JP5035962B2 - Processing method of diffractive optical element mold - Google Patents

Processing method of diffractive optical element mold Download PDF

Info

Publication number
JP5035962B2
JP5035962B2 JP2007066381A JP2007066381A JP5035962B2 JP 5035962 B2 JP5035962 B2 JP 5035962B2 JP 2007066381 A JP2007066381 A JP 2007066381A JP 2007066381 A JP2007066381 A JP 2007066381A JP 5035962 B2 JP5035962 B2 JP 5035962B2
Authority
JP
Japan
Prior art keywords
optical element
diffractive optical
molding die
diffraction pattern
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007066381A
Other languages
Japanese (ja)
Other versions
JP2008221747A (en
Inventor
聡 甲斐
英利 寒河江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007066381A priority Critical patent/JP5035962B2/en
Publication of JP2008221747A publication Critical patent/JP2008221747A/en
Application granted granted Critical
Publication of JP5035962B2 publication Critical patent/JP5035962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、回折光学素子成形金型に回折光学素子の回折パターンを加工する加工法に関するものであり、位置合わせ用マークと加工された回折パターンとの相対位置関係の精度を高くすることができ、かつ加工の手間を低減することができるものである。   The present invention relates to a processing method for processing a diffraction pattern of a diffractive optical element in a diffractive optical element molding die, and can increase the accuracy of the relative positional relationship between the alignment mark and the processed diffraction pattern. In addition, the processing effort can be reduced.

回折光学素子に位置を検出するマークを加工する方法として、特開2000−56114号公報に記載されているものがある。
上記従来技術は、回折パターンおよび位置検出用のマークを共にリソグラフィでを用いて加工する場合は、位置合わせ用マークと回折パターンとを同一の工程で加工することができるため、精度の良い位置合わせ用マークを作製できるが、回折パターンを切削加工で形成する場合、位置合わせ用マークをリソグラフィで作製したのでは回折パターンと異なる加工工程で形成されるため、位置合わせ用マークと回折パターンとの相対位置関係の精度を高くすることができないという問題がある。
As a method of processing a mark for detecting a position on a diffractive optical element, there is one described in Japanese Patent Laid-Open No. 2000-56114.
In the above prior art, when both the diffraction pattern and the position detection mark are processed by lithography, the alignment mark and the diffraction pattern can be processed in the same process, so that the accurate alignment is possible. However, when the diffraction pattern is formed by cutting, the alignment mark is formed by a different process from the diffraction pattern. There is a problem that the positional relationship accuracy cannot be increased.

図1は、光軸2の方向から見た場合に回折面に形成されている回折パターンpが円形である回折光学素子を示しており、この回折光学素子の光軸2を含み光軸と平行な断面での断面形状は図3の(a)に示す階段形状のものである。
回折パターンpを光軸2から見た形状としては、図2のように、同心円状のもの(図2の(a))、楕円形状のもの(図2の(b))、長方形状のもの(図2の(c))がある。また、それぞれの断面形状として、図3の(a)のように階段形状のものや、図3の(b)の様にレリーフ形状のものがある。
FIG. 1 shows a diffractive optical element in which the diffraction pattern p formed on the diffraction surface is circular when viewed from the direction of the optical axis 2, and includes the optical axis 2 of this diffractive optical element and is parallel to the optical axis. The cross-sectional shape in a simple cross-section is the staircase shape shown in FIG.
As shown in FIG. 2, the diffraction pattern p viewed from the optical axis 2 has a concentric shape (FIG. 2 (a)), an elliptical shape (FIG. 2 (b)), and a rectangular shape. ((C) of FIG. 2). Each of the cross-sectional shapes includes a step shape as shown in FIG. 3A and a relief shape as shown in FIG.

図3のような断面形状が直線で構成された回折パターンpを加工する方法として、切削工具と回折光学素子成形金型とを相対的に移動させて切削する加工方法がある。図4は図2の(c)に示す回折パターン(光軸から見た形状が長方形となる回折パターン)を回折光学素子成形金型11に切削加工する様子を示している。すなわち、切削工具12を回折光学素子成形金型11に対してY軸方向に相対移動させて回折パターンpを切削加工している。
図5は光軸方向から見て、図2の(a)の同心円形状、および(b)の楕円形状の回折パターンを切削加工する様子を示しているものである。同図において、加工機のC軸によって回折光学素子成形金型11を回転させて切削工具12で切削加工を行う。回折パターンが円形状の場合は、回折パターンpの1つの輪帯を加工する間は切削工具12のX座標位置は一定のままであるが、楕円形状を加工する場合は1つの輪帯を加工する際、楕円の形状に応じて切削工具12のX座標位置を変えながら切削加工を行うことになる。
As a method of processing the diffraction pattern p having a straight cross-sectional shape as shown in FIG. 3, there is a processing method of cutting by relatively moving the cutting tool and the diffractive optical element molding die. FIG. 4 shows a state in which the diffraction pattern shown in FIG. 2C (a diffraction pattern having a rectangular shape when viewed from the optical axis) is cut into the diffractive optical element molding die 11. In other words, the diffraction pattern p is cut by moving the cutting tool 12 relative to the diffractive optical element molding die 11 in the Y-axis direction.
FIG. 5 shows a state of cutting the concentric circular shape of FIG. 2A and the elliptical diffraction pattern of FIG. 2B when viewed from the optical axis direction. In the figure, the diffractive optical element molding die 11 is rotated by the C-axis of the processing machine, and cutting is performed with the cutting tool 12. When the diffraction pattern is circular, the X coordinate position of the cutting tool 12 remains constant while processing one ring zone of the diffraction pattern p, but when processing an elliptical shape, one ring zone is processed. In doing so, cutting is performed while changing the X-coordinate position of the cutting tool 12 according to the shape of the ellipse.

さらに、回折パターンpの平面形状(光軸方向から見た形状)が楕円形状で、かつ断面形状が図3の(b)の様にレリーフ形状である場合は、その傾斜角に応じてB軸の座標位置を変えながら切削加工することになる。
回折光学素子成形金型11を用いて成形した回折光学素子の回折パターンpが所望の形状になっているかを評価するために、回折光学素子の回折パターンpのピッチ精度の測定が行われる。
Further, when the planar shape (the shape viewed from the optical axis direction) of the diffraction pattern p is an elliptical shape and the cross-sectional shape is a relief shape as shown in FIG. 3B, the B axis is set according to the inclination angle. Cutting is performed while changing the coordinate position.
In order to evaluate whether the diffraction pattern p of the diffractive optical element formed using the diffractive optical element molding die 11 has a desired shape, the pitch accuracy of the diffraction pattern p of the diffractive optical element is measured.

上記の回折パターンpのピッチ精度の測定は、回折パターンpの断面形状を共焦点顕微鏡や、触針式形状測定器などの、断面形状を測定できる装置を用いて行われる。
回折パターンpの断面形状を測定する場合、図6の(a)の様に、回折パターンpの光軸を含む断面(A−A’断面)の形状を測定すれば正確にピッチを測定できるが、図6の(b)の様に、光軸を通らない断面(B−B’断面)で計測した場合は、正確にピッチを測定することができない。
The measurement of the pitch accuracy of the diffraction pattern p is performed using a device capable of measuring the cross-sectional shape of the diffraction pattern p, such as a confocal microscope or a stylus shape measuring instrument.
When measuring the cross-sectional shape of the diffraction pattern p, the pitch can be accurately measured by measuring the shape of the cross-section including the optical axis of the diffraction pattern p (AA ′ cross-section) as shown in FIG. As shown in FIG. 6B, when the measurement is performed with a cross section (BB ′ cross section) that does not pass through the optical axis, the pitch cannot be measured accurately.

また、回折パターンpの断面形状の測定を行う際に、正確な断面形状の測定を行える位置に測定器を位置合わせする方法として、測定の位置合わせ用マークを回折パターンp、もしくは回折パターンpに隣接する領域に形成する方法がある。   Further, when measuring the cross-sectional shape of the diffraction pattern p, as a method of positioning the measuring device at a position where the accurate cross-sectional shape can be measured, the measurement alignment mark is used as the diffraction pattern p or the diffraction pattern p. There is a method of forming in adjacent regions.

上記従来技術の場合は、リソグラフィによって位置合わせ用マークを形成している。回折パターンpをリソグラフィで加工する場合は、これと同じ加工法で位置合わせ用マークを形成できるので、位置合わせ用マークを正確な位置に作成することができる。しかし、回折パターンpを切削加工で形成する場合、回折パターンの加工と、位置合わせ用マークの加工が違う加工工程でなされるため、位置合わせ用マークと回折パターンとの相対位置関係の精度が劣化することや、加工時間が長くなるという問題がある。
特開2000−56114号公報
In the case of the above prior art, the alignment mark is formed by lithography. When the diffraction pattern p is processed by lithography, the alignment mark can be formed by the same processing method, so that the alignment mark can be created at an accurate position. However, when the diffraction pattern p is formed by cutting, the accuracy of the relative positional relationship between the alignment mark and the diffraction pattern is deteriorated because the diffraction pattern processing and the alignment mark processing are performed in different processing steps. And there is a problem that processing time becomes long.
JP 2000-56114 A

この発明は、回折光学素子成形金型に回折パターンを形成する加工方法において、位置合わせ用マークと回折パターンとの相対位置関係の精度が高く、これらの加工手間を低減できる加工方法を工夫することをその課題とするものである。   The present invention provides a processing method for forming a diffraction pattern on a diffractive optical element molding die, which has a high accuracy of the relative positional relationship between the alignment mark and the diffraction pattern, and devise a processing method that can reduce the processing effort. Is the issue.

上記課題を解決するための手段は、光軸を含みかつ光軸に平行な断面の断面形状が複数の直線形状からなる回折パターンであって、光軸方向から見た平面形状が円形、楕円形、又は長方形となる回折パターンを、旋削もしくは引き切り方式によって切削する回折光学素子成形金型の加工法を前提として、次のとおりのものである。
回折光学素子の回折面に回折パターンを転写して形成する成形金型に回折パターンを切削加工するのと同じ方法で、特定の位置において、回折面を加工する際の相対移動を行うと同時に、切削面の法線方向の成分からなる相対移動を行って切削を行うことにより、位置合わせ用マークを回折光学素子の光学面もしくは、回折光学素子の光学面の有効領域の外側周辺に形成し、該位置合わせ用マークは、円形又は楕円形の回折パターンの場合には、光軸から回折面を通る線分の一部に一致するように、また長方形の回折パターンの場合には、光軸から回折面を通り、該回折面の回折パターンと直交する線分の一部に一致するように、光軸に対して対称に複数設けられたこと。
Means for solving the above problems is a diffraction pattern in which a cross-sectional shape of a cross section including an optical axis and parallel to the optical axis is a plurality of linear shapes, and a planar shape viewed from the optical axis direction is circular or elliptical The following is a premise of a processing method of a diffractive optical element molding die for cutting a rectangular diffraction pattern by a turning or drawing method.
In the same way as cutting a diffraction pattern on a molding die formed by transferring a diffraction pattern to the diffraction surface of a diffractive optical element, at the same position, while performing relative movement when processing the diffraction surface, By performing a relative movement consisting of components in the normal direction of the cutting surface, the alignment mark is formed around the outside of the optical surface of the diffractive optical element or the effective area of the optical surface of the diffractive optical element , In the case of a circular or elliptical diffraction pattern, the alignment mark coincides with a part of a line segment passing through the diffraction surface from the optical axis, and from the optical axis in the case of a rectangular diffraction pattern. A plurality of lines are provided symmetrically with respect to the optical axis so as to coincide with a part of a line segment passing through the diffraction surface and orthogonal to the diffraction pattern of the diffraction surface .

そして、上記解決手段における回折光学素子成形金型の加工法においては、形成されたマークが回折パターンを計測する際の位置合わせ用マークとして使用される。
この解決手段による場合、回折光学素子の回折面(回折パターンが形成されている面)を転写成形する上記成形金型の転写面(上記回折パターンを備えた転写面)を切削加工する工具で、回折面を切削加工するのと同じ工程で位置合わせ用マークを形成できるので、当該位置合わせ用マークと回折パターンとの位置ずれを極めて小さくし、かつ容易に位置合わせ用パターンを形成することができる。
さらに、上記の位置合わせ用マークを複数形成することにより、これらの位置合わせ用マークを用いて測定器の測定方向と測定する断面との傾きを調整することができる
And in the processing method of the diffractive optical element molding die in the above solution, the formed mark is used as an alignment mark when measuring the diffraction pattern.
When using this solution, a tool for cutting the transfer surface (transfer surface provided with the diffraction pattern) of the molding die for transfer-molding the diffraction surface of the diffractive optical element (surface on which the diffraction pattern is formed), Since the alignment mark can be formed in the same process as cutting the diffraction surface, the positional deviation between the alignment mark and the diffraction pattern can be extremely reduced, and the alignment pattern can be easily formed. .
Further, by forming a plurality of the above alignment marks, the inclination between the measuring direction of the measuring instrument and the cross section to be measured can be adjusted using these alignment marks .

請求項3乃至6の発明)
また、解決手段における位置合わせ用マークの形状としては、鋭利な頂上をもつ山形状、頂上に平坦部を有する山形状、鋭利な谷をもつ溝形状、平坦部を有する溝形状などがあるので、測定する測定器の特性や、加工機の特性に応じて、これらを適宜選択することができる。
(Inventions of Claims 3 to 6 )
In addition, as the shape of the alignment mark in the solving means, there are a mountain shape having a sharp top, a mountain shape having a flat portion on the top, a groove shape having a sharp valley, a groove shape having a flat portion, etc. These can be appropriately selected according to the characteristics of the measuring instrument to be measured and the characteristics of the processing machine.

削 除( Delete )

(請求項7の発明)
さらに、上記の光軸方向から見た形状が円形状となる回折パターンを切削加工する際、光軸を中心として90度間隔で位置合わせ用マークを4個切削加工することにより、直交する2方向の断面形状を正確に測定できるようになる。
(Invention of Claim 7)
Further, when cutting the diffraction pattern having a circular shape when viewed from the optical axis direction, four orthogonal alignment marks are cut at 90 degree intervals around the optical axis, thereby obtaining two orthogonal directions. It becomes possible to accurately measure the cross-sectional shape.

(請求項8の発明)
さらに、上記解決手段の回折光学素子成形金型の回折パターン加工法において、光軸方向から見た回折パターンの形状が楕円形状である場合、当該楕円形状の長軸、短軸方向に各2箇所ずつ位置合わせ用マークを形成することにより、長軸方向と短軸方向の断面形状を正確に測定できる。
(Invention of Claim 8)
Furthermore, in the diffraction pattern processing method of the diffractive optical element molding die of the above solution, when the shape of the diffraction pattern viewed from the optical axis direction is an elliptical shape, two points each in the major axis and minor axis directions of the elliptical shape By forming the alignment marks one by one, the cross-sectional shapes in the major axis direction and the minor axis direction can be accurately measured.

(請求項9の発明)
さらに、本発明による回折光学素子成形金型の加工法により、回折パターンと位置合わせ用マークとの位置精度の高い上記成形金型が得られる。
(Invention of Claim 9)
Furthermore, by the processing method of the diffractive optical element molding die according to the present invention, the above molding die having high positional accuracy between the diffraction pattern and the alignment mark can be obtained.

(請求項10の発明)
さらに、本発明による回折光学素子成形用金型で回折光学素子を成形することにより、精度の高い回折光学素子が製作される。
(Invention of Claim 10)
Further, a diffractive optical element with high accuracy is manufactured by molding the diffractive optical element with the diffractive optical element molding die according to the present invention.

この発明の効果は、各請求項の発明毎に整理すると、次のとおりである。
1.請求項1、2の発明
請求項1、2の発明は、回折光学素子成形金型に回折パターンを切削加工する工具で、回折パターンを切削加工するのと同じ工程で位置合わせ用マークを形成するため、回折パターンと位置合わせ用マーク間の位置ずれが極めて小さく、かつ容易に位置合わせ用マークを形成することができる。
そして、位置合わせ用マークは回折光学素子の有効領域、もしくは有効領域に近い領域に形成するため、位置合わせ用マークと、測定対象である回折パターンとの距離を最小限にでき、誤差の少ない位置検出を行うことができる。
また、位置合わせ用マークが複数個あることから、位置合わせ用マークの相対位置関係を利用することにより測定を行いたい断面の方向と測定器の測定方向との傾き角度を計算できるため、測定器の走査方向と測定する断面との傾きを調整することが出来るようになる
The effects of the present invention are summarized as follows for each invention of each claim.
1. Inventions of Claims 1 and 2
The inventions of claims 1 and 2 are tools for cutting a diffraction pattern in a diffractive optical element molding die, and the alignment mark is formed in the same process as cutting the diffraction pattern. The positional deviation between the marks for use is extremely small, and the marks for alignment can be easily formed.
Since the alignment mark is formed in the effective area of the diffractive optical element or an area close to the effective area, the distance between the alignment mark and the diffraction pattern to be measured can be minimized, and the position with less error. Detection can be performed.
In addition, since there are a plurality of alignment marks, the inclination angle between the direction of the cross section to be measured and the measurement direction of the measuring instrument can be calculated by using the relative positional relationship of the alignment marks. The inclination between the scanning direction and the cross section to be measured can be adjusted .

2.請求項3〜6の発明
請求項3〜6の発明は、上記位置合わせ用マークが鋭利な頂上をもつ山形状のもの、頂上に平坦部を有する山形状のもの、鋭利な谷をもつ溝形状、平坦部を有する溝形状のものであり、測定する測定器の特性や、加工機の特性に応じて最適なものが選択することが可能である。したがって、回折光学素子の回折パターンについてより正確な測定を行うことができる。
2. Invention of Claims 3-6
The inventions of claims 3 to 6 are characterized in that the alignment mark has a peak shape with a sharp top, a peak shape with a flat portion on the top, a groove shape with a sharp valley, and a groove shape with a flat portion. It is possible to select an optimum one according to the characteristics of the measuring instrument to be measured and the characteristics of the processing machine. Therefore, more accurate measurement can be performed on the diffraction pattern of the diffractive optical element.

削 除( Delete )

3.請求項7の発明
請求項7の発明は、回折パターンの光軸を中心として90度間隔で位置合わせ用マークを4個加工し、これを用いることにより、円形状の回折格子の直交する2方向の断面形状を正確に測定することができる。
3. Invention of Claim 7 In the invention of Claim 7, four alignment marks are processed at intervals of 90 degrees around the optical axis of the diffraction pattern, and by using these marks, two orthogonal directions of the circular diffraction grating are used. It is possible to accurately measure the cross-sectional shape.

4.請求項8の発明
請求項8の発明によれば、請求項1の回折光学素子成形金型の加工法において、光軸方向から見た形状が楕円形となる回折パターンの場合、その楕円形の長軸、短軸方向に各2箇所ずつ位置合わせ用マークを成形することにより、回折パターンの長軸方向と短軸方向の断面形状を正確に測定できるようになる。
4). The invention of claim 8 According to the invention of claim 8, in the processing method of the diffractive optical element molding die of claim 1, in the case of a diffraction pattern having an elliptical shape when viewed from the optical axis direction, By forming alignment marks at two locations in the major axis and minor axis directions, the cross-sectional shapes of the diffraction pattern in the major axis direction and the minor axis direction can be accurately measured.

5.請求項9の発明
請求項9の発明によって作成された回折光学素子成形金型は、回折パターンと位置合わせ用マークとの位置精度が高い。
5). Invention of Claim 9 The diffractive optical element molding die produced by the invention of Claim 9 has high positional accuracy between the diffraction pattern and the alignment mark.

6.請求項10の発明
本発明で加工された回折光学素子成形金型を用いれば、回折パターンと位置合わせ用マークとの位置精度が高い回折光学素子を成形することができる。
6). Invention of Claim 10 If the diffractive optical element shaping | molding die processed by this invention is used, a diffractive optical element with a high positional accuracy of a diffraction pattern and the alignment mark can be shape | molded.

次いで、図7乃至図16を参照しつつ実施例を説明する。
回折パターンを切削加工する加工機(図7)において、11は回折光学素子成形金型、12は切削工具、13はC軸回転軸、14はX軸ステージ、15はY軸ステージ、16はZ軸ステージ、17はC軸ステージ、18はB軸ステージ、19は加工機本体であり、この加工機はXYZの直線3軸とBCの回転2軸の5軸構成である。
Next, an embodiment will be described with reference to FIGS.
In a processing machine (FIG. 7) for cutting a diffraction pattern, 11 is a diffractive optical element molding die, 12 is a cutting tool, 13 is a C-axis rotation axis, 14 is an X-axis stage, 15 is a Y-axis stage, and 16 is Z Axis stage, 17 is a C-axis stage, 18 is a B-axis stage, and 19 is a processing machine main body. This processing machine has a 5-axis configuration including three linear axes of XYZ and two rotation axes of BC.

直線3軸の位置決め分解能は1nm、BC2軸の角度分解能は10万分の1度である。回折光学素子成形金型11は、切削加工が可能な金型金属材(例えば、ステンレス鋼の表面にNi−Pメッキをしたもの)である。
回折光学素子成形金型11はC軸ステージ17に被加工面(金型の転写面)を上方に向けてクランプされている。回折パターンpと位置合わせ用マーク3とを切削加工する切削工具12の刃先は、単結晶ダイヤバイトで構成されている。
The linear 3-axis positioning resolution is 1 nm, and the BC 2-axis angular resolution is 1 / 100,000 degrees. The diffractive optical element molding die 11 is a mold metal material (for example, Ni-P plated on a stainless steel surface) that can be cut.
The diffractive optical element molding die 11 is clamped on the C-axis stage 17 with the surface to be processed (transfer surface of the die) facing upward. The cutting edge of the cutting tool 12 for cutting the diffraction pattern p and the alignment mark 3 is composed of a single crystal diamond tool.

切削工具12の刃先先端をXZ平面内で所定位置で位置決めし、Z軸スライド及びY軸スライドが下降し、上記各軸方向の制御がなされて、図4および図5に示すような回折パターンpが上記金型11の上面(転写面)に切削加工され、この回折パターンpの切削加工がなされた後に、位置合わせ用マーク3の切削加工がなされる。   The tip of the cutting edge of the cutting tool 12 is positioned at a predetermined position in the XZ plane, the Z-axis slide and the Y-axis slide are lowered, and the control in each of the above-described axial directions is performed, and a diffraction pattern p as shown in FIGS. Is cut on the upper surface (transfer surface) of the mold 11, and after the diffraction pattern p is cut, the alignment mark 3 is cut.

図8に位置合わせ用マーク3を切削加工している様子を示している。
位置合わせ用マーク3の切削加工は図8の(a)→(b)→(c)→(d)に示す順で行われる。すなわち、図8の(a)は、位置合わせ用マーク3を形成するために回折光学素子成形金型11の上面(転写面)を切削する状態であり、回折光学素子成形金型11を切削工具12に対してY方向に相対移動させてその表面を切削している。また、同図の(b)で切削工具12を回折光学素子成形金型11に対してY方向に相対移動させると共にZ軸方向にも相対移動させる。このYZ2軸方向への相対移動によって、位置合わせ用マーク3の左上がりの斜面(図における右側斜面)の加工が行われる。
FIG. 8 shows a state where the alignment mark 3 is being cut.
Cutting of the alignment mark 3 is performed in the order of (a) → (b) → (c) → (d) in FIG. 8A shows a state in which the upper surface (transfer surface) of the diffractive optical element molding die 11 is cut to form the alignment mark 3, and the diffractive optical element molding die 11 is cut into a cutting tool. 12 is moved relative to the surface in the Y direction to cut the surface. Further, in FIG. 5B, the cutting tool 12 is moved relative to the diffractive optical element molding die 11 in the Y direction and also moved in the Z axis direction. Due to the relative movement in the YZ2 axis direction, the left upward slope of the alignment mark 3 (right slope in the figure) is processed.

位置合わせ用マーク3の片側の斜面の加工が完了した後、同図の(c)に示すように切削工具12を同図の(b)とはZ軸方向で反対の向きに移動させる。この場合もYZ2軸方向に同時に相対移動するので、右上がりの斜面(図における左側斜面)が加工される。このようにして必要な2つの斜面の加工が完了した後は、通常の回折面(回折パターンpがある面)の加工と同じ形態の加工がなされる(図8の(d))。
図9の(a)は、回折光学素子成形金型11に切削工具によって、加工された位置合わせ用マーク3をZ軸の正方向から見たものであり、また、同図9の(b)は位置合わせ用マーク3をX軸の正方向から見たものである。
After the processing of the slope on one side of the alignment mark 3 is completed, the cutting tool 12 is moved in the direction opposite to the Z-axis direction as shown in FIG. Also in this case, since the relative movement simultaneously occurs in the YZ2 axis direction, a slope that rises to the right (left slope in the figure) is processed. After the required two slopes have been processed in this way, the same processing as the processing of the normal diffraction surface (the surface having the diffraction pattern p) is performed ((d) in FIG. 8).
FIG. 9A shows the alignment mark 3 processed by the cutting tool on the diffractive optical element molding die 11 as viewed from the positive direction of the Z-axis, and FIG. Shows the alignment mark 3 viewed from the positive direction of the X axis.

図10に位置合わせ用マーク3の形状の種々の例を示している。図10の(a)の位置合わせ用マーク3aは鋭利な頂上をもつ山形状であり、(b)の位置合わせ用マーク3bは頂上が平坦な台形状であり、(c)の位置合わせ用マーク3cは鋭利な谷をもつ溝形状であり、(d)の位置合わせ用マーク3dは谷に平坦部を有する溝形状のものである。これらはいずれも断面がV形状であるから、切削工具12、回折光学素子成形金型11をYZ方向に制御することで成形することができる。そして、測定器の種類に応じて、これらの位置合わせ用マークの中から精度よく測定するのに最も適したものを選択することができる。   FIG. 10 shows various examples of the shape of the alignment mark 3. The alignment mark 3a in FIG. 10A has a mountain shape with a sharp top, the alignment mark 3b in FIG. 10B has a trapezoidal shape with a flat top, and the alignment mark in FIG. 3c is a groove shape having a sharp valley, and the alignment mark 3d in (d) is a groove shape having a flat portion in the valley. Since these have V-shaped cross sections, they can be molded by controlling the cutting tool 12 and the diffractive optical element molding die 11 in the YZ direction. Then, according to the type of the measuring instrument, it is possible to select the most suitable one from among these alignment marks for accurate measurement.

例えば、測定器の種類が共焦点顕微鏡の場合はいずれのパターンを用いても良いが、測定器の種類が触針式形状測定器の場合、(a)や(c)の形状の場合、金型もしくは成形品のいずれかは先端の尖った谷形状となってしまうため、針が谷部に入っていかず、正確な測定を行うことが出来ない。そのため、測定器が触針式形状測定器の場合(b)もしくは(d)の形状であることが好ましい。   For example, when the type of measuring instrument is a confocal microscope, any pattern may be used, but when the type of measuring instrument is a stylus type shape measuring instrument, when the shape is (a) or (c), Since either the mold or the molded product has a valley shape with a sharp tip, the needle does not enter the valley portion, and accurate measurement cannot be performed. Therefore, when the measuring instrument is a stylus shape measuring instrument, it is preferable that the measuring instrument has the shape (b) or (d).

図11に、加工されたaタイプ(図10の(a)のタイプ)の位置合わせ用マーク3の断面形状を共焦点顕微鏡で測定した例を示しており、また、図12に、回折パターン計測用の測定器を示している。
図12において、1は測定対象の回折光学素子もしくは回折光学素子成形用金型であり、122は共焦点顕微鏡であり、124はX軸移動ステージであり、125はY軸移動ステージであり、126はZ軸移動ステージであり、127はC軸方向回転テーブルであり、128は測定器本体である。
なお、図12の測定器では測定対象1の断面形状の測定に共焦点顕微鏡122を用いている。しかし、共焦点顕微鏡122に代えて触針式の測定器を用いることもできる。
FIG. 11 shows an example in which the cross-sectional shape of the processed alignment mark 3 of type a (type (a) in FIG. 10) is measured with a confocal microscope, and FIG. 12 shows diffraction pattern measurement. The measuring instrument for is shown.
In FIG. 12, 1 is a diffractive optical element or a diffractive optical element molding die to be measured, 122 is a confocal microscope, 124 is an X-axis moving stage, 125 is a Y-axis moving stage, 126 Is a Z-axis moving stage, 127 is a C-axis direction rotary table, and 128 is a measuring instrument main body.
12 uses a confocal microscope 122 for measuring the cross-sectional shape of the measuring object 1 . However, a stylus type measuring instrument can be used instead of the confocal microscope 122.

回折光学素子もしくは回折光学素子成形用金型である測定対象1を測定器に取り付けた後、共焦点顕微鏡122で上記測定対象1上を走査することによって測定対象1の断面形状の測定を行うが、この測定を行う際には測定したい位置の断面上を正確に共焦点顕微鏡122で走査するように、位置合わせ用マーク3を用いて測定対象1の位置合わせ誤差を測定し、測定された誤差をもとに、測定器の移動ステージ(X軸移動ステージ124、Y軸移動ステージ125、Z軸移動ステージ126)および回転ステージ(C軸方向回転テーブル127)を用いて測定対象1の位置合わせを行った後、断面測定を行う。 A measurement object 1 which is a diffractive optical element or a diffractive optical element molding die is attached to a measuring instrument, and then the cross-sectional shape of the measurement object 1 is measured by scanning the measurement object 1 with the confocal microscope 122. When performing this measurement, the alignment error of the measuring object 1 is measured using the alignment mark 3 so that the confocal microscope 122 accurately scans the cross section of the position to be measured, and the measured error is measured. Based on the above, the measuring object 1 is aligned using the moving stage (X-axis moving stage 124 , Y-axis moving stage 125 , Z-axis moving stage 126 ) and rotating stage (C-axis direction rotating table 127 ) of the measuring instrument. After that, the cross section is measured.

図13に位置合わせ用マーク3を用いて測定対象1の位置合わせを行っている様子を示している。同図13の(a)は測定器上に測定対象1を載置した状態である。この状態で、Y軸方向に図12の共焦点顕微鏡122で走査して位置合わせ用マーク3の2箇所の計測を行う。この計測によって、測定器のX軸と位置合わせ用マーク3との間の傾き角θを測定し、測定された値をもとに、測定器のC軸方向回転テーブルを用いて傾きを調整し、X軸と位置合わせ用マーク3とを平行にする(同図13の(b))。そして、位置合わせ用マーク3の測定を左右2個所について行い、その際、X軸方向の位置も測定するため、上記角度θだけ回転させた後の回折光学素子1の中心位置のX,Y座標値を算出することができる。求めた座標値をもとに、共焦点顕微鏡の走査位置8を測定したい断面と一致するように設定して測定を行うことにより、正確な測定を行うことができる(同図13の(c))。 FIG. 13 shows a state in which the measuring object 1 is aligned using the alignment mark 3. FIG. 13A shows a state in which the measuring object 1 is placed on the measuring instrument. In this state, the confocal microscope 122 of FIG. 12 scans in the Y-axis direction to measure two positions of the alignment mark 3. By this measurement, the inclination angle θ between the X axis of the measuring instrument and the alignment mark 3 is measured, and the inclination is adjusted using the C axis direction rotary table of the measuring instrument based on the measured value. The X axis and the alignment mark 3 are made parallel ((b) of FIG. 13). Then, the alignment mark 3 is measured at two positions on the left and right sides, and the X and Y coordinates of the center position of the diffractive optical element 1 after being rotated by the angle θ are also measured in order to measure the position in the X-axis direction. A value can be calculated. Based on the coordinate values obtained by performing a measurement by setting to match the cross section to be measured scanning position location 8 of the confocal microscope, it is possible to perform accurate measurement (in Fig. 13 (c )).

図14に他の例を示しており、この例は、光軸方向から見た回折パターンpの形状が円形状である回折光学素子1に、当該光学素子の光軸を中心として90度間隔で4個の位置合わせ用マーク3を形成したものである。
この例における位置合わせは、それぞれの位置合わせ用マークに関して、図13に示す処理を行い、それぞれの位置合わせ用マークでの断面形状の計測を行う。
FIG. 14 shows another example. In this example, the diffraction pattern p viewed from the optical axis direction has a circular shape in the diffractive optical element 1 at 90 ° intervals with the optical axis of the optical element as the center. Four alignment marks 3 are formed.
In the alignment in this example, the processing shown in FIG. 13 is performed for each alignment mark, and the cross-sectional shape at each alignment mark is measured.

図15に示すものは、光軸方向から見た回折パターンpの形状が楕円形の回折光学素子1に、楕円形状の回折パターンpの長軸、短軸方向に各2箇所ずつ、合計4箇所の位置合わせ用マーク3を形成した例である。
この例の場合、前記図13に示した工程を、長軸、短軸の位置合わせ用マークについて行い、断面形状の計測を行う。
FIG. 15 shows a diffractive optical element 1 having an elliptical diffraction pattern p as viewed from the optical axis direction, and two in each of the major axis and the minor axis direction of the elliptical diffraction pattern p. This is an example in which the alignment mark 3 is formed.
In the case of this example, the process shown in FIG. 13 is performed for the long axis and short axis alignment marks , and the cross-sectional shape is measured.

図16に示すものは、光軸方向から見た回折パターンpの形状が長方形の回折光学素子1に、位置合わせ用マーク3を2箇所形成した例である。
パターンが長方形の場合も、位置合わせ用マークを用いて、図13と同様に共焦点顕微鏡の走査位置を測定したい断面と一致するように設定して測定を行う。
FIG. 16 shows an example in which two alignment marks 3 are formed on a diffractive optical element 1 having a rectangular diffraction pattern p viewed from the optical axis direction.
Even when the pattern is rectangular, measurement is performed by using the alignment mark and setting the scanning position of the confocal microscope so as to coincide with the cross section to be measured, as in FIG.

は、光軸2の方向から見た回折面の回折パターンが円形で、光軸2を含み、光軸と平行な断面での回折パターンの断面が図3の(a)に示す階段形状であるものの斜視図である。The diffraction pattern of the diffraction surface viewed from the direction of the optical axis 2 is circular, the cross section of the diffraction pattern including the optical axis 2 and in a cross section parallel to the optical axis is the staircase shape shown in FIG. It is a perspective view of a thing. は、光軸2から見た回折素子の形状の例を示す平面図であり、図(a)は同心円状のもの、図(b)は楕円状のもの、図(c)は長方形状のものの平面図である。These are top views which show the example of the shape of the diffraction element seen from the optical axis 2, a figure (a) is a concentric thing, a figure (b) is an elliptical figure, and a figure (c) is a rectangular thing. It is a top view. は、回折素子の断面形状の例を示す断面図であり、図(a)は階段状のもの、図(b)はレリーフ形状の断面図である。These are sectional drawings which show the example of the cross-sectional shape of a diffraction element, A figure (a) is a step-shaped thing, A figure (b) is sectional drawing of a relief shape. は、図2の(c)のように光軸から見た回折パターンの形状が長方形である回折光学素子成形金型の転写面に切削加工する様子を示す斜視図である。These are perspective views which show a mode that it cuts into the transfer surface of the diffraction optical element shaping | molding die whose shape of the diffraction pattern seen from the optical axis is a rectangle like FIG.2 (c). は、光軸方向から見た形状が図2の(a)の同心円形、および(b)の楕円形である回折パターンを切削加工する様子を示した斜視図である。These are the perspective views which showed a mode that the shape seen from the optical axis direction cuts the diffraction pattern which is the concentric circle of (a) of FIG. 2, and the ellipse of (b). は、断面形状を測定する場合の回折パターンの走査線の断面形状と回折パターンのピッチの測定精度との関係を説明するための参考図であり、(a)は、A−A’断面における回折パターンの断面形状を示す説明図、(b)はB−B’断面における回折パターンの断面形状を示す説明図である。These are the reference drawings for demonstrating the relationship between the cross-sectional shape of the scanning line of a diffraction pattern in the case of measuring cross-sectional shape, and the measurement precision of the pitch of a diffraction pattern, (a) is the diffraction in an AA 'cross section. Explanatory drawing which shows the cross-sectional shape of a pattern, (b) is explanatory drawing which shows the cross-sectional shape of the diffraction pattern in a BB 'cross section. は、回折光学素子成形金型を切削加工する加工機の斜視図である。These are perspective views of the processing machine which cuts a diffraction optical element shaping die. は、位置合わせ用マーク3を切削加工している様子を模式的に示す説明図であり、図8の(a),(b),(c),(d)は、回折光学素子成形金型の転写面を切削加工して位置合わせ用マーク3を形成する手順をそれぞれ示すものである。FIG. 9 is an explanatory view schematically showing a state in which the alignment mark 3 is being cut; FIGS. 8A, 8B, 8C, and 8D are diffractive optical element molding dies. The transfer surface is cut to form the alignment mark 3 respectively. の(a)は、切削加工で成形された位置合わせ用マーク3をZ軸の正方向から見た平面図であり、(b)は位置合わせ用マーク3をX軸の正方向から見た正面図である。(A) is a plan view of the alignment mark 3 formed by cutting as viewed from the positive direction of the Z axis, and (b) is a front view of the alignment mark 3 as viewed from the positive direction of the X axis. FIG. (a),(b),(c),(d)は、位置合わせ用マークの種々の例の断面図である。(A), (b), (c), (d) is sectional drawing of the various examples of the alignment mark. は、成形加工されたaタイプ(図10(a)に示すタイプ)の位置合わせ用マーク3の断面形状を共焦点顕微鏡で測定した例を示す説明図である。These are explanatory drawings which show the example which measured the cross-sectional shape of the alignment mark 3 of the a type (type shown to Fig.10 (a)) shape | molded by the confocal microscope. は、回折パターン計測用の測定器の斜視図である。FIG. 3 is a perspective view of a measuring instrument for measuring a diffraction pattern . は、位置合わせ用マークを用いて回折光学素子の位置合わせを行う説明図であり、同図の(a),(b),(c)は作業手順を示す上記回折光学素子の平面図である。These are explanatory drawings which perform alignment of a diffractive optical element using an alignment mark, and (a), (b), and (c) of the same figure are plan views of the diffractive optical element showing a work procedure. . は、光軸方向から見た回折パターンの形状が円形状である回折光学素子に光軸を中心として90度間隔で4個の位置合わせ用マーク3を形成した例の平面図である。FIG. 5 is a plan view of an example in which four alignment marks 3 are formed at intervals of 90 degrees around the optical axis in a diffractive optical element whose diffraction pattern viewed from the optical axis direction is circular. は、光軸方向から見た回折パターンの形状が楕円形の回折光学素子に長軸、短軸方向の各2箇所、合計4箇所に位置合わせ用マークを形成した例の平面図である。FIG. 4 is a plan view of an example in which alignment marks are formed at a total of four locations on the diffractive optical element having an elliptical diffraction pattern viewed from the optical axis direction in two locations in the major axis and minor axis directions. は、光軸方向から見た回折パターンの形状が長方形の回折光学素子に、位置合わせ用マークを2箇所形成した例の平面図である。FIG. 5 is a plan view of an example in which two alignment marks are formed on a diffractive optical element having a rectangular diffraction pattern viewed from the optical axis direction.

1:回折光学素子
2:光軸
3:位置合わせ用マーク
3a:鋭利な頂上をもつ山形状の位置合わせ用マーク
3b:頂上が平坦な台形状の位置合わせ用マーク
3c:鋭利な谷をもつ溝形状の位置合わせ用マーク
3d:谷に平坦部を有する溝形状のも位置合わせ用マーク
11:回折光学素子成形金型
12:切削工具
13:C軸回転軸
14:X軸ステージ
15:Y軸ステージ
16:Z軸ステージ
17:C軸ステージ
18:B軸ステージ
19:加工機本体
122:共焦点顕微鏡
124:X軸移動ステージ
125:Y軸移動ステージ
126:Z軸移動ステージ
127:C軸方向回転テーブル
128:測定器本体
p:回折パターン
1: diffractive optical element 2: optical axis 3: alignment mark 3a: mountain-shaped alignment mark 3b with a sharp top, trapezoidal alignment mark 3c with a flat top: groove with a sharp valley Shape alignment mark 3d: groove-shaped alignment mark having a flat portion in the valley
11: Diffraction optical element molding die 12: Cutting tool 13: C-axis rotating shaft 14: X-axis stage 15: Y-axis stage 16: Z-axis stage 17: C-axis stage 18: B-axis stage 19: Processing machine body 122: Confocal microscope
124: X-axis moving stage 125: Y-axis moving stage 126: Z-axis moving stage 127: C-axis direction rotary table
128: Measuring instrument body p: Diffraction pattern

Claims (10)

光軸を含みかつ光軸に平行な断面における断面形状が複数の直線形状からなる回折パターンを備えた回折光学素子の成形金型の加工法であって、光軸方向から見た形状が、円形又は楕円形となる回折パターンを切削して成形する回折光学素子成形金型加工法において、
上記回折パターンを切削加工する工具を用いて、切削工具と被加工物を相対移動させながら、特定の位置において、回折面を加工する際の相対移動を行うと同時に、切削面の法線方向の成分からなる相対移動を行って切削を行うことにより、位置合わせ用マークを、回折光学素子の光学面もしくは、回折光学素子の光学面の有効領域の外側周辺に形成し、
該位置合わせ用マークは、光軸から回折面を通る線分の一部に一致するように、光軸に対して対称に複数設けられたことを特徴とする回折光学素子成形金型の加工法。
A method of processing a molding die for a diffractive optical element having a diffraction pattern in which a cross-sectional shape in a cross section including an optical axis and parallel to the optical axis has a plurality of linear shapes, and the shape viewed from the optical axis direction is circular in or diffractive optical element molding die machining method of forming a diffraction pattern to be elliptical cut cutting to,
Using the tool cutting the diffraction pattern, while relatively moving the switching cutting tool and the workpiece, at a particular location, when the relative movement when a diffraction surface is formed at the same time, the normal direction of the cutting plane By performing the relative movement consisting of the components of cutting, the alignment mark is formed around the outer surface of the optical surface of the diffractive optical element or the effective area of the optical surface of the diffractive optical element ,
A method for processing a diffractive optical element molding die, wherein a plurality of the alignment marks are provided symmetrically with respect to the optical axis so as to coincide with a part of a line segment passing from the optical axis through the diffraction surface .
光軸を含みかつ光軸に平行な断面における断面形状が複数の直線形状からなる回折パターンを備えた回折光学素子の成形金型の加工法であって、光軸方向から見た形状が、長方形となる回折パターンを切削して成形する回折光学素子成形金型加工法において、
上記回折パターンを切削加工する工具を用いて、切削工具と被加工物を相対移動させながら、特定の位置において、回折面を加工する際の相対移動を行うと同時に、切削面の法線方向の成分からなる相対移動を行って切削を行うことにより、位置合わせ用マークを、回折光学素子の光学面もしくは、回折光学素子の光学面の有効領域の外側周辺に形成し
該位置合わせ用マークは、光軸から回折面を通り、該回折面の回折パターンと直交する線分の一部に一致するように、光軸に対して対称に複数設けられたことを特徴とする回折光学素子成形金型の加工法。
A method for processing a molding die of a diffractive optical element having a diffraction pattern in which a cross-sectional shape in a cross section including an optical axis and parallel to the optical axis has a plurality of linear shapes, and the shape viewed from the optical axis direction is rectangular In the diffractive optical element molding die processing method for cutting and forming the diffraction pattern to be
Using the tool for cutting the diffraction pattern, while moving the cutting tool and the workpiece relative to each other, the relative movement when machining the diffractive surface at a specific position is performed simultaneously with the normal direction of the cutting surface. By performing relative movement consisting of components and cutting, an alignment mark is formed around the outer surface of the effective surface of the optical surface of the diffractive optical element or the optical surface of the diffractive optical element ,
A plurality of the alignment marks are provided symmetrically with respect to the optical axis so as to coincide with a part of a line segment passing through the diffraction surface from the optical axis and orthogonal to the diffraction pattern of the diffraction surface. Method of processing a diffractive optical element molding die.
請求項1又は請求項2の回折光学素子成形金型の加工法において、作成する上記位置合わせ用マークの断面形状が鋭利な頂上をもつ山形状であることを特徴とする回折光学素子成形金型の加工法。 3. The diffractive optical element molding die according to claim 1, wherein a cross-sectional shape of the alignment mark to be created is a mountain shape having a sharp top. Processing method. 請求項1又は請求項2の回折光学素子成形金型の加工法において、作成する上記位置合わせ用マークの断面形状が頂上に平坦部を有する山形状であることを特徴とする回折光学素子成形金型の加工法。 3. The diffractive optical element molding die according to claim 1, wherein a cross-sectional shape of the alignment mark to be created is a mountain shape having a flat portion on the top. Mold processing method. 請求項1又は請求項2の回折光学素子成形金型の加工法において、作成する上記位置合わせ用マークの断面形状が鋭利な谷をもつ溝形状であることを特徴とする回折光学素子成形金型の加工法。 3. The diffractive optical element molding die according to claim 1, wherein a cross-sectional shape of the alignment mark to be formed is a groove shape having a sharp valley. Processing method. 請求項1又は請求項2の回折光学素子成形金型の加工法において、作成する上記位置合わせ用マークの断面形状が谷に平坦部を有する溝形状であることを特徴とする回折光学素子成形金型の加工法。 The diffractive optical element molding die according to claim 1 or 2 , wherein the cross-sectional shape of the alignment mark to be created is a groove shape having a flat portion in a valley. Mold processing method. 請求項1の回折光学素子成形金型の加工法において、光軸方向から見た形状が円形状となる回折パターンを加工する際、当該素子の光軸を中心として90度間隔で上記位置合わせ用マークを4個加工することを特徴とする回折光学素子成形金型の加工法。   2. The processing method for a diffractive optical element molding die according to claim 1, wherein when processing a diffraction pattern having a circular shape when viewed from the optical axis direction, the positioning is performed at intervals of 90 degrees about the optical axis of the element. A method of processing a diffractive optical element molding die, wherein four marks are processed. 請求項1の回折光学素子成形金型の加工法において、光軸方向から見た形状が楕円形状となる上記回折パターンを加工する際、当該回折パターンの長軸、短軸方向に各2箇所ずつ上記位置合わせ用マークを加工することを特徴とする回折光学素子成形金型の加工法。   2. The processing method of a diffractive optical element molding die according to claim 1, wherein when processing the diffraction pattern having an elliptical shape when viewed from the optical axis direction, two each in the major axis and minor axis directions of the diffraction pattern. A method of processing a diffractive optical element molding die, wherein the positioning mark is processed. 請求項1又は請求項2の回折光学素子成形金型の加工法で作製された成形金型。 A molding die produced by the processing method of the diffractive optical element molding die according to claim 1 . 請求項9の成形金型で成形された回折光学素子。   A diffractive optical element molded with the molding die according to claim 9.
JP2007066381A 2007-03-15 2007-03-15 Processing method of diffractive optical element mold Expired - Fee Related JP5035962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066381A JP5035962B2 (en) 2007-03-15 2007-03-15 Processing method of diffractive optical element mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066381A JP5035962B2 (en) 2007-03-15 2007-03-15 Processing method of diffractive optical element mold

Publications (2)

Publication Number Publication Date
JP2008221747A JP2008221747A (en) 2008-09-25
JP5035962B2 true JP5035962B2 (en) 2012-09-26

Family

ID=39840899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066381A Expired - Fee Related JP5035962B2 (en) 2007-03-15 2007-03-15 Processing method of diffractive optical element mold

Country Status (1)

Country Link
JP (1) JP5035962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7444198B2 (en) 2017-04-28 2024-03-06 セイコーエプソン株式会社 Mechanical parts and watches

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5304268B2 (en) * 2009-01-28 2013-10-02 株式会社リコー Diffraction element molding die and processing method thereof
CN102445724B (en) * 2011-09-08 2014-10-22 中国航空工业第六一八研究所 Precision molding method for cylindrical varied line-space grating
CN110646875A (en) * 2019-09-26 2020-01-03 东莞市微科光电科技有限公司 Optical filter manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274705A (en) * 1997-03-31 1998-10-13 Minolta Co Ltd Diffractive optical element
JPH10339805A (en) * 1997-06-06 1998-12-22 Canon Inc Diffraction optical element and optical axis adjusting device therefor
JP2002062417A (en) * 2000-06-07 2002-02-28 Canon Inc Diffractive optical device, optical system and optical appliance having the diffractive optical device, method for manufacturing diffractive optical device and mold for manufacturing diffractive optical device
JP2003149420A (en) * 2001-11-12 2003-05-21 Olympus Optical Co Ltd Diffractive optical element and molding die for the diffractive optical element
JP4168618B2 (en) * 2001-11-16 2008-10-22 コニカミノルタホールディングス株式会社 Substrate micromachining method and substrate manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7444198B2 (en) 2017-04-28 2024-03-06 セイコーエプソン株式会社 Mechanical parts and watches

Also Published As

Publication number Publication date
JP2008221747A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
US10209107B2 (en) Geometric error identification method of multi-axis machine tool and multi-axis machine tool
CN101408412B (en) Method for measuring three-dimensional shape
JP5035962B2 (en) Processing method of diffractive optical element mold
JP5355206B2 (en) Processing apparatus and processing method
CN113695645A (en) Vertical offset correction method for micro-diameter diamond ball-end milling cutter
Cheng et al. Helical surface creation by wire electrical discharge machining for micro tools
KR20220007874A (en) Workpiece processing method and work piece processing device
CN113618488A (en) Method for centering B-axis rotation center and blade arc center
JP5478296B2 (en) Fresnel lens, Fresnel lens mold, Fresnel lens manufacturing method, and Fresnel lens mold manufacturing method
EP2915614B1 (en) Machine tool control device and machine tool
RU2279964C1 (en) Method of positioning of tool in reference system of machine tool in automated engraving complex
JP2007090489A (en) Die cutting method and device therefor
JP2005063074A (en) Method and device for machining curved surface
JP2017538472A (en) Method for positioning a workpiece, method for producing a reproducibly positioned workpiece, and a suitable workpiece and its use
JP2011181623A (en) Processing method of plate-like object
JP3796207B2 (en) Machining method by 3D laser processing machine and NC program creation method for 3D laser processing
JP4328729B2 (en) Method for processing a workpiece having a fine shape
JP3938540B2 (en) Method and apparatus for grinding mold of microlens array
JP5030917B2 (en) Attitude measurement method and grinding apparatus
JP2001162429A (en) Grooving method and grooving tool
JP2010099760A (en) Cutting method and machining device
CN112045443A (en) Machining method for eccentric clamping workpiece of four-axis machine tool
JPH1119801A (en) Measuring method of turning center position in index table and vertical lathe
JP2007203457A (en) Nc processing method and processing machine
JP5304268B2 (en) Diffraction element molding die and processing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5035962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees