JP2004077054A - Closed type warm/cold water circulation facility - Google Patents

Closed type warm/cold water circulation facility Download PDF

Info

Publication number
JP2004077054A
JP2004077054A JP2002239517A JP2002239517A JP2004077054A JP 2004077054 A JP2004077054 A JP 2004077054A JP 2002239517 A JP2002239517 A JP 2002239517A JP 2002239517 A JP2002239517 A JP 2002239517A JP 2004077054 A JP2004077054 A JP 2004077054A
Authority
JP
Japan
Prior art keywords
water
gas
pipe
expansion tank
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002239517A
Other languages
Japanese (ja)
Other versions
JP4186551B2 (en
Inventor
Toshimasa Kato
加藤 俊正
Yoshimasa Nakano
中野 吉雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002239517A priority Critical patent/JP4186551B2/en
Publication of JP2004077054A publication Critical patent/JP2004077054A/en
Application granted granted Critical
Publication of JP4186551B2 publication Critical patent/JP4186551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Details Of Fluid Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the corrosion of a closed type warm/cold water circulation facility caused by oxygen in replenishing water. <P>SOLUTION: The warm/cool water heated or cooled by a heat source machine 51 flows in a circulation pump 52, a circulation advance pipe 53, a radiator 54 and a circulation returning pipe 55 in this order and is returned to the heat source machine 51. Heating or cooling is carried out by the radiator 54. An expansion tank 57 is connected to the circulation returning pipe 55 through a standing branch pipe 56 and water is stored on the midway in this expansion tank 57. Water level of this water is vertically moved corresponding to the expansion or shrinkage of the water in a circulation passage. An air-shielding floating body 58 is floated on a water surface such that atmosphere in the expansion tank 57 is not contacted with the water. Water deoxidized by a deoxidation device 60 is fed to the expansion tank 57 through a pipe 62. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水を熱源機と放熱器との間で循環させて暖房又は冷房を行うようにした密閉式温冷水循環設備に係り、特に循環系路の腐食を防止するよう改良した密閉式温冷水循環設備に関する。
【0002】
【従来の技術】
水を熱源機と放熱器との間で循環させて暖房又は冷房を行うようにした密閉式温冷水循環設備においては、水が該熱源機において加熱又は冷却されて温水又は冷水(以下、まとめて温冷水ということがある。)とし、この温冷水を放熱器に導いて放熱させるようにしている。この密閉式温冷水循環設備としては、循環系路が大気に開放しない密閉式のものと、大気に開放した開放式のものとがある。前者の密閉式温冷水循環設備にあっては、水の体積膨張又は収縮を吸収するために膨張タンクが循環系路の途中に設けられている。
【0003】
循環水中に酸素が含まれると、機器や配管の腐食が進行し易くなるが、密閉式の場合、循環水が大気に接しないので、水への大気中の酸素の溶け込みがなく、機器や配管が腐食しにくい。
【0004】
この密閉式温冷水循環設備において、腐食を確実に防止するために、循環系路の途中に脱酸素装置を設けることがある。
【0005】
【発明が解決しようとする課題】
密閉式温冷水循環設備においても、循環水が減少するので、これを補うために循環系路に補給水を供給する必要がある。この補給水に酸素が含まれているため、特に補給水を大量に供給したときには循環水中の酸素濃度が高くなり、機器や配管に腐食が生じるおそれがある。
【0006】
本発明は、このような補給水中の酸素に起因した密閉式温冷水循環設備の腐食を防止することを目的とする。
【0007】
【課題を解決するための手段】
本発明の密閉式温冷水循環設備は、水の循環系路と、該循環系路の途中に設けられた熱源機、放熱器及び膨張タンクとを有する密閉式温冷水循環設備において、補給水の脱酸素手段と、該脱酸素手段で脱酸素処理した補給水を前記膨張タンクに供給する手段とを備えたことを特徴とするものである。
【0008】
かかる本発明の密閉式温冷水循環設備にあっては、補給水を脱酸素してから循環系路に供給するので、補給水が循環水に酸素を持ち込むことが防止され、酸素に起因した循環系路の腐食が防止される。
【0009】
本発明では、該膨張タンク内に不活性ガスを導入する手段を備えることが好ましい。このように構成した場合、膨張タンク内の水面よりも上側の雰囲気を不活性ガス雰囲気とし、膨張タンク内での酸素の溶け込みを防止できるようになる。これにより、膨張タンクから酸素濃度がきわめて低い水を循環系路に送り込むことが可能となる。
【0010】
本発明では、脱酸素手段が不活性ガス導入手段、補給水と不活性ガスを接触させて、補給水内の酸素を不活性ガスに置き換える不活性ガス置換手段、補給水と接触した後のガスを排気する排ガス手段を備えた脱酸素手段であり、前記膨張タンクへ該脱酸素手段の排ガス手段から排気されるガスを導入する手段を備えた構成としてもよい。このようにすれば、脱酸素手段で用いた不活性ガスを膨張タンク内の大気パージ用ガスとして利用するので、不活性ガスコストが低減される。
【0011】
本発明では、膨張タンク内の水面を覆う遮気手段を設けてもよい。このようにすれば、膨張タンク内における水への酸素の溶け込みを防止することができる。
【0012】
【発明の実施の形態】
以下、図面を参照して実施の形態について説明する。まず、本発明において採用するのに好適な水の脱酸素装置について説明する。図1は、この脱酸素装置を構成する脱気ユニットの系統図、図2はこの脱気ユニットを複数個直列に接続した脱酸素装置の系統図である。
【0013】
図1の脱気ユニット10は、立上配管1と立下配管2とを有し、立上配管1の上部と立下配管2の上部は、連通管3で連通されている。立上配管1及び立下配管2はほぼ鉛直に立設されており、これらを連通する連通管3はほぼ水平に設けられている。
【0014】
立上配管1には、不活性ガス(図1では窒素ガス)を注入するためのエジェクタ4が設けられ、このエジェクタ4の上部に、気液混合手段としての多孔板5が設けられている。また、連通部3には、気体のみを排出するための気体排出手段としての、気液分離器6とガス抜き弁7が設けられている。
【0015】
原水は、ポンプ等で立上配管1の下部より導入され、立上配管1内を上向流で流れる。この立上配管1内の原水の上向流速は、この実施の形態では、立上配管1内のガスの上昇速度よりも小さい流速となるように調整する。エジェクタ4には、図示しない窒素ガス源から窒素ガスが導入されており、エジェクタ効果により立上配管1内の原水中に注入される。
【0016】
窒素ガスが注入された原水は、多孔板5を通過する際に注入された窒素ガスと十分に混合接触する。即ち、注入された窒素ガスは原水の上向流よりも大きい速度で立上配管1内を上昇するが、窒素ガスは多孔板5で上昇を阻止され、多孔板5の下部に窒素ガス層を形成する。原水は、この窒素ガス層を通過することとなり、あたかも窒素ガス層の濾過層を通過する如くして、原水と窒素ガスとが十分に接触し、この原水と窒素ガスとの接触で、原水中の溶存酸素が窒素ガス側に移行し、原水が脱酸素される。
【0017】
立上配管1内の原水の上向流速がガスの上昇速度よりも大きいと、このような窒素ガス層が形成されず、十分な接触効率を得ることができないことから、立上配管1内の原水の上向流速はガスの上昇速度よりも小さくすることが好ましい。
【0018】
多孔板5としては、例えば、複数枚のパンチングプレートを、その孔位置が上下方向で異なる位置となるように、積層して設けたものを用いることができる。このパンチングプレートの孔径や厚さ、開孔率(パンチングプレートの全面積に対する開孔部分の面積の合計)、積層枚数、積層間隔等は、脱気ユニットの規模や脱気効率、通水効率等に応じて適宜決定されるが、例えば孔径2〜5mm程度の開孔が20〜50%の開孔率で形成された厚さ2〜10mm程度のパンチングプレートを、1〜10枚、互いに5〜20mm程度の間隔を設けて配置するのが好ましい。
【0019】
立上配管1内の前記多孔板5の上部に、多孔板の孔径よりも大きい径(例えば3〜10mm程度)で原水の上昇流でガス抜き弁へ流出しない程度の比重(例えば1.1〜5.0)の充填材を充填し、さらに気液接触効率を高めるようにしても良い。この場合、この充填材がガス抜き弁以降に流出しないように、立上配管の最終端(最上部)の近傍に多孔板5と同じか、それ以下の孔径をもった多孔板(図示せず)を配置しても良い。
【0020】
また、立上配管1の長さ、特にエジェクタ4よりも上部の長さは、長い程原水と窒素ガスとの接触時間が長くなり、効果的である。ただし、装置設置スペースの制約もあることから、立上配管1の長さはエジェクタ4よりも上の部分の長さが0.5〜1.5m程度となるように設計することが好ましい。また、気液混合手段としての多孔板5はエジェクタ4から、0.05〜0.1m程度上方に設けるのが好ましい。
【0021】
立上配管1内を上昇する間に窒素ガスと接触し、含有される溶存酸素が窒素ガス側に移行して脱酸素された気液混合流は、立上配管1の上部から連通管3へ流入し、連通管3内をほぼ水平に流れ、気液分離器6で気体と液体とに分離され、分離された気体はガス抜き弁7より排気される。
【0022】
ガス抜き弁7としては、内部にフロートを内蔵し、このフロートにより、弁が開閉するフリーフローティングレバー方式の弁が、複雑な制御装置が不要であることから好ましい。このガス抜き弁内に気体が蓄積され、その蓄積量が多くなると内部のフロートが下がり、弁が開となる。また、気体量が少なくなるとフロートが上がり弁が閉になる。
【0023】
なお、このようなガス抜き弁7は、気液分離器6を設けずに連通管3に直接設けても良い。
【0024】
連通管3から立下配管2に流入した水は、気液分離器6にて大部分の気体が分離除去されたものであるが、更に立下配管2を下向流で流下する過程で気体が分離される。即ち、前述の如く、立上配管1内の液流速はガスの上昇速度よりも遅いため、立下配管2の管径を立上配管1の管径と同程度とした場合、この立下配管2内を流下する過程でも気泡が上昇して処理水中の気体濃度が低減される。従って、この立下配管2も長い程気体濃度低減に有利であるが、一般的には立下配管2の長さは立上配管1の長さと同程度とされる。この立下配管2にも、気泡を集積、会合させて上昇させ易くするために、立上配管1と同様の多孔板を設けてもよい。
【0025】
このようにして脱酸素が行われた処理水は立下配管2の下部より排出される。
【0026】
図2の脱酸素装置は、このような脱気ユニット10(10A,10B,10C,10D)を、各々の前段の脱気ユニット10の立下配管2と後段の脱気ユニット10の立上配管1とを連結管11で連結することにより、4個直列に接続したものである。図2において、図1に示す部材と同一機能を奏する部材には同一符号を付してある。
【0027】
原水はポンプPにより、原水供給配管12を経て第1脱気ユニット10Aに導入され、第2脱気ユニット10B、第3脱気ユニット10C、及び第4脱気ユニット10Dを順次流れて脱酸素が行われ、処理水は第4脱気ユニット10Dの立下配管2に接続された処理水配管13より取り出される。
【0028】
窒素ガス源(窒素ガスボンベ又は窒素発生器)20からの窒素ガスは、配管14によって最終段の第4脱気ユニット10Dのエジェクタ4に注入される。この第4脱気ユニット10Dのガス抜き弁7から取り出された気体が配管15より第3脱気ユニット10Cのエジェクタ4に注入される。そして、第3脱気ユニット10Cのガス抜き弁7から取り出された気体が配管16より第2脱気ユニット10Bのエジェクタ4に注入され、第2脱気ユニット10Bのガス抜き弁7から取り出された気体が配管17より第1脱気ユニット10Aのエジェクタ4に注入され、第1脱気ユニット10Aのガス抜き弁7から取り出された気体はガス抜き弁7から脱酸素装置外へ排気される。
【0029】
この脱酸素装置であれば、脱気ユニット10A〜10Dによる処理で、原水中の溶存酸素を極低濃度にまで除去することができる。しかも、窒素ガスは第4脱気ユニット10Dのみに注入し、前段の脱気ユニット10A〜10Cには、それぞれその後段の脱気ユニット10B〜10Dから排気された気体を注入し、後段の脱気ユニットほど注入する窒素ガスの純度を上げることで、窒素ガス使用量を節減した上で原水中の溶存酸素を効率的に除去することができる。
【0030】
なお、配管15〜17には、それぞれ窒素ガス源と同流量の気体ポンプ30を設け、強制的に窒素ガスを注入し、窒素ガス注入量をより安定させるようにしても良い。このようにすれば、窒素ガスを効率良く水に供給することができる。
【0031】
また、配管15〜17のエゼクタの直前に逆止弁を設け、前記気体ポンプ30は原水ポンプの起動・停止に連動するように制御すれば、配管15〜17には、常に不活性ガスが充填されている状態になるため、脱酸素装置を頻繁に起動・停止させても、良好な脱酸素水が製造できるので好適である。
【0032】
図2では、図1の脱気ユニットを4個直列に接続したものを示したが、脱気ユニットを2個又は3個或いは5個以上接続したものであっても良い。また、図1,2では、不活性ガスとして窒素ガスを用いたものを示したが、本発明において、不活性ガスとしては、窒素ガスに限らず、アルゴンその他の不活性ガスを用いることもできる。ただし、コスト面からは窒素ガスが好適である。
【0033】
図3は、2段に脱気ユニット10E,10Fを直列接続した脱酸素装置の系統図である。脱気ユニット10Eにあっては、立下配管2にもエジェクタ4を設け、この立下配管2のエジェクタ4に窒素ガスを導入している。この代わりに、脱気ユニット10Fの立上配管1のエジェクタ4は省略されている。つまり、脱気ユニット10Fの立上配管1のエジェクタ4を脱気ユニット10Eの立下配管2に移設した構成となっている。このエジェクタ4を立下配管2の上部に配置すると、窒素ガス等の不活性ガスと水との接触時間が長くなり、脱酸素効率を高めることができる。
【0034】
この図3の脱酸素装置によっても原水から溶存酸素を効率よく除去することができる。
【0035】
なお、従来、液体中の溶存気体を除去するための脱気装置、特に脱酸素処理に用いられる脱気装置としては、膜脱気装置や窒素ガス脱気装置がある。
【0036】
膜脱気装置は、脱気膜で区画された一方の側に真空を作用させて減圧し、他方の側に被処理水を導入し、被処理水中の溶存気体のみを脱気膜を介して真空側に移動させるものである。
【0037】
このような従来の膜脱気装置では、真空発生装置や凝縮水分離装置などの付帯設備が必要であり、設備コストが高くつく。また、被処理水の性状によっては、膜汚染又は膜劣化が激しく、脱気膜を頻繁に交換する必要があるなど、保守管理も煩雑である。
【0038】
これに対し、上記図1〜3の脱酸素装置にあっては、不活性ガスが注入された被処理水が立上配管内を上昇し、気液混合手段で混合されることにより、被処理水が不活性ガスと効率的に接触し、被処理水中の溶存気体が不活性ガス側に移行する。そして、不活性ガス側に移行した気体は立上配管の上部の連通部の気体排出手段より排出される。被処理水は連通部を経て更に立下配管を下降するが、この立下配管で下降する間に被処理水中の気体が立下配管を上昇して上部の連通部の気体排出手段より排出されるため、被処理水中の酸素濃度はより一層低減される。
【0039】
特に、図1〜3の脱酸素装置は、脱気ユニットをn個(nは2以上の整数)備え、第kの脱気ユニット(kは1ないし(n−1)の整数)で処理した水を第(k+1)の脱気ユニットに通水するように各脱気ユニットを直列に接続し、最終段の第nの脱気ユニットの不活性ガス注入手段に不活性ガス発生源からの不活性ガスを供給すると共に、第(k+1)の脱気ユニットの気体排出手段から取り出された気体を1段だけ前段側の第kの脱気ユニットの不活性ガス注入手段に供給するようにしている。
【0040】
この脱酸素装置であれば、多段に脱酸素処理するため、被処理水中の溶存酸素を極低濃度にまで除去することができる。しかも、不活性ガスは最終段の脱気ユニットに注入し、前段の脱気ユニットには、それぞれその後段の脱気ユニットから排気された気体を注入し、後段の脱気ユニットほど注入する不活性ガスの純度を上げることで、不活性ガス使用量を節減した上で被処理水中の溶存酸素を効率的に除去することができる。
【0041】
即ち、第1段の脱気ユニットには、被処理水から分離した溶存酸素を多く含む低純度の不活性ガスが注入されるが、この第1段の脱気ユニットには、溶存酸素濃度の高い被処理水が導入されるため、このような低純度の不活性ガスでも十分な脱酸素効率を得ることができる。そして、第1段の脱気ユニットから順次後段の脱気ユニットにゆくほど、導入される被処理水の溶存酸素濃度は低くなるが、不活性ガスの純度は高くなるため、脱気効率が低下することはなく、最終段の脱気ユニットでは、高純度の不活性ガスにより被処理水中の溶存酸素が極低濃度にまで脱気される。
【0042】
なお、本発明では図1〜3以外の脱酸素手段を用いてもよい。この脱酸素手段は、脱酸素できるものであればよく、脱気までは行わないもので足りる。また、脱酸素処理水中に窒素ガス等の不活性ガスが残留してもよい。
【0043】
図4は本発明の密閉式温冷水循環設備の系統図である。
【0044】
熱源機51で加熱又は冷却された温冷水は、循環ポンプ52、循環往管53、放熱器54、循環戻管55の順に流れて熱源機51に戻る。放熱器54により暖房又は冷房が行われる。
【0045】
循環戻管に立上枝管56を介して大気開放式膨張タンク57が接続されており、この膨張タンク57内の途中まで水が貯溜されている。この水の水位は、循環系路内の水の膨張、収縮に応じて上下する。膨張タンク57の上部には不活性ガスとしての窒素ガス(N)の導入口と、ガス流出口とが設けられている。
【0046】
なお、この窒素ガス(N)は、窒素ガス発生装置や窒素ガスボンベ等の窒素ガス源から供給されるものであってもよく、前記脱酸素装置のガス抜き弁7から排出されるガスであってもよい。後者の場合、窒素ガスコストを低減することができる。なお、後者のように脱酸素装置の排ガスを膨張タンク57へ導入する場合、膨張タンク57に補給水を供給しない場合でも膨張タンク57に窒素ガス等の不活性ガスを連続的又は間欠的に導入し、膨張タンク57内の雰囲気パージを行うのが好ましい。このためには、例えば脱酸素装置の窒素ガス発生装置を補給水非供給時にも作動させる。この窒素ガス発生装置は常時運転されてもよいが、間欠運転すると、窒素使用量をさらに低減することができる。
【0047】
この実施の形態にあっては、膨張タンク57内の水面より上側の気体と水とが接することがないように遮気手段としての遮気浮体58が水面に浮んでいる。この遮気浮体58としては、発泡合成樹脂のボール等が好適である。この遮気浮体58が水面に浮んでいることにより、水面より上側の気体中に酸素が微量含まれていても、この酸素が膨張タンク57内の水に溶け込むことが防止される。
【0048】
この膨張タンク57内に補給水を供給するように補給水配管62が該膨張タンク57の下部に接続されている。この補給水配管62へは、例えば高架水槽からの水が好ましくは前記図1,2又は図3に示す構成の脱酸素装置60によって脱酸素処理され、バルブ61(ポンプであってもよい)を介して供給される。このように脱酸素処理水が膨張タンク57を介して補給水として循環系路に供給されるため、補給水による循環水中への酸素持ち込みがなく、循環水中の溶存酸素濃度は常に極めて低い濃度に保たれる。これにより、循環系路の腐食が確実に防止される。
【0049】
【発明の効果】
以上の通り、本発明によると、補給水中の酸素に起因した密閉式温冷水循環設備の腐食を防止する。
【図面の簡単な説明】
【図1】本発明の密閉式温冷水循環設備に用いられる脱気ユニットを示す系統図である。
【図2】本発明の密閉式温冷水循環設備に用いられる脱気装置の系統図である。
【図3】本発明の密閉式温冷水循環設備に用いられる脱気装置の系統図である。
【図4】本発明の密閉式温冷水循環設備の系統図である。
【符号の説明】
1 立上配管
2 立下配管
3 連通管
4 エジェクタ
5 多孔板
6 気液分離器
7 ガス抜き弁
8 減圧弁
10,10A,10B,10C,10D,10E,10F 脱気ユニット
20 窒素ガス源
51 熱源機
54 放熱器
57 膨張タンク
58 遮気浮体
60 脱酸素装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a closed-type hot / cold water circulating system in which water is circulated between a heat source device and a radiator to perform heating or cooling, and particularly to a closed-type hot / cold water circulating system improved to prevent corrosion of a circulation system. It relates to cold water circulation equipment.
[0002]
[Prior art]
In a closed type hot / cold water circulation system in which water is circulated between a heat source device and a radiator to perform heating or cooling, water is heated or cooled in the heat source device and hot or cold water (hereinafter collectively referred to as The hot and cold water is led to a radiator to radiate heat. As the closed type hot / cold water circulation equipment, there are a closed type in which the circulation system is not open to the atmosphere and an open type in which the circulation path is open to the atmosphere. In the former closed-type hot / cold water circulation system, an expansion tank is provided in the middle of the circulation path to absorb the volume expansion or contraction of water.
[0003]
If oxygen is contained in the circulating water, the corrosion of the equipment and piping will easily progress, but in the case of a closed type, the circulating water does not come into contact with the atmosphere, so the oxygen in the atmosphere does not dissolve into the water and the equipment and piping But hard to corrode.
[0004]
In this closed type hot / cold water circulation system, a deoxygenation device may be provided in the middle of a circulation system in order to reliably prevent corrosion.
[0005]
[Problems to be solved by the invention]
Even in the closed type hot / cold water circulating equipment, the amount of circulating water decreases, so it is necessary to supply make-up water to the circulation system to compensate for this. Since oxygen is contained in the makeup water, especially when a large amount of makeup water is supplied, the oxygen concentration in the circulating water becomes high, and there is a possibility that corrosion occurs in equipment and piping.
[0006]
An object of the present invention is to prevent corrosion of a closed type hot / cold water circulation system caused by oxygen in such makeup water.
[0007]
[Means for Solving the Problems]
The closed hot / cold water circulation system of the present invention is a closed hot / cold water circulation system having a water circulation system, a heat source device, a radiator, and an expansion tank provided in the middle of the water circulation system. It is characterized by comprising a deoxidizing means, and a means for supplying makeup water deoxidized by the deoxidizing means to the expansion tank.
[0008]
In the closed type hot / cold water circulation system of the present invention, since the makeup water is supplied to the circulation system after being deoxygenated, the makeup water is prevented from bringing oxygen into the circulation water, and the circulation caused by the oxygen is prevented. Corrosion of the system is prevented.
[0009]
In the present invention, it is preferable to provide a means for introducing an inert gas into the expansion tank. In the case of such a configuration, the atmosphere above the water surface in the expansion tank is set as an inert gas atmosphere, so that the incorporation of oxygen in the expansion tank can be prevented. This makes it possible to feed water having a very low oxygen concentration from the expansion tank to the circulation path.
[0010]
In the present invention, the deoxygenating means is an inert gas introducing means, an inert gas replacing means for contacting make-up water with an inert gas to replace oxygen in the make-up water with an inert gas, and a gas after contacting the make-up water. It may be a deoxidizing means provided with an exhaust gas means for exhausting gas, and a means for introducing gas exhausted from the exhaust gas means of the deoxidizing means to the expansion tank. With this configuration, the inert gas used in the deoxidizing means is used as the gas for purging the atmosphere in the expansion tank, so that the cost of the inert gas is reduced.
[0011]
In the present invention, a gas shielding means for covering the water surface in the expansion tank may be provided. This can prevent oxygen from being dissolved into water in the expansion tank.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments will be described with reference to the drawings. First, a water deoxidizer suitable for use in the present invention will be described. FIG. 1 is a system diagram of a deaeration unit constituting the deoxygenation device, and FIG. 2 is a system diagram of a deoxygenation device in which a plurality of the deaeration units are connected in series.
[0013]
The degassing unit 10 in FIG. 1 has a rising pipe 1 and a falling pipe 2, and an upper part of the rising pipe 1 and an upper part of the falling pipe 2 are connected by a communication pipe 3. The rising pipe 1 and the falling pipe 2 are erected substantially vertically, and the communication pipe 3 that connects them is provided substantially horizontally.
[0014]
The riser pipe 1 is provided with an ejector 4 for injecting an inert gas (nitrogen gas in FIG. 1). Above the ejector 4, a porous plate 5 as a gas-liquid mixing means is provided. In addition, the communication section 3 is provided with a gas-liquid separator 6 and a gas vent valve 7 as gas discharging means for discharging only gas.
[0015]
Raw water is introduced from a lower part of the riser pipe 1 by a pump or the like, and flows in the riser pipe 1 in an upward flow. In this embodiment, the upward flow rate of the raw water in the rising pipe 1 is adjusted so as to be smaller than the rising rate of the gas in the rising pipe 1. A nitrogen gas is introduced into the ejector 4 from a nitrogen gas source (not shown), and is injected into raw water in the riser pipe 1 by an ejector effect.
[0016]
The raw water into which the nitrogen gas has been injected sufficiently mixes with the injected nitrogen gas when passing through the perforated plate 5. That is, the injected nitrogen gas rises in the rising pipe 1 at a speed higher than the upward flow of the raw water, but the nitrogen gas is prevented from rising by the perforated plate 5, and a nitrogen gas layer is formed below the perforated plate 5. Form. The raw water passes through the nitrogen gas layer, and the raw water and the nitrogen gas are sufficiently contacted as if they pass through the filtration layer of the nitrogen gas layer. Dissolved oxygen moves to the nitrogen gas side, and the raw water is deoxygenated.
[0017]
If the upward flow velocity of the raw water in the rising pipe 1 is higher than the rising rate of the gas, such a nitrogen gas layer is not formed, and sufficient contact efficiency cannot be obtained. It is preferable that the upward flow velocity of the raw water is smaller than the upward velocity of the gas.
[0018]
As the perforated plate 5, for example, a plate in which a plurality of punching plates are stacked so that the hole positions thereof are different in the vertical direction can be used. The hole diameter and thickness of this punching plate, the opening ratio (total area of the opening portion with respect to the total area of the punching plate), the number of stacked layers, the stacking interval, etc. are determined by the scale of the degassing unit, degassing efficiency, water flow efficiency, etc. For example, 1 to 10 punching plates each having a thickness of about 2 to 10 mm and having a hole diameter of about 2 to 5 mm formed at an opening ratio of 20 to 50%, It is preferable to arrange them at intervals of about 20 mm.
[0019]
The specific gravity (for example, 1.1 to 1.1 mm) is set above the perforated plate 5 in the riser pipe 1 and has a diameter larger than the hole diameter of the perforated plate (for example, about 3 to 10 mm) and does not flow out to the degassing valve due to the upward flow of the raw water. 5.0) may be filled to further enhance the gas-liquid contact efficiency. In this case, a perforated plate (not shown) having a hole diameter equal to or smaller than that of the perforated plate 5 near the final end (uppermost portion) of the riser pipe so that the filler does not flow out after the vent valve. ) May be arranged.
[0020]
In addition, the longer the length of the riser pipe 1, particularly the length above the ejector 4, the longer the contact time between the raw water and the nitrogen gas, which is more effective. However, since there is a restriction on the installation space of the apparatus, it is preferable to design the length of the riser pipe 1 so that the length above the ejector 4 is about 0.5 to 1.5 m. Further, it is preferable that the perforated plate 5 as the gas-liquid mixing means is provided about 0.05 to 0.1 m above the ejector 4.
[0021]
The gas-liquid mixed flow which comes into contact with the nitrogen gas while rising in the riser pipe 1 and the dissolved oxygen contained therein moves to the nitrogen gas side and is deoxygenated flows from the upper part of the riser pipe 1 to the communication pipe 3. The gas flows into the communication pipe 3 substantially horizontally, is separated into gas and liquid by the gas-liquid separator 6, and the separated gas is exhausted from the gas release valve 7.
[0022]
The degassing valve 7 is preferably a free-floating lever type valve in which a float is built in and the valve is opened and closed by the float because a complicated control device is not required. Gas is accumulated in the vent valve, and when the accumulated amount increases, the internal float decreases and the valve opens. Also, when the amount of gas decreases, the float rises and the valve closes.
[0023]
Note that such a gas release valve 7 may be provided directly on the communication pipe 3 without providing the gas-liquid separator 6.
[0024]
Most of the gas flowing into the down pipe 2 from the communication pipe 3 has been separated and removed by the gas-liquid separator 6. Are separated. That is, as described above, since the liquid flow velocity in the riser pipe 1 is slower than the rise rate of the gas, when the diameter of the faller pipe 2 is substantially equal to the diameter of the riser pipe 1, Also in the process of flowing down inside 2, the bubbles rise and the gas concentration in the treated water is reduced. Therefore, the longer the down pipe 2 is, the more advantageous in reducing the gas concentration. However, in general, the length of the down pipe 2 is almost equal to the length of the up pipe 1. The riser pipe 2 may be provided with a perforated plate similar to the riser pipe 1 in order to accumulate and associate the bubbles to facilitate the rise.
[0025]
The treated water thus deoxidized is discharged from the lower part of the down pipe 2.
[0026]
The deoxygenating apparatus shown in FIG. 2 connects such a deaeration unit 10 (10A, 10B, 10C, 10D) to the down pipe 2 of the preceding deaeration unit 10 and the rise pipe of the subsequent deaeration unit 10. 1 and 4 are connected in series by connecting tube 11. 2, members having the same functions as the members shown in FIG. 1 are denoted by the same reference numerals.
[0027]
The raw water is introduced into the first deaeration unit 10A via the raw water supply pipe 12 by the pump P, and sequentially flows through the second deaeration unit 10B, the third deaeration unit 10C, and the fourth deaeration unit 10D, so that deoxygenation is performed. Then, the treated water is taken out from the treated water pipe 13 connected to the falling pipe 2 of the fourth deaeration unit 10D.
[0028]
Nitrogen gas from a nitrogen gas source (nitrogen gas cylinder or nitrogen generator) 20 is injected into the ejector 4 of the final stage fourth degassing unit 10D by a pipe. The gas extracted from the degassing valve 7 of the fourth degassing unit 10D is injected from the pipe 15 into the ejector 4 of the third degassing unit 10C. Then, the gas taken out from the degassing valve 7 of the third degassing unit 10C is injected from the pipe 16 into the ejector 4 of the second degassing unit 10B, and is taken out from the gas venting valve 7 of the second degassing unit 10B. Gas is injected into the ejector 4 of the first deaeration unit 10A from the pipe 17, and gas extracted from the degassing valve 7 of the first deaeration unit 10A is exhausted from the degassing valve 7 to the outside of the deoxygenating device.
[0029]
With this deoxidizer, the dissolved oxygen in the raw water can be removed to an extremely low concentration by the treatment with the deaeration units 10A to 10D. In addition, nitrogen gas is injected only into the fourth deaeration unit 10D, and gas exhausted from the subsequent deaeration units 10B to 10D is injected into the preceding deaeration units 10A to 10C, respectively. By increasing the purity of nitrogen gas to be injected into each unit, the amount of nitrogen gas used can be reduced and dissolved oxygen in raw water can be efficiently removed.
[0030]
The pipes 15 to 17 may be provided with a gas pump 30 having the same flow rate as the nitrogen gas source, and forcibly injecting nitrogen gas to stabilize the nitrogen gas injection amount. By doing so, the nitrogen gas can be efficiently supplied to the water.
[0031]
If a check valve is provided just before the ejectors of the pipes 15 to 17 and the gas pump 30 is controlled so as to be linked with the start / stop of the raw water pump, the pipes 15 to 17 are always filled with an inert gas. In this state, even if the deoxidizing device is frequently started and stopped, good deoxygenated water can be produced, which is preferable.
[0032]
FIG. 2 shows an example in which four deaeration units of FIG. 1 are connected in series. However, two, three, or five or more deaeration units may be connected. Further, FIGS. 1 and 2 show the case where nitrogen gas is used as the inert gas. However, in the present invention, the inert gas is not limited to nitrogen gas, and argon or another inert gas can also be used. . However, nitrogen gas is preferable from the viewpoint of cost.
[0033]
FIG. 3 is a system diagram of a deoxidizer in which deaeration units 10E and 10F are connected in series in two stages. In the degassing unit 10E, an ejector 4 is also provided in the falling pipe 2, and nitrogen gas is introduced into the ejector 4 of the falling pipe 2. Instead, the ejector 4 of the rising pipe 1 of the deaeration unit 10F is omitted. That is, the ejector 4 of the rising pipe 1 of the deaeration unit 10F is moved to the falling pipe 2 of the deaeration unit 10E. When the ejector 4 is disposed above the falling pipe 2, the contact time between an inert gas such as a nitrogen gas and water and water becomes longer, and the deoxidation efficiency can be increased.
[0034]
The dissolved oxygen from the raw water can also be efficiently removed by the deoxidizer of FIG.
[0035]
Conventionally, as a deaerator for removing dissolved gas in a liquid, in particular, a deaerator used for deoxygenation treatment, there are a membrane deaerator and a nitrogen gas deaerator.
[0036]
In the membrane deaerator, a vacuum is applied to one side partitioned by the deaeration membrane to reduce the pressure, water to be treated is introduced to the other side, and only dissolved gas in the water to be treated is passed through the deaeration membrane. It is moved to the vacuum side.
[0037]
In such a conventional membrane deaerator, auxiliary equipment such as a vacuum generator and a condensed water separator is required, and the equipment cost is high. In addition, depending on the properties of the water to be treated, maintenance and management is complicated, for example, membrane contamination or membrane deterioration is severe, and the degassing membrane needs to be replaced frequently.
[0038]
On the other hand, in the deoxygenating apparatus shown in FIGS. 1 to 3, the water to be treated into which the inert gas has been injected rises in the riser pipe and is mixed by the gas-liquid mixing means. Water efficiently contacts the inert gas, and the dissolved gas in the water to be treated moves to the inert gas side. Then, the gas that has moved to the inert gas side is discharged from the gas discharge means in the communicating portion above the rising pipe. The water to be treated further descends through the downcomer pipe through the communication section, and while descending in the downcomer pipe, the gas in the water to be treated ascends the downpipe and is discharged from the gas discharge means in the upper communication section. Therefore, the oxygen concentration in the water to be treated is further reduced.
[0039]
In particular, the deoxygenating apparatus shown in FIGS. 1 to 3 includes n deaeration units (n is an integer of 2 or more), and is processed by a k-th deaeration unit (k is an integer of 1 to (n-1)). The degassing units are connected in series so that water is passed through the (k + 1) th degassing unit, and inert gas from the inert gas generation source is supplied to the inert gas injection means of the last nth degassing unit. In addition to supplying the active gas, the gas extracted from the gas discharging means of the (k + 1) -th degassing unit is supplied to the inert gas injection means of the k-th degassing unit in the preceding stage by only one stage. .
[0040]
With this deoxidizer, since the oxygen is deoxidized in multiple stages, the dissolved oxygen in the water to be treated can be removed to an extremely low concentration. In addition, the inert gas is injected into the degassing unit at the last stage, the gas exhausted from the degassing unit at the subsequent stage is injected into the degassing unit at the previous stage, and the inert gas is injected into the degassing unit at the later stage. By increasing the purity of the gas, the amount of inert gas used can be reduced and the dissolved oxygen in the water to be treated can be efficiently removed.
[0041]
That is, a low-purity inert gas containing a large amount of dissolved oxygen separated from the water to be treated is injected into the first-stage deaeration unit. Since high water to be treated is introduced, sufficient deoxygenation efficiency can be obtained even with such a low-purity inert gas. The concentration of dissolved oxygen in the water to be introduced decreases as the degassing unit goes from the first degassing unit to the subsequent degassing unit, but the purity of the inert gas increases, and the degassing efficiency decreases. In the degassing unit at the final stage, the dissolved oxygen in the water to be treated is degassed to a very low concentration by the high-purity inert gas.
[0042]
In the present invention, a deoxygenating means other than those shown in FIGS. The deoxygenating means only needs to be capable of deoxidizing, and does not need to perform degassing. Further, an inert gas such as a nitrogen gas may remain in the deoxygenated water.
[0043]
FIG. 4 is a system diagram of the closed type hot / cold water circulation equipment of the present invention.
[0044]
The hot or cold water heated or cooled by the heat source unit 51 flows in the order of the circulation pump 52, the circulation outgoing pipe 53, the radiator 54, and the circulation return pipe 55, and returns to the heat source unit 51. Heating or cooling is performed by the radiator 54.
[0045]
An open-to-atmosphere expansion tank 57 is connected to the circulation return pipe via a rising branch pipe 56, and water is stored halfway in the expansion tank 57. The level of this water rises and falls according to the expansion and contraction of the water in the circulation path. In the upper part of the expansion tank 57, an inlet for nitrogen gas (N 2 ) as an inert gas and a gas outlet are provided.
[0046]
The nitrogen gas (N 2 ) may be supplied from a nitrogen gas source such as a nitrogen gas generator or a nitrogen gas cylinder, or may be a gas discharged from the degassing valve 7 of the deoxidizer. You may. In the latter case, the cost of nitrogen gas can be reduced. When the exhaust gas from the deoxidizer is introduced into the expansion tank 57 as in the latter case, an inert gas such as a nitrogen gas is continuously or intermittently introduced into the expansion tank 57 even when makeup water is not supplied to the expansion tank 57. Preferably, the atmosphere in the expansion tank 57 is purged. For this purpose, for example, the nitrogen gas generator of the deoxidizer is operated even when the makeup water is not supplied. This nitrogen gas generator may be operated at all times, but if it is operated intermittently, the nitrogen usage can be further reduced.
[0047]
In this embodiment, an air-insulating floating body 58 as air-insulating means is floating on the water surface so that the gas above the water surface in the expansion tank 57 does not come into contact with water. The air-insulating floating body 58 is preferably a ball made of a foamed synthetic resin. Since the air-blocking floating body 58 is floating on the water surface, even if a small amount of oxygen is contained in the gas above the water surface, the oxygen is prevented from being dissolved in the water in the expansion tank 57.
[0048]
A make-up water pipe 62 is connected to a lower portion of the expansion tank 57 so as to supply make-up water into the expansion tank 57. For example, water from an elevated water tank is preferably deoxygenated to the makeup water pipe 62 by a deoxygenation device 60 having the configuration shown in FIG. 1, 2, or 3, and a valve 61 (which may be a pump) is provided. Supplied via As described above, since the deoxygenated water is supplied to the circulation system as makeup water via the expansion tank 57, oxygen is not brought into the circulation water by makeup water, and the dissolved oxygen concentration in the circulation water is always extremely low. Will be kept. As a result, corrosion of the circulation path is reliably prevented.
[0049]
【The invention's effect】
As described above, according to the present invention, corrosion of the closed-type hot / cold water circulation equipment caused by oxygen in makeup water is prevented.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a deaeration unit used in a closed type hot / cold water circulation system of the present invention.
FIG. 2 is a system diagram of a deaerator used in the closed type hot / cold water circulation system of the present invention.
FIG. 3 is a system diagram of a deaerator used in the closed type hot / cold water circulation equipment of the present invention.
FIG. 4 is a system diagram of the closed type hot / cold water circulation equipment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rise pipe 2 Fall pipe 3 Communication pipe 4 Ejector 5 Perforated plate 6 Gas-liquid separator 7 Gas release valve 8 Pressure reducing valve 10, 10A, 10B, 10C, 10D, 10E, 10F Deaeration unit 20 Nitrogen gas source 51 Heat source Machine 54 radiator 57 expansion tank 58 air-insulated floating body 60 deoxidizer

Claims (4)

水の循環系路と、該循環系路の途中に設けられた熱源機、放熱器及び膨張タンクとを有する密閉式温冷水循環設備において、
補給水の脱酸素手段と、
該脱酸素手段で脱酸素処理した補給水を前記膨張タンクに供給する手段とを備えたことを特徴とする密閉式温冷水循環設備。
In a closed-circuit type hot / cold water circulation system having a water circulation system and a heat source device, a radiator and an expansion tank provided in the middle of the circulation system,
Means for deoxidizing make-up water;
Means for supplying makeup water deoxygenated by the deoxygenation means to the expansion tank.
請求項1において、前記膨張タンク内に不活性ガスを導入する手段を備えたことを特徴とする密閉式温冷水循環設備。2. A closed type hot / cold water circulation system according to claim 1, further comprising means for introducing an inert gas into said expansion tank. 請求項1において、前記脱酸素手段が
不活性ガス導入手段、
補給水と不活性ガスを接触させて、補給水内の酸素を不活性ガスに置き換える不活性ガス置換手段、
補給水と接触した後のガスを排気する排ガス手段
を備えた脱酸素手段であり、
前記膨張タンクへ該脱酸素手段の排ガス手段から排気されるガスを導入する手段を備えたことを特徴とする密閉式温冷水循環設備。
2. The method according to claim 1, wherein the deoxygenating means is an inert gas introducing means.
An inert gas replacing means for contacting the makeup water with an inert gas to replace oxygen in the makeup water with an inert gas;
Deoxygenation means provided with exhaust gas means for exhausting gas after contact with makeup water,
A closed type hot / cold water circulation system comprising: means for introducing gas exhausted from an exhaust gas means of the deoxidizing means to the expansion tank.
請求項1ないし3のいずれか1項において、前記膨張タンク内の水面を覆う遮気手段を備えたことを特徴とする密閉式温冷水循環設備。The closed type hot / cold water circulation equipment according to any one of claims 1 to 3, further comprising an air shielding means for covering a water surface in the expansion tank.
JP2002239517A 2002-08-20 2002-08-20 Sealed hot / cold water circulation equipment Expired - Fee Related JP4186551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239517A JP4186551B2 (en) 2002-08-20 2002-08-20 Sealed hot / cold water circulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239517A JP4186551B2 (en) 2002-08-20 2002-08-20 Sealed hot / cold water circulation equipment

Publications (2)

Publication Number Publication Date
JP2004077054A true JP2004077054A (en) 2004-03-11
JP4186551B2 JP4186551B2 (en) 2008-11-26

Family

ID=32022604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239517A Expired - Fee Related JP4186551B2 (en) 2002-08-20 2002-08-20 Sealed hot / cold water circulation equipment

Country Status (1)

Country Link
JP (1) JP4186551B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070619A (en) * 2004-09-03 2006-03-16 Chuo Kaihatsu Kk Core sampling boring system and core sampling boring method
JP2008241074A (en) * 2007-03-26 2008-10-09 Kurita Water Ind Ltd Deoxygenated water feeding system
CN102734933A (en) * 2012-06-12 2012-10-17 江苏太湖锅炉股份有限公司 Bearing structure for convection heated surface of supporting and hanging combined organic heat carrier furnace
JP2016138198A (en) * 2015-01-28 2016-08-04 住友ゴム工業株式会社 Rubber composition for tire and tire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070619A (en) * 2004-09-03 2006-03-16 Chuo Kaihatsu Kk Core sampling boring system and core sampling boring method
JP2008241074A (en) * 2007-03-26 2008-10-09 Kurita Water Ind Ltd Deoxygenated water feeding system
CN102734933A (en) * 2012-06-12 2012-10-17 江苏太湖锅炉股份有限公司 Bearing structure for convection heated surface of supporting and hanging combined organic heat carrier furnace
JP2016138198A (en) * 2015-01-28 2016-08-04 住友ゴム工業株式会社 Rubber composition for tire and tire

Also Published As

Publication number Publication date
JP4186551B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JPS6038506A (en) Method of purifying and deaerating condensed water/feedwaterin circulation system of generating plant
FI89678B (en) CONNECTION OF CONDITIONING CONTAINER CONDENSATION IN CIRCUIT BETWEEN AND CONSTRUCTION
JP4186551B2 (en) Sealed hot / cold water circulation equipment
JPH06254538A (en) Removing device for dissolving oxygen
JP2005200697A (en) Continuous pickling equipment
JP2006136756A (en) Apparatus and method for removing dissolved oxygen in liquid
JP4022026B2 (en) Method and apparatus for reducing dissolved oxygen concentration in nuclear power plant
KR100223080B1 (en) Condenser with built-in deaerator
JP3068244B2 (en) Method and apparatus for heating and multi-step degassing of makeup water using steam in a power plant
JP2002301305A (en) Deaeration unit and deaeration apparatus
JPH105741A (en) Vacuum deaerator
KR100366737B1 (en) Operation method of seawater cooling system
JP5972805B2 (en) Nitrogen deoxygenation equipment
JPH09899A (en) Apparatus for dissolving inert gas in material in liquid state
JP2929690B2 (en) Deoxidizer for pure water production equipment
JP5392598B2 (en) Gas purification equipment
JP3992891B2 (en) Method and equipment for removing dissolved gas in liquid
JPH0857205A (en) Deaerator
JP2002320959A (en) Method for removing dissolved oxygen in water and device therefor
RU2272959C2 (en) Water thermal deaeration method for deaerator of boiler aggregate and apparatus for performing the same
JP3855826B2 (en) Deaerated water supply device
JP2783500B2 (en) How to remove volatile substances
JP5024693B2 (en) Vacuum deaerator
KR200346458Y1 (en) Structure for Preventing Backward Flowing of freshwater Apparatus
JP4543587B2 (en) Deaerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees