JP2004077723A - Manufacturing method for optical member - Google Patents
Manufacturing method for optical member Download PDFInfo
- Publication number
- JP2004077723A JP2004077723A JP2002236918A JP2002236918A JP2004077723A JP 2004077723 A JP2004077723 A JP 2004077723A JP 2002236918 A JP2002236918 A JP 2002236918A JP 2002236918 A JP2002236918 A JP 2002236918A JP 2004077723 A JP2004077723 A JP 2004077723A
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- cutting tool
- optical member
- manufacturing
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/02—Simple or compound lenses with non-spherical faces
- G02B3/08—Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B9/00—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
- B24B9/02—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
- B24B9/06—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
- B24B9/08—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
- B24B9/14—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Turning (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
【0001】
【産業上の利用分野】
本発明は、フレネルレンズ等の光学部材の製造方法に関し、より詳細には、精度の高い同心の複数の楕円形溝を有する光学部材が容易に製造可能な光学部材の製造方法に関する。
【0002】
【従来の技術】
現在、光学部材、例えばフレネルレンズにおいては、同心の複数の円形溝が形成されたものが一般的である。しかし、特開平2000−131510号の図4(c)にもあるように、同心の複数の楕円形溝を形成したフレネルレンズも存在する。このような複数の楕円形溝を有するフレネルレンズは、光ピックアップ装置等において非点収差を発生、又は打消したり、ビーム整形等ビームの形状を変更したりする部材として利用できる。複数の楕円形溝を有するフレネルレンズは、現在光ピックアップ装置等において非点収差を発生、又は打消すために用いられている円筒レンズやトーリックレンズよりも薄板で形成することができ、これを用いれば装置の小型化が可能となる。このようなことから、同心の複数の楕円形溝を有する光学部材の需要は今後増加すると考えられる。
【0003】
【発明が解決しようとする課題】
ところで、光学部材に溝を形成する場合、その溝の形状は非常に高い精度が要求される。例えば0.5μm程度の波長の光を扱うフレネルレンズの場合、溝の深さ方向の誤差は±数十nm以内である必要がある。このような光学部材又は光学部材を成形するための金型にバイト等の切削工具によってこのような溝を形成する場合には、その刃先の切削方向を切削点における曲線の接線方向に向けることが、溝の形状の精度を保つためには重要となってくる。刃先の切削方向が接線方向に向いていなければ、刃先以外の部分が光学部材又は金型に接触して切削を行うこととなり、望ましい溝の形状が得られないからである。
【0004】
円形溝を形成する場合にはその径が一定であるため、光学部材又は金型を回転させ、切削工具を一定位置に固定して切込めば、おのずと刃先の切削方向と円の接線方向は一致する。しかし、楕円形溝を形成する場合には、径が場所ごとに異なることから、刃先の切削方向を形成しようとする楕円形溝の接線方向に相対的に移動させる必要がある。このため、光学部材又は金型に楕円形溝を形成することは、円形溝を形成する場合に比べてその加工が非常に難しい。
【0005】
楕円形溝を形成する方法としては、光学部材又は金型を固定し、光学部材上又は金型上を楕円の軌跡を描くように切削工具を移動させながら、切削点における刃先の切削方向を常に接線方向に向くように常時変化させる方法が考えられる。また逆に、光学部材又は金型を回転させて、同じく刃先の切削方向を常に楕円の接線方向に向くように常時変化させながら切削工具を移動させて楕円形溝を形成する方法も考えられる。
だが、切削の際に刃先の切削方向が楕円形溝の接線方向を向くように常時変化させることは困難であり、現実的な製造方法とは言い難い。また、仮にこのような方法によって光学部材または金型に楕円形溝を形成しようとしても、精度の高い楕円形溝を形成することは難しい。
【0006】
本発明は、以上のような点を鑑みてなされたものであり、同心の複数の楕円形溝を有する光学部材を、切削工具の切削方向を変化させることなく、容易に精度よく製造できる光学部材の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の課題を解決するため、本発明に係る光学部材の製造方法は、回転する基材の表面に切削工具による切削加工によって同心の複数の楕円形溝を形成する光学部材の製造方法において、
切削工具の切削方向を固定させ、基材上の切削点において形成しようとする楕円形溝の接線方向と切削工具の切削方向が一致するように、切削工具を基材の回転に同期させて基材の回転面と平行な方向に移動させながら所定の深さまで切込むことを特徴とする。
【0008】
また、本発明に係る光学部材の製造方法は、基材の楕円形溝の中心を原点とするX−Y座標系において、θを楕円形溝の長軸、短軸がそれぞれX軸、Y軸と一致した時点を0度又は180度とする原点を中心とした基材の回転角とし、a、bをそれぞれ楕円形溝の長軸半径、短軸半径とすると共に、x、yをそれぞれ切削工具による切削点の位置としたときに、切削点の位置が次の数式(1)
【数3】
の関係を満たすように切削工具を移動することを特徴とする。
【0009】
また、本発明に係る光学部材の製造方法は、回転する金型の表面に切削工具による切削加工によって同心の複数の楕円形溝を形成した金型により成形する光学部材の製造方法において、
切削工具の切削方向を固定させ、金型上の切削点において形成しようとする楕円形溝の接線方向と切削工具の切削方向が一致するように、切削工具を金型の回転に同期させて金型の回転面と平行な方向に移動させながら所定の深さまで切込んで複数の同心の楕円形溝を形成した金型によって成形することを特徴とする。
【0010】
また、本発明に係る光学部材の製造方法は、金型の楕円形溝の中心を原点とするX−Y座標系において、θを楕円形溝の長軸、短軸がそれぞれX軸、Y軸と一致した時点を0度又は180度とする原点を中心とした金型の回転角とし、a、bをそれぞれ楕円形溝の長軸半径、短軸半径とすると共に、x、yをそれぞれ切削工具による切削点の位置としたときに、切削点の位置が次の数式(2)
【数4】
の関係を満たすように切削工具を移動することを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明に係る光学部材の製造方法の実施の形態を、添付図面を参照しつつ説明する。図1はバイトによるフレネルレンズ基板の切削状況を示す斜視図、図2、図3はそれぞれ、フレネルレンズ基板(回転角0度、30度)とバイトの位置関係を示す図であり、また図4は同心の複数の楕円形溝を有するフレネルレンズの斜視図である。
【0012】
本実施形態では、図4に示すような、同心の複数の楕円形溝10、10を有するフレネルレンズ1の製造方法について示す。図1に示すように、例えば透明なアクリル樹脂からなる楕円状の外形を有するフレネルレンズ基板2を、旋盤のチャック(図示せず)に保持する。このとき、フレネルレンズ基板2上に形成しようとする楕円形溝10の中心と旋盤の回転軸心21が一致するように、かつフレネルレンズ基板2の回転面2aと旋盤の回転軸心21とが直交するようにフレネルレンズ基板2を保持する。
なお、ここではフレネルレンズ1の製造方法について示すが、本発明はこれに限らず、楕円形溝を有する光学部材を製造する際に広く利用可能である。
【0013】
旋盤のチャックによってフレネルレンズ基板2を保持した後、切削工具たるバイト3をセットする。ここで、バイト3の刃先3aが常に一定の切削方向、ここでは水平線22に対して常に直角方向を向くように保持される。ついで、チャックが連結されている主軸(図示せず)を矢印23の方向に回転させ、バイト3をフレネルレンズ基板2の回転面2aに対して垂直な矢印24の方向に所定の溝幅かつ所定の溝深さとなるように切込む。
【0014】
バイト3を回転面2aに対して垂直な矢印24の方向に切込むと共に、フレネルレンズ基板2の回転に同期させてバイト3を回転面2aに平行に移動させる。具体的には、フレネルレンズ基板2上の楕円形溝10の中心を原点とするX−Y座標系において、θを楕円形溝10の長軸、短軸がそれぞれX軸、Y軸と一致した時点を0度又は180度とする原点を中心としたフレネルレンズ基板2の回転角とし、a、bをそれぞれ楕円形溝10の長軸半径、短軸半径とすると共に、x、yをそれぞれバイト3の刃先3aによる切削点の位置としたときに、切削点の位置が次の数式(1)
【数5】
の関係を満たすようにバイト3を移動する。
【0015】
このフレネルレンズ基板2とバイト3の位置関係の例を図2、図3に示す。ここでは一例として長軸3mm、短軸1.5mmの楕円形溝10を形成する場合について示す。フレネルレンズ基板2の外形の楕円は長軸4mm、短軸2mmとする。25はバイト3の刃先3aによる切削点の軌跡を表す。
【0016】
図2、図3からもわかるように、例えばフレネルレンズ基板2を30度回転させた場合、当然フレネルレンズ基板2上の楕円形溝10は回転するが、この回転に同期して、バイト3の刃先3aによる切削点が図2の25aから図3の25bまで軌跡25上を移動するように、バイト3を移動させる。このようにして、フレネルレンズ基板2が180度回転する間にバイト3の刃先3aが時計回りに軌跡25上を一回転移動するように、バイト3を連続的に移動して楕円形溝10を形成する。
このようにフレネルレンズ基板2の回転に同期させて、バイト3を移動させることにより、バイト3の刃先3aを常に一定の切削方向に向けつつも、バイト3の刃先3aの切削方向と切削点における楕円形溝10の接線方向が常に一致し、精度の高い楕円形溝10を形成することが可能となる。
同様にして、所望の溝数だけ上記作業をさらに繰り返し、図4に示すような同心の複数の楕円形溝10、10を有するフレネルレンズ1を得る。
【0017】
以上、本発明に係る光学部材の製造方法の実施の形態について説明した。上記実施形態では、フレネルレンズを例に挙げ、同心の複数の楕円形溝を有する光学部材を切削工具たるバイトによって直接製造する方法を示した。しかし、このような光学部材を成形するための金型に同心の複数の楕円形溝を形成し、この金型によって光学部材を成形することも可能である。この場合は、成形しようとする光学部材の楕円形溝と凹凸を反転させた楕円形溝を、金型に形成することになる。金型に対する楕円形溝の形成方法については上記実施形態と同様である。また、切削工具に関してもバイトに限られず、切削対象によって適宜最適なものを選択する。
【0018】
【発明の効果】
本発明に係る光学部材の製造方法によれば、切削工具の切削方向を固定させ、基材上又は金型上の切削点において形成しようとする楕円形溝の接線方向と切削工具の切削方向が一致するように、切削工具を基材又は金型の回転に同期させて基材又は金型の回転面と平行な方向に移動させながら所定の深さまで切込むことから、切削工具の切削方向を変化させることなく切削方向と接線方向を一致させることができるので、容易に精度の高い同心の複数の楕円形溝を有する光学部材を製造することができる。または容易に精度の高い同心の複数の楕円形溝を有する金型を形成して、この金型を用いて精度の高い同心の複数の楕円形溝を有する光学部材を製造することができる。
【0019】
また、本発明に係る光学部材の製造方法によれば、切削工具を数式に表された関係に基づいて移動させることから、数値制御旋盤等によって正確に切削工具を移動することができる。
【図面の簡単な説明】
【図1】バイトによるフレネルレンズ基板の切削状況を示す斜視図である。
【図2】フレネルレンズ基板(回転角0度)とバイトの位置関係を示す図である。
【図3】フレネルレンズ基板(回転角30度)とバイトの位置関係を示す図である。
【図4】同心の複数の楕円形溝を有するフレネルレンズの斜視図である。
【符号の説明】
1 フレネルレンズ
2 フレネルレンズ基板
2a 回転面
3 バイト
10 楕円形溝[0001]
[Industrial applications]
The present invention relates to a method for manufacturing an optical member such as a Fresnel lens, and more particularly, to a method for manufacturing an optical member that can easily manufacture an optical member having a plurality of concentric elliptical grooves with high accuracy.
[0002]
[Prior art]
At present, an optical member such as a Fresnel lens generally has a plurality of concentric circular grooves. However, as shown in FIG. 4C of JP-A-2000-131510, there is a Fresnel lens in which a plurality of concentric elliptical grooves are formed. Such a Fresnel lens having a plurality of elliptical grooves can be used as a member for generating or canceling astigmatism or changing the shape of a beam such as beam shaping in an optical pickup device or the like. A Fresnel lens having a plurality of elliptical grooves can be formed of a thinner plate than a cylindrical lens or a toric lens currently used to generate or cancel astigmatism in an optical pickup device or the like. In this case, the size of the device can be reduced. From such a situation, the demand for an optical member having a plurality of concentric elliptical grooves is expected to increase in the future.
[0003]
[Problems to be solved by the invention]
By the way, when forming a groove in an optical member, very high precision is required for the shape of the groove. For example, in the case of a Fresnel lens that handles light having a wavelength of about 0.5 μm, the error in the depth direction of the groove needs to be within ± several tens nm. When such a groove is formed by a cutting tool such as a cutting tool in a mold for molding such an optical member or an optical member, the cutting direction of the cutting edge may be directed to a tangential direction of a curve at a cutting point. This is important for maintaining the accuracy of the groove shape. If the cutting direction of the cutting edge is not tangential, a portion other than the cutting edge comes into contact with the optical member or the mold to perform cutting, and a desired groove shape cannot be obtained.
[0004]
When forming a circular groove, the diameter is constant, so if the optical member or mold is rotated and the cutting tool is fixed and cut in, the cutting direction of the cutting edge naturally matches the tangential direction of the circle. I do. However, in the case of forming an elliptical groove, it is necessary to relatively move the cutting edge of the elliptical groove in a tangential direction of the elliptical groove to form a cutting direction, since the diameter varies from place to place. For this reason, forming an elliptical groove in an optical member or a mold is much more difficult to process than forming a circular groove.
[0005]
As a method of forming an elliptical groove, the optical member or the mold is fixed, and the cutting direction of the cutting edge at the cutting point is always changed while moving the cutting tool so as to draw an elliptical locus on the optical member or the mold. A method of constantly changing the direction to face the tangential direction is considered. Conversely, a method of forming an elliptical groove by rotating an optical member or a mold and moving the cutting tool while constantly changing the cutting direction of the cutting edge so as to always face the tangential direction of the ellipse is also conceivable.
However, it is difficult to always change the cutting direction of the cutting edge so as to face the tangential direction of the elliptical groove during cutting, and it is difficult to say that this is a realistic manufacturing method. Even if an elliptical groove is formed on an optical member or a mold by such a method, it is difficult to form a highly accurate elliptical groove.
[0006]
The present invention has been made in view of the above points, and an optical member having a plurality of concentric elliptical grooves can be easily and accurately manufactured without changing the cutting direction of a cutting tool. It is an object of the present invention to provide a method for producing the same.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, a method for manufacturing an optical member according to the present invention is a method for manufacturing an optical member that forms a plurality of concentric elliptical grooves by cutting with a cutting tool on the surface of a rotating base material,
The cutting direction of the cutting tool is fixed, and the cutting tool is synchronized with the rotation of the base material so that the tangential direction of the elliptical groove to be formed at the cutting point on the base material matches the cutting direction of the cutting tool. The cutting is performed to a predetermined depth while moving in a direction parallel to the rotation plane of the material.
[0008]
Further, in the method of manufacturing an optical member according to the present invention, in the XY coordinate system having the origin at the center of the elliptical groove of the substrate, θ is the major axis and the minor axis of the elliptical groove are the X axis and the Y axis, respectively. The rotation time of the base material around the origin at which the point coincides with 0 or 180 degrees is defined as the center of rotation, a and b are respectively the major axis radius and minor axis radius of the elliptical groove, and x and y are respectively cut. When the position of the cutting point by the tool is set, the position of the cutting point is expressed by the following equation (1).
[Equation 3]
The cutting tool is moved so as to satisfy the following relationship.
[0009]
Further, the method for manufacturing an optical member according to the present invention is a method for manufacturing an optical member formed by a mold having a plurality of concentric elliptical grooves formed by cutting with a cutting tool on the surface of a rotating mold.
The cutting direction of the cutting tool is fixed, and the cutting tool is synchronized with the rotation of the mold so that the tangential direction of the elliptical groove to be formed at the cutting point on the mold coincides with the cutting direction of the cutting tool. It is characterized in that it is cut by a predetermined depth while being moved in a direction parallel to the rotation surface of the mold, and is formed by a mold having a plurality of concentric elliptical grooves.
[0010]
In the method for manufacturing an optical member according to the present invention, in the XY coordinate system having the origin at the center of the elliptical groove of the mold, θ is the major axis and the minor axis of the elliptical groove are the X axis and the Y axis, respectively. The rotation time of the mold centering on the origin at which the point coincides with 0 or 180 degrees is defined as the center, and a and b are the major axis radius and the minor axis radius of the elliptical groove, respectively, and x and y are respectively cut. When the position of the cutting point by the tool is set, the position of the cutting point is expressed by the following equation (2).
(Equation 4)
The cutting tool is moved so as to satisfy the following relationship.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a method for manufacturing an optical member according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a perspective view showing a cutting state of a Fresnel lens substrate by a cutting tool, and FIGS. 2 and 3 are diagrams showing a positional relationship between a Fresnel lens substrate (rotation angles 0 ° and 30 °) and a cutting tool, respectively. FIG. 3 is a perspective view of a Fresnel lens having a plurality of concentric elliptical grooves.
[0012]
In the present embodiment, a method for manufacturing a Fresnel
Here, a method for manufacturing the Fresnel
[0013]
After the
[0014]
The
(Equation 5)
[0015]
2 and 3 show examples of the positional relationship between the
[0016]
As can be seen from FIGS. 2 and 3, for example, when the
In this manner, by moving the
In the same manner, the above operation is further repeated for a desired number of grooves to obtain a
[0017]
The embodiment of the method for manufacturing an optical member according to the present invention has been described above. In the above-described embodiment, a method of directly manufacturing an optical member having a plurality of concentric elliptical grooves by using a cutting tool as a cutting tool has been described using a Fresnel lens as an example. However, it is also possible to form a plurality of concentric elliptical grooves in a mold for molding such an optical member, and mold the optical member with this mold. In this case, an elliptical groove obtained by inverting the elliptical groove of the optical member to be molded and the unevenness is formed in the mold. The method of forming the elliptical groove in the mold is the same as in the above embodiment. Further, the cutting tool is not limited to a cutting tool, and an optimum tool is appropriately selected depending on a cutting target.
[0018]
【The invention's effect】
According to the method for manufacturing an optical member according to the present invention, the cutting direction of the cutting tool is fixed, and the tangential direction of the elliptical groove to be formed at the cutting point on the base material or the mold and the cutting direction of the cutting tool are different. In order to match, the cutting tool is cut to a predetermined depth while moving the cutting tool in a direction parallel to the rotation surface of the base material or the mold in synchronization with the rotation of the base material or the mold. Since the cutting direction and the tangential direction can be matched without changing, an optical member having a plurality of concentric elliptical grooves with high accuracy can be easily manufactured. Alternatively, a mold having a plurality of concentric elliptical grooves with high precision can be easily formed, and an optical member having a plurality of concentric elliptical grooves with high precision can be manufactured using this mold.
[0019]
Further, according to the method for manufacturing an optical member according to the present invention, since the cutting tool is moved based on the relationship represented by the mathematical formula, the cutting tool can be accurately moved by a numerically controlled lathe or the like.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a cutting state of a Fresnel lens substrate by a cutting tool.
FIG. 2 is a diagram showing a positional relationship between a Fresnel lens substrate (rotation angle 0 °) and a cutting tool.
FIG. 3 is a diagram illustrating a positional relationship between a Fresnel lens substrate (a rotation angle of 30 degrees) and a cutting tool.
FIG. 4 is a perspective view of a Fresnel lens having a plurality of concentric elliptical grooves.
[Explanation of symbols]
DESCRIPTION OF
Claims (4)
切削工具の切削方向を固定させ、基材上の切削点において形成しようとする楕円形溝の接線方向と切削工具の切削方向が一致するように、切削工具を基材の回転に同期させて基材の回転面と平行な方向に移動させながら所定の深さまで切込むことを特徴とする光学部材の製造方法。In a method of manufacturing an optical member that forms a plurality of concentric elliptical grooves by cutting with a cutting tool on the surface of a rotating base material,
The cutting direction of the cutting tool is fixed, and the cutting tool is synchronized with the rotation of the base material so that the tangential direction of the elliptical groove to be formed at the cutting point on the base material matches the cutting direction of the cutting tool. A method of manufacturing an optical member, wherein the cutting is performed to a predetermined depth while moving the member in a direction parallel to a rotation surface of the material.
切削工具の切削方向を固定させ、金型上の切削点において形成しようとする楕円形溝の接線方向と切削工具の切削方向が一致するように、切削工具を金型の回転に同期させて金型の回転面と平行な方向に移動させながら所定の深さまで切込んで複数の同心の楕円形溝を形成した金型によって成形することを特徴とする光学部材の製造方法。In a method of manufacturing an optical member formed by a mold having a plurality of concentric elliptical grooves formed by cutting with a cutting tool on a surface of a rotating mold,
The cutting direction of the cutting tool is fixed, and the cutting tool is synchronized with the rotation of the mold so that the tangential direction of the elliptical groove to be formed at the cutting point on the mold coincides with the cutting direction of the cutting tool. A method for manufacturing an optical member, comprising: forming a plurality of concentric elliptical grooves by cutting into a predetermined depth while moving in a direction parallel to a rotation surface of a mold.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002236918A JP4164314B2 (en) | 2002-08-15 | 2002-08-15 | Manufacturing method of optical member |
KR10-2003-0056398A KR100539618B1 (en) | 2002-08-15 | 2003-08-14 | Optical parts and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002236918A JP4164314B2 (en) | 2002-08-15 | 2002-08-15 | Manufacturing method of optical member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004077723A true JP2004077723A (en) | 2004-03-11 |
JP4164314B2 JP4164314B2 (en) | 2008-10-15 |
Family
ID=32020904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002236918A Expired - Fee Related JP4164314B2 (en) | 2002-08-15 | 2002-08-15 | Manufacturing method of optical member |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4164314B2 (en) |
KR (1) | KR100539618B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007253296A (en) * | 2006-03-24 | 2007-10-04 | Seiko Epson Corp | Manufacturing method for decorative plate and device therefor |
JP2015231661A (en) * | 2014-05-15 | 2015-12-24 | 東芝機械株式会社 | Method and device for machining non-circular hole, and lens |
-
2002
- 2002-08-15 JP JP2002236918A patent/JP4164314B2/en not_active Expired - Fee Related
-
2003
- 2003-08-14 KR KR10-2003-0056398A patent/KR100539618B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007253296A (en) * | 2006-03-24 | 2007-10-04 | Seiko Epson Corp | Manufacturing method for decorative plate and device therefor |
JP2015231661A (en) * | 2014-05-15 | 2015-12-24 | 東芝機械株式会社 | Method and device for machining non-circular hole, and lens |
Also Published As
Publication number | Publication date |
---|---|
JP4164314B2 (en) | 2008-10-15 |
KR20040016416A (en) | 2004-02-21 |
KR100539618B1 (en) | 2005-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7788998B2 (en) | Precision machining system and methods | |
CN109176224B (en) | Grinding wheel path generation method for grinding free-form surface by single point of inclined shaft | |
KR20100119494A (en) | Machining apparatus and machining method | |
US20080265451A1 (en) | Method for producing mold for zontal optical element | |
JP2011175076A (en) | Fresnel lens and fresnel lens molding die, and method for manufacturing fresnel lens and method for manufacturing fresnel lens molding die | |
JP5464509B2 (en) | Mold manufacturing method | |
CN104237980B (en) | There is the diffusing panel of microlens array | |
KR101797965B1 (en) | processing method of mold core for injection molding of aspherical array lens | |
JP2007118326A (en) | Mold manufacturing method | |
JP4164314B2 (en) | Manufacturing method of optical member | |
JP2004042188A (en) | Working method of die | |
TWI411522B (en) | Substrate alignment | |
JPWO2017043042A1 (en) | Laser processing head and its origin calibration method | |
JP5035962B2 (en) | Processing method of diffractive optical element mold | |
JP2004345017A (en) | Method and device for grooving | |
CN113601257B (en) | Microstructure array processing device and method based on variable-pitch fly cutter cutting | |
TW201628739A (en) | Machining method of noncircular hole machining apparatus of noncircular hole and lens | |
JP2018043444A (en) | Production method of metal mold and production method of microlens array | |
WO2013108038A1 (en) | Structured optical film | |
CN115741224B (en) | Method for correcting errors of turning radius and turning angle of ultra-precise fly cutter | |
JP2005250021A (en) | Method for working material with x-ray | |
WO2006132126A1 (en) | Method of producing optical element, and optical element | |
JP2008023687A (en) | Method for forming axially non-symmetric and aspheric surface | |
JPH10166202A (en) | Machining method for die for forming fresnel lens | |
US7506422B2 (en) | Method for processing a lens barrel having a tubular wall that defines a hole, and device for implementing the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080526 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080624 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080714 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080728 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130801 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |