。 As for the lower limit of the conditional expression (1), if the value of the conditional expression (1) is smaller than 10 °, the portion of the original image (LCD, CRT) must be set to a considerably large value of IP unless the value of IP is set to a considerably large value. It hits a human face and becomes larger. On the other hand, if the upper limit exceeds this value, eccentric aberrations will occur too much, and if this is to be corrected, the size will also increase.

 また条件式(2)の下限に付いては、この値以下だと、目を一般的な観察位置(IP20mm)に置いた時、全く像が見えなくなってしまう。上限については前述した通りである。他方、眼球直前の反射部材に関しオリジナル画像、反射部材、眼球が光学上同一平面内に存る時のアジムス方向のパワーをψ0、その平面と垂直な平面におけるアジムス方向のパワーをψ90としたとき、
   0.3<ψ0/ψ90<1.2 ・・・・・(3)
の条件を満足するのが望ましい。但し、パワーは焦点距離の逆数である。条件式(3)の下限値の意味は、この値を越えるとψ90が大きくなり、ψ90のアジムス方向の光線がアンダーになり、マイナスのディオプターが強くなり過る。逆に上限を越えた時はψ0が大きくなり、ψ0のアジムス方向の光線に偏芯コマ収差の発生が大きくなる。
If the lower limit of conditional expression (2) is below this value, the image will not be visible at all when the eye is placed at a general observation position (IP 20 mm). The upper limit is as described above. On the other hand, when the original image, the reflecting member, and the eyeball are optically in the same plane with respect to the reflecting member immediately before the eyeball, the power in the azimuth direction is ψ0, and the power in the azimuth direction in a plane perpendicular to the plane is ψ90.
0.3 <$ 0 / $ 90 <1.2 (3)
It is desirable to satisfy the following condition. Here, the power is the reciprocal of the focal length. If the lower limit of conditional expression (3) is exceeded, Δ90 increases, the ray in the azimuth direction of Δ90 becomes under, and the negative diopter becomes too strong. Conversely, when the value exceeds the upper limit, ψ0 increases, and the occurrence of eccentric coma increases in the rays in the azimuth direction of ψ0.

 更にオリジナル画像と反射部材の間にフィールドレンズを設けることが好ましく画像を小さくするのに役立つ。ことにフィールドレンズの屈折面にトーリック非球面を採用することにより光学性能を向上させるのに有効で、特に非点隔差を小さくすることができる。 Furthermore, it is preferable to provide a field lens between the original image and the reflection member, which helps to reduce the size of the image. In particular, adopting a toric aspherical surface as the refracting surface of the field lens is effective for improving the optical performance, and can particularly reduce the astigmatic difference.

 後述の本例は主に、左眼用、右眼用独立した反射光学系としている。米国特許第5006072号明細書、米国特許第5000544号明細書等は、左眼用、右眼用共通の反射面を定義し、像を形成している左右共用型反射光学系がある。共通の反射面ということは、反射面の面頂点が1つしか存在しない。周知の通り、面頂点から離れた部分を光が透過または反射される際は高次収差が大きく発生する。従って面頂点が1つの反射曲面を左眼用光路と右眼用光路が使用する場合、両光路とも面頂点からかなり離れた部分で反射されなければならず、高次収差の発生が大きい。そのため像の画角を小さくする。または大型化する等の欠点が生じ易い。 は In this example described later, an independent reflection optical system is mainly used for the left eye and the right eye. U.S. Pat. No. 5,060,072, U.S. Pat. No. 5,500,544, and the like, have a left / right shared reflective optical system that defines a common reflective surface for the left and right eyes and forms an image. The common reflecting surface has only one surface vertex of the reflecting surface. As is well known, when light is transmitted or reflected at a portion distant from the vertex of the surface, a high-order aberration is largely generated. Therefore, when the left-eye optical path and the right-eye optical path use one reflection vertex with a single surface vertex, both optical paths must be reflected at portions that are far away from the surface vertex, and high-order aberrations are greatly generated. Therefore, the angle of view of the image is reduced. Or, disadvantages such as an increase in size are likely to occur.

 そこで本例は、左眼用右眼用独立した反射光学系とし、反射光学系中の部材は左眼用右眼用互いに独立した面頂点を持つ様にしている。こうすることにより面頂点付近の部分が光路として使用され、高次収差を抑えコンパクトで高画角の像が達成できた。また左眼用右眼用の部材を連ね、1つ部材としても、左眼用右眼用独立した面頂点は必ず持つ。さらに単眼用と使用しても同様である。 Therefore, in this embodiment, the reflection optical system for the left eye and the right eye is independent, and the members in the reflection optical system have mutually independent surface vertices for the left eye and the right eye. By doing so, the portion near the vertex of the surface is used as an optical path, and a high-order aberration is suppressed and a compact image with a high angle of view can be achieved. In addition, the members for the left eye and the right eye are connected, and even if it is one member, it always has an independent surface vertex for the left eye and the right eye. The same applies to the case of using a monocular.

 本発明によれば著しく小型で軽量の装置が実現でき、しかも良好な画質の画像を観察できる効果がある。また装置が小型、軽量になるので頭部等に装着した場合でも圧迫感が減少し、身振りの自由度を損うことがないと言う効果が派生する。 According to the present invention, a remarkably small and lightweight device can be realized, and there is an effect that an image of good image quality can be observed. In addition, since the device is small and lightweight, the feeling of oppression is reduced even when the device is mounted on the head or the like, and the effect of not impairing the freedom of gesture is derived.

 まず図1を使って、実施例に関係するトーリック反射面の説明をする。 First, the toric reflection surface related to the embodiment will be described with reference to FIG.

 符番10はトーリックな凸反射面で、X軸を光軸とし、X−Z平面に子線があってψ0方向とし、X−Y平面に母線があってψ90方向とする。また子線を非球面としたとき、子線非球面の定義式は、 The symbol # 10 is a toric convex reflecting surface, with the X axis as the optical axis, a sagittal line on the XZ plane and a ψ0 direction, and a generatrix on the XY plane with a ψ90 direction. When the sagittal line is an aspherical surface, the defining equation of the sagittal aspherical surface is

Figure 2004078241
Figure 2004078241

とする。
非球面係数B、Cの一例としては、
   −1.0<B<1.0 ・・・・・(a)
   −1.0<C<1.0 ・・・・・(b)
即ちB、CともOにならない。(a)(b)式の下限を下回ると負レンズとして非球面作用が強すぎ、上限を越えると正レンズの非球面作用が強くなり過ぎる。また面頂点付近の非球面形状に関しては面頂点から離れる程、面頂点でのパワーを更に強める方向の非球面形状とすることにより反射光学系で生じる偏芯コマ収差を良好にできる。
And
As an example of the aspheric coefficients B and C,
−1.0 <B <1.0 (a)
−1.0 <C <1.0 (b)
That is, neither B nor C becomes O. If the lower limit of the expressions (a) and (b) is exceeded, the aspheric action of the negative lens will be too strong, and if the upper limit is exceeded, the aspheric action of the positive lens will be too strong. Further, with respect to the aspherical shape near the surface vertex, the decentering coma generated in the reflection optical system can be improved by forming the aspherical shape in a direction in which the power at the surface vertex is further increased as the distance from the surface vertex increases.

 図2はゴーグル型表示装置の右眼用について上方から図式的に描いている。但し、装置を頭に装着する部材は図示を省いているが、これはバンド式、眼鏡のつるあるいはヘッドギア式などが使用できる。左眼用はほぼ対称構成となる。本例では1インチのオリジナル画像を1m先(−1ディオプター)に投影し、29インチ程度の大画面の像(虚像)として見ようとするもので、画角としては焦点距離約50mmのレンズ相当である。 FIG. 2 schematically illustrates the goggle type display device for the right eye from above. However, members for mounting the device on the head are not shown, but a band type, a vine for glasses, a headgear type, or the like can be used. The left eye has a substantially symmetric configuration. In this example, a 1-inch original image is projected 1 m ahead (-1 diopter) to view as a large screen image (virtual image) of about 29 inches, and the angle of view is equivalent to a lens with a focal length of about 50 mm. is there.

 図2で、11は照明ユニットで、11aの光源、11bの放物面鏡、11bのコンデンサレンズから成る。12はオリジナル画像を提供する液晶表示器で、照明ユニット11で背面から照明される。但し、12が小型陰極線管の場合は照明ユニットは不要である。 In FIG. 2, reference numeral 11 denotes an illumination unit, which comprises a light source 11a, a parabolic mirror 11b, and a condenser lens 11b. Reference numeral 12 denotes a liquid crystal display for providing an original image, which is illuminated from the back by an illumination unit 11. However, when 12 is a small cathode ray tube, an illumination unit is unnecessary.

 13は、後で詳細を述べる反射部材で、内部にトーリック凸反射面を具える。Pは観察者のアイポイントで、IPは、無限を見ている眼球の光軸上で反射部材の最終面とアイポイントまでの距離である。 # 13 is a reflecting member which will be described in detail later, and has a toric convex reflecting surface inside. P is the eye point of the observer, and IP is the distance between the final surface of the reflecting member and the eye point on the optical axis of the eyeball looking at infinity.

 反射部材13の反射面はトーリック非球面を使用しているが、オリジナル面像と反射部材と眼球が同一平面にある時のアジムス方向の断面に上述の非球面を持たせるのが良い。その理由はこのアジムス方向(ψ0の方向)の方が、この方向と直交するアジムス方向(ψ90方向)より収差、特に偏芯収差の発生が大きいためである。 Although the reflecting surface of the reflecting member 13 uses a toric aspherical surface, it is preferable to provide the above-mentioned aspherical surface in the azimuth direction cross section when the original surface image and the reflecting member and the eyeball are on the same plane. The reason is that the azimuth direction (the direction of ψ0) generates more aberrations, especially eccentric aberration, than the azimuth direction (the ψ90 direction) orthogonal to this direction.

 以下、数値データを表に記載する実施例について説明する。 実 施 Hereinafter, examples in which numerical data are described in a table will be described.

 これらの実施例では偏芯収差を制御するために種々の方法を使用している。尚、図3は表1、図4は表2、図5は表3、図6は表4に対応する。また図3、図4、図6は頬の側方にオリジナル画像が配置されるタイプ、図5額の前方にオリジナル画像が配置されるタイプである。 These embodiments use various methods to control eccentric aberration. 3 corresponds to Table 1, FIG. 4 corresponds to Table 2, FIG. 5 corresponds to Table 3, and FIG. FIGS. 3, 4, and 6 show a type in which an original image is arranged on the side of the cheek, and a type in which the original image is arranged in front of the forehead in FIG.

 図3において、トーリック反射面またはトーリック反射非球面を具える反射部材13と、表示器12に隣接したトーリックレンズ面またはトーリック非球面を具えたフィールドレンズ14を断面図上(ψ0方向)に平行偏芯させている。X13は反射部材13の光軸で、X14はフィールドレンズ14の光軸である。更にフィールドレンズ14とオリジナル像面12をチルト(傾斜)させることにより偏芯収差を小さくできる。尚、反射面はハーフミラー等から成り、反射も透過もなされる。 In FIG. 3, a reflecting member 13 having a toric reflecting surface or a toric reflecting aspherical surface and a field lens 14 having a toric lens surface or a toric aspherical surface adjacent to the display 12 are deflected parallel to the cross-sectional view (ψ0 direction). It is cored. X13 is the optical axis of the reflection member 13, and X14 is the optical axis of the field lens 14. Further, the eccentric aberration can be reduced by tilting (tilting) the field lens 14 and the original image plane 12. The reflection surface is formed of a half mirror or the like, and both reflection and transmission are performed.

 図5も平行偏芯させたフィールドレンズ14を設けた例である。反射部材13は外観は平行平面板で、眼球の光軸に対して35度傾いており、中間面R5がトーリック反射面もしくはトーリック反射非球面で、2つのガラスでサンドイッチされている。 FIG. 5 also shows an example in which a field lens 14 that is decentered in parallel is provided. The reflection member 13 is a plane parallel plate, which is inclined by 35 degrees with respect to the optical axis of the eyeball, and the intermediate surface R5 is a toric reflection surface or a toric reflection aspheric surface, and is sandwiched between two glasses.

 図6で(A)は側方から見た形態、(B)は上方から見た形態で、(C)に反射部材の一部を拡大して斜視形態を示しており微細な反射面を夫々3次元的に角度設定して配置したもので、極限でホログラフィックプレートとなる。反射部材13は眼球の光軸に対して垂直に置くことができる。その際、反射部材13を雌型とすると、雄型に当る透明部材を接合して平行平板とすれば、透過使用時に透過光による風景が全く歪みを生じないと言うメリットがある。 In FIG. 6, (A) is a form viewed from the side, (B) is a form viewed from above, and (C) is an enlarged perspective view of a part of the reflecting member, and a fine reflecting surface is shown. It is a three-dimensionally set angle, and it becomes a holographic plate at the limit. The reflecting member 13 can be placed perpendicular to the optical axis of the eyeball. At this time, if the reflection member 13 is a female type, if the transparent member corresponding to the male type is joined to form a parallel flat plate, there is an advantage that the transmitted light does not cause any distortion at the time of transmission use.

 上述した図3や図4に示した反射部材13は、眼球側の反射面裏側の透過面を同一のトーリック面またはトーリック非球面形状とすることで、透過光の歪みは大部分改善され、反射光学系の収差も良好で、重量も軽くできる。 The reflection member 13 shown in FIGS. 3 and 4 described above has the same toric surface or toric aspheric surface as the transmission surface on the back side of the reflection surface on the eyeball side. The aberration of the optical system is good, and the weight can be reduced.

 図3、図4、図6は反射部材により水平方向に光線を折り曲げるタイプである。図5は反射部材により垂直方向に光線を折り曲げるタイプである。実施例の反射光学系で作られる像は水平方向が垂直方向よりも長い。即ち左右方向が長辺で上下方向が短辺の長方形の画像となるので、図5の例の様に垂直方向に光線を折り曲げるタイプは、画角の小さな短辺方向に折り曲げるため、長辺方向に折り曲げる水平方向の折り曲げタイプ(図3、図4、図6)に比べて光学系自体を薄くすることができる。 FIGS. 3, 4 and 6 show a type in which a light beam is bent in a horizontal direction by a reflection member. FIG. 5 shows a type in which a light beam is bent in a vertical direction by a reflection member. The image formed by the reflection optical system of the embodiment is longer in the horizontal direction than in the vertical direction. That is, since the image is a rectangular image having a long side in the left-right direction and a short side in the up-down direction, the type in which the light beam is bent in the vertical direction as in the example of FIG. The optical system itself can be made thinner than a horizontal bending type (FIGS. 3, 4, and 6).

 またψ0方向の方がψ90方向より収差発生が多い傾向がある。図3、図4、図6の水平方向折り曲げタイプはψ0方向が画角の大きい長辺方向の光線であるのに対し、図5の垂直方向折り曲げタイプはψ0方向が画角の小さい短辺方向の光線であるための垂直方向の折り曲げタイプの方が収差発生が少なく良好な性能が得られる。 Also, the ψ0 direction tends to generate more aberration than the ψ90 direction. The horizontal bending type shown in FIGS. 3, 4, and 6 is a light ray in the long side direction having a large angle of view in the ψ0 direction, whereas the vertical bending type in FIG. 5 is a short side direction having a small angle of view in the ψ0 direction. In the case of the vertical bending type, which is a ray of light, less aberration occurs and better performance can be obtained.

 尚、本発明はヘッドアップディスプレイの1次結像タイプにも応用できる。 The present invention can be applied to a primary imaging type of a head-up display.

Figure 2004078241
Figure 2004078241

Figure 2004078241
Figure 2004078241

Figure 2004078241
Figure 2004078241

Figure 2004078241
Figure 2004078241

トーリック反射面を説明するための斜視図。FIG. 3 is a perspective view for explaining a toric reflection surface. 本発明の実施例の配置を示す平面図。FIG. 2 is a plan view showing the arrangement of the embodiment of the present invention. 本発明の別実施例を示す平面図。The top view which shows another Example of this invention. 本発明の更に別実施例を示す平面図。The top view which shows another Example of this invention. 本発明の他の実施例を示す立面図。FIG. 6 is an elevation view showing another embodiment of the present invention. 本発明の更に他の実施例を示す平面図。FIG. 11 is a plan view showing still another embodiment of the present invention. オリジナル画像を示す図。The figure which shows an original image. 観察画像を示す図。The figure which shows an observation image.

符号の説明Explanation of reference numerals

 12 オリジナル画像の表示器
 13 反射部材
 14 フィールドレンズ
 P アイポイント
12 Display of original image 13 Reflective member 14 Field lens P Eye point

Claims (5)

 オリジナル画像を眼球に導く反射光学系を有し、該オリジナル画像を観察可能とする装置において、該反射光学系は、アジムスの方向によりパワーが異なる反射面と、他の部材を介することなく該オリジナル画像に隣接し、アジムスの方向によりパワーが異なる屈折面とを有し、該反射面及び該屈折面は共に、該オリジナル画像、該反射面、該屈折面、そして眼球と交わる平面内で非球面作用を持つ形状であることを特徴とする表示装置。 In a device having a reflection optical system for guiding an original image to an eyeball and enabling observation of the original image, the reflection optical system includes a reflection surface having different power depending on the azimuth direction and the original surface without passing through another member. A refracting surface adjacent to the image, the power of which varies depending on the direction of the azimuth, wherein the reflecting surface and the refracting surface are both aspheric in a plane intersecting the original image, the reflecting surface, the refracting surface, and the eyeball; A display device having a shape having an action.  前記反射面への入射中心光線とその反射射出光線とのなす角度をθとしたとき、
  10°≦θ≦80°
を満たすことを特徴とする請求項1の表示装置。
When the angle between the incident central ray on the reflecting surface and the reflected exit ray is θ,
10 ° ≦ θ ≦ 80 °
The display device according to claim 1, wherein the following condition is satisfied.
 前記反射面において前記オリジナル画像、前記反射面、前記屈折面、そして眼球と交わる平面内におけるアジムス方向のパワーをψ0、その平面と垂直な平面におけるアジムス方向のパワーをψ90としたとき、
  0.3<ψ0/ψ90<1.2
を満たすことを特徴とする請求項1又は2の表示装置。
When the power in the azimuth direction in the plane intersecting the original image, the reflection surface, the refraction surface, and the eyeball in the reflection surface is ψ0, and the power in the azimuth direction in a plane perpendicular to the plane is ψ90,
0.3 <$ 0 / $ 90 <1.2
The display device according to claim 1, wherein the display device satisfies the following.
 前記反射面と前記屈折面はアジムス方向によって曲率半径を異にすることを特徴とする請求項1乃至3いずれかの表示装置。 4. The display device according to claim 1, wherein the reflection surface and the refraction surface have different radii of curvature depending on the azimuth direction.  前記反射面は面頂点を持ち、該面頂点は右眼用反射光学系、左眼用反射光学系で互いに独立に存在していることを特徴とする請求項4の表示装置。 5. The display device according to claim 4, wherein the reflection surface has a surface vertex, and the surface vertex exists independently of each other in the right-eye reflection optical system and the left-eye reflection optical system.
JP2003346877A 2003-10-06 2003-10-06 Display device Expired - Fee Related JP3833207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003346877A JP3833207B2 (en) 2003-10-06 2003-10-06 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003346877A JP3833207B2 (en) 2003-10-06 2003-10-06 Display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24941793A Division JP3496890B2 (en) 1993-10-05 1993-10-05 Display device

Publications (2)

Publication Number Publication Date
JP2004078241A true JP2004078241A (en) 2004-03-11
JP3833207B2 JP3833207B2 (en) 2006-10-11

Family

ID=32025863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003346877A Expired - Fee Related JP3833207B2 (en) 2003-10-06 2003-10-06 Display device

Country Status (1)

Country Link
JP (1) JP3833207B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169744A (en) * 2009-01-20 2010-08-05 Nanao Corp Stereoscopic image display device
AU2015201659B2 (en) * 2006-01-06 2016-12-01 Abreu, Marcio Marc Aurelio Martins MR An article of clothing worn on the head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015201659B2 (en) * 2006-01-06 2016-12-01 Abreu, Marcio Marc Aurelio Martins MR An article of clothing worn on the head
JP2010169744A (en) * 2009-01-20 2010-08-05 Nanao Corp Stereoscopic image display device

Also Published As

Publication number Publication date
JP3833207B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US6008778A (en) Visual display apparatus
US7420751B2 (en) Compact optical apparatus for head up display
JP3865906B2 (en) Image display device
EP0660155B1 (en) Image display apparatus
JP3676472B2 (en) Eyepiece optics
US5659430A (en) Visual display apparatus
JP3487859B2 (en) Head mounted display device and display optical system used in the device
JP6221732B2 (en) Virtual image display device
JP4926432B2 (en) Display optical system and image display apparatus having the same
JP2011053367A (en) Spectacles-type image display device
JPH09258104A (en) Optical system
JPH0943536A (en) Image display device
JP2014153644A (en) Virtual image display device
JP2005202060A (en) Observation optical system
JPH05303054A (en) Visual display device
JPH05303056A (en) Vision display device
JPH0990270A (en) Head-or face-mounted type picture display device
JPH0961748A (en) Picture display device
JPH05323229A (en) Visual display device
JP3833207B2 (en) Display device
JP2000105349A (en) Visual display device compositing plural reflected pictures
JPH09197336A (en) Picture display device
JP3542213B2 (en) Image display device
JP4579396B2 (en) Image display device
JP3212784B2 (en) Visual display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees