JP2004077207A - Wavefront measuring apparatus and semiconductor exposure apparatus equipped with the same - Google Patents

Wavefront measuring apparatus and semiconductor exposure apparatus equipped with the same Download PDF

Info

Publication number
JP2004077207A
JP2004077207A JP2002235334A JP2002235334A JP2004077207A JP 2004077207 A JP2004077207 A JP 2004077207A JP 2002235334 A JP2002235334 A JP 2002235334A JP 2002235334 A JP2002235334 A JP 2002235334A JP 2004077207 A JP2004077207 A JP 2004077207A
Authority
JP
Japan
Prior art keywords
light
light beam
optical path
fizeau
light beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002235334A
Other languages
Japanese (ja)
Inventor
Eiji Aoki
青木 栄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002235334A priority Critical patent/JP2004077207A/en
Publication of JP2004077207A publication Critical patent/JP2004077207A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a two-beam interference pattern having good visibility and improve a wavefront measuring speed by combining a wavelength plate with a polarization element, orthogonalizing polarization directions of an interference light beam and an unnecessary light beam and separating the interference light beam and the unnecessary light beam in a Fizeau interferometer using an exposure light source having a short coherence length. <P>SOLUTION: In an optical length imparting part in front of a Fizeau face, a polarization state of one of split light beams is orthogonalized to the other light beam by using a λ/4 wavelength plate, polarization states of two coherent light beams and two non-coherent light beams are orthogonalized by placing the λ/4 wavelength plate between the Fizeau face and a test lens, and the light beams are separated by using a polarized beam spliter. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は被測定対象の光路長が長く、その上測定に使用できる光源の波長が限定されながらかつ可干渉距離の短い光源を使用して、高精度の波面測定が要求される干渉測定及び干渉測定装置とそれを搭載した半導体露光装置に関する。
【0002】
【従来の技術】
可干渉距離の短い光源を使用して干渉測定を行う場合、参照光路と被検光路の光路長差を光源の可干渉距離以下に一致させる必要がある。そのためトワイマン・グリーン干渉計などのように参照光路と測定光路を分割せざるを得ず、測定対象の光路長が長い場合、振動や空気ゆらぎの影響を受けやすくなるため波面の測定精度は低下してしまう。そこで可干渉距離の短い光源でも共通光路で安定したフィゾー干渉を実現する方法が提案されている。図5にその測定原理を示す。
【0003】
この方法では可干渉距離の短い光源101から発した光束を、フィゾー干渉計においてフィゾー面112よりも前の光学系105で分割し、それら2光束に予めフィゾー面112から球面ミラー114までの往復光路長分の光路長差を付与した後、再結合した光束を集光レンズ106でピンホール107上に集光し、通過させることで同一波面となるように波面を整形して、その後にフィゾー面112へと2光束を入射させる。この場合再結合された光束は共通光路となるため、振動やゆらぎの影響をトワイマン・グリーン干渉計などに比べて低減することが可能となり、可干渉距離の短い光源でも高精度な干渉測定が実現できる。
【0004】
【発明が解決しようとする課題】
しかし上述したフィゾー干渉では半透過のフィゾー面112に光路長差を付与した2光束L1,L2が到達し、それぞれの光束が反射および透過するため、干渉縞撮像用カメラ116にはL1r,L2r,L1t,L2tの4光束が到達することになる。このうち光路長差付与部で長光路側を透過して参照面で反射する光束L1rと、光路長差付与部で短光路側を透過し、参照面も透過して被測定対象から戻ってくる光束L2tは、光路長差が光源の可干渉距離以下となるように光路長差を付与しているので干渉して干渉縞を生じる。
【0005】
しかしこれら干渉する2光束以外に光路長差付与部で長光路側を透過し、参照面も透過して被測定対象から戻ってくる光束L1tと、光路長差付与部で短光路側を透過して参照面で反射する光束L2rの2光束は他の光束と干渉しないので、バックグラウンド光として干渉光に重畳されてしまう。その結果干渉縞のVisibilityがトワイマングリーン干渉計のような2光束干渉と比較すると原理的に半分になってしまうため、高精度を要求される波面測定には不利となる。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明では光路長差付与部において分割した光束の一方をλ/2波長板もしくはλ/4波長板を使用して偏光状態を他方の光束の偏光状態に対して直交させた後に2光束を再結合して、なおかつ参照面と被測定対象との間にλ/4波長板を配置することで光束がλ/4波長板を往復で透過した際に入射光に対して出射光の偏光状態を90°回転させることで、干渉する2光束と背景光となる非干渉2光束の偏光状態を直交させる。さらに偏光が直交した干渉光束と非干渉光束を偏光素子などを用いて分離し、干渉2光束のみをカメラ側に取り出すことで2光束干渉と同等なVisibilityの干渉縞を得ることが可能となる。
【0007】
【発明の実施の形態】
(第1の実施例)
図1に本発明の第1の実施例を示す。
【0008】
図1において低コヒーレンス光源、例えばKrF、ArF、F等のエキシマレーザ露光光源1から出射した光束は、光路長差付与部6に入射する。光路長差付与部6で光束はビームスプリッタ2によりミラー4に向かう光束L1とミラー5に向かう光束L2に分離される。光束L1の光路にはλ/4波長板を配置し、λ/4波長板透過−ミラー4反射−λ/4波長板透過した光束L1の偏光状態を光束L2に対して直交させる。ビームスプリッタ2に戻った光束L1は、ミラー5を反射しビームスプリッタ2に戻る光束L2と再度結合される。この時ビームスプリッタ2とミラー4までの光路長はビームスプリッタ2とミラー5までの光路長より、後述の参照平面12と反射球面ミラー16間の光路長Dだけ長くなるように設置してある。
【0009】
従ってビームスプリッタ2を透過した光束L1と反射した光束L2はともに波面整形光学系10へ向かうが、光束L2は光束L1に対して光路長2Dだけ進んでいる。
【0010】
再結合された2光束は集光レンズ7によりピンホール8上に集光される。ここでピンホール8の直径を集光レンズ7の開口数により決まるエアリーディスク直径の1/2程度にすれば、ピンホール8からの射出光は球面波とみなすことができ、光路長付与部6で生じた光束L1と光束L2の波面の差異を除去することができる。ピンホール8を射出した2光束はコリメータレンズ9で平行光束にされた後、ビームスプリッタ11を透過し、参照平面板12へ入射する。光束L1、L2はともに参照平面で一部は反射してL1r,L2rとなりビームスプリッタ11に向かい、残りは参照平面12を透過してL1t,L2tとなる。
【0011】
参照平面12とコリメータレンズ14との間にはλ/4波長板を配置し、参照平面12を透過した光束L1t,L2tの偏光状態を変換する。その後コリメータレンズ14、被検レンズ15を透過して球面ミラー16を反射した光束は、同経路を戻って再びλ/4波長板を透過してビームスプリッタ11へ戻る。λ/4波長板を往復で透過した光束L1t,L2tはλ/4波長板入射前と出射後とでは偏光状態が90°回転される。
【0012】
ビームスプリッタ11へ戻り反射される4光束のうち、光束L1rと光束L2tとは光路長差が光源の可干渉距離以下になっているので干渉する。さらに偏光状態が他の2光束L1tとL2rとは直交しているので偏光分離素子17(例えば偏光ビームスプリッタやローションプリズムなど)を利用して、これら不要光束と分離することが可能となる。分離された干渉2光束L1r,L2tは結像レンズ18により光束径を所望の倍率に変換され、なおかつ2光束により生じる干渉縞像はカメラ19面上に結像される。従ってカメラ19で得られる干渉縞画像は、L1r,L2tの2光束から得られる縞画像となり、縞のVisibilityが向上することになる。
【0013】
(第2の実施例)
図2に本発明の第2の実施例を示す。
【0014】
実施例1において示した光路長付与部の光学系を本実施例では下記のように変更する。
【0015】
露光光源1から発した光束を光路長付与部36に入射する。光路長差付与部36で光束はビームスプリッタ31によりミラー34に向かう光束L1と偏光ビームスプリッタ32に向かう光束L2に分離される。光束L1の光路にはλ/2波長板を配置し、λ/2波長板を透過した光束L1の偏光状態が光束L2に対して直交するようにする。偏光を回転させた光束L1はミラー34、ミラー35を介して偏光ビームスプリッタ32で反射され、ビームスプリッタ31、偏光ビームスプリッタ32を透過する光束L2と再度結合される。この時L1の光路長はL2の光路長より、参照平面12と反射球面ミラー16間の光路長Dの2倍だけ長くなるように設置してある。再結合された2光束は波面整形光学系10へと導かれる。以後は実施例1と同光路をたどる。
【0016】
(第3の実施例)
図3に本発明の第3の実施例を示す。図3は第1および2の実施例で示した本発明の干渉測定装置を搭載した半導体露光装置の概略図である。
【0017】
図3において、例えばKrF、ArF、F2等のエキシマレーザ等の露光用光源301から出射した光束は、ビーム整形光学系302により光軸に対して対称なビーム形状に変換される。その後光路切換えミラー303は通常の露光時は光路外に配置されていて、ビーム整形光学系302を出射した光束はインコヒーレント化ユニット304へ入射し、可干渉性を低下させた後に照明光学系305を透過し、レチクル面318を照明する。
【0018】
一方、光路切換えミラー303は、露光時以外に光路中に配置される。光路切換えミラー303により反射された光束は光路長差付与部306へと導かれ、ビームスプリッタで分割された後、被測定対象である露光装置投影レンズの往復光路長だけ2光束間に光路長差を付与する。この時一方の光束の偏光状態をλ/2波長板もしくはλ/4波長板を使用して、他方の光束に対して偏光状態を直交させてから2光束を再び結合する。結合された光束は引き回し光学系307へと導かれ、レチクル面318の近傍に配置された干渉計317付近へと導光される。引き回し光学系307から出射した光束は集光レンズ308により1点に集光される。ここで集光レンズ308の焦点近傍にはピンホール309が配置されていて、ピンホール309を透過した光束は、コリメータレンズ310により平行光へと変換される。ここでピンホール309の径は、集光レンズ308の開口数によって決まるエアリーディスク径の1/2程度に設定されている。
【0019】
この結果、光路長差を付与した2光束が光路長付与部306および引き回し系307で受ける波面の歪は、ピンホール309を通過することによってほぼ理想的な球面波へと変換される。またコリメータレンズ310はほぼ無収差に設計製作されているので、コリメータレンズ310からの光束はほぼ理想的な平面波となって出射する。コリメータレンズ310からの平行光はハーフミラー311により反射されXYZステージ313上に配置された参照平面314、λ/4波長板315、コリメータレンズ316へと導かれる。
【0020】
参照平面314への光束の経路に関しては図4を用いて詳細に説明する。ハーフミラー311により反射された光束406は固定ミラー404によりy軸方法に折り曲げられ、その後yステージ401上に配置されたミラー405によりx軸方向に反射される。さらにxステージ402上に配置されたミラー312によりz軸方向へ向きを変え、zステージ403上に配置された参照平面314へ入射する。参照平面314に入射した2光束の一部は参照平面314で反射し同経路をたどってハーフミラー311へ戻り透過する。参照平面314を透過した光束はλ/4波長板315で偏光状態を変換された後、コリメータレンズ316により図3におけるレチクル面318に集光される。
【0021】
以上説明した経路をたどりXYZステージ313を移動させることによりハーフミラー311で反射された光束をレチクル面318面上の任意の点に集光することが可能となる。レチクル面318に集光された光束は投影レンズ319によりウェハー面320に再結像される。ここでウェハーステージ322の上或いは内部には球面ミラー323が配置されている。ここで球面ミラー323の曲率中心はウェハー面320とほぼ一致している。投影レンズ319からの光束は球面ミラー323によって反射され、ほぼ同一光路をたどって投影レンズ319、コリメータレンズ316と戻り、再びλ/4波長板315を透過して偏光状態が変換され、往復の透過で偏光状態が90°回転される。これら光束は参照平面314で反射した2光束と同経路をたどって、干渉計317のハーフミラー311に戻り透過する。
【0022】
ハーフミラー311を透過した4光束のうち、光路長差が光源の可干渉距離以下となり干渉する2光束と、その他の2光束とは偏光状態が互いに直交しているので、偏光分離素子324を使用して(例えば偏光ビームスプリッタやローションプリズムなど)、これら光束を分離する。このうち干渉している2光束は結像レンズ325により所望のビーム径に変換されると同時にカメラ326上に干渉縞が結像される。カメラ326により撮像された干渉縞画像は図中には示していないが計算機などへ取り込み、縞画像処理を施して被検レンズ319の透過波面形状を得る。
【0023】
また他方の非干渉2光束は集光レンズ327により指標329上にスポットを形成し、指標面上でのスポット横ズレをカメラ331により観察して、参照平面314および被検レンズ319からの戻り光の傾きをモニターするアライメント系として使用できる。
【0024】
【発明の効果】
本発明によれば低コヒーレンス光源を使用したフィゾー干渉計において、干渉光束と非干渉光束とを分離することが可能となり、2光束干渉と同等なVisibilityの干渉縞が得られるので、従来法よりも高精度な波面測定が実現可能となる。
【図面の簡単な説明】
【図1】本発明第1の実施例の概略図
【図2】本発明第2の実施例の概略図
【図3】本発明第3の実施例の概略図
【図4】第3の実施例におけるレチクル面への光束の経路を示す詳細図
【図5】可干渉距離の短い光源を使用したフィゾー干渉計の概略図
【符号の説明】
1:露光光源
2:ビームスプリッタ
3:λ/4波長板
4:反射ミラー
5:反射ミラー
6:光路長差付与部
7:集光レンズ
8:空間フィルター
9:コリメータレンズ
10:波面整形光学系
11:ハーフミラー
12:参照平面板
13:λ/4波長板
14:コリメータレンズ
15:被検レンズ
16:球面ミラー
17:偏光分離素子
18:干渉縞結像光学系
19:カメラ
20:集光レンズ
21:反射ミラー
22:指標
23:結像レンズ
24:カメラ
31:ビームスプリッタ
32:偏光ビームスプリッタ
33:λ/2波長板
34:反射ミラー
35:反射ミラー
36:光路長付与部
301:露光光源
302:ビーム整形光学系
303:光路切換えミラー
304:インコヒーレント化ユニット
305:照明光学系
306:光路長差付与部
307:引き回し光学系
308:集光レンズ
309:空間フィルター
310:コリメータレンズ
311:ハーフミラー
312:反射ミラー
313:XYZステージ
314:参照平面板
315:λ/4波長板
316:コリメータレンズ
317:干渉計ユニット
318:レチクル面
319:投影レンズ
320:ウエハー面
321:ウェハーチャック
322:ウェハーステージ
323:球面ミラー
324:偏光分離素子
325:結像レンズ
326:カメラ
327:集光レンズ
328:反射ミラー
329:指標
330:結像レンズ
331:カメラ
401:yステージ
402:xステージ
403:zステージ
404:反射ミラー
405:反射ミラー
406:ハーフミラー311からの光束
101:低コヒーレント光源
102:ビームスプリッタ
103:反射ミラー
104:反射ミラー
105:光路長差付与部
106:集光レンズ
107:空間フィルター
108:コリメータレンズ
109:波面整形光学系
110:ビームスプリッタ
111:フィゾーレンズ
112:フィゾー面
113:被検レンズ
114:球面ミラー
115:結像レンズ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses a light source having a long optical path length to be measured and a light source having a short coherence distance while limiting the wavelength of a light source that can be used for measurement. The present invention relates to a measuring apparatus and a semiconductor exposure apparatus equipped with the measuring apparatus.
[0002]
[Prior art]
When performing interference measurement using a light source with a short coherence distance, it is necessary to make the optical path length difference between the reference light path and the test light path equal to or less than the coherence distance of the light source. For this reason, the reference optical path and the measurement optical path must be divided as in the case of a Twyman-Green interferometer.If the optical path length of the measurement target is long, the measurement accuracy of the wavefront decreases due to the susceptibility to vibration and air turbulence. Would. Therefore, there has been proposed a method of realizing stable Fizeau interference in a common optical path even with a light source having a short coherence distance. FIG. 5 shows the measurement principle.
[0003]
In this method, a light beam emitted from a light source 101 having a short coherence distance is split by an optical system 105 before a Fizeau surface 112 in a Fizeau interferometer, and the two light beams are previously reciprocated on a reciprocating optical path from a Fizeau surface 112 to a spherical mirror 114. After providing a long optical path length difference, the recombined light beam is condensed on a pinhole 107 by a condenser lens 106 and shaped by passing through the pinhole 107 so as to have the same wavefront, and then the Fizeau surface Two light beams are made to enter 112. In this case, the recombined light beam has a common optical path, so that the effects of vibration and fluctuation can be reduced compared to a Twyman-Green interferometer, etc., and high-precision interference measurement can be achieved even with a light source with a short coherence distance it can.
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned Fizeau interference, the two light beams L1 and L2 having the optical path length difference arrive at the semi-transmissive Fizeau surface 112, and the respective light beams are reflected and transmitted, so that the interference fringe imaging camera 116 has L1r, L2r, Four light beams L1t and L2t arrive. Among them, the light beam L1r that passes through the long optical path side at the optical path length difference providing unit and is reflected at the reference surface, and the light beam L1r that passes through the short optical path side at the optical path length difference providing unit, also passes through the reference surface, and returns from the object to be measured. The light beam L2t gives an optical path length difference so that the optical path length difference is equal to or less than the coherent distance of the light source, and thus interferes to generate interference fringes.
[0005]
However, in addition to the two interfering light beams, the light beam L1t that passes through the long light path side at the light path length difference providing unit, also passes through the reference surface, and returns from the object to be measured, and the light beam L1t that passes through the short light path side at the light path length difference providing unit. Since the two light beams L2r reflected by the reference surface do not interfere with other light beams, they are superimposed on the interference light as background light. As a result, the visibility of interference fringes is reduced by half in principle compared to two-beam interference such as a Twyman-Green interferometer, which is disadvantageous for wavefront measurement requiring high accuracy.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the present invention, one of the light beams split in the optical path length difference providing unit uses a λ / 2 wavelength plate or a λ / 4 wavelength plate to change the polarization state with respect to the polarization state of the other light beam. After orthogonalizing, the two light beams are recombined, and a λ / 4 wavelength plate is disposed between the reference surface and the object to be measured. On the other hand, by rotating the polarization state of the emitted light by 90 °, the polarization states of the two interfering light fluxes and the non-interfering two light fluxes serving as the background light are made orthogonal. Further, the interference light beam and the non-interfering light beam whose polarizations are orthogonal to each other are separated by using a polarizing element or the like, and only the interference two light beams are taken out to the camera side, whereby it becomes possible to obtain Visibility interference fringes equivalent to the two light beam interference.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
(First embodiment)
FIG. 1 shows a first embodiment of the present invention.
[0008]
Low-coherence light source 1, e.g. KrF, ArF, light flux emitted from an excimer laser exposure light source 1, such as F 2 enters the optical path length difference imparting section 6. The light beam is split by the beam splitter 2 into a light beam L1 heading for the mirror 4 and a light beam L2 heading for the mirror 5 in the optical path length difference providing unit 6. A λ / 4 wavelength plate is disposed in the optical path of the light beam L1, and the polarization state of the light beam L1 transmitted through the λ / 4 wavelength plate-mirror 4 reflection-λ / 4 wavelength plate is made orthogonal to the light beam L2. The light beam L1 returning to the beam splitter 2 is recombined with the light beam L2 reflected by the mirror 5 and returned to the beam splitter 2. At this time, the optical path length between the beam splitter 2 and the mirror 4 is set to be longer than the optical path length between the beam splitter 2 and the mirror 5 by an optical path length D between a reference plane 12 and a reflective spherical mirror 16 described later.
[0009]
Therefore, both the light beam L1 transmitted through the beam splitter 2 and the light beam L2 reflected from the beam splitter 2 travel toward the wavefront shaping optical system 10, but the light beam L2 advances by an optical path length 2D with respect to the light beam L1.
[0010]
The two light beams recombined are condensed on the pinhole 8 by the condensing lens 7. Here, if the diameter of the pinhole 8 is set to about 1/2 of the diameter of the Airy disk determined by the numerical aperture of the condenser lens 7, the light emitted from the pinhole 8 can be regarded as a spherical wave, and the optical path length providing unit 6 The difference between the wavefronts of the light beam L1 and the light beam L2 caused by the above can be removed. The two light beams emitted from the pinhole 8 are converted into parallel light beams by the collimator lens 9, pass through the beam splitter 11, and enter the reference plane plate 12. Both of the light beams L1 and L2 are partially reflected on the reference plane to become L1r and L2r and travel toward the beam splitter 11, and the remaining light passes through the reference plane 12 to become L1t and L2t.
[0011]
A λ / 4 wavelength plate is arranged between the reference plane 12 and the collimator lens 14 to convert the polarization state of the light beams L1t and L2t transmitted through the reference plane 12. After that, the light beam transmitted through the collimator lens 14 and the test lens 15 and reflected by the spherical mirror 16 returns to the same path, passes through the λ / 4 wavelength plate again, and returns to the beam splitter 11. The light beams L1t and L2t transmitted through the λ / 4 wavelength plate reciprocally have their polarization states rotated by 90 ° before and after the λ / 4 wavelength plate is incident.
[0012]
Among the four light beams reflected back to the beam splitter 11, the light beam L1r and the light beam L2t interfere with each other because the optical path length difference is smaller than the coherent distance of the light source. Further, since the polarization states of the other two light beams L1t and L2r are orthogonal to each other, it is possible to separate them from these unnecessary light beams by using the polarization separation element 17 (for example, a polarization beam splitter or a lotion prism). The separated interference two light beams L1r and L2t have their light beam diameters converted to a desired magnification by the imaging lens 18, and an interference fringe image generated by the two light beams is formed on the camera 19 surface. Therefore, the interference fringe image obtained by the camera 19 becomes a fringe image obtained from two light beams L1r and L2t, and the visibility of the fringes is improved.
[0013]
(Second embodiment)
FIG. 2 shows a second embodiment of the present invention.
[0014]
In the present embodiment, the optical system of the optical path length providing unit shown in the first embodiment is changed as follows.
[0015]
The light beam emitted from the exposure light source 1 is incident on the optical path length providing unit 36. The light beam is split by the beam splitter 31 into a light beam L1 traveling toward the mirror 34 and a light beam L2 traveling toward the polarization beam splitter 32 in the optical path length difference providing unit 36. A λ / 2 wavelength plate is disposed in the optical path of the light beam L1 so that the polarization state of the light beam L1 transmitted through the λ / 2 wavelength plate is orthogonal to the light beam L2. The light beam L1 whose polarization has been rotated is reflected by the polarization beam splitter 32 via the mirror 34 and the mirror 35, and is recombined with the light beam L2 transmitted through the beam splitter 31 and the polarization beam splitter 32. At this time, the optical path length of L1 is set to be longer than the optical path length of L2 by twice the optical path length D between the reference plane 12 and the reflective spherical mirror 16. The two light beams recombined are guided to the wavefront shaping optical system 10. Thereafter, the same optical path as in the first embodiment is followed.
[0016]
(Third embodiment)
FIG. 3 shows a third embodiment of the present invention. FIG. 3 is a schematic view of a semiconductor exposure apparatus equipped with the interference measuring apparatus of the present invention shown in the first and second embodiments.
[0017]
In FIG. 3, a light beam emitted from an exposure light source 301 such as an excimer laser such as KrF, ArF, or F2 is converted into a beam shape symmetric with respect to an optical axis by a beam shaping optical system 302. Thereafter, the optical path switching mirror 303 is disposed outside the optical path during normal exposure, and the light beam emitted from the beam shaping optical system 302 is incident on the incoherent unit 304 to reduce the coherence, and thereafter, the illumination optical system 305 To illuminate the reticle surface 318.
[0018]
On the other hand, the optical path switching mirror 303 is arranged in the optical path other than during the exposure. The light beam reflected by the optical path switching mirror 303 is guided to an optical path length difference providing unit 306, where it is split by a beam splitter, and then the optical path length difference between the two light beams by the reciprocating optical path length of the exposure device projection lens to be measured. Is given. At this time, the polarization state of one light beam is changed using a λ / 2 wavelength plate or a λ / 4 wavelength plate, the polarization state is made orthogonal to the other light beam, and then the two light beams are recombined. The combined light flux is guided to the routing optical system 307, and is guided to the vicinity of the interferometer 317 disposed near the reticle surface 318. The light beam emitted from the routing optical system 307 is condensed at one point by the condenser lens 308. Here, a pinhole 309 is arranged near the focal point of the condenser lens 308, and a light beam transmitted through the pinhole 309 is converted by the collimator lens 310 into parallel light. Here, the diameter of the pinhole 309 is set to about 1/2 of the Airy disk diameter determined by the numerical aperture of the condenser lens 308.
[0019]
As a result, the distortion of the wavefront received by the two light beams with the optical path length difference applied by the optical path length applying unit 306 and the routing system 307 is converted into an almost ideal spherical wave by passing through the pinhole 309. Further, since the collimator lens 310 is designed and manufactured with almost no aberration, the light beam from the collimator lens 310 is emitted as an almost ideal plane wave. The parallel light from the collimator lens 310 is reflected by the half mirror 311 and guided to the reference plane 314, the λ / 4 wavelength plate 315, and the collimator lens 316 arranged on the XYZ stage 313.
[0020]
The path of the light beam to the reference plane 314 will be described in detail with reference to FIG. The light beam 406 reflected by the half mirror 311 is bent in the y-axis direction by the fixed mirror 404, and then reflected in the x-axis direction by the mirror 405 arranged on the y stage 401. Further, the direction is changed in the z-axis direction by a mirror 312 arranged on the x stage 402, and the light is incident on a reference plane 314 arranged on the z stage 403. A part of the two light beams incident on the reference plane 314 is reflected on the reference plane 314, follows the same path, returns to the half mirror 311 and transmits. The light beam transmitted through the reference plane 314 has its polarization changed by a λ / 4 wavelength plate 315, and is then condensed on a reticle surface 318 in FIG. 3 by a collimator lens 316.
[0021]
By following the above-described path and moving the XYZ stage 313, the light beam reflected by the half mirror 311 can be focused on an arbitrary point on the reticle surface 318. The light beam condensed on the reticle surface 318 is re-imaged on the wafer surface 320 by the projection lens 319. Here, a spherical mirror 323 is arranged on or inside the wafer stage 322. Here, the center of curvature of the spherical mirror 323 substantially coincides with the wafer surface 320. The light beam from the projection lens 319 is reflected by the spherical mirror 323, follows substantially the same optical path, returns to the projection lens 319 and the collimator lens 316, passes through the λ / 4 wavelength plate 315 again, is changed in the polarization state, and is transmitted and reciprocated. Rotates the polarization state by 90 °. These light beams follow the same path as the two light beams reflected by the reference plane 314 and return to the half mirror 311 of the interferometer 317 to be transmitted.
[0022]
Of the four light beams transmitted through the half mirror 311, the two light beams whose optical path length difference is less than the coherent distance of the light source and interfere with each other and the other two light beams have polarization states orthogonal to each other. (For example, a polarizing beam splitter or a lotion prism) to separate these light beams. The two interfering light beams are converted into a desired beam diameter by the imaging lens 325, and at the same time, an interference fringe is formed on the camera 326. Although not shown in the figure, the interference fringe image captured by the camera 326 is taken into a computer or the like, and subjected to fringe image processing to obtain a transmitted wavefront shape of the lens 319 to be measured.
[0023]
The other non-interfering two light beams form a spot on the index 329 by the condenser lens 327, observe the spot lateral shift on the index surface by the camera 331, and return light from the reference plane 314 and the lens 319 to be measured. Can be used as an alignment system to monitor the inclination of
[0024]
【The invention's effect】
According to the present invention, in a Fizeau interferometer using a low coherence light source, it is possible to separate an interference light beam and a non-interference light beam, and an interference fringe of Visibility equivalent to two-beam interference is obtained. Highly accurate wavefront measurement can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a first embodiment of the present invention. FIG. 2 is a schematic diagram of a second embodiment of the present invention. FIG. 3 is a schematic diagram of a third embodiment of the present invention. Detailed view showing the path of the light beam to the reticle surface in the example. FIG. 5 is a schematic view of a Fizeau interferometer using a light source having a short coherence distance.
1: Exposure light source 2: Beam splitter 3: λ / 4 wavelength plate 4: Reflection mirror 5: Reflection mirror 6: Optical path length difference providing unit 7: Condensing lens 8: Spatial filter 9: Collimator lens 10: Wavefront shaping optical system 11 : Half mirror 12: reference plane plate 13: λ / 4 wavelength plate 14: collimator lens 15: test lens 16: spherical mirror 17: polarization separation element 18: interference fringe imaging optical system 19: camera 20: condenser lens 21 : Reflection mirror 22: index 23: imaging lens 24: camera 31: beam splitter 32: polarization beam splitter 33: λ / 2 wavelength plate 34: reflection mirror 35: reflection mirror 36: optical path length providing unit 301: exposure light source 302: Beam shaping optical system 303: optical path switching mirror 304: incoherent unit 305: illumination optical system 306: optical path length difference providing unit 307: routing optics 308: condenser lens 309: spatial filter 310: collimator lens 311: half mirror 312: reflection mirror 313: XYZ stage 314: reference plane plate 315: λ / 4 wavelength plate 316: collimator lens 317: interferometer unit 318: reticle surface 319: Projection lens 320: Wafer surface 321: Wafer chuck 322: Wafer stage 323: Spherical mirror 324: Polarization separation element 325: Imaging lens 326: Camera 327: Condensing lens 328: Reflecting mirror 329: Index 330: Imaging lens 331: camera 401: y stage 402: x stage 403: z stage 404: reflection mirror 405: reflection mirror 406: light beam 101 from half mirror 311: low coherent light source 102: beam splitter 103: reflection mirror 104: reflection Mirror 105: optical path length difference providing unit 106: condenser lens 107: spatial filter 108: collimator lens 109: wavefront shaping optical system 110: beam splitter 111: Fizeau lens 112: Fizeau surface 113: test lens 114: spherical mirror 115: Imaging lens

Claims (3)

光源であるレ−ザから放射された光束を、フィゾー干渉計を構成する半透過参照面(以後フィゾー面と呼ぶ)に入射する前に2光束に分離・再結合するためのビ−ムスプリッタと、2光束が分離している間の光路長差が光源の可干渉距離以上で且つフィゾー干渉計の光路長との差が光源の可干渉距離以内になるように配置されたミラ−からなる光路長差付与部を設けたフィゾー干渉計において、前記光路長付与部にて一方の光束の偏光方向をもう一方の光束に対して直交させる手段と、前記フィゾー面と被測定対象との間にλ/4波長板を有することを特徴とした干渉測定装置。A beam splitter for separating and recombining a light beam emitted from a laser as a light source into two light beams before entering a transflective reference surface (hereinafter referred to as a Fizeau surface) constituting a Fizeau interferometer; An optical path comprising a mirror arranged such that the optical path length difference between the two light beams is greater than the coherence distance of the light source and the difference from the optical path length of the Fizeau interferometer is within the coherence distance of the light source. In a Fizeau interferometer provided with a length difference providing unit, a means for making the polarization direction of one light beam orthogonal to the other light beam in the optical path length providing unit, and λ between the Fizeau surface and the object to be measured. An interferometer having a quarter-wave plate. 前記光源は可干渉距離の短いKrF,ArF,F2エキシマレーザ光源であることを特徴とした請求項1記載のフィゾー干渉測定装置。2. The Fizeau interference measuring apparatus according to claim 1, wherein the light source is a KrF, ArF, F2 excimer laser light source having a short coherence distance. 前記フィゾー干渉計を搭載したことを特徴とした半導体露光装置。A semiconductor exposure apparatus equipped with the Fizeau interferometer.
JP2002235334A 2002-08-13 2002-08-13 Wavefront measuring apparatus and semiconductor exposure apparatus equipped with the same Pending JP2004077207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235334A JP2004077207A (en) 2002-08-13 2002-08-13 Wavefront measuring apparatus and semiconductor exposure apparatus equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235334A JP2004077207A (en) 2002-08-13 2002-08-13 Wavefront measuring apparatus and semiconductor exposure apparatus equipped with the same

Publications (1)

Publication Number Publication Date
JP2004077207A true JP2004077207A (en) 2004-03-11

Family

ID=32019844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235334A Pending JP2004077207A (en) 2002-08-13 2002-08-13 Wavefront measuring apparatus and semiconductor exposure apparatus equipped with the same

Country Status (1)

Country Link
JP (1) JP2004077207A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112903A (en) * 2004-10-14 2006-04-27 Olympus Corp Ultraviolet light source unit, interferometer using it, and adjusting method of interferometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112903A (en) * 2004-10-14 2006-04-27 Olympus Corp Ultraviolet light source unit, interferometer using it, and adjusting method of interferometer

Similar Documents

Publication Publication Date Title
JP3237309B2 (en) System error measuring method and shape measuring device using the same
JPH0712535A (en) Interferometer
US7106452B2 (en) Measuring device and measuring method
JP4478302B2 (en) Interferometer and semiconductor exposure apparatus equipped with the same
US6965435B2 (en) Interferometer system for measuring surface shape
US6909510B2 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
JP2008108852A (en) Projection exposure apparatus, optical component, and method of manufacturing device
JP3600881B2 (en) Interferometer and stage device
JP2003302205A (en) Shearing interference measuring method and shearing interferometer, method of manufacturing for projection optical system, and projection optical system, and projection exposure device
JPH10160582A (en) Interferometer for measuring transmitted wave front
JP2005062012A (en) Vibration-proof type interferometer device
JP2004077207A (en) Wavefront measuring apparatus and semiconductor exposure apparatus equipped with the same
CN102426406B (en) Optical system capable of simultaneously measuring and adjusting center deviations of two surfaces of optical glass
JP3072925B2 (en) Interferometer for transmitted wavefront measurement
JPH08233513A (en) Interference system
JP2003014415A (en) Point diffraction interferometer and aligner
JPH11325848A (en) Aspherical surface shape measurement device
JPH0814854A (en) Flat plate with computer hologram and measurement using the plate
JPH02259512A (en) Integrated interference measuring instrument
JPH02259506A (en) Fringe scanning type interference measuring instrument
JP2003185409A (en) Method for measuring interference, device of controlling interferometer, method for manufacturing projection lens, and projection exposure apparatus
JPH01193623A (en) Interference measuring apparatus
JPH102804A (en) Device for measuring transmission wave front of parallel plane plate
JPH0634334A (en) Wave front measuring method and interferential element for it
JP2000146514A (en) Interferometer