JP4328729B2 - Method for processing a workpiece having a fine shape - Google Patents

Method for processing a workpiece having a fine shape Download PDF

Info

Publication number
JP4328729B2
JP4328729B2 JP2005046006A JP2005046006A JP4328729B2 JP 4328729 B2 JP4328729 B2 JP 4328729B2 JP 2005046006 A JP2005046006 A JP 2005046006A JP 2005046006 A JP2005046006 A JP 2005046006A JP 4328729 B2 JP4328729 B2 JP 4328729B2
Authority
JP
Japan
Prior art keywords
tip
workpiece
cutting tool
tool
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005046006A
Other languages
Japanese (ja)
Other versions
JP2006231428A (en
Inventor
修 森崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005046006A priority Critical patent/JP4328729B2/en
Publication of JP2006231428A publication Critical patent/JP2006231428A/en
Application granted granted Critical
Publication of JP4328729B2 publication Critical patent/JP4328729B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turning (AREA)

Description

本発明は、微細形状を有する被加工物の加工方法に関し、例えばフレネルレンズや回折光学素子を成形するための金型材料に、断面ブレーズド形状のような多数の微細な格子形状等を、切削工具により高精度に加工する加工方法に関するものである。   The present invention relates to a method for processing a workpiece having a fine shape, and, for example, a mold material for forming a Fresnel lens or a diffractive optical element is provided with a number of fine lattice shapes such as a cross-sectional blazed shape, etc. It is related with the processing method processed with high precision by.

近年、光学系の高性能化や小型化の要求が高まるにつれ、回折光学素子が注目されている。特に、断面ブレーズド形状(鋸歯形状)の回折格子は薄型で回折効率が高いため、産業上の多様な分野で利用されつつあり、例えばレーザービームプリンタ等の記録装置の走査光学系、光ディスク再生装置の光ピックアップ等への利用が検討されている。   In recent years, diffractive optical elements have attracted attention as the demand for higher performance and miniaturization of optical systems increases. In particular, since the blazed cross-section (sawtooth) diffraction grating is thin and has high diffraction efficiency, it is being used in various industrial fields. For example, a scanning optical system of a recording apparatus such as a laser beam printer, an optical disk reproducing apparatus, etc. Application to optical pickups is under consideration.

このようなブレーズド形状の回折格子は、凸のパワーを持つ回折格子として使用されることが多く、この種の回折格子を量産するためには、回折格子と逆のブレーズド形状を切削加工した金型によるモールド成形が一般的に用いられている。その際、金型材料として、レプリカで平坦な形状を製作する場合は、リン青銅、無酸素銅、真鍮等の軟質金属が使用され、また、プラスチックやガラスで成形する場合は、平面、球面、自由曲面を問わず、金型母材にニッケルメッキ、銅メッキ等を表面処理したものが使用され、ニッケルメッキ、銅メッキ等の表面処理層が切削加工されている。そして、ガラスモールドでは金型母材に超硬材料が使用されている。また、それらを加工する工具として超硬又は単結晶のダイヤモンドが用いられている。   Such a blazed diffraction grating is often used as a diffraction grating having a convex power, and in order to mass-produce this type of diffraction grating, a die obtained by cutting a blazed shape opposite to the diffraction grating. In general, molding is used. At that time, as a mold material, soft metal such as phosphor bronze, oxygen-free copper, brass, etc. is used when making a flat shape with a replica, and when molding with plastic or glass, flat, spherical, Regardless of the free-form surface, a die base material having a surface treated with nickel plating, copper plating or the like is used, and a surface treatment layer such as nickel plating or copper plating is cut. In the glass mold, a super hard material is used as a mold base material. In addition, cemented carbide or single crystal diamond is used as a tool for processing them.

また、このようなブレーズド形状の回折格子は、被加工物に例えば図6に示されるように多数の微細な要素から成る格子が形成され、この格子の傾斜面は中央部に向けられている。傾斜面のベース面に対する角度は傾斜角度とされ、傾斜面の軸線に対する角度は開き角度とされている。また、図6に示されるように格子高さ201は一定とされていると共に、格子のピッチは中央部から端部に向かって微小に広くされている。このため、格子の傾斜角度は、中央部から端部に向かって大きくなっている。
そして、このような格子高さに求められる必要な精度としては、例えば一定の1.5μmの格子高さに対し、100%に近い回折効率を得るためには、±0.05μmの誤差しか許容されていない。
Further, in such a blazed diffraction grating, a grating composed of a large number of fine elements is formed on a workpiece as shown in FIG. 6, for example, and the inclined surface of this grating is directed to the center. The angle of the inclined surface with respect to the base surface is an inclination angle, and the angle with respect to the axis of the inclined surface is an opening angle. Further, as shown in FIG. 6, the grating height 201 is constant, and the pitch of the grating is slightly increased from the central part toward the end part. For this reason, the inclination | tilt angle of a grating | lattice becomes large toward the edge part from the center part.
As the required accuracy required for such a grating height, for example, an error of ± 0.05 μm is allowed in order to obtain a diffraction efficiency close to 100% for a constant grating height of 1.5 μm. It has not been.

このような回折格子に対して、高い形状精度に短時間で加工し得る加工方法として、例えば、特許文献1では、先端が角形状の切削工具の角度姿勢を制御する1つの回転機構と、その回転軸と垂直な平面上で被加工物と切削工具先端の相対位置を制御する2つの並進機構とを備え、前記切削工具をフライカットで常時回転させつつ、前記切削工具の切り刃稜を回折格子等の傾斜角度が変化する傾斜面に合わせるように、前記切削工具とこれら回折格子等の被加工物を相対駆動制御すると共に、前記切削工具を回転駆動制御して、多数の微細な形状等の全ての被加工要素を加工する方法が提案されている。
特開2000−87921号公報
As a processing method capable of processing such a diffraction grating with high shape accuracy in a short time, for example, in Patent Document 1, one rotation mechanism that controls the angular posture of a cutting tool having a square tip, Two translation mechanisms that control the relative position of the workpiece and the tip of the cutting tool on a plane perpendicular to the rotation axis, and diffracting the cutting edge of the cutting tool while constantly rotating the cutting tool by fly-cutting Along with controlling the relative driving of the cutting tool and the workpiece such as the diffraction grating so as to match the inclined surface where the inclination angle of the grating or the like changes, the cutting tool is rotationally driven and controlled so that a large number of fine shapes, etc. A method of processing all the workpieces in the above has been proposed.
JP 2000-87921 A

しかしながら、前記特許文献1のように、先端が角形状の切削工具の角度姿勢を制御する1つの回転機構と、その回転軸と垂直な平面上で被加工物と切削工具先端の相対位置を制御する2つの並進機構とを必要とする加工において、±0.05μmといったレンジの形状精度で定量的に加工しつづけるためには、このような機構を備えているだけでは、必ずしも満足の行く結果は得られない。それは、こうした加工形態においては、工具の角度姿勢を制御する回転軸中心位置に対し、工具先端位置を例えば0.01μmといったレンジで正確に一致させ、若しくはそうしたレンジで正確に工具先端先位置を求めた後に、それに相当する移動量を所望の個所へ修正するような加工を行わなければ、前記回転軸の角度によって工具の先端位置は加工装置上で円弧上に無作為に変化し、被加工物に対し所望の精度で形状を形成することはできないからである。   However, as in Patent Document 1, one rotation mechanism that controls the angular posture of a cutting tool having a square tip and the relative position between the workpiece and the cutting tool tip on a plane perpendicular to the rotation axis are controlled. In order to continue quantitative processing with shape accuracy in the range of ± 0.05 μm in processing that requires two translation mechanisms, it is not always satisfactory to have such a mechanism. I can't get it. In such a machining form, the tool tip position is accurately matched with the center position of the rotation axis that controls the angular attitude of the tool in a range of 0.01 μm, for example, or the tool tip position is accurately obtained in such a range. After that, unless machining is performed to correct the amount of movement corresponding to the desired position, the tip position of the tool randomly changes on the arc on the machining device depending on the angle of the rotary shaft, and the workpiece In contrast, the shape cannot be formed with a desired accuracy.

さらに、工具の角度姿勢を制御する回転軸中心位置に対し、工具先端位置を正確に一致させ、若しくはそれを正確に求めなければならない頻度として、実際にこうした切削加工においては、切削工具が被加工物との摩擦等によって生じる工具摩耗やチッピングなどの問題により、定期的に交換を必要とする消耗品であるため、工具交換時における取り付けまたは取り外しの位置、あるいは工具そのものの寸法個体差によって、加工装置上での工具先端位置と被加工物との相対位置の再現性が保たれないこととなる。そのため、最初に加工装置上に工具を設置したときだけでなく、工具を交換するたびに、加工装置上での工具先端位置と被加工物との相対位置を修正する必要があるが、上記した特許文献1等では、そのような対策について何ら考慮されていない。   Furthermore, in such a cutting process, the cutting tool is actually processed as the frequency at which the tool tip position must be exactly matched to the rotational axis center position that controls the angular attitude of the tool or it must be obtained accurately. Because it is a consumable that needs to be replaced regularly due to problems such as tool wear and chipping caused by friction with the object, etc., processing depends on the mounting or removal position at the time of tool replacement, or the dimensional individual difference of the tool itself The reproducibility of the relative position between the tool tip position and the workpiece on the apparatus cannot be maintained. Therefore, it is necessary to correct the relative position between the tool tip position on the machining device and the workpiece not only when the tool is first installed on the machining device but also every time the tool is replaced. In Patent Document 1 and the like, no consideration is given to such measures.

本発明は、上記課題に鑑み、先端を角形状とした切削工具の先端回転角度姿勢を制御する回転軸を有する1つの回転機構と、その回転軸と垂直な平面上で被加工物と切削工具先端の相対位置を制御する2つの並進機構とを備えた加工装置による加工方法において、簡単な方法により工具先端位置と被加工物との相対位置を修正することによって、定量的に高精度な微細形状を加工することが可能となる微細形状を有する被加工物の加工方法を提供することを目的とするものである。   SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a rotating mechanism having a rotation shaft for controlling the tip rotation angle posture of a cutting tool having a square tip, and a workpiece and a cutting tool on a plane perpendicular to the rotation shaft. In a machining method using a machining apparatus equipped with two translation mechanisms for controlling the relative position of the tip, the relative position between the tool tip position and the workpiece is corrected by a simple method, thereby quantitatively high-precision fineness. It is an object of the present invention to provide a method for processing a workpiece having a fine shape that can be processed in shape.

本発明は、以下のように構成した微細形状を有する被加工物の加工方法を提供するものである。
すなわち、本発明の加工方法は、先端を角形状とした切削工具の先端回転角度姿勢を制御する回転軸を有する1つの回転機構と、前記回転軸と垂直な平面上で被加工物と切削工具先端の相対位置を制御する2つの並進機構と、を備えた加工装置を用い、格子断面の傾斜角度が変化する回折格子等の微細形状を有する被加工物の加工方法において、前記回転軸の角度を複数の角度に割り振り、前記複数の角度に割り振られたそれぞれの角度姿勢で、前記2つの並進機構の位置制御により同一平面を狙った試し加工を行う第1工程と、前記第1工程後に、前記それぞれの回転角度姿勢ごとの加工で実際に生じた平面間の段差を測定し、その段差から前記切削工具の先端位置と前記切削工具の先端回転角度姿勢を制御する回転軸の中心との真の相対位置を算出する第2工程と、前記第2工程での真の相対位置の算出結果に基づいて、前記切削工具の先端回転角度姿勢を制御する回転軸の回転角度に応じて前記2つの並進機構の位置を制御し、前記切削工具の先端位置と前記被加工物との相対位置を補正して、前記被加工物を加工する第3工程と、を有することを特徴としている。
The present invention provides a method for processing a workpiece having a fine shape configured as follows.
That is, the machining method of the present invention includes a rotation mechanism having a rotation shaft for controlling the tip rotation angle posture of a cutting tool having a square tip, and a workpiece and a cutting tool on a plane perpendicular to the rotation shaft. In a processing method of a workpiece having a fine shape such as a diffraction grating in which the inclination angle of the grating cross section is changed using a processing device including two translation mechanisms for controlling the relative position of the tip, the angle of the rotation axis Are assigned to a plurality of angles, and in each of the angular postures assigned to the plurality of angles, a first step of performing a trial machining aiming at the same plane by position control of the two translation mechanisms, and after the first step, The level difference between the planes actually generated in the processing for each rotation angle and posture is measured, and the true position between the tip position of the cutting tool and the center of the rotation axis that controls the tip rotation angle and posture of the cutting tool is determined from the step. of relative A second step of calculating the location, on the basis of the calculation result of the true relative position in the second step, the two translation mechanism in accordance with the rotation angle of the rotating shaft to control the tip rotation angle posture of the cutting tool And a third step of machining the workpiece by correcting the relative position between the tip position of the cutting tool and the workpiece.

本発明によれば、先端を角形状とした切削工具の先端回転角度姿勢を制御する回転軸を有する1つの回転機構と、その回転軸と垂直な平面上で被加工物と切削工具先端の相対位置を制御する2つの並進機構とを備えた加工装置による加工方法において、簡単な方法により工具先端位置と被加工物との相対位置を修正することによって、定量的に高精度な微細形状を加工することが可能となる微細形状を有する被加工物の加工方法を実現することができる。   According to the present invention, one rotation mechanism having a rotation axis that controls the tip rotation angle posture of a cutting tool having a square tip, and the relative relationship between the workpiece and the cutting tool tip on a plane perpendicular to the rotation axis. In a machining method using a machining device equipped with two translational mechanisms that control the position, the relative position between the tool tip position and the work piece is corrected by a simple method to quantitatively form a highly accurate fine shape. It is possible to realize a processing method of a workpiece having a fine shape that can be performed.

上記構成により、前述した本発明の課題が達成されるが、それは本発明者が鋭意研究した結果、加工装置に工具を設置するに際し、工具先端位置を正確に割り出すような試し加工を行い、その結果を用いて加工装置を数値制御してその位置を補正することにより、安定した高精度加工をする手法を見出したことによる。   With the above configuration, the above-described problem of the present invention is achieved. As a result of intensive studies by the inventor, when the tool is installed in the processing apparatus, trial machining is performed to accurately determine the tool tip position. This is because a technique for performing stable high-precision machining by correcting the position by numerically controlling the machining apparatus using the result is found.

以下に、こられについて更に詳細に説明をする。
図1に角形状の切削工具先端の角度姿勢を制御する回転軸と垂直な平面における工具先端位置と回転中心位置との位置関係を示す。回転制御軸と垂直な面上におけるそれらの位置関係は図1(a)のように直行座標系での相対差(Xo,Zo)といった2値で表現する場合と、図1(b)のように回転座標系での相対差(Lo,θo)といった2値で表現する場合の2通りが考えられる。
そして、図2に示すように直行座標において、真の相対位置(Xo,Zo)は以下のように分解することができる。
Xo=X1+Xe
Zo=Z1+Ze (式1)
ここで、(X1,Z1)は真値(Xo,Zo)に対する概略値であり、設計値もしくは後に示すような測定により予め求めておく値である。
また、(Xe,Ze)はその概略値と真値との誤差であり、その量は未知数である。
この状態で、仮に工具先端の傾斜角度を制御する軸の角度をθだけ回転させたとき、実際には工具先端位置は幾何的に以下の量(ΔX,ΔZ)だけ移動する。
ΔZ = Zo×cosθ − Xo×sinθ
ΔX = Xo×sinθ + Zo×cosθ (式2)
即ち、正確な値(Xo,Zo)が既知であれば、回転軸の角度θに応じて(ΔX、ΔZ)の量だけ加工装置の2つの並進機構により加工プログラムで補正すれば、いかなる回転角度に対しても加工装置の並進機構精度のレベルで所望の形状を形成することが可能となる。
しかしながら(Xo、Zo)の値が正確にわからない場合には、補正すべき移動量(ΔX,ΔZ)のうち、概略値の(X1,Z1)に相当する量だけ同様に加工プログラムにより補正することができるが、真値との誤差(Xe,Ze)に相当する以下の量(ΔXe,ΔZe)だけ、加工すべき意図した位置に対して工具先端位置に誤差が生じてしまう。
ΔZe = Ze×cosθ − Xe×sinθ
ΔXe = Xe×sinθ + Ze×cosθ
本発明の実施の形態においては、この誤差量(ΔXe,ΔZe)を、以下に説明する試し加工によって限りなく低減するようにしたものである。
この試し加工において、まず図3に示すように工具先端の傾斜角度を制御する軸を2種類もしくは3種類といった複数の角度で割り振り、それぞれの姿勢で2つの並進機構により先の計算でプログラム補正し、同一平面を狙った加工を行う。然る後に、テストワーク3上に角度姿勢ごとの加工で実際に生じた平面間の段差を測定し、その段差から工具先端位置と格子角度を制御する軸中心との正確な位置を算出する。このときの段差は、例えば光干渉計の測定機を用いることで1nmオーダーといったレンジでの高精度な測定が可能である。
This will be described in more detail below.
FIG. 1 shows the positional relationship between the tool tip position and the rotation center position on a plane perpendicular to the rotation axis for controlling the angular posture of the angular cutting tool tip. Their positional relationship on a plane perpendicular to the rotation control axis is expressed by binary values such as a relative difference (Xo, Zo) in an orthogonal coordinate system as shown in FIG. 1A, and as shown in FIG. In addition, there are two possible cases of expressing with binary values such as relative difference (Lo, θo) in the rotating coordinate system.
Then, as shown in FIG. 2, the true relative position (Xo, Zo) in the orthogonal coordinates can be decomposed as follows.
Xo = X1 + Xe
Zo = Z1 + Ze (Formula 1)
Here, (X1, Z1) is an approximate value for the true value (Xo, Zo), and is a design value or a value obtained in advance by measurement as described later.
Further, (Xe, Ze) is an error between the approximate value and the true value, and the amount is an unknown number.
In this state, if the angle of the axis that controls the tilt angle of the tool tip is rotated by θ, the tool tip position actually moves by the following amounts (ΔX, ΔZ).
ΔZ = Zo × cos θ−Xo × sin θ
ΔX = Xo × sin θ + Zo × cos θ (Formula 2)
That is, if an accurate value (Xo, Zo) is known, any rotation angle can be obtained by correcting the machining program by the two translation mechanisms of the machining apparatus by an amount of (ΔX, ΔZ) according to the angle θ of the rotation axis. However, a desired shape can be formed with a level of accuracy of the translation mechanism of the processing apparatus.
However, if the value of (Xo, Zo) is not accurately known, only the amount corresponding to the approximate value (X1, Z1) out of the movement amount (ΔX, ΔZ) to be corrected is similarly corrected by the machining program. However, an error occurs in the tool tip position with respect to the intended position to be machined by the following amount (ΔXe, ΔZe) corresponding to the error (Xe, Ze) from the true value.
ΔZe = Ze × cos θ−Xe × sin θ
ΔXe = Xe × sin θ + Ze × cos θ
In the embodiment of the present invention, this error amount (ΔXe, ΔZe) is reduced as much as possible by trial processing described below.
In this trial machining, first, as shown in FIG. 3, the axes for controlling the inclination angle of the tool tip are allocated at a plurality of angles such as two or three, and the program is corrected by the previous calculation by two translation mechanisms in each posture. , Processing aimed at the same plane. Thereafter, a step between planes actually generated by machining for each angle and orientation on the test work 3 is measured, and an accurate position between the tool tip position and the axis center for controlling the lattice angle is calculated from the step. The step at this time can be measured with high accuracy in a range of the order of 1 nm, for example, by using an optical interferometer measuring machine.

また、このときの工具先端の傾斜角度を制御する軸の振り角は、望ましくは3種類である。そしてθ0・θ1・θ2の3種類の振り角での試し加工により求められる2つの段差の値ΔZ1、ΔZ2と、未知数(Xe,Ze)との間には図2の幾何関係から以下の式が成り立つ。
ΔZ0 = Ze×cosθ0 − Xe×sinθ0
ΔZ1 = Ze×cosθ1 − Xe×sinθ1
ΔZ2 = Ze×cosθ2 − Xe×sinθ2 (式3)
ただし、上記の式から工具先端位置とその角の傾斜角度を制御する軸中心位置との概略値であるX1とZ1との値の差が極めて大きい場合は、大きい方の値による誤差(ΔXe、ΔZe)との効き率は小さいため、大きい方の値の計算を省略し、2種類の振り角でも比較的正確に求めることができる。
また、3種類の角度の具体的な振り角度は、被加工物1の変化する傾斜角度に対してそれを制御する軸の最小角度θ0、最大角度θ1およびその中間角度θ2(=(θ0+θ1)/2)とすることが望ましい。
Also, the swing angle of the shaft for controlling the tilt angle of the tool tip at this time is desirably three types. Then, between the two step values ΔZ1 and ΔZ2 obtained by trial machining with three kinds of swing angles of θ0, θ1, and θ2, and the unknown (Xe, Ze), the following equation is obtained from the geometrical relationship of FIG. It holds.
ΔZ0 = Ze × cos θ0−Xe × sin θ0
ΔZ1 = Ze × cos θ1−Xe × sin θ1
ΔZ2 = Ze × cos θ2−Xe × sin θ2 (Formula 3)
However, if the difference between the values of X1 and Z1, which is an approximate value between the tool tip position and the axial center position that controls the inclination angle of the tool, is extremely large from the above formula, an error (ΔXe, Since the effectiveness rate with ΔZe) is small, the calculation of the larger value can be omitted, and the two types of swing angles can be obtained relatively accurately.
Further, specific swing angles of the three types of angles are the minimum angle θ0, the maximum angle θ1 and the intermediate angle θ2 (= (θ0 + θ1) / 2) is desirable.

次に、工具先端位置とその角の傾斜角度を制御する軸中心との位置関係の概略値(X1、Z1)の算出に関する本発明の実施の形態を述べる。
初めに平行度0.001mm程度の平板状の試し加工物(以下これを平板ワークとよぶ)を用意し、その厚みztを縦型測長器などで測定しておく。
次に、図4(a)に示すようにその平板ワークを加工機上で取り付け固定し、平板ワークの上面もしくは下面にカッタマークを付け、更に傾斜角度を制御する軸を180度回転させ、平板ワークの先ほどと反対の面に加工装置の並進機構を用い平板ワークと工具先端位置との相対移動距離zmの位置でカッタマークを付ける。
Next, an embodiment of the present invention relating to the calculation of approximate values (X1, Z1) of the positional relationship between the tool tip position and the axis center that controls the inclination angle of the angle will be described.
First, a flat plate-like processed product having a parallelism of about 0.001 mm (hereinafter referred to as a flat plate workpiece) is prepared, and the thickness zt is measured with a vertical length measuring device or the like.
Next, as shown in FIG. 4 (a), the flat work is mounted and fixed on a processing machine, a cutter mark is attached to the upper surface or the lower face of the flat work, and the shaft for controlling the inclination angle is further rotated 180 degrees. A cutter mark is attached to the surface opposite to the tip of the workpiece at the position of the relative movement distance zm between the flat workpiece and the tool tip position using the translation mechanism of the machining apparatus.

次に、平板ワーク端面から各カッタマークの横方向の工具先端位置を顕微鏡などで測定し、それらの位置(xa、xb)を求める。また、各カッタマークから工具先端位置の切り込み深さを光干渉計などで測定し、それらの深さ(za,zb)を求める。これらの測定値から以下の式により工具先端位置とその角の傾斜角度を制御する軸中心との距離(X1,Z1)を算出する。
X1 = |xa−xb| / 2
Z1 = |(zt−za−zb)−zm| / 2 (式4)
なお、このカッタマークの面は加工装置や加工雇いの都合により図4(b)のように平面の左右面もしくは前後面にカッタマークを付けるのも良い。
Next, the tool tip position in the lateral direction of each cutter mark is measured with a microscope or the like from the end face of the flat work and their positions (xa, xb) are obtained. Further, the cutting depth at the tool tip position is measured from each cutter mark with an optical interferometer or the like, and the depths (za, zb) are obtained. From these measured values, the distance (X1, Z1) between the tool tip position and the axis center for controlling the inclination angle of the angle is calculated by the following equation.
X1 = | xa−xb | / 2
Z1 = | (zt-za-zb) -zm | / 2 (formula 4)
Note that the cutter mark surface may be attached to the left and right surfaces or the front and rear surfaces of the plane as shown in FIG.

また、工具先端位置とその角の傾斜角度を制御する軸中心との距離(X1、Z1)が比較的小さいと想定される場合、顕微鏡で工具先端位置を観察しながら、傾斜角度を制御する軸を180度回転させる前・後の工具先端位置の移動距離を測定し、前記距離(X1,Z1)を算出するようにしても良い。
もしくは、同様の段取り機構により先に加工した実績などがあり予めその概略値がわかっている場合は、そのまま前記(X1、Z1)の値として用いても良い。こうして求めた工具先端位置とその角の傾斜角度を制御する軸中心との距離(X1,Z1)をプログラム補正し、前述した試し加工を行う。
In addition, when the distance (X1, Z1) between the tool tip position and the axis center that controls the tilt angle of the tool angle is assumed to be relatively small, the axis that controls the tilt angle while observing the tool tip position with a microscope. The distance (X1, Z1) may be calculated by measuring the moving distance of the tool tip position before and after rotating the tool 180 degrees.
Alternatively, when there is a record of the previous machining by the same setup mechanism and the approximate value is known in advance, it may be used as the value of (X1, Z1) as it is. The distance (X1, Z1) between the tool tip position thus obtained and the axis center that controls the inclination angle of the tool is corrected by the program, and the above-described trial machining is performed.

本発明の実施の形態においては、以上の試し加工を行った後に、前記それぞれの複数の角度で割り振られた回転角度姿勢ごとの加工で、実際に生じた平面間の段差を測定し、その段差から前記工具の先端位置と前記工具の先端回転角度姿勢を制御する回転軸の中心との正確な位置を算出し、この算出された結果を用い、前記工具の先端回転角度姿勢を制御する回転軸の回転角度に応じて前記2つの並進機構の位置を制御し、前記工具の先端位置と被加工物との相対位置を補正して、被加工物を加工する。   In the embodiment of the present invention, after performing the above-described trial processing, the step between the planes actually generated in the processing for each rotation angle posture assigned at each of the plurality of angles is measured, and the step To calculate the exact position between the tip position of the tool and the center of the rotation axis that controls the tip rotation angle and posture of the tool, and using this calculated result, the rotation shaft that controls the tip rotation angle and posture of the tool The position of the two translation mechanisms is controlled in accordance with the rotation angle of the tool to correct the relative position between the tip position of the tool and the workpiece, thereby processing the workpiece.

以上の本発明の実施の形態による加工方法を用いることによって、プラスチックを直接切削加工し、あるいは金型を切削加工してモールド成形することにより、例えばレーザービームプリンタ等の記録装置の走査光学系や光ディスク再生装置あるいはスカウタ光学系などに使用可能なピント変動抑制レンズ(フレネルレンズや回折光学素子など)の安定した供給を実現できる。   By using the above processing method according to the embodiment of the present invention, the plastic is directly cut, or the mold is cut and molded, for example, a scanning optical system of a recording apparatus such as a laser beam printer, A stable supply of a focus fluctuation suppressing lens (such as a Fresnel lens or a diffractive optical element) that can be used in an optical disk reproducing apparatus or a scouter optical system can be realized.

以下、本発明の実施例について説明する。
本発明の実施例においては、上記した本発明を適用して、図5に示すようなレーザービームプリンター記録装置の走査線光学系のfθレンズ100における回折光学素子を用いたレンズ108の回折格子のある成形駒を、被加工物として加工した。図6に、その回折格子のある成形駒の構成を示す。また、図7に成形駒における回折格子の加工に用いた5軸制御CNC工作機械(以下、単に工作機械と呼称する)の外観を示し、その加工状態の一例を図8に示す。
Examples of the present invention will be described below.
In the embodiment of the present invention, the diffraction grating of the lens 108 using the diffractive optical element in the fθ lens 100 of the scanning line optical system of the laser beam printer recording apparatus as shown in FIG. A molding piece was processed as a workpiece. FIG. 6 shows a configuration of a molding piece having the diffraction grating. FIG. 7 shows the appearance of a 5-axis control CNC machine tool (hereinafter simply referred to as a machine tool) used for machining the diffraction grating in the molding piece, and FIG. 8 shows an example of the machining state.

図6において、1は成形駒、2は成形駒1における回折格子形状である。
成形駒1の光学面寸法は230×8mmであり、回折格子形状2の格子断面高さ201は一定の1.5μmであり、その許容誤差は±0.05μmとなっている。また、この格子断面ピッチ202は15〜800μmの幅の三角ブレーズド形状であるため、回折格子傾き角203は0.1〜5.7°となり、その角度は回折格子輪体204が外側に向かうほど大きくなっている。
In FIG. 6, 1 is a molding piece, and 2 is a diffraction grating shape in the molding piece 1.
The optical surface dimension of the molding piece 1 is 230 × 8 mm, the grating section height 201 of the diffraction grating shape 2 is a constant 1.5 μm, and the allowable error is ± 0.05 μm. Further, since the grating cross-section pitch 202 is a triangular blazed shape having a width of 15 to 800 μm, the diffraction grating tilt angle 203 is 0.1 to 5.7 °, and the angle increases as the diffraction grating ring 204 moves outward. It is getting bigger.

つぎに、図7を用いて本実施例に用いた工作機械の構成を説明する。
14は工作機械の基台であり、基台14の四隅には振動吸収手段16が取り付けられ、これら振動吸収手段16を介して工作機械が床面上に設置される。基台14の上面の中央部には定盤が取り付けられており、この定盤を挟んで一対のコラムが基台14上に固定され、これら一対のコラムの上端は、トップビーム18A,18Bを介して一体的に連結され、これによって強固な門形構造を構成している。
ワークとしての上記成形駒1が固定されるワークテーブルは、定盤に沿って第1の方向(X軸方向)に摺動可能なx軸スライダ20に搭載され、定盤に対して垂直な軸線回り(C軸回り)に旋回可能である。x軸スライダ20は、定盤に沿って第1の方向と直交する第2の方向(Y軸方向)に摺動可能なy軸スライダに搭載されている。ワークテーブルとX軸スライダ20との間には、ワークテーブルをC軸回りに旋回させるテーブル旋回手段22が介装され、X軸スライダ20とy軸スライダとの間には、リニアモータを有するx軸スライダ駆動手段24が介装され、さらにY軸スライダと定盤との間には、リニアモータを有するY軸スライダ駆動手段26が介装されている。
トップビーム18A,18Bの下方には、定盤に対して垂直な軸線方向(Z軸方向)に沿って昇降可能な昇降ビームが配され、その両端部がリニアモータ28を有するビーム駆動手段を介して一対のコラムに保持されている。
Next, the configuration of the machine tool used in this embodiment will be described with reference to FIG.
Reference numeral 14 denotes a base of the machine tool, and vibration absorbing means 16 are attached to the four corners of the base 14, and the machine tool is installed on the floor via these vibration absorbing means 16. A surface plate is attached to the center of the upper surface of the base 14, and a pair of columns are fixed on the base 14 with the surface plate sandwiched therebetween, and the top beams 18A and 18B are connected to the upper ends of the pair of columns. Are connected together to form a strong portal structure.
A work table on which the forming piece 1 as a work is fixed is mounted on an x-axis slider 20 slidable in a first direction (X-axis direction) along the surface plate, and is an axis perpendicular to the surface plate. It is possible to turn around (C axis). The x-axis slider 20 is mounted on a y-axis slider that can slide along a surface plate in a second direction (Y-axis direction) orthogonal to the first direction. A table turning means 22 for turning the work table about the C axis is interposed between the work table and the X axis slider 20, and an x having a linear motor is provided between the X axis slider 20 and the y axis slider. An axis slider driving means 24 is interposed, and a Y axis slider driving means 26 having a linear motor is interposed between the Y axis slider and the surface plate.
Below the top beams 18A and 18B, an elevating beam that can be raised and lowered along an axial direction (Z-axis direction) perpendicular to the surface plate is disposed, and both ends thereof are connected via beam driving means having a linear motor 28. Are held by a pair of columns.

昇降ビームにはヘッド旋回手段30を介して前記第1の方向と平行な軸線回り(B軸回り)に旋回可能なツールヘッドが取り付けられており、このツールヘッドに組み込まれたスピンドル駆動手段32のスピンドルには、外周面に単一の切刃チップを設けたカッタベースが交換可能に取り付けられ、ワークテーブルの成形駒1の回折格子2を所定形状にフライカットするようになっている。
ここで、テーブル旋回手段22、x軸スライダ駆動手段24、y軸スライダ駆動手段26、ビーム駆動手段、ヘッド旋回手段30およびスピンドル駆動手段32は、制御装置36によってそれらの作動が制御され、この制御装置36には切刃チップの移動軌跡をテーチング入力するための切削データ入力手段からのデータの他に、基台14に組み込まれた振動センサからの振動情報や過負荷検知手段からのスピンドル駆動手段32の過負荷情報などが入力される。
A tool head capable of turning about an axis parallel to the first direction (about the B axis) is attached to the elevating beam via the head turning means 30, and a spindle driving means 32 incorporated in the tool head. A cutter base having a single cutting edge chip provided on the outer peripheral surface is replaceably attached to the spindle, and the diffraction grating 2 of the work piece forming piece 1 is fly-cut into a predetermined shape.
Here, the operation of the table turning means 22, the x-axis slider driving means 24, the y-axis slider driving means 26, the beam driving means, the head turning means 30, and the spindle driving means 32 is controlled by the control device 36. In the device 36, in addition to data from the cutting data input means for inputting the moving locus of the cutting edge tip, vibration information from the vibration sensor incorporated in the base 14 and spindle driving means from the overload detection means 32 overload information and the like are input.

工具先端角度はほぼ90°に近いものであり、これを図7の加工装置に取り付け、加工前の状態は図9に示すように工具の底面がXスライド軸と水平となるようなB軸の角度をθ=0°として機械設定する。なお、このときの水平は平面試しワーク上に工具のカッタマークを付け、そのカッタマークを光干渉計の測定機で観察し、そのカッタマークの傾き角度が0°となるようにB軸制御角度を補正しながらθ=0°となる位置へと調整した。ここでの工具刃先位置とB軸中心位置とのXYスライダ方向の相対位置が(Xo,Zo)となる。   The tool tip angle is approximately 90 °, which is attached to the machining apparatus of FIG. 7, and the state before machining is as shown in FIG. 9 with the B axis such that the bottom surface of the tool is horizontal with the X slide axis. The machine is set with the angle θ = 0 °. At this time, the cutter mark of the tool is placed on the flat test work, the cutter mark is observed with a measuring machine of an optical interferometer, and the B-axis control angle is set so that the inclination angle of the cutter mark becomes 0 °. Was adjusted to a position where θ = 0 °. Here, the relative position in the XY slider direction between the tool blade edge position and the B-axis center position is (Xo, Zo).

成形駒1の加工は、図10に示すように回折格子2のある格子における傾斜角度(図6に示す傾斜角度203)とB軸の角度θ=Bnが一致するような角度に制御する。そうして、そのときの工具刃先位置とB軸中心位置とのXZスライダ方向の相対位置を(Xn,Zn)とすると、B軸の振り角度θ=Bnの影響による先のθ=0°の位置からの相対移動量(ΔX,ΔZ)は以下の式で表され、またこれは(式2)により(Xo、Zo)で一意的に決定づけられる。
ΔX=Xn−Xo
ΔZ=Zn−Zo
本実施例の加工方法では、工具雇いの組み付け再現誤差および工具寸法の個体差によって変化する工具刃先先端と、B軸中心位置との相対距離(Xo,Zo)を工具交換ごとに正確に求めた後、その値に依存する移動量(ΔX,ΔZ)に対し、加工装置の2つの並進機構(ここでは被加工物1側のXスライダと工具側のZスライダ)で相殺する方向に加工プログラム(数値制御)によって補正する。ここで、おおよその工具刃先先端とB軸中心位置との相対距離(X1,Z1)を求めるため、図4(b)のように平板ワークの両平面が加工装置のZスライダ方向と水平となるようにワークテーブル上で保持する。なお、その前に平板ワークの厚みを縦型測長器で測定したところxt=10.012[mm]であった。
As shown in FIG. 10, the processing of the forming piece 1 is controlled so that the inclination angle (inclination angle 203 shown in FIG. 6) in the grating having the diffraction grating 2 coincides with the B-axis angle θ = Bn. Then, if the relative position in the XZ slider direction between the tool edge position and the B-axis center position at that time is (Xn, Zn), the previous θ = 0 ° due to the influence of the swing angle θ = Bn of the B-axis The relative movement amount (ΔX, ΔZ) from the position is expressed by the following equation, and is uniquely determined by (Xo, Zo) by (Equation 2).
ΔX = Xn−Xo
ΔZ = Zn-Zo
In the machining method of this example, the relative distance (Xo, Zo) between the tool tip and the B-axis center position, which varies depending on the assembly error of tool hire and individual differences in the tool dimensions, was accurately obtained for each tool change. After that, the machining program (in the direction of offset by the two translation mechanisms of the machining apparatus (here, the X slider on the workpiece 1 side and the Z slider on the tool side) with respect to the movement amount (ΔX, ΔZ) depending on the value ( Correct by numerical control). Here, in order to obtain the relative distance (X1, Z1) between the approximate tip of the tool edge and the B-axis center position, both planes of the flat work are horizontal with the Z-slider direction of the processing apparatus as shown in FIG. 4B. To hold on the worktable. In addition, when the thickness of the flat workpiece was measured with a vertical length measuring instrument before that, it was xt = 10.012 [mm].

つぎに、本実施例における具体的な加工手順を以下に説明する。
まず、B軸をθ=−90°の状態で平板ワークの右側平面にカッタマークを付けた。
次に、B軸をθ=+90°反転させると同時にXスライダをxm=101.000[mm]だけ移動させた状態で、平板ワークの左側平面にカッタマークを付け、それらのカッタマーク位置と深さを測定した。
ここで平板ワークの上面端部からのカッタマークの位置は顕微鏡測定でθ=−90°の方はza=5.32mm、θ=+90°の方はzb=5.44mmであり、カッタマークの平面部からの深さは光干渉計測定でθ=−90°の方はxa=0.052mm、θ=+90°の方はxb=0.073mmであった。
Next, a specific processing procedure in the present embodiment will be described below.
First, a cutter mark was attached to the right plane of the flat work with the B-axis being θ = −90 °.
Next, with the B-axis inverted by θ = + 90 ° and simultaneously moving the X slider by xm = 101.000 [mm], a cutter mark is attached to the left plane of the flat work, and the position and depth of the cutter mark are determined. Was measured.
Here, the position of the cutter mark from the upper surface end of the flat work is measured by a microscope. When θ = −90 °, za = 5.32 mm, and when θ = + 90 °, zb = 5.44 mm. The depth from the plane portion was measured by optical interferometer, and when θ = −90 °, xa = 0.052 mm, and when θ = + 90 °, xb = 0.073 mm.

ここで、加工装置の構成上(式4)に対する以下の変更式が成り立つ。
Z1=|za−zb|/2
X1=|(xt−xa−xb)−xm|/2 (式4’)
これよりZ1=0.06,X1=45.5565の計算結果となり、これを加工装置上で90°反転させ、その機械制御座標系で符号を考慮したB軸中心位置からの工具先端位置の座標は、X1=−0.06[mm],Z1=−45.5565[mm]を求めた。
次に、工具刃先先端とB軸中心位置との真の相対距離(Xo,Zo)との誤差(Xe,Ze)を求めるため、ワークテーブル平面(XYスライダ平面)と平行面となるテストワーク3に付け替え図3に示したような試し加工を行う。
被加工物の本加工でのB軸の振り角度はθ=[0.1〜5.7°]であるため、その間で3種類の振り角度θ0=1°、θ1=3°、θ2=5°で同一平面となるように、先の(X1,Z1)の値から振り角度ごとのXおよびZスライダの移動量を加工プログラム(数値制御)で補正した加工を行った。なお、このときの加工条件は平面加工における角形状(≒90°)工具によるカスプ高さ(面粗さ)が0.02[μm]以下となるようにスピンドル33の回転数r=100[rps]に対してXスライダ方向の送り速度f=0.02[mm/sec]( < 0.00002[mm]/tan(5°)×100[rps])とした。
Here, the following change formula with respect to the configuration of the processing apparatus (Formula 4) holds.
Z1 = | za−zb | / 2
X1 = | (xt−xa−xb) −xm | / 2 (formula 4 ′)
As a result, the calculation result of Z1 = 0.06, X1 = 45.5565 is obtained, and this is inverted by 90 ° on the machining apparatus, and the coordinates of the tool tip position from the B-axis center position in consideration of the sign in the machine control coordinate system Obtained X1 = −0.06 [mm] and Z1 = −45.5565 [mm].
Next, in order to obtain an error (Xe, Ze) between the tool blade tip and the true relative distance (Xo, Zo) between the B-axis center position, the test work 3 is parallel to the work table plane (XY slider plane). The trial machining as shown in FIG. 3 is performed.
Since the B-axis swing angle in the main processing of the workpiece is θ = [0.1 to 5.7 °], three types of swing angles θ0 = 1 °, θ1 = 3 °, and θ2 = 5 ° between them. Machining was performed by correcting the movement amounts of the X and Z sliders for each swing angle with the machining program (numerical control) from the previous (X1, Z1) values so as to be in the same plane. The machining conditions at this time are such that the rotational speed r of the spindle 33 is 100 [rps] so that the cusp height (surface roughness) with a square shape (≈90 °) tool in plane machining is 0.02 [μm] or less. ], The feed speed f in the X-slider direction was set to 0.02 [mm / sec] (<0.00002 [mm] / tan (5 °) × 100 [rps]).

上記の試し加工後、テストワークを加工装置上から取り外し光干渉計により、図3のような振り角度ごとの段差ΔZ1、ΔZ2を測定した。その測定値はΔZ1=0.068[μm],ΔZ2=0.127[μm]であった。これを(式3)に代入して、真値との誤差(Xe,Ze)を解くと、Xe=0.00220,Ze=0.00728となり、更に(式1)からより正確な値(Xo,Zo)をXo=−0.05780[mm],Zo=−45.54922[mm]として算出した。   After the trial machining, the test workpiece was removed from the machining apparatus, and the steps ΔZ1 and ΔZ2 for each swing angle as shown in FIG. 3 were measured with an optical interferometer. The measured values were ΔZ1 = 0.068 [μm] and ΔZ2 = 0.127 [μm]. By substituting this into (Equation 3) and solving the error (Xe, Ze) from the true value, Xe = 0.00220, Ze = 0.00728, and a more accurate value (Xo) from (Equation 1). , Zo) was calculated as Xo = −0.05780 [mm] and Zo = −45.55492 [mm].

この値の信頼性を確認するため、再度テストワークを加工装置上に取り付け、先のテスト結果により求めた(Xo,Zo)を用い、同様の試し加工を行い、光干渉計により段差測定を行ったところ、ΔZ1=0.018[μm],ΔZ2=−0.005[μm]であり、許容誤差±0.05μmの加工精度を十分に満足できていることを確認した。
次に、図6に示したLBPトーリックレンズ成形駒1の回折格子2の加工を行ったところ、2500本程度の格子輪体中の格子高さが±0.05μm以内といった高精度な加工を実現することができた。
In order to confirm the reliability of this value, the test work is mounted again on the processing device, the same trial processing is performed using (Xo, Zo) obtained from the previous test result, and the level difference is measured by the optical interferometer. As a result, ΔZ1 = 0.018 [μm] and ΔZ2 = −0.005 [μm], and it was confirmed that the machining accuracy with an allowable error of ± 0.05 μm was sufficiently satisfied.
Next, when the diffraction grating 2 of the LBP toric lens molding piece 1 shown in FIG. 6 was processed, high-precision processing such that the grating height in about 2500 grating rings was within ± 0.05 μm was realized. We were able to.

本発明の実施の形態を説明する角形状の切削工具先端の角度姿勢を制御する回転軸と垂直な平面における工具先端位置と回転中心位置との位置関係を示す図であり、(a)は直行座標系での相対差を(Xo,Zo)の2値で表現した図、(b)は回転座標系での相対差を(Lo,θo)の2値で表現した図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the positional relationship of the tool front-end | tip position and rotation center position in the plane perpendicular | vertical to the rotating shaft which controls the angle attitude | position of the square-shaped cutting tool front end explaining embodiment of this invention, (a) is orthogonal The figure which expressed the relative difference in a coordinate system with the binary of (Xo, Zo), (b) is the figure which expressed the relative difference in the rotating coordinate system with the binary of (Lo, θo). 本発明の実施の形態を説明する回転機構による回転軸中心と工具先端位置の推移を示す図。The figure which shows transition of the rotating shaft center and tool front-end | tip position by the rotating mechanism explaining embodiment of this invention. 本発明の実施の形態における試し加工を説明する図。The figure explaining the trial process in embodiment of this invention. 本発明の実施の形態における概略の回転中心と工具先端位置の検出例を説明する図。The figure explaining the example of a detection of the rough rotation center and tool front-end | tip position in embodiment of this invention. 本発明の実施例におけるレーザービームプリンター記録装置の走査線光学系のfθレンズにおける回折光学素子を用いたレンズの回折格子のある成形駒の構成を示す図。The figure which shows the structure of the shaping | molding piece with the diffraction grating of the lens using the diffractive optical element in the f (theta) lens of the scanning line optical system of the laser beam printer recording device in the Example of this invention. 本発明の実施例における適用加工形状。The applied processing shape in the Example of this invention. 本発明の実施例に用いた加工装置の概観図。1 is a schematic view of a processing apparatus used in an embodiment of the present invention. 本発明の実施例における加工状態を示す図。The figure which shows the processing state in the Example of this invention. 本発明の実施例における回転軸の振り角度θ=0°の状態を示す図。The figure which shows the state of swing angle | corner (theta) = 0 of the rotating shaft in the Example of this invention. 本発明の実施例における回折格子の加工状態断面図(回転軸の振り角度θ=Bn)。Sectional drawing of the processing state of the diffraction grating in the Example of this invention (rotation angle of rotating shaft (theta) = Bn).

符号の説明Explanation of symbols

1:被加工物(成形駒)
2:回折格子形状
3:テストワーク(試し加工用)
4:平板ワーク(概略の位置算出用)
5:角形状の切削工具
1: Workpiece (molding piece)
2: Diffraction grating shape 3: Test work (for trial machining)
4: Flat work (for approximate position calculation)
5: Square cutting tool

Claims (5)

先端を角形状とした切削工具の先端回転角度姿勢を制御する回転軸を有する1つの回転機構と、
前記回転軸と垂直な平面上で被加工物と切削工具先端の相対位置を制御する2つの並進機構と、を備えた加工装置を用い、
格子断面の傾斜角度が変化する回折格子等の微細形状を有する被加工物の加工方法において、
前記回転軸の角度を複数の角度に割り振り、前記複数の角度に割り振られたそれぞれの角度姿勢で、前記2つの並進機構の位置制御により同一平面を狙った試し加工を行う第1工程と、
前記第1工程後に、前記それぞれの回転角度姿勢ごとの加工で実際に生じた平面間の段差を測定し、その段差から前記切削工具の先端位置と前記切削工具の先端回転角度姿勢を制御する回転軸の中心との真の相対位置を算出する第2工程と、
前記第2工程での真の相対位置の算出結果に基づいて、前記切削工具の先端回転角度姿勢を制御する回転軸の回転角度に応じて前記2つの並進機構の位置を制御し、前記切削工具の先端位置と前記被加工物との相対位置を補正して、前記被加工物を加工する第3工程と、
を有することを特徴とする微細形状を有する被加工物の加工方法。
One rotation mechanism having a rotation axis for controlling the tip rotation angle posture of the cutting tool having a square tip,
Using a processing device comprising two translation mechanisms for controlling the relative position of the workpiece and the cutting tool tip on a plane perpendicular to the rotation axis,
In a processing method of a workpiece having a fine shape such as a diffraction grating in which the inclination angle of the grating section changes,
A first step of allocating the angle of the rotation axis to a plurality of angles, and performing a trial machining aiming at the same plane by position control of the two translation mechanisms in each of the angle postures allocated to the plurality of angles;
Rotation that measures the step between the planes actually generated in the processing for each rotation angle and posture after the first step, and controls the tip position of the cutting tool and the tip rotation angle and posture of the cutting tool from the step. A second step of calculating a true relative position with respect to the center of the axis;
Based on the calculation result of the true relative position in the second step, the positions of the two translation mechanisms are controlled according to the rotation angle of the rotary shaft that controls the tip rotation angle posture of the cutting tool, and the cutting tool Correcting the relative position between the tip position of the workpiece and the workpiece, a third step of machining the workpiece;
A method for processing a workpiece having a fine shape, characterized by comprising:
前記割り振られる複数の角度が、前記被加工物の変化する傾斜角度に対し、前記切削工具の先端回転角度姿勢を制御する回転軸の最小回転角度、最大回転角度および前記最小と最大の中間角度の3種類の角度であることを特徴とする請求項1に記載の微細形状を有する被加工物の加工方法。   The plurality of allocated angles are a minimum rotation angle, a maximum rotation angle, and an intermediate angle between the minimum and maximum rotation angles of a rotary shaft that controls a tip rotation angle posture of the cutting tool with respect to a changing inclination angle of the workpiece. The method for processing a workpiece having a fine shape according to claim 1, wherein the angle is three kinds. 前記試し加工を行う第1工程は、前記切削工具の先端回転角度姿勢を制御する回転軸を180度回転させる前と後との状態において平板状の試し加工物にカッタマークを付けて、それぞれのカッタマーク間の位置を算出し、これらの算出結果に基づいて、おおよその工具先端位置と前記切削工具の先端回転角度姿勢を制御する回転軸の軸中心との位置を求め、これにより試し加工を行うプロセスを含むことを特徴とする請求項1に記載の微細形状を有する被加工物の加工方法。   The first step of performing the trial machining is to attach a cutter mark to the flat trial workpiece before and after rotating the rotary shaft that controls the tip rotation angle posture of the cutting tool by 180 degrees. The position between the cutter marks is calculated, and based on these calculation results, the position of the approximate tool tip position and the axis center of the rotation axis that controls the tip rotation angle posture of the cutting tool is obtained, and trial machining is thereby performed. The method for processing a workpiece having a fine shape according to claim 1, comprising a process to be performed. 前記試し加工を行う第1工程は、前記切削工具の先端回転角度姿勢を制御する回転軸を180度回転させる前と後とにおける前記切削工具先端の移動距離を顕微鏡で測定して算出し、これらの算出結果に基づいて、おおよその工具先端位置と前記切削工具の先端回転角度姿勢を制御する回転軸の軸中心との位置を求め、これにより試し加工を行うプロセスを含むことを特徴とする請求項1に記載の微細形状を有する被加工物の加工方法。   The first step of performing the trial machining is to calculate the moving distance of the cutting tool tip before and after rotating the rotary shaft for controlling the tip rotation angle posture of the cutting tool with a microscope, And calculating a position of an approximate tool tip position and an axis center of a rotating shaft for controlling a tip rotation angle posture of the cutting tool based on the calculation result of the cutting tool, thereby performing a trial machining. Item 2. A method for processing a workpiece having the fine shape according to Item 1. 前記試し加工を行う第1工程は、工具交換前に加工した実績等に基づいて、おおよその工具先端位置と前記切削工具の先端回転角度姿勢を制御する回転軸の軸中心との位置を求め、これにより試し加工を行うプロセスを含むことを特徴とする請求項1に記載の微細形状を有する被加工物の加工方法。   The first step of performing the trial machining is to determine the position of the approximate tool tip position and the axis center of the rotation axis that controls the tip rotation angle posture of the cutting tool based on the results of machining before tool replacement, The method for processing a workpiece having a fine shape according to claim 1, further comprising a process of performing trial processing.
JP2005046006A 2005-02-22 2005-02-22 Method for processing a workpiece having a fine shape Expired - Fee Related JP4328729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005046006A JP4328729B2 (en) 2005-02-22 2005-02-22 Method for processing a workpiece having a fine shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046006A JP4328729B2 (en) 2005-02-22 2005-02-22 Method for processing a workpiece having a fine shape

Publications (2)

Publication Number Publication Date
JP2006231428A JP2006231428A (en) 2006-09-07
JP4328729B2 true JP4328729B2 (en) 2009-09-09

Family

ID=37039639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046006A Expired - Fee Related JP4328729B2 (en) 2005-02-22 2005-02-22 Method for processing a workpiece having a fine shape

Country Status (1)

Country Link
JP (1) JP4328729B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5740797B2 (en) * 2009-09-30 2015-07-01 コニカミノルタ株式会社 Objective lens and optical pickup device
JP7192758B2 (en) * 2019-12-23 2022-12-20 株式会社ニコン Processing equipment and processing method
CN112372036B (en) * 2020-10-30 2023-05-23 东北林业大学 Processing method of sub-wavelength blazed grating structure

Also Published As

Publication number Publication date
JP2006231428A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
KR101155055B1 (en) Raster cutting technology for ophthalmic lenses
JP5833533B2 (en) Aligned multi-diamond cutting tool assembly for making a microreplicated tool and method for making the cutting tool assembly
EP2687321B1 (en) Ultraprecision composite processing device and ultraprecision composite processing method
JP5198739B2 (en) Apparatus and method for processing optical workpieces, in particular plastic spectacle lenses
JP5355950B2 (en) V-groove processing method and apparatus
Riemer Advances in ultra precision manufacturing
CN113695645B (en) Vertical offset correction method for micro-diameter diamond ball-end milling cutter
JP2003127018A (en) Method, device and tool for processing surface of non- fragile material work in manufacturing optical element
JP5355206B2 (en) Processing apparatus and processing method
Cheng et al. Fabrication accuracy analysis of micromilling tools with complicated geometries by wire EDM
JP4328729B2 (en) Method for processing a workpiece having a fine shape
JP4662018B2 (en) Curved surface processing apparatus and parallel link mechanism calibration method
JP2006289566A (en) Grinding processing method and grinding processing device of forming die of micro lens array
JP2004042188A (en) Working method of die
JP2003039282A (en) Free-form surface working device and free-form surface working method
JP2005063074A (en) Method and device for machining curved surface
Sawada et al. Manufacture of diffraction grating on tiny parts by means of ultraprecision milling
JP7023624B2 (en) Microfabrication equipment, control equipment, master manufacturing method, and microfabrication method of base material for master
JP2011011295A (en) Fine recessed part working method and fine recessed part working machine
JP2004344957A (en) Method for manufacturing compound laser beam machine and precision worked product
JP7106774B2 (en) Microfabrication device, microfabrication unit, control device, master manufacturing method, and microfabrication method for master substrate
JP7132456B1 (en) Microfabrication device, microfabrication unit, control device, master manufacturing method, and microfabrication method for master substrate
JP7089574B2 (en) Processing machine and manufacturing method of workpiece
JP2005096064A (en) Cutting method for axially symmetric diffraction curved surface and article prepared by the same method
JP2005305583A (en) Index machining method for die and machining tool for die

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4328729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees