JPH05303056A - Vision display device - Google Patents
Vision display deviceInfo
- Publication number
- JPH05303056A JPH05303056A JP4106913A JP10691392A JPH05303056A JP H05303056 A JPH05303056 A JP H05303056A JP 4106913 A JP4106913 A JP 4106913A JP 10691392 A JP10691392 A JP 10691392A JP H05303056 A JPH05303056 A JP H05303056A
- Authority
- JP
- Japan
- Prior art keywords
- image
- display device
- optical axis
- concave mirror
- optical system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ポータブル型視覚表示
装置に関し、特に、観察者の頭部又は顔面に保持するこ
とを可能とする頭部又は顔面装着式視覚表示装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a portable visual display device, and more particularly to a head- or face-mounted visual display device that can be held on the head or face of an observer.
【0002】[0002]
【従来の技術】従来、顔面装着式視覚表示装置として、
図10に平面図を示したようなものが知られている(米
国特許第4026641号)。これは、CRTのような
画像表示素子46の像を画像伝達素子25で物体面12
に伝達し、この物体面12の像をトーリック反射面10
によって空中に投影するようにしたものである。2. Description of the Related Art Conventionally, as a face-mounted visual display device,
A device having a plan view shown in FIG. 10 is known (US Pat. No. 4,026,641). This is because the image of the image display device 46 such as a CRT is displayed on the object plane 12 by the image transfer device 25.
To the toric reflecting surface 10
It is designed to be projected in the air by.
【0003】[0003]
【発明が解決しようとする課題】ところで、このような
顔面装着式視覚表示装置にとって、装置全体の大きさを
小さくすることが、装着性を損なわなくするために重要
な点となる。装置全体を小さくするために、2次元画像
表示素子を観察者頭部の上部に配置するか、頭部の横に
配置する構成とする必要がある。そのためには、前方を
観察する観察者の光軸を反射させると共に、反射した光
軸を観察者眼球位置の横に屈曲(角度偏向)させる偏心
反射面を用いることが重要である。ただし、ここで言う
光軸とは、観察者眼球の虹彩中心又は眼球回旋中心を通
過する光線で、2次元画像表示素子の表示中心を射出す
る、いわゆる軸上光線を言う。By the way, in such a face-mounted type visual display device, it is important to reduce the size of the entire device in order to prevent the wearability. In order to reduce the size of the entire device, it is necessary to arrange the two-dimensional image display element above the observer's head or beside the head. For that purpose, it is important to use an eccentric reflecting surface that reflects the optical axis of an observer who observes the front and bends (angle-deflects) the reflected optical axis to the side of the observer's eyeball position. However, the optical axis referred to here is a so-called on-axis ray that is a ray that passes through the center of the iris of the eyeball of the observer or the center of rotation of the eyeball and that exits the display center of the two-dimensional image display element.
【0004】また、その反射面が凹面でない場合、画像
表示素子を大きなものとしないと、広い画角を確保する
ことが難しくなり、装置全体が大きなものとなってしま
う。さらに、広い画角を確保することは、画像観察時の
臨場感を上げるために必要であるため、大きな反射面を
配置する必要がある。If the reflecting surface is not concave, it is difficult to secure a wide angle of view unless the size of the image display element is large, and the entire device becomes large. Further, since it is necessary to secure a wide angle of view in order to increase the realism at the time of observing an image, it is necessary to dispose a large reflecting surface.
【0005】以上2点から、顔面装着式視覚表示装置の
光学的配置は、観察者の眼球直前に比較的大きな凹面鏡
を配置することが必要となる。From the above two points, in the optical arrangement of the face-mounted visual display device, it is necessary to arrange a relatively large concave mirror in front of the eyes of the observer.
【0006】しかし、上記の構成をとり、広い観察画角
を確保するために凹面鏡を大きくすると、台形の像歪み
が発生する。以下、この台形の像歪みが発生する原因に
ついて、図1を使って説明する。However, if the above-mentioned structure is adopted and the concave mirror is made large in order to secure a wide observation angle of view, trapezoidal image distortion occurs. The cause of the trapezoidal image distortion will be described below with reference to FIG.
【0007】図1は、図の観察者虹彩位置から2次元画
像表示素子又は2次元画像表示素子の投影位置までの光
束の様子を鳥瞰図にしたものである。図1では、観察者
右目に対する本発明の視覚表示装置の光学的配置を示し
ており、この図において、Y軸は、凹面鏡6が光軸を屈
曲させでいる方向であり、観察者にとっては水平方向に
なり、Y軸正の方向は観察者頭部の中心方向すなわち左
方向に相当する。X軸は、観察者にとって上下方向に当
たり、X軸正の方向は観察者頭部下方に相当する。FIG. 1 is a bird's-eye view of the state of a light beam from the observer's iris position in the figure to the two-dimensional image display element or the projection position of the two-dimensional image display element. FIG. 1 shows the optical arrangement of the visual display device of the present invention for the right eye of the observer. In this figure, the Y axis is the direction in which the concave mirror 6 bends the optical axis and is horizontal for the observer. The positive direction of the Y-axis corresponds to the center direction of the observer's head, that is, the left direction. The X-axis corresponds to the vertical direction for the observer, and the positive direction of the X-axis corresponds to the lower part of the observer's head.
【0008】図1中、1は観察者虹彩位置又は眼球回旋
位置である。2は観察者にとって左側水平方向15°の
観察画角の光束であり、3は同じく左側15°の下方1
0°の光束である。4は観察者にとって右側水平方向1
5°の観察画角の光束であり、5は同じく右側15°の
下方10°の光束である。6は前記接眼光学系である凹
面鏡であり、7は2次元画像表示素子又は2次元画像表
示素子の投影像を配置する凹面鏡6の焦点面でる。In FIG. 1, reference numeral 1 is the observer's iris position or eyeball rotation position. Reference numeral 2 denotes a light beam having an observation angle of view of 15 ° to the left in the horizontal direction for the observer, and reference numeral 3 similarly denotes downward 1 ° of 15 ° to the left.
The luminous flux is 0 °. 4 is the right horizontal direction 1 for the observer
A luminous flux having an observation angle of view of 5 °, and 5 is a luminous flux of 10 ° below the right 15 °. Reference numeral 6 denotes a concave mirror which is the eyepiece optical system, and 7 denotes a focal plane of the concave mirror 6 on which a two-dimensional image display element or a projected image of the two-dimensional image display element is arranged.
【0009】ここで、図1では、説明のため、観察者に
とって長方形に観察される理想的光束が凹面鏡6によっ
てどのように結像されるかを示すために、観察者眼球位
置1から凹面鏡焦点7まで光線の逆追跡を行っている。Here, in FIG. 1, for the sake of explanation, in order to show how an ideal light beam observed by an observer in a rectangular shape is imaged by the concave mirror 6, the concave mirror focus is changed from the eyeball position 1 of the observer. It traces back rays up to 7.
【0010】図1の凹面鏡焦点面7では、従来の球面又
は非球面(トーリック面、アナモルフック面、放物面、
楕円面)等では、焦点面7のY’軸の正負によってX’
軸方向の像の高さが異なってくる台形の像歪みが発生す
る。これは、図1の1の観察者の眼球回旋中心又は虹彩
近傍に配置する接眼光学系6の射出瞳から凹面反射鏡6
までの光学的距離が、観察者の観察方向であるY軸方向
の画角によって大きく異なってくるためである。つま
り、凹面反射鏡6の光軸とその瞳1が偏心しているた
め、図1の1からY軸方向負の向きに観察される光束
4、5においては、同じくY軸方向の正の向きに観察さ
れる光束2、3に比べて、凹面反射鏡6当たって反射す
るまでの光学的距離が長いために、十分に広がってから
反射する。つまり、凹面鏡6に光束が当たる時に、光束
4と5の間隔は、光束2と3の間隔に比べ大きく広がっ
ている。In the concave mirror focal plane 7 of FIG. 1, conventional spherical or aspherical surfaces (toric surface, anamorphic hook surface, parabolic surface,
(Ellipsoidal surface), etc.
Trapezoidal image distortion occurs in which the height of the image in the axial direction differs. This is because from the exit pupil of the eyepiece optical system 6 arranged near the center of eyeball rotation of the observer 1 in FIG.
This is because the optical distance up to is significantly different depending on the angle of view in the Y-axis direction, which is the observation direction of the observer. That is, since the optical axis of the concave reflecting mirror 6 and its pupil 1 are decentered, the light fluxes 4 and 5 observed in the negative direction of the Y-axis direction from 1 in FIG. 1 are also in the positive direction of the Y-axis direction. As compared with the observed light fluxes 2 and 3, the optical distance to the concave reflection mirror 6 until the light flux hits and is reflected is long, so the light flux is sufficiently spread before being reflected. That is, when the light flux strikes the concave mirror 6, the distance between the light fluxes 4 and 5 is wider than the distance between the light fluxes 2 and 3.
【0011】以上の理由により、光軸を傾けて配置した
接眼光学系である凹面鏡6によって光軸を屈曲させてい
る偏心光学系では、光軸を屈曲させる方向と直交する方
向(図1においては、X軸方向)の像高が光軸を屈曲さ
せる方向(Y軸の正と負)によって異なってくる。この
ため、観察者にとっては、台形の像歪みとして観察され
る。For the above reason, in the decentered optical system in which the optical axis is bent by the concave mirror 6 which is the eyepiece optical system in which the optical axis is inclined, the direction orthogonal to the direction in which the optical axis is bent (in FIG. 1, , X-axis direction) varies depending on the direction in which the optical axis is bent (positive and negative on the Y-axis). Therefore, it is observed as a trapezoidal image distortion by the observer.
【0012】従来のトーリック面を反射鏡に用いた例で
は、図11に示すような像歪みが発生する。また、反射
面に楕円面を用いた場合の像歪みは、図12に示すよう
になり、球面を用いても同じように台形になる像歪みが
発生する。そのため、従来技術では歪んだ像しか観察で
きないために、不自然な観察像となってしまう。なお、
図11、12において、左右15°、下方10°の長方
形の理想的像の大きさを破線で示し、発生した像歪みに
よる像を実線で示している。座標の取り方は図1と同じ
である。In the conventional example in which a toric surface is used as a reflecting mirror, image distortion as shown in FIG. 11 occurs. Further, the image distortion when an elliptical surface is used as the reflecting surface is as shown in FIG. 12, and even if a spherical surface is used, the trapezoidal image distortion similarly occurs. Therefore, in the conventional technique, only a distorted image can be observed, resulting in an unnatural observation image. In addition,
In FIGS. 11 and 12, the size of a rectangular ideal image of 15 ° left and right and 10 ° downward is indicated by a broken line, and the image due to the generated image distortion is indicated by a solid line. The method of obtaining the coordinates is the same as in FIG.
【0013】また、両眼で同時に同じ像を観察する場合
に、右目と左目で同一方向の像を観察しようとする際、
像の大きさが異なり、像が融像し難くなったり、全く融
像できずに二重像に観察される。When observing the same image with both eyes at the same time, when trying to observe images in the same direction with the right eye and the left eye,
The size of the image is different, and it is difficult to fuse the images, or the images cannot be fused at all and are observed as double images.
【0014】さらに、左右で視差を持った像を観察さ
せ、立体視を行おうとした場合に、左右の像が融像しな
いと、立体感が得られなくなってしまう。Further, when an image having parallax on the left and right is observed and stereoscopic vision is to be performed, the stereoscopic effect cannot be obtained unless the left and right images are fused.
【0015】本発明はこのような問題点を解決するため
になされたものであり、その目的は、像歪みの少ない像
を観察することができるポータブル型視覚表示装置を提
供することである。The present invention has been made to solve such a problem, and an object thereof is to provide a portable visual display device capable of observing an image with little image distortion.
【0016】[0016]
【課題を解決するための手段】上記目的を達成する本発
明の視覚表示装置は、観察像を表示する2次元表示素子
と、該2次元表示素子又はその実像を空中に拡大投影す
ると共に光軸を屈曲させる接眼光学系とを備えた視覚表
示装置において、前記接眼光学系が非球面凹面鏡で構成
され、該凹面鏡を、光軸を屈曲させる面と直交する方向
での面の曲率が、観察者の眼球から見て、光軸を屈曲さ
せる方向に行くに従って次第に高くなるように構成した
ことを特徴とするものである。A visual display device of the present invention which achieves the above object comprises a two-dimensional display element for displaying an observation image, an enlarged projection of the two-dimensional display element or its real image in the air, and an optical axis. In the visual display device having an eyepiece optical system for bending, the eyepiece optical system is composed of an aspherical concave mirror, and the curvature of the surface of the concave mirror in a direction orthogonal to the surface for bending the optical axis is an observer. When viewed from the eyeball, it is configured such that it gradually increases as it goes in the direction of bending the optical axis.
【0017】[0017]
【作用】以下、上記構成を採用した理由と作用について
説明する。本発明では、接眼光学系である凹面反射鏡の
光軸を屈曲する面と直交する面の方向の部分的曲率が、
光軸を屈曲させる方向に沿って次第にきつくなる非球面
凹面鏡を用いることによって、前記の台形の像歪みを補
正することに成功したものである。The function and operation of adopting the above configuration will be described below. In the present invention, the partial curvature in the direction of the surface orthogonal to the surface that bends the optical axis of the concave reflecting mirror that is the eyepiece optical system,
By using an aspherical concave mirror that is gradually tight along the direction in which the optical axis is bent, the trapezoidal image distortion is successfully corrected.
【0018】本発明の作用について、図1を用いて説明
する。X軸方向の像高が小さくなってしまうY軸正(光
束屈曲方向と反対側)の光束2と3においては、反射鏡
6に当たってから反射鏡の焦点面7に達するまでに、光
束2と3の光軸間間隔は、光束2、3が反射する部位の
X軸方向の曲率を比較的緩くすることによって、X軸方
向の像高が小さくなるのを補正することが可能となる。The operation of the present invention will be described with reference to FIG. In the light fluxes 2 and 3 of the Y-axis positive direction (on the side opposite to the light flux bending direction) in which the image height in the X-axis direction becomes small, the light fluxes 2 and 3 hit the reflecting mirror 6 and reach the focal plane 7 of the reflecting mirror. With respect to the inter-optical axis interval, it is possible to correct the decrease in the image height in the X-axis direction by making the curvature in the X-axis direction of the portion where the light fluxes 2 and 3 are reflected relatively small.
【0019】一方、X軸方向の像高が大きくなってしま
うY軸負(光束屈曲方向と同方向)の光束4と5におい
ては、反射鏡6に当たってから反射鏡の焦点面7に達す
るまでに、光束4と5の光軸間間隔は、X軸方向の曲率
を比較的きつくすることによって、X軸方向の像高が大
きくなるのを補正することが可能となる。On the other hand, in the Y-axis negative light beams 4 and 5 in which the image height in the X-axis direction becomes large, the light beams 4 and 5 reach the focal plane 7 of the reflection mirror 6 after hitting the reflection mirror 6. The distance between the optical axes of the light beams 4 and 5 can be corrected by making the curvature in the X-axis direction relatively tight so that the image height in the X-axis direction becomes large.
【0020】したがって、凹面反射鏡6の偏心配置によ
る台形の像歪みを補正することができる。Therefore, the trapezoidal image distortion due to the eccentric arrangement of the concave reflecting mirror 6 can be corrected.
【0021】[0021]
【実施例】以下、本発明の視覚表示装置の実施例1〜3
について説明する。 実施例1 図2を参照にしてこの実施例を説明する。図2は図1の
Y軸方向断面であり、凹面鏡6の観察者虹彩位置又は眼
球回旋中心位置1に対する偏心の与え方は図1の座標系
による。図中、7は2次元画像表示素子又は2次元画像
表示素子の投影像であり、6は凹面アナモフィックアス
フェリカル反射鏡であり、1は観察者虹彩位置又は眼球
回旋中心位置(以下、射出瞳と言う。)である。凹面反
射鏡6の軸を6aとし、射出瞳1中心から反射鏡6の軸
6aまでの距離(偏心量)をY1、2次元画像表示素子
7中心から軸6aまでの距離(偏心量)をY2 とする。
図2の座標系の場合、偏心量Y1 、Y2 は何れも負で与
えられる。また、2次元画像表示素子7中心に接する面
に対する軸6aに垂直な面の傾き角をαとする。図の場
合、αは正である。EXAMPLES Examples 1 to 3 of the visual display device of the present invention will be described below.
Will be described. Example 1 This example will be described with reference to FIG. FIG. 2 is a cross section in the Y-axis direction of FIG. 1, and how the concave mirror 6 is decentered with respect to the observer's iris position or the eyeball rotation center position 1 depends on the coordinate system of FIG. In the figure, 7 is a two-dimensional image display device or a projected image of the two-dimensional image display device, 6 is a concave anamorphic aspherical reflecting mirror, and 1 is an observer iris position or an eyeball rotation center position (hereinafter referred to as an exit pupil). It is). The axis of the concave reflecting mirror 6 is 6a, the distance from the center of the exit pupil 1 to the axis 6a of the reflecting mirror 6 (the amount of eccentricity) is Y 1 , and the distance from the center of the two-dimensional image display element 7 to the axis 6a (the amount of eccentricity) is and Y 2.
In the case of the coordinate system of FIG. 2, the eccentricity amounts Y 1 and Y 2 are both given negatively. Further, the inclination angle of the surface perpendicular to the axis 6a with respect to the surface in contact with the center of the two-dimensional image display element 7 is α. In the figure, α is positive.
【0022】以下、この光学系の構成パラメータを示す
が、面番号は、射出瞳1位置から2次元画像表示素子7
へ向かう逆追跡の面番号として示してある。非球面形状
は、座標系を図示のようにとり、凹面反射鏡6及び2次
元画像表示素子7の近軸の曲率半径を、上下方向(X−
Z面)をRx 、左右方向(Y−Z面)をRy とすると、
次の式で表される。 Z =[( X2/Rx )+ (Y2/Ry ) ]/[1+{ 1-(1+Kx ) ( X2/Rx 2) -(1+Ky ) ( Y2/Ry 2)}1/2 ] +AR[ (1-AP) X2+( 1+AP) Y2 ]2 +BR[ (1-BP) X2+( 1+BP) Y2 ]3 +CR[ (1-CP) X2+( 1+CP) Y2 ]4 ここで、Kx はX方向の円錐係数、Ky はY方向の円錐
係数、AR、BR、CRはそれぞれ回転対称な4次、6
次、8次の非球面係数、AP、BP、CPはそれぞれ非
対称な4次、6次、8次の非球面係数である。The constituent parameters of this optical system will be shown below. The surface numbers are from the position of the exit pupil 1 to the two-dimensional image display element 7.
It is shown as a backtracking face number towards. For the aspherical shape, the coordinate system is set as shown, and the paraxial radius of curvature of the concave reflecting mirror 6 and the two-dimensional image display element 7 is set in the vertical direction (X-
When the Z plane) is R x and the left-right direction (YZ plane) is R y ,
It is expressed by the following formula. Z = [(X 2 / R x) + (Y 2 / R y)] / [1+ {1- (1 + K x) (X 2 / R x 2) - (1 + K y) (Y 2 / R y 2 )} 1/2 ] + AR [(1-AP) X 2 + (1 + AP) Y 2 ] 2 + BR [(1-BP) X 2 + (1 + BP) Y 2 ] 3 + CR [ (1-CP) X 2 + (1 + CP) Y 2 ] 4 where K x is the conical coefficient in the X direction, K y is the conical coefficient in the Y direction, and AR, BR, and CR are rotationally symmetric fourth-order , 6
Next-order and eighth-order aspherical coefficients, AP, BP, and CP are asymmetrical fourth-order, sixth-order, and eighth-order aspherical coefficients, respectively.
【0023】 面番号 曲率半径 面間隔 偏心量 1 射出瞳 (1) 50.0 Y1 -28.285 2 Ry 59.071 (6) 22.39 Y2 -6.0247 Rx 43.981 (非球面) 3 Ry 36.164 (像面7) Rx 10.699 (非球面) 非球面係数 第2面(凹面鏡6) Ky = 0 Kx = 0 AR= -0.127331×10-5 AP= -0.585287 BR= 0 BP= 0 CR= 0 CP= 0 第3面(像面7) Ky = 0 Kx = 0 AR= 0 AP= 0 BR= 0 BP= 0 CR= 0 CP= 0 α=15.8529 ° この実施例の像歪みを図4に示す。図4において、点線
は理想的像位置を示し、実線はこの光学系の実際の結像
位置を示す。また、この実施例の横収差図を図7に示
す。図中、(a)は瞳1中心を通り軸6aに平行な直線
から左側(+Y方向)15.0°にある像を見た時の左
右方向及び上下方向の収差、(b)はこの直線方向にあ
る像を見た時の左右方向及び上下方向の収差、(c)は
この直線から右側(−Y方向)15.0°にある像を見
た時の左右方向及び上下方向の収差である。Surface number Radius of curvature Surface spacing Eccentricity 1 Exit pupil (1) 50.0 Y 1 -28.285 2 R y 59.071 (6) 22.39 Y 2 -6.0247 R x 43.981 (aspherical) 3 R y 36.164 (image plane 7) R x 10.699 (aspherical surface) aspherical surface coefficient second surface (concave mirror 6) K y = 0 K x = 0 AR = -0.127331 × 10 -5 AP = -0.585287 BR = 0 BP = 0 CR = 0 CP = 0 Three planes (image plane 7) K y = 0 K x = 0 AR = 0 AP = 0 BR = 0 BP = 0 CR = 0 CP = 0 α = 15.8529 ° The image distortion of this example is shown in FIG. In FIG. 4, the dotted line shows the ideal image position and the solid line shows the actual image forming position of this optical system. A lateral aberration diagram for this example is shown in FIG. In the figure, (a) is the aberration in the left-right direction and the vertical direction when an image at the left side (+ Y direction) 15.0 ° is seen from a straight line passing through the center of the pupil 1 and parallel to the axis 6a, and (b) is this straight line. The horizontal and vertical aberrations when viewing an image in a certain direction, and (c) is the horizontal and vertical aberrations when viewing an image at 15.0 ° to the right (-Y direction) from this straight line. is there.
【0024】実施例2 この実施例は、基本的に実施例1と同じである。異なる
点は、凹面鏡6が回転対称非球面反射鏡からなる点であ
る。以下、実施例1と同様な記号を用いて光学系のパラ
メータを示す。なお、非球面形状は、座標系を図2のよ
うにとり、Rを近軸曲率半径とするとき、次の式で表さ
れる。 Z=(h2/R)/[1+{ 1-(1+K) ( h2/R2)}1/2 ]+
Ah4 +Bh6 +Ch8 (h2 =X2 +Y2 ) ここで、Kは円錐係数、A、B、Cはそれぞれ4次、6
次、8次の非球面係数である。Example 2 This example is basically the same as Example 1. The difference is that the concave mirror 6 is a rotationally symmetric aspherical reflecting mirror. Hereinafter, the parameters of the optical system will be shown using the same symbols as in Example 1. The aspherical shape is expressed by the following equation when the coordinate system is as shown in FIG. 2 and R is the paraxial radius of curvature. Z = (h 2 / R) / [1+ {1- (1 + K) (h 2 / R 2 )} 1/2 ] +
Ah 4 + Bh 6 + Ch 8 (h 2 = X 2 + Y 2 ), where K is the conical coefficient, A, B, and C are fourth-order and 6 respectively.
Next is the aspherical coefficient of the 8th order.
【0025】 面番号 曲率半径 面間隔 偏心量 1 射出瞳 (1) 50.0 Y1 -28.285 2 52.0154 (6) 22.398 Y2 -6.025 (非球面) 3 29.8172 (像面7) 非球面係数 第2面(凹面鏡6) K= 0 A= -0.124395×10-5 B= 0 C= 0 α=12.318° この実施例の像歪みを図5に示す。また、この実施例の
横収差図を図8に示す。表記方法は、それぞれ図4、図
7と同様である。Surface number Radius of curvature Surface spacing Eccentricity 1 Exit pupil (1) 50.0 Y 1 -28.285 2 52.0154 (6) 22.398 Y 2 -6.025 (aspherical surface) 3 29.8172 (image surface 7) aspherical coefficient second surface ( Concave mirror 6) K = 0 A = -0.124395 × 10 -5 B = 0 C = 0 α = 12.318 ° The image distortion of this example is shown in FIG. 8 is a lateral aberration diagram for this example. The notation method is the same as that in FIGS. 4 and 7, respectively.
【0026】実施例3 この実施例は、図3に示すように、2次元画像表示素子
7の像を、リレー光学系8を用いて、凹面鏡6の物体面
(焦点面)9に空間像として結像しているものである。
凹面鏡6はアナモフィックアスフェリカル反射鏡であ
る。リレー光学系8の光軸を8aとし、射出瞳1中心に
対する反射鏡6の軸6aの偏心量をY1 、リレー光学系
8の第1面中心に対する軸6aの偏心量をY2 、2次元
表示素子7中心からリレー光学系8の光軸8aのY軸方
向の偏心量をY3 、リレー光学系8の光軸8aに対する
凹面鏡6の軸6aの傾き角をα1 、2次元表示素子7の
表示面に対するリレー光学系8の光軸8aに垂直な面の
傾き角をα2 とする。したがって、図3の場合、Y1 は
負、Y2 は正、Y3 は負であり、α1 は正、α2 は正で
与えられる。Example 3 In this example, as shown in FIG. 3, the image of the two-dimensional image display element 7 is converted into an aerial image on the object plane (focal plane) 9 of the concave mirror 6 by using the relay optical system 8. It is an image.
The concave mirror 6 is an anamorphic aspherical reflecting mirror. The optical axis of the relay optical system 8 is 8a, the eccentric amount of the axis 6a of the reflecting mirror 6 with respect to the center of the exit pupil 1 is Y 1 , the eccentric amount of the axis 6a with respect to the center of the first surface of the relay optical system Y 2 is two-dimensional. The eccentric amount of the optical axis 8a of the relay optical system 8 in the Y-axis direction from the center of the display element 7 is Y 3 , the tilt angle of the axis 6a of the concave mirror 6 with respect to the optical axis 8a of the relay optical system 8 is α 1 , and the two-dimensional display element 7 The inclination angle of the surface perpendicular to the optical axis 8a of the relay optical system 8 with respect to the display surface is defined as α 2 . Therefore, in the case of FIG. 3, Y 1 is negative, Y 2 is positive, Y 3 is negative, α 1 is positive, and α 2 is positive.
【0027】以下、この光学系の構成パラメータを示す
が、面番号は、射出瞳1位置から2次元画像表示素子7
へ向かう逆追跡の面番号として示してある。また、面間
隔は、射出瞳1と凹面鏡6の間については、射出瞳1中
心と凹面鏡6中心間のZ軸方向の間隔、リレー光学系8
の第1面からその像面(2次元画像表示素子7)に到る
間隔は、光軸8aに沿う間隔で示してある。リレー光学
系8については、第1面から第7面のレンズ面をr1 〜
r7 で、面間隔をd1 〜d7 で示す。 面番号 曲率半径 間隔 偏心量 傾き角 屈折率 1(1) 射出瞳 50.0 Y1 -28.285 2(6)Ry 65.909 Y2 28.2546 α1 53.1889° Rx 39.151 (非球面) 3(r1 ) -17.439 4.0(d1 ) 1.72916 4(r2 ) -16.374 1.0(d2 ) 5(r3 ) 40.383 4.0(d3 ) 1.72916 6(r4 ) -43.930 1.0(d4 ) 7(r5 ) 10.688 6.0(d5 ) 1.51633 8(r6 ) -16.881 2.0(d6 ) 1.80518 9(r7 )-188.062 10.0(d7 ) 10(7) 像面 Y3 -0.19518 α2 12.94946 ° 非球面係数 第2面(凹面鏡6) Ky = 0 Kx = 0 AR= -0.109807×10-5 AP= -0.640989 BR= 0.281845×10-13 BP= 0.203281×102 CR= 0 CP= 0 この実施例の像歪みを図6に示す。また、この実施例の
横収差図を図9に示す。表記方法は、それぞれ図4、図
7と同様である。The constituent parameters of this optical system are shown below. The surface numbers are from the position of the exit pupil 1 to the two-dimensional image display element 7.
It is shown as a backtracking face number towards. As for the surface distance, the distance between the exit pupil 1 and the concave mirror 6 in the Z-axis direction between the center of the exit pupil 1 and the center of the concave mirror 6, the relay optical system 8
The distance from the first surface to the image surface (two-dimensional image display element 7) is indicated by the distance along the optical axis 8a. For the relay optical system 8, the lens surfaces from the first surface to the seventh surface are r 1 to
In r 7, showing a surface interval d 1 to d 7. Surface number Curvature radius Spacing Eccentricity Tilt angle Refractive index 1 (1) Exit pupil 50.0 Y 1 -28.285 2 (6) R y 65.909 Y 2 28.2546 α 1 53.1889 ° R x 39.151 (aspherical) 3 (r 1 ) -17.439 4.0 (d 1 ) 1.72916 4 (r 2 ) -16.374 1.0 (d 2 ) 5 (r 3 ) 40.383 4.0 (d 3 ) 1.72916 6 (r 4 ) -43.930 1.0 (d 4 ) 7 (r 5 ) 10.688 6.0 ( d 5 ) 1.51633 8 (r 6 ) -16.881 2.0 (d 6 ) 1.80518 9 (r 7 ) -188.062 10.0 (d 7 ) 10 (7) Image plane Y 3 -0.19518 α 2 12.94946 ° Aspherical surface 2nd surface ( Concave mirror 6) K y = 0 K x = 0 AR = -0.109807 × 10 -5 AP = -0.640989 BR = 0.281845 × 10 -13 BP = 0.203281 × 10 2 CR = 0 CP = 0 The image distortion of this example is illustrated. 6 shows. A lateral aberration diagram for this example is shown in FIG. The notation method is the same as in FIGS. 4 and 7, respectively.
【0028】この実施例においては、2次元表示素子7
をリレー光学系8により拡大投影できるために、表示素
子7として小型のものが使用でき、装置全体を小型にで
きるメリットがある。In this embodiment, the two-dimensional display element 7
Can be enlarged and projected by the relay optical system 8, so that a small-sized display element 7 can be used, and there is an advantage that the entire apparatus can be downsized.
【0029】なお、上記各実施例において、凹面反射鏡
6は、全反射鏡のみでなく、半透過鏡で構成することも
できる。半透過鏡で構成する場合は、外界像との合成が
できることは周知の事実である。In each of the above-mentioned embodiments, the concave reflecting mirror 6 may be a semi-transmissive mirror as well as a total reflecting mirror. It is a well known fact that a semi-transmissive mirror can be combined with an external image.
【0030】以上、本発明の視覚表示装置をいくつかの
実施例について説明してきたが、本発明はこれら実施例
に限定されず、種々の変形が可能である。Although the visual display device of the present invention has been described with reference to some embodiments, the present invention is not limited to these embodiments and various modifications can be made.
【0031】[0031]
【発明の効果】以上の説明から明らかなように、本発明
の視覚表示装置によると、ディストーションの少ない、
鮮明で画角の広い頭部又は顔面装着型視覚表示装置を提
供することができる。As is clear from the above description, according to the visual display device of the present invention, there is little distortion.
It is possible to provide a head- or face-mounted visual display device that is clear and has a wide angle of view.
【図1】本発明の視覚表示装置における光束の様子を示
す鳥瞰図である。FIG. 1 is a bird's-eye view showing a state of light flux in a visual display device of the present invention.
【図2】本発明の実施例1の視覚表示装置の光学配置を
示す図である。FIG. 2 is a diagram showing an optical arrangement of the visual display device according to the first embodiment of the present invention.
【図3】実施例3の光学配置を示す図である。FIG. 3 is a diagram showing an optical arrangement of Example 3;
【図4】実施例1の像歪みを示す図である。FIG. 4 is a diagram showing image distortion of Example 1.
【図5】実施例2の像歪みを示す図である。FIG. 5 is a diagram showing image distortion in Example 2;
【図6】実施例3の像歪みを示す図である。FIG. 6 is a diagram showing image distortion in Example 3;
【図7】実施例1の横収差図である。7 is a lateral aberration diagram for Example 1. FIG.
【図8】実施例2の横収差図である。8 is a lateral aberration diagram for Example 2. FIG.
【図9】実施例3の横収差図である。9 is a lateral aberration diagram for Example 3. FIG.
【図10】従来の顔面装着式視覚表示装置の平面図であ
る。FIG. 10 is a plan view of a conventional face-mounted visual display device.
【図11】従来のトーリック面による像歪みを示す図で
ある。FIG. 11 is a diagram showing image distortion due to a conventional toric surface.
【図12】従来の楕円面による像歪みを示す図である。FIG. 12 is a diagram showing conventional image distortion due to an ellipsoid.
1…観察者虹彩位置又は眼球回旋位置 2…左側水平方向15°の観察画角の光束 3…左側15°、下方10°の観察画角の光束 4…右側水平方向15°の観察画角の光束 5…右側15°、下方10°の観察画角の光束 6…接眼光学系(凹面鏡) 7…2次元画像表示素子又は2次元画像表示素子の投影
像 8…リレー光学系 9…凹面鏡の物体面(焦点面) 6a…凹面鏡の軸 8a…リレー光学系の光軸1 ... Observer iris position or eyeball rotation position 2 ... Luminous flux with an observation angle of view of 15 ° on the left side 3 ... 15 ° left side, luminous flux with an angle of view of 10 ° below 4 ... Light flux 5 ... Light flux with observation angle of view of 15 ° on right side and 10 ° below 6 ... Eyepiece optical system (concave mirror) 7 ... Projected image of 2D image display element or 2D image display element 8 ... Relay optical system 9 ... Object of concave mirror Surface (focal plane) 6a ... Axis of concave mirror 8a ... Optical axis of relay optical system
Claims (1)
2次元表示素子又はその実像を空中に拡大投影すると共
に光軸を屈曲させる接眼光学系とを備えた視覚表示装置
において、前記接眼光学系が非球面凹面鏡で構成され、
該凹面鏡を、光軸を屈曲させる面と直交する方向での面
の曲率が、観察者の眼球から見て、光軸を屈曲させる方
向に行くに従って次第に高くなるように構成したことを
特徴とする視覚表示装置。1. A visual display device comprising a two-dimensional display element for displaying an observation image, and an eyepiece optical system for enlarging and projecting the two-dimensional display element or a real image thereof in the air and bending the optical axis, wherein the eyepiece The optical system consists of an aspherical concave mirror,
It is characterized in that the concave mirror is configured such that the curvature of the surface in the direction orthogonal to the surface for bending the optical axis gradually increases in the direction for bending the optical axis when viewed from the eyeball of the observer. Visual display device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10691392A JP3155337B2 (en) | 1992-04-24 | 1992-04-24 | Visual display device |
US08/051,386 US5594588A (en) | 1992-04-24 | 1993-04-23 | Visual display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10691392A JP3155337B2 (en) | 1992-04-24 | 1992-04-24 | Visual display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05303056A true JPH05303056A (en) | 1993-11-16 |
JP3155337B2 JP3155337B2 (en) | 2001-04-09 |
Family
ID=14445677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10691392A Expired - Fee Related JP3155337B2 (en) | 1992-04-24 | 1992-04-24 | Visual display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3155337B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07104209A (en) * | 1993-10-05 | 1995-04-21 | Canon Inc | Display device |
JPH08166541A (en) * | 1994-12-13 | 1996-06-25 | Olympus Optical Co Ltd | Picture display device |
JPH08320451A (en) * | 1995-05-25 | 1996-12-03 | Olympus Optical Co Ltd | Head-mounted display device |
JPH09152646A (en) * | 1995-11-30 | 1997-06-10 | Canon Inc | Finder optical system |
US5706136A (en) * | 1995-02-28 | 1998-01-06 | Canon Kabushiki Kaisha | Optical system, and image observing apparatus and image pickup apparatus using it |
US6191892B1 (en) | 1996-04-02 | 2001-02-20 | Canon Kabushiki Kaisha | Image display apparatus |
US6292301B1 (en) | 1998-06-19 | 2001-09-18 | Canon Kabushiki Kaisha | Optical viewing system for use in head-mounted display |
US6310728B1 (en) | 1998-06-19 | 2001-10-30 | Canon Kabushiki Kaisha | Image viewing apparatus |
US6490095B2 (en) | 2000-03-23 | 2002-12-03 | Canon Kabushiki Kaisha | Image display apparatus |
US6552854B2 (en) | 2000-04-28 | 2003-04-22 | Canon Kabushiki Kaisha | Image display apparatus and optical system |
US6594085B2 (en) | 2000-04-28 | 2003-07-15 | Canon Kabushiki Kaisha | Image display apparatus and optical system |
US6814442B2 (en) | 2000-04-28 | 2004-11-09 | Canon Kabushiki Kaisha | Image display apparatus and optical system |
US6867916B2 (en) | 1995-01-11 | 2005-03-15 | Canon Kabushiki Kaisha | Viewfinder optical system |
US7019909B2 (en) | 2001-11-14 | 2006-03-28 | Canon Kabushiki Kaisha | Optical system, image display apparatus, and image taking apparatus |
US7253960B2 (en) | 1994-06-13 | 2007-08-07 | Canon Kabushiki Kaisha | Head-up display device with rotationally asymmetric curved surface |
US7992996B2 (en) | 2009-08-31 | 2011-08-09 | Olympus Corporation | Spectacles-type image display device |
US8337015B2 (en) | 2009-08-31 | 2012-12-25 | Olympus Corporation | Spectacles-mounted display device |
US10324296B2 (en) | 2017-02-02 | 2019-06-18 | Panasonic Intellectual Property Management Co., Ltd. | Display device |
-
1992
- 1992-04-24 JP JP10691392A patent/JP3155337B2/en not_active Expired - Fee Related
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07104209A (en) * | 1993-10-05 | 1995-04-21 | Canon Inc | Display device |
US7567385B2 (en) | 1994-06-13 | 2009-07-28 | Canon Kabushiki Kaisha | Head-up display device with curved optical surface having total reflection |
US7538950B2 (en) | 1994-06-13 | 2009-05-26 | Canon Kabushiki Kaisha | Display device |
US7505207B2 (en) | 1994-06-13 | 2009-03-17 | Canon Kabushiki Kaisha | Display device |
US7495836B2 (en) | 1994-06-13 | 2009-02-24 | Canon Kabushiki Kaisha | Display device |
US7355795B1 (en) | 1994-06-13 | 2008-04-08 | Canon Kabushiki Kaisha | Head-up display device with curved optical surface having total reflection |
US7345822B1 (en) | 1994-06-13 | 2008-03-18 | Canon Kabushiki Kaisha | Head-up display device with curved optical surface having total reflection |
US7262919B1 (en) | 1994-06-13 | 2007-08-28 | Canon Kabushiki Kaisha | Head-up display device with curved optical surface having total reflection |
US7253960B2 (en) | 1994-06-13 | 2007-08-07 | Canon Kabushiki Kaisha | Head-up display device with rotationally asymmetric curved surface |
JPH08166541A (en) * | 1994-12-13 | 1996-06-25 | Olympus Optical Co Ltd | Picture display device |
US6867916B2 (en) | 1995-01-11 | 2005-03-15 | Canon Kabushiki Kaisha | Viewfinder optical system |
US5706136A (en) * | 1995-02-28 | 1998-01-06 | Canon Kabushiki Kaisha | Optical system, and image observing apparatus and image pickup apparatus using it |
JPH08320451A (en) * | 1995-05-25 | 1996-12-03 | Olympus Optical Co Ltd | Head-mounted display device |
JPH09152646A (en) * | 1995-11-30 | 1997-06-10 | Canon Inc | Finder optical system |
US6191892B1 (en) | 1996-04-02 | 2001-02-20 | Canon Kabushiki Kaisha | Image display apparatus |
US6292301B1 (en) | 1998-06-19 | 2001-09-18 | Canon Kabushiki Kaisha | Optical viewing system for use in head-mounted display |
US6310728B1 (en) | 1998-06-19 | 2001-10-30 | Canon Kabushiki Kaisha | Image viewing apparatus |
US6490095B2 (en) | 2000-03-23 | 2002-12-03 | Canon Kabushiki Kaisha | Image display apparatus |
US6814442B2 (en) | 2000-04-28 | 2004-11-09 | Canon Kabushiki Kaisha | Image display apparatus and optical system |
US6552854B2 (en) | 2000-04-28 | 2003-04-22 | Canon Kabushiki Kaisha | Image display apparatus and optical system |
US6594085B2 (en) | 2000-04-28 | 2003-07-15 | Canon Kabushiki Kaisha | Image display apparatus and optical system |
US7019909B2 (en) | 2001-11-14 | 2006-03-28 | Canon Kabushiki Kaisha | Optical system, image display apparatus, and image taking apparatus |
US7992996B2 (en) | 2009-08-31 | 2011-08-09 | Olympus Corporation | Spectacles-type image display device |
US8337015B2 (en) | 2009-08-31 | 2012-12-25 | Olympus Corporation | Spectacles-mounted display device |
US10324296B2 (en) | 2017-02-02 | 2019-06-18 | Panasonic Intellectual Property Management Co., Ltd. | Display device |
Also Published As
Publication number | Publication date |
---|---|
JP3155337B2 (en) | 2001-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3683317B2 (en) | Image display device | |
JP3599828B2 (en) | Optical device | |
JP3392929B2 (en) | Video display device | |
JP3537230B2 (en) | Eyepiece optical system and image display device using the same | |
EP0660155B1 (en) | Image display apparatus | |
JP3155360B2 (en) | Visual display device | |
JP3497607B2 (en) | Eyepiece optical system and image display device using the same | |
JPH05303056A (en) | Vision display device | |
JPH09219832A (en) | Image display | |
JPH08166541A (en) | Picture display device | |
JPH09258104A (en) | Optical system | |
JPH09189880A (en) | Picture display device | |
JPH10246865A (en) | Visual display device | |
JP3155335B2 (en) | Visual display device | |
JPH0933855A (en) | Image display device | |
JPH07104209A (en) | Display device | |
JP3212204B2 (en) | Visual display device | |
JP3155336B2 (en) | Visual display device | |
JP3542214B2 (en) | Image display device | |
JPH0973043A (en) | Video display device | |
JP3542213B2 (en) | Image display device | |
JP3346640B2 (en) | Video display device | |
JP3394758B2 (en) | Video display device | |
JP3340118B2 (en) | Eccentric optical system and visual display device using it | |
JP3607736B2 (en) | Image display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010116 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090202 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090202 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100202 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110202 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110202 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120202 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |