JP5972805B2 - Nitrogen deoxygenation equipment - Google Patents

Nitrogen deoxygenation equipment Download PDF

Info

Publication number
JP5972805B2
JP5972805B2 JP2013009718A JP2013009718A JP5972805B2 JP 5972805 B2 JP5972805 B2 JP 5972805B2 JP 2013009718 A JP2013009718 A JP 2013009718A JP 2013009718 A JP2013009718 A JP 2013009718A JP 5972805 B2 JP5972805 B2 JP 5972805B2
Authority
JP
Japan
Prior art keywords
gas
raw water
nitrogen
nitrogen gas
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013009718A
Other languages
Japanese (ja)
Other versions
JP2014140802A (en
Inventor
谷口 清士
清士 谷口
明史 梅田
明史 梅田
秀樹 徳永
秀樹 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Engineering Co Ltd
Original Assignee
Toyobo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Engineering Co Ltd filed Critical Toyobo Engineering Co Ltd
Priority to JP2013009718A priority Critical patent/JP5972805B2/en
Publication of JP2014140802A publication Critical patent/JP2014140802A/en
Application granted granted Critical
Publication of JP5972805B2 publication Critical patent/JP5972805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ボイラー等へ供給する原水中の溶存酸素を窒素ガスとの接触により事前に除去する窒素式脱酸素装置に関する。   The present invention relates to a nitrogen-type deoxygenation apparatus that removes dissolved oxygen in raw water supplied to a boiler or the like in advance by contact with nitrogen gas.

ボイラー給水等の水処理分野では、水中の溶存酸素に起因するボイラーや配管の腐食を防止するために、脱酸素処理が行われており、その一つの方式として窒素式がある。窒素式脱酸素装置は、特許文献1に記載されているように、原水を窒素ガスと接触させることにより、原水中の溶存酸素を除去する。原水と窒素ガスとの接触方式は様々であり、特許文献1では、水槽上に気液接触筒を接続した対向流型の処理塔が使用されている。   In the field of water treatment such as boiler water supply, deoxygenation treatment is performed to prevent corrosion of boilers and piping caused by dissolved oxygen in water, and one method is nitrogen. As described in Patent Document 1, the nitrogen-type deoxygenation device removes dissolved oxygen in raw water by bringing the raw water into contact with nitrogen gas. There are various contact methods between raw water and nitrogen gas, and in Patent Document 1, a counter-flow type treatment tower in which a gas-liquid contact tube is connected to a water tank is used.

対向流型の処理塔を使用した従来の窒素式脱酸素装置の典型的な構成を、特許文献1に記載されたボイラー水用脱酸素装置について図2により説明する。図2に示された脱酸素装置は、対向流型の処理塔1A,1Bを2塔併置連結した2塔構造になっており、各処理塔は、流下原水と上昇窒素ガスとが向流接触する対向流型の気液接触筒2を水槽3上に立設した構成になっている。   A typical configuration of a conventional nitrogen-type deoxygenation apparatus using a counter-flow type treatment tower will be described with reference to FIG. 2 for a boiler water deoxygenation apparatus described in Patent Document 1. FIG. The deoxygenation apparatus shown in FIG. 2 has a two-column structure in which two counter-flow type treatment towers 1A and 1B are connected in parallel. In each treatment tower, the flowing raw water and rising nitrogen gas are in countercurrent contact. The counter-flow type gas-liquid contact cylinder 2 to be constructed is erected on the water tank 3.

脱酸処理すべき原水は、図示されない原水タンクからボイラーポンプを経て第1処理塔1Aの気液接触筒2内へ上部から流入し、その内部を下降して下方の水槽3内に流入する。第1処理塔1Aの水槽3内の原水は、循環ポンプ5により第2処理塔1Bの気液接触筒2内へ上部から流入し、その内部を下降して下方の水槽3内に流入する。一方、窒素ガスは、第1処理塔1Aの水槽3内の水面より下に設けられた回転羽根型の自吸式散気装置6を作動させることにより、第2処理塔1Bの水槽3内の水面より上の空間部に導入され、上方の気液接触筒2内を下から上へ通過した後、その自吸式散気装置6を経て第1処理塔1Aの水槽3内の原水中に拡散注入され、更にその原水中から第1処理塔1Aの気液接触筒2内を下から上へ通過して気液接触筒2の上部から外部へ排出される。   Raw water to be deoxidized flows from a raw water tank (not shown) through a boiler pump into the gas-liquid contact cylinder 2 of the first treatment tower 1A from the upper part, descends the inside thereof, and flows into the lower water tank 3. The raw water in the water tank 3 of the first treatment tower 1A flows from the upper part into the gas-liquid contact tube 2 of the second treatment tower 1B by the circulation pump 5, descends the inside thereof, and flows into the lower water tank 3. On the other hand, the nitrogen gas is operated in the water tank 3 of the second processing tower 1B by operating the rotary blade type self-priming diffuser 6 provided below the water surface in the water tank 3 of the first processing tower 1A. After being introduced into the space above the water surface and passing through the upper gas-liquid contact cylinder 2 from the bottom to the top, the self-priming diffuser 6 is passed through the raw water in the water tank 3 of the first treatment tower 1A. Diffusion injection is performed, and further, the raw water passes through the gas-liquid contact tube 2 of the first treatment tower 1A from the bottom to the top, and is discharged from the upper part of the gas-liquid contact tube 2 to the outside.

かくして、原水は第1処理塔1Aの気液接触筒2内と第2処理塔1Bの気液接触筒2内との2ヶ所で2回、窒素ガスと向流接触することにより、原水中の溶存酸素量を効果的に減少させて、第2処理塔1Bの水槽3から排水ポンプ7により処理水として外部へ排出される。両塔の気液接触筒2内には、原水と窒素ガスとの接触効率を高めるために充填材4が装填されている。また、第1処理塔1Aの水槽3内の水面より下に設けられた自吸式散気装置6は、その水槽3内の原水中へ窒素ガスを細かな気泡状態で吐出して原水と接触させると共に、その原水を攪拌することにより、原水と窒素ガスとの接触効率を高める。   Thus, the raw water is subjected to countercurrent contact with the nitrogen gas twice at two locations in the gas-liquid contact cylinder 2 of the first treatment tower 1A and in the gas-liquid contact cylinder 2 of the second treatment tower 1B. The amount of dissolved oxygen is effectively reduced and discharged as treated water from the water tank 3 of the second treatment tower 1B by the drainage pump 7. In the gas-liquid contact cylinders 2 of both towers, a filler 4 is loaded in order to increase the contact efficiency between raw water and nitrogen gas. Moreover, the self-priming diffuser 6 provided below the water surface in the water tank 3 of the first treatment tower 1A discharges nitrogen gas into the raw water in the water tank 3 in a fine bubble state and comes into contact with the raw water. In addition, the contact efficiency between the raw water and the nitrogen gas is increased by stirring the raw water.

しかしながら、このような2塔構造の窒素式脱酸素装置は、少量の窒素ガスの使用で高い脱酸素性能を得ることができるものの装置が大掛かりであり、高コストなる。一方、1塔構造の窒素式脱酸素装置は構造簡易で低コストであるが、脱酸素性能に劣る。その脱酸素性能を高める手段としては、2塔構造と同様の機能を得るべく、水槽内の原水をその上方の気液接触筒内に循環させる構成が一般に採用される(特許文献2参照)。しかし、窒素ガスの使用量が制限された状況下では、2塔構造に迫るような脱酸素性能向上効果を期待することはできない。   However, such a two-column nitrogen-type deoxygenation apparatus can obtain high deoxygenation performance by using a small amount of nitrogen gas, but requires a large apparatus and is expensive. On the other hand, a nitrogen-type deoxygenation apparatus having a single tower structure is simple in structure and low in cost, but is inferior in deoxidation performance. As means for enhancing the deoxygenation performance, a configuration in which the raw water in the water tank is circulated in the gas-liquid contact cylinder thereabove is generally adopted in order to obtain the same function as the two-column structure (see Patent Document 2). However, under the situation where the amount of nitrogen gas used is limited, it is not possible to expect a deoxygenation performance improvement effect that approaches a two-column structure.

なぜなら、気液接触筒内に原水を循環させると、気液接触筒内における原水量が増加し、気液比が低下するからである。すなわち、気液接触筒内では、原水量に対する窒素ガス量の容積比率である気液比が高くなるにつれて脱酸素性能が上がる傾向があるが、窒素ガスの使用量が制限された状況下では、気液接触筒内に原水を循環させると、原水量が増加し、気液比が下がるため、期待するほどの脱酸素性能が得られないのである。もとより、窒素ガスの使用量を増加させれば脱酸素性能は上昇するが、窒素ガスの使用量増加によるランニングコストの上昇を避け得ない。   This is because when raw water is circulated in the gas-liquid contact cylinder, the amount of raw water in the gas-liquid contact cylinder increases and the gas-liquid ratio decreases. That is, in the gas-liquid contact cylinder, the deoxygenation performance tends to increase as the gas-liquid ratio, which is the volume ratio of the nitrogen gas amount to the raw water amount, increases, but under the situation where the amount of nitrogen gas used is limited, When raw water is circulated in the gas-liquid contact cylinder, the amount of raw water increases and the gas-liquid ratio decreases, so that the deoxygenation performance as expected cannot be obtained. Of course, if the amount of nitrogen gas used is increased, the deoxygenation performance will increase, but an increase in running cost due to an increase in the amount of nitrogen gas used cannot be avoided.

なお、窒素ガス式とは別に薄膜式の脱酸素装置は存在する。薄膜式の脱酸素装置は小型で安価であるが、脱酸素性能が本質的に低く、最近の高い要求レベルを満たすことが困難になりつつある。ちなみに、脱酸素処理後の処理水中の酸素濃度は、OD値で表して薄膜式の場合が0.5が限度であり、窒素式の場合は2塔構造で0.2以下まで低下する(水温が20℃の場合)。   In addition to the nitrogen gas type, there is a thin film type deoxygenation device. Thin film deoxygenation devices are small and inexpensive, but their deoxygenation performance is inherently low, making it difficult to meet recent high demand levels. Incidentally, the oxygen concentration in the treated water after deoxygenation treatment is expressed as an OD value, and the limit is 0.5 in the case of a thin film type, and in the case of a nitrogen type, the oxygen concentration decreases to 0.2 or less (water temperature) Is 20 ° C.).

特開2005−95791号公報JP 2005-95791 A 特開2006−263641号公報JP 2006-263641 A

本発明の目的は、1塔構造であり、しかも、窒素ガスの使用量を制限した状態であっても、薄膜式を凌ぎ、2塔構造に迫る脱酸素性能を発揮することができる経済的で高性能な窒素式脱酸素装置を提供することにある。   The object of the present invention is a one-column structure, and even in a state where the amount of nitrogen gas used is limited, it is economical that it can surpass the thin film type and exhibit the deoxygenation performance approaching the two-column structure. The object is to provide a high-performance nitrogen deoxygenation device.

上記目的を達成するために、本発明者は、1塔構造の窒素ガス式脱酸素装置の性能を向上させるためには、多方面からのアプローチが必要であると考え、様々な構成要件について鋭意検討を重ねた。そして最初に着目したのが、脱酸素装置内へ窒素ガスを供給する手段であり、第2には気液接触筒と水槽との位置関係である。これらについての検討結果は以下のとおりである。   In order to achieve the above object, the present inventor considers that a multi-faceted approach is necessary in order to improve the performance of a single-column nitrogen gas deoxygenation apparatus, and is diligent about various constituent requirements. Repeated examination. The first thing to focus on is the means for supplying nitrogen gas into the deoxidizer, and the second is the positional relationship between the gas-liquid contact cylinder and the water tank. The results of these studies are as follows.

気液接触筒と水槽を組み合わせた1塔構造の窒素ガス式脱酸素装置では、気液接触筒の上部から筒内に原水が投入され、塔内の充填材を通過して下方の水槽内に流入する。一方、窒素ガスは水槽内に注入され、上方の気液接触筒内を上昇し、筒内を流下する原水と向流接触して筒上部から筒外へ排出される。   In a nitrogen gas deoxygenation device having a single-column structure that combines a gas-liquid contact cylinder and a water tank, raw water is introduced into the cylinder from the upper part of the gas-liquid contact cylinder, passes through the packing material in the tower, and enters the lower water tank. Inflow. On the other hand, nitrogen gas is injected into the water tank, ascends in the upper gas-liquid contact cylinder, makes countercurrent contact with the raw water flowing down the cylinder, and is discharged out of the cylinder from the upper part of the cylinder.

ここにおける窒素ガスは、水槽内の原水中に窒素ガスを気泡状態で拡散混合するのが有効とされ、特許文献1に記載の脱酸素装置で採用された回転羽根型の自吸式散気装置はその有効手段の一つで高性能である。窒素ガスを水槽内の原水中に拡散注入することにより、気液接触筒の上部から筒内に投入された原水は、塔内の特に充填材層中で窒素ガスと向流接触することにより脱酸素一次処理を受け、水槽内では、原水中に注入された窒素ガスにより脱酸素二次処理を受ける。   The nitrogen gas here is effective to diffuse and mix nitrogen gas in the raw water in the water tank in a bubble state, and is a rotary blade type self-priming diffuser adopted in the deoxygenation device described in Patent Document 1. Is one of the effective means and has high performance. By diffusing and injecting nitrogen gas into the raw water in the water tank, the raw water introduced into the cylinder from the top of the gas-liquid contact cylinder is desorbed by making countercurrent contact with the nitrogen gas in the packing layer in the tower. The oxygen primary treatment is received, and in the water tank, a deoxygenation secondary treatment is performed by nitrogen gas injected into the raw water.

しかしながら、この自吸式散気装置は高価である。そこで安価な窒素ガス注入手段として、本発明者はエジェクターに着目した。エジェクターは内部を液体が高速で通過することに生じる負圧によりガスを吸引し、気液混合状態で高速噴出するものであり、構造が簡単で安価であるので、低価格品でも大量のガス吸引能力を確保できる。   However, this self-priming diffuser is expensive. Therefore, the present inventor paid attention to an ejector as an inexpensive means for injecting nitrogen gas. The ejector sucks the gas by the negative pressure generated when the liquid passes through the inside at high speed, and ejects the gas at high speed in a gas-liquid mixed state. Since the structure is simple and inexpensive, a large amount of gas can be sucked even at a low price. Capability can be secured.

具体的に言うと、10トン/時間の通液量で100L/分のガス吸込み量を確保できる。気液接触筒への原水供給量が5トン/時間(5m3 /時間)である場合、気液接触筒での理想的な気液比は0.3前後であるから、フレッシュな窒素ガス量としては1.5m3 /時間(25L/分)が必要となり、75L/分の余剰能力が生じる。水槽内の原水をエジェクターに循環させて、水槽内の使用済み窒素ガスを余剰能力により再利用するならば、10トン/時間という大量の原水がエジェクターにおいて100L/分という多量の窒素ガスと繰り返し接触し、原水は気液接触筒内での脱酸素一次処理に加えて、水槽内でも効果的な脱酸素二次処理を受けることになる。 More specifically, a gas suction amount of 100 L / min can be secured with a liquid flow rate of 10 tons / hour. When the raw water supply amount to the gas-liquid contact cylinder is 5 tons / hour (5 m 3 / hour), the ideal gas-liquid ratio in the gas-liquid contact cylinder is around 0.3, so the amount of fresh nitrogen gas Requires 1.5 m 3 / hour (25 L / min), resulting in a surplus capacity of 75 L / min. If the raw water in the water tank is circulated to the ejector and the used nitrogen gas in the water tank is reused by surplus capacity, a large amount of raw water of 10 tons / hour repeatedly contacts with a large amount of nitrogen gas of 100 L / min in the ejector. In addition to the primary deoxygenation treatment in the gas-liquid contact cylinder, the raw water undergoes an effective deoxygenation secondary treatment in the water tank.

ちなみに、水槽内の使用済み窒素ガスは、水槽内の原水中での脱酸素二次処理に使用された後とは言え、酸素濃度は0.2%程度と十分に低い。この低酸素濃度の窒素ガスが、気液接触筒内での脱酸素一次処理に使用されるわけであるから当然のことである。気液接触筒内での脱酸素一次処理に使用された後でも、窒素ガス中の酸素濃度は2%程度である。   Incidentally, although the used nitrogen gas in the water tank is used for the deoxygenation secondary treatment in the raw water in the water tank, the oxygen concentration is sufficiently low at about 0.2%. This nitrogen gas having a low oxygen concentration is naturally used for the primary deoxidation treatment in the gas-liquid contact cylinder. Even after being used for the primary deoxidation treatment in the gas-liquid contact cylinder, the oxygen concentration in the nitrogen gas is about 2%.

かくして、水槽内の原水中への窒素ガス混合手段としてエジェクターを使用することにより、1塔構造の脱酸素装置で、しかも窒素ガス量が制限された状況下でも、極めて高い脱酸素能力が発揮されることになる。   Thus, by using an ejector as a means for mixing nitrogen gas into the raw water in the aquarium, a very high deoxygenation capacity is exhibited even in a situation where the amount of nitrogen gas is limited by a single-column deoxygenation device. Will be.

また、前述したとおり、エジェクターの能力が窒素ガスの供給量より大きく、例えば前者が100L/分で後者が25L/分の場合、水槽内の原水面より上方の空間部からエジェクターへの還流経路を設けることにより、差し引き75L/分の窒素ガスが水槽内からエジェクターに戻り、残りの25L/分が気液接触筒内へ流入する。すなわち、エジェクターの余剰能力に相当する窒素ガスを循環再利用するためには、水槽内の原水面より上方の空間部からエジェクターへの窒素ガス還流経路を設けることが有効である。   Further, as described above, when the capacity of the ejector is larger than the supply amount of nitrogen gas, for example, when the former is 100 L / min and the latter is 25 L / min, the return path from the space above the raw water surface in the aquarium to the ejector is established. By providing, nitrogen gas of 75 L / min is returned from the water tank to the ejector, and the remaining 25 L / min flows into the gas-liquid contact cylinder. That is, in order to circulate and reuse the nitrogen gas corresponding to the surplus capacity of the ejector, it is effective to provide a nitrogen gas reflux path from the space above the raw water surface in the water tank to the ejector.

次に、気液接触筒と水槽との位置関係であるが、気液接触筒の下端部が水槽の天板に接続される場合と、天板より下に延長されて槽内の原水中に浸漬される場合とがある(特許文献1の図2、及び特許文献2の部3参照)。気液接触筒の下端部を水槽内の原水中に浸漬する場合は、水槽内から気液接触筒内へ窒素ガスを導入するために、水槽内の原水面より上方の空間部と接する箇所に窒素ガス導入口が設けられる。   Next, regarding the positional relationship between the gas-liquid contact cylinder and the water tank, when the lower end of the gas-liquid contact cylinder is connected to the top plate of the water tank, it is extended below the top plate and into the raw water in the tank. It may be immersed (see FIG. 2 of Patent Document 1 and part 3 of Patent Document 2). When immersing the lower end of the gas-liquid contact tube in the raw water in the water tank, in order to introduce nitrogen gas from the water tank into the gas-liquid contact cylinder, at a place in contact with the space above the raw water surface in the water tank A nitrogen gas inlet is provided.

水槽内の原水中へ窒素ガスを供給する手段としてエジェクターを採用した場合は、前述したとおり、水槽内の原水中での脱酸素二次処理が締める比重が大きくなる。気液接触筒の下端部が水槽の天井に接続されている場合は、気液接触筒内を流下して脱酸素一次処理を終えた原水、すなわち一次処理水が水槽内の原水面に落下し、その原水中での脱酸素二次処理を受けずに槽外へ排出される傾向が強まる。特に、水槽内の二次処理部を堰により区画し、二次処理を終えた二次処理部内の原水、すなわち処理水を堰からオーバーフローさせ、その受け部を経て槽外へ排出する場合は、一次処理水の多くが堰を乗り越え、二次処理を受けることができず、処理効率の低下が顕著となる。   When the ejector is employed as a means for supplying nitrogen gas into the raw water in the water tank, as described above, the specific gravity that the deoxygenation secondary treatment in the raw water in the water tank is tightened increases. When the lower end of the gas-liquid contact cylinder is connected to the ceiling of the aquarium, the raw water that has flowed down the gas-liquid contact cylinder and finished the deoxidation primary treatment, i.e., the primary treated water, falls to the raw water surface in the aquarium. The tendency to be discharged out of the tank without receiving the deoxygenation secondary treatment in the raw water is increased. In particular, when the secondary treatment unit in the water tank is partitioned by a weir, the raw water in the secondary treatment unit that has finished the secondary treatment, that is, the treated water is overflowed from the weir, and when it is discharged outside the tank through the receiving part, Most of the primary treated water gets over the weir and cannot receive the secondary treatment, resulting in a significant reduction in treatment efficiency.

このため、エジェクターにより水槽内の原水中で効率的な脱酸素二次処理を行う場合は、その二次処理を効率的に受けるために、気液接触筒の下端部を水槽内の原水中に深く浸漬するのがよい。気液接触筒の下端部を水槽内の原水中に浸漬すれば、その原水の水面からの跳ね上がりがなく、前述した窒素ガス還流経路の管内に、跳ね上がった原水が侵入する危険がなくなり、その還流系統の機能が安定する。   For this reason, when an efficient deoxygenation secondary treatment is performed in the raw water in the aquarium by the ejector, the lower end of the gas-liquid contact tube is placed in the raw water in the aquarium in order to efficiently receive the secondary treatment. It is better to immerse deeply. If the lower end of the gas-liquid contact tube is immersed in the raw water in the water tank, there will be no jump from the surface of the raw water, and there is no risk of the raw water jumping up into the tube of the nitrogen gas reflux path described above. System function is stable.

本発明の窒素式脱酸素装置は、かかる知見を基礎として完成されたものであり、流下原水と上昇窒素ガスとが向流接触する対向流型の気液接触筒を水槽上に単独で立設接続した1塔構造の窒素式脱酸素装置であって、当該脱酸素装置内へ窒素ガスを供給する手段として、前記水槽内の原水中にあって当該原水を循環させることにより窒素ガスを吸引するエジェクターを具備している。   The nitrogen-type deoxygenation apparatus of the present invention has been completed on the basis of such knowledge, and a counterflow type gas-liquid contact cylinder in which counterflow contact is made between the raw water flowing down and the rising nitrogen gas is erected independently on the water tank. As a means for supplying nitrogen gas into the deoxygenation apparatus, a nitrogen-type deoxygenation apparatus having a single tower structure connected to the raw water in the water tank and sucking nitrogen gas by circulating the raw water Ejector is equipped.

本発明の窒素式脱酸素装置においては、気液接触筒の上部から筒内に原水が投入され、塔内を通過して下方の水槽内に流入する。一方、窒素ガスは水槽内の原水中に設置されたエジェクターにその原水を循環させることより吸引されて水槽内の原水中に注入され、水槽内の原水面上の空間をへて上方の気液接触筒内を上昇し、筒上部から筒外へ排出される。かくして、気液接触筒内へ投入された原水は、筒内を流下する過程で、同塔内を上昇する窒素ガスと向流接触することにより脱酸素一次処理を受け、水槽内のエジェクター及びその近傍で窒素ガスと接触することにより脱酸素二次処理を受ける。水槽内でのエジェクターよる脱酸素二次処理が処理水中の酸素濃度低下に効果的に寄与することは前述したとおりである。   In the nitrogen-type deoxygenation apparatus of the present invention, raw water is introduced into the cylinder from the upper part of the gas-liquid contact cylinder, passes through the tower, and flows into the lower water tank. On the other hand, nitrogen gas is sucked by circulating the raw water to the ejector installed in the raw water in the tank and injected into the raw water in the tank. The inside of the contact cylinder rises and is discharged out of the cylinder from the top of the cylinder. Thus, the raw water introduced into the gas-liquid contact cylinder is subjected to deoxidation primary treatment by countercurrent contact with the nitrogen gas rising in the tower in the process of flowing down the cylinder, and the ejector in the water tank and its ejector It receives deoxidation secondary treatment by contacting with nitrogen gas in the vicinity. As described above, the deoxygenation secondary treatment by the ejector in the water tank effectively contributes to the reduction of the oxygen concentration in the treated water.

そして、前記エジェクターとしては、これによる窒素ガス吸込み可能量が気液接触筒における窒素ガス必要量より多くなる能力のものを選択し望ましくは3〜10倍程度の能力ものを選択し、余剰能力により水槽内の原水面より上の空間部に滞留する窒素ガスを吸引する。このために、水槽内の原水面より上の空間部からエジェクターへの窒素ガス還流経路を設ける。この構造により、水槽内でのエジェクターよる脱酸素二次処理効率が更に向上する。 And as said ejector , select the thing of the capacity | capacitance by which the nitrogen gas inhalable amount by this becomes more than the nitrogen gas required quantity in a gas-liquid contact cylinder, Preferably the thing of about 3 to 10 times the capacity is selected, and surplus capacity As a result, nitrogen gas staying in the space above the raw water surface in the water tank is sucked. For this purpose, a nitrogen gas recirculation path from the space above the raw water surface in the water tank to the ejector is provided. This structure further improves the efficiency of secondary oxygen removal treatment by the ejector in the water tank.

気液接触筒については、その下部が水槽内の原水中に浸漬するように水槽と連結するのが望ましい。これにより水槽内でのエジェクターよる脱酸素二次処理効率が更に向上するも前述したとおりである。この場合、水槽内を堰により二次処理部と受け部とに区画し、堰からオーバーフローする二次処理水が受け部を経由して槽外へ排出する構成を採用するのが望ましい。エジェクターに循環させる原水としては、この受け部内の二次処理水、又は受け部から排出される最終的な処理水を用いるのが望ましい。   About a gas-liquid contact cylinder, it is desirable to connect with a water tank so that the lower part may be immersed in the raw water in a water tank. This further improves the efficiency of the secondary oxygen removal treatment by the ejector in the water tank, as described above. In this case, it is desirable to adopt a configuration in which the inside of the water tank is divided into a secondary treatment part and a receiving part by a weir, and the secondary treated water overflowing from the weir is discharged outside the tank through the receiving part. As raw water to be circulated to the ejector, it is desirable to use the secondary treated water in the receiving part or the final treated water discharged from the receiving part.

本発明の窒素式脱酸素装置は、流下原水と上昇窒素ガスとが向流接触する対向流型の気液接触筒を水槽上に単独で立設接続した1塔構造の脱酸素装置でありながら、当該脱酸素装置内へ窒素ガスを供給する手段として、水槽内の原水の循環により窒素ガスを吸引するエジェクター、特に、これによる窒素ガス吸込み可能量が気液接触筒における窒素ガス必要量より多くなる能力のエジェクターを使用することにより、窒素ガスの使用量を制限した状態であっても、薄膜式を凌ぎ、2塔構造の脱酸素装置に逼迫する脱酸素性能を発揮することができるので、脱酸素装置の小型化、経済性向上に多大の効果を発揮する。
The nitrogen-type deoxygenation apparatus of the present invention is a one-column structure deoxygenation apparatus in which a counter-flow type gas-liquid contact cylinder in which counterflowing raw water and rising nitrogen gas are in countercurrent contact is singly installed on a water tank. As a means for supplying nitrogen gas into the deoxygenation device, an ejector that sucks nitrogen gas by circulating raw water in the water tank , in particular, the amount of nitrogen gas that can be sucked by this is larger than the required amount of nitrogen gas in the gas-liquid contact cylinder By using an ejector with the ability to be used, even in a state where the amount of nitrogen gas used is limited, it can surpass the thin film type and exhibit the deoxygenation performance constrained by the two-column deoxygenation device, It is very effective in reducing the size and cost of the deoxygenation device.

本発明の一実施形態を示す窒素式脱酸素装置の構成図である。It is a block diagram of the nitrogen-type deoxygenation apparatus which shows one Embodiment of this invention. 従来の高性能な窒素式脱酸素装置である2塔構造の脱酸素装置の構成図である。It is a block diagram of the deoxygenation apparatus of the 2 tower structure which is the conventional high performance nitrogen type deoxygenation apparatus.

以下に本発明の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態の窒素式脱酸素装置は、原水タンク内の原水を原水消費部であるボイラーへ供給するにあたり、ボイラーの腐蝕防止を目的として、その原水を窒素源からの窒素ガスとの混合により脱酸素処理するものであり、このために前記原水タンクから前記ボイラーへの給水系統に介装される。   When supplying raw water in a raw water tank to a boiler that is a raw water consuming unit, the nitrogen type deoxygenation apparatus of this embodiment desorbs the raw water by mixing with nitrogen gas from a nitrogen source for the purpose of preventing the corrosion of the boiler. For this purpose, oxygen treatment is carried out, and the water supply system from the raw water tank to the boiler is interposed.

この窒素式脱酸素装置は、図1に示すように、円筒状をした向流接触型の気液接触筒10を水槽20上に垂直に立設した構成になっており、気液接触筒10内を流下し水槽20に溜まる原水を、水槽20内の原水30中に注入されて気液接触筒10内を上昇する窒素ガスと、気液接触筒10内及び水槽20内で接触させることにより、原水30の脱酸素二段階処理を行う。   As shown in FIG. 1, the nitrogen-type deoxygenation apparatus has a configuration in which a cylindrical counter-current contact type gas-liquid contact cylinder 10 is vertically installed on a water tank 20. By bringing the raw water flowing down into the water tank 20 into contact with the nitrogen gas injected into the raw water 30 in the water tank 20 and rising in the gas-liquid contact cylinder 10 in the gas-liquid contact cylinder 10 and the water tank 20. Then, a two-stage deoxidation treatment of the raw water 30 is performed.

この脱酸素二段階処理のために、一次処理部である気液接触筒10の内部には、分散板11及び充填材12が2段に装填されている。充填材12は気体である窒素ガスと液体である原水との接触効率を高めるもので、ラシヒスーパーリングと呼ばれる線構造ピースの集合体からなり、そのピースを筒内の中間部より上に、所定高さにわたって充填することにより窒素ガスと原水の接触面積増大を図る。   For this deoxygenation two-stage treatment, a dispersion plate 11 and a filler 12 are loaded in two stages inside the gas-liquid contact cylinder 10 which is a primary treatment section. The filler 12 increases the contact efficiency between the nitrogen gas that is a gas and the raw water that is a liquid, and is composed of an assembly of line structure pieces called Raschig super rings, and the piece is above the middle part in the cylinder, By filling over a predetermined height, the contact area of nitrogen gas and raw water is increased.

気液接触筒10の上端面は、使用済みの窒素ガスの排出口を残して閉止されている。気液接触筒10の上端部周面には、筒内へ原水を導入するための原水導入系90が、分散板11より上方に位置して接続されている。原水導入系90には流量制御弁91が介装されている。   The upper end surface of the gas-liquid contact cylinder 10 is closed leaving a used nitrogen gas outlet. A raw water introduction system 90 for introducing raw water into the cylinder is connected to the upper peripheral surface of the gas-liquid contact cylinder 10 so as to be positioned above the dispersion plate 11. A flow rate control valve 91 is interposed in the raw water introduction system 90.

一方、気液接触筒10の中間部より下は、水槽20の天板を貫通して槽内の底面近傍まで深く挿入され、この状態で水槽20の天板に固定されると共に、水槽20内の図示されない支持部材により槽底に固定されている。これにより、気液接触筒10の下部は、水槽20内の原水30中に深く浸漬される。   On the other hand, below the middle part of the gas-liquid contact cylinder 10, it penetrates the top plate of the water tank 20 and is inserted deeply into the vicinity of the bottom surface in the tank, and is fixed to the top plate of the water tank 20 in this state. Is fixed to the tank bottom by a support member (not shown). Thereby, the lower part of the gas-liquid contact cylinder 10 is deeply immersed in the raw water 30 in the water tank 20.

気液接触筒10の下端面は原水30の排出のために全面的に開口している。また、水槽20内の原水30中に注入された窒素ガスを気液接触筒10内に導入するために、気液接触筒10には、水槽20内の水面より上の空間部に接して窒素ガス導入口13が設けられている。   The lower end surface of the gas-liquid contact cylinder 10 is fully opened for discharging the raw water 30. Further, in order to introduce the nitrogen gas injected into the raw water 30 in the water tank 20 into the gas-liquid contact cylinder 10, the gas-liquid contact cylinder 10 is in contact with the space above the water surface in the water tank 20 and nitrogen. A gas inlet 13 is provided.

他方、水槽20の内部は、気液接触筒10の直下に位置して気液接触筒10からの流下原水を溜める二次処理部21と、その側方に堰状の隔壁22により仕切られて形成された受け部23とからなる。受け部23は、二次処理部21で二次処理を終えて隔壁22をオーバーフローした処理水を一時的に溜めるものである。この受け部23には、処理水を槽外へ取り出してボイラーへ送るために送水ポンプ41及び流量制御弁42を備えた送水系40が接続されている。   On the other hand, the inside of the water tank 20 is partitioned by a secondary processing unit 21 that is located immediately below the gas-liquid contact tube 10 and collects raw water flowing from the gas-liquid contact tube 10 and a weir-shaped partition wall 22 on the side thereof. It consists of the receiving part 23 formed. The receiving part 23 temporarily stores the treated water that has finished the secondary treatment in the secondary treatment part 21 and overflowed the partition wall 22. A water supply system 40 including a water supply pump 41 and a flow rate control valve 42 is connected to the receiving portion 23 in order to take the treated water out of the tank and send it to the boiler.

水槽20内の二次処理部21内には、二次処理部21内の原水30中に窒素ガスを注入することを目的としてエジェクター50が設置されている。エジェクター50には、送水系40の送水ポンプ41と流量制御弁42との間から分岐した原水循環系60と、窒素ガス導入系70が接続されている。また、水槽20と窒素ガス導入系70との間には、水槽20内の水面より上の空間部からエジェクター50へ窒素ガスを還流させるために窒素ガス還流系80が架設されている。   An ejector 50 is installed in the secondary processing unit 21 in the water tank 20 for the purpose of injecting nitrogen gas into the raw water 30 in the secondary processing unit 21. The ejector 50 is connected to a raw water circulation system 60 branched from between a water supply pump 41 and a flow rate control valve 42 of the water supply system 40 and a nitrogen gas introduction system 70. A nitrogen gas recirculation system 80 is installed between the water tank 20 and the nitrogen gas introduction system 70 in order to recirculate nitrogen gas from the space above the water surface in the water tank 20 to the ejector 50.

そして、循環ポンプを兼ねる送水ポンプ41が駆動されることにより、水槽20内で脱酸素二次処理を終えた原水、すなわち処理水がエジェクター50に供給され通過すると共に、これに伴って窒素ガス導入系70及び窒素ガス還流系80から窒素ガスがエジェクター50に吸引される。結果、エジェクター50からは、窒素ガスが細かな気泡となって処理水と共に高速で二次処理部21内の原水30中に噴出される。   Then, by driving the water pump 41 that also serves as a circulation pump, the raw water that has undergone the deoxygenation secondary treatment in the water tank 20, that is, the treated water is supplied to and passed through the ejector 50, and nitrogen gas is introduced accordingly. Nitrogen gas is drawn into the ejector 50 from the system 70 and the nitrogen gas reflux system 80. As a result, from the ejector 50, nitrogen gas becomes fine bubbles and is jetted into the raw water 30 in the secondary processing unit 21 at a high speed together with the treated water.

原水30及び窒素ガスの流量制御のために、前記原水循環系60、窒素ガス導入系70及び窒素ガス還流系80には流量制御弁61,71及び81がそれぞれ介装されている。また、水槽20内の受け部23には水面のレベル管理のためにレベル計24が設けられている。   In order to control the flow rates of the raw water 30 and the nitrogen gas, flow control valves 61, 71 and 81 are provided in the raw water circulation system 60, the nitrogen gas introduction system 70 and the nitrogen gas recirculation system 80, respectively. In addition, a level meter 24 is provided in the receiving portion 23 in the water tank 20 for water level management.

次に、本実施形態の窒素式脱酸素装置の動作及び機能並びに効能を説明する。前提条件は以下のとおりである。   Next, operation | movement, a function, and effect of the nitrogen type deoxygenation apparatus of this embodiment are demonstrated. The preconditions are as follows.

処理しなければならない原水量は5トン/時間であり、したがって、原水導入系90から気液接触筒10内へ最上部から5トン/時間の原水30が注入される。気液接触筒10での気液比は理想的な0.3とする。その結果、フレッシュな窒素ガスの供給量としては1.5m3 /時間(25L/分)が要求される。ここでのエジェクター50のガス吸引能力は、気液接触筒10での必要量の4倍の100L/分としており、これに必要なエジェクター50への原水30の循環量は10トン/時間である。 The amount of raw water that must be treated is 5 tons / hour. Therefore, 5 tons / hour of raw water 30 is injected from the raw water introduction system 90 into the gas-liquid contact cylinder 10 from the top. The gas-liquid ratio in the gas-liquid contact cylinder 10 is set to an ideal 0.3. As a result, the supply amount of fresh nitrogen gas is required to be 1.5 m 3 / hour (25 L / min). Here, the gas suction capacity of the ejector 50 is set to 100 L / min, which is four times the required amount in the gas-liquid contact cylinder 10, and the necessary circulating amount of the raw water 30 to the ejector 50 is 10 tons / hour. .

先ず、原水30の流れから説明する。処理すべき原水30は、原水導入系90から気液接触筒10内へ最上部から注入される。筒内最上部に注入された原水30は、筒内を流下し、筒内の分散板11及び充填材12を通過して水槽10内の特に二次処理部21に流入し溜まる。二次処理部21が原水30で満たされると、堰状の隔壁22を越えて隣の受け部23に流入する。受け部23内の原水30は送水系40にて槽外へ排出され、その一部がボイラーへ送られると共に、残りが送水系40の途中から原水循環系60を介して水槽20内に戻され、より具体的には、受け部23内のエジェクター50へ送られる。   First, the flow of the raw water 30 will be described. The raw water 30 to be processed is injected from the raw water introduction system 90 into the gas-liquid contact cylinder 10 from the top. The raw water 30 injected into the uppermost part in the cylinder flows down in the cylinder, passes through the dispersion plate 11 and the filler 12 in the cylinder, and flows into and accumulates in the secondary treatment unit 21 in the water tank 10. When the secondary processing unit 21 is filled with the raw water 30, the secondary processing unit 21 flows over the weir-shaped partition wall 22 into the adjacent receiving unit 23. The raw water 30 in the receiving portion 23 is discharged outside the tank by the water supply system 40, and a part of the raw water 30 is sent to the boiler, and the rest is returned from the middle of the water supply system 40 to the water tank 20 through the raw water circulation system 60. More specifically, it is sent to the ejector 50 in the receiving portion 23.

受け部23内の水面レベルを適正値に管理するために、レベル計24により受け部23内の水面レベルが測定され、それが適正レベルとなるように、送水系40内の流量制御弁42が開度制御される。   In order to manage the water surface level in the receiving part 23 to an appropriate value, the water level in the receiving part 23 is measured by the level meter 24, and the flow control valve 42 in the water supply system 40 is adjusted so that it becomes an appropriate level. The opening degree is controlled.

一方、窒素ガスは、エジェクター50への原水30の流通に伴う負圧により当該エジェクター50に吸引され、原水30との混合状態、すなわち細かな気泡となって水槽20内の二次処理部21における原水30中に噴出される。二次処理部21における原水30中に噴出された窒素ガスは、一部が原水30の脱酸素処理に使用され、残りが水槽20の水面より上方の空間部を経て気液接触筒10の窒素ガス導入口13から筒内へ流入し、筒内の充填材12及び分散板11を通過して上端面の排出口から筒外へ排出される。   On the other hand, the nitrogen gas is sucked into the ejector 50 by the negative pressure accompanying the flow of the raw water 30 to the ejector 50, and is mixed with the raw water 30, that is, becomes fine bubbles in the secondary treatment unit 21 in the water tank 20. It is ejected into the raw water 30. A part of the nitrogen gas ejected into the raw water 30 in the secondary treatment unit 21 is used for the deoxygenation treatment of the raw water 30, and the rest is nitrogen in the gas-liquid contact cylinder 10 through the space above the water surface of the water tank 20. The gas flows from the gas inlet 13 into the cylinder, passes through the filler 12 and the dispersion plate 11 in the cylinder, and is discharged out of the cylinder from the discharge port on the upper end surface.

この結果、気液接触筒10内に上端部から導入された原水30は、気液接触筒10内及び水槽20内で以下の脱酸素処理を受ける。   As a result, the raw water 30 introduced from the upper end into the gas-liquid contact tube 10 is subjected to the following deoxygenation treatment in the gas-liquid contact tube 10 and the water tank 20.

気液接触筒10内を通過する過程、特に充填材12のところを通過する過程で気液接触筒10内を上昇する窒素ガスと向流接触することにより、窒素ガスの溶解に伴って溶存酸素が放出される脱酸素処理を受ける。これが脱酸素一次処理である。この脱酸素一次処理に使用される窒素ガスは、水槽20の二次処理部21での脱酸素処理に使用された後のものであるが、酸素含有量は0.2%程度と低位である。また、気液接触筒10を上昇して排出される窒素ガス量は、窒素ガス導入系70からエジェクター50へ新たに供給する量(25L/分)であり、気液接触筒10への原水30の導入量が5トン/時間であるから、気液接触筒10における気液比は理想的な0.3に維持される。   In the process of passing through the gas-liquid contact cylinder 10, particularly in the process of passing through the filler 12, the dissolved oxygen is dissolved along with the dissolution of the nitrogen gas by making countercurrent contact with the rising nitrogen gas in the gas-liquid contact cylinder 10. Is subjected to deoxygenation treatment. This is the deoxidation primary treatment. The nitrogen gas used for this deoxygenation primary treatment is after being used for the deoxygenation treatment in the secondary treatment section 21 of the water tank 20, but the oxygen content is as low as about 0.2%. . The amount of nitrogen gas discharged from the gas-liquid contact cylinder 10 is the amount (25 L / min) newly supplied from the nitrogen gas introduction system 70 to the ejector 50, and the raw water 30 to the gas-liquid contact cylinder 10 is supplied. Therefore, the gas-liquid ratio in the gas-liquid contact cylinder 10 is maintained at an ideal 0.3.

気液接触筒10での脱酸素一次処理を終えた原水30は、水槽20の二次処理部21の深い位置に流入し、エジェクター50から噴出する窒素ガスにより脱酸素処理を受ける。特に、この窒素ガスはエジェクター50から原水流と共に高速で噴出するので、原水30に強い攪拌作用を与える。しかも、その窒素ガス量は、系内に新規導入される窒素ガス量(25L/分)の4倍の100L/分である。このうちの25L/分は気液接触筒10へ流入するが、残りの75L/分は、窒素ガス還流系80を経由して窒素ガス導入系70へ戻される。   The raw water 30 that has undergone the primary deoxygenation treatment in the gas-liquid contact cylinder 10 flows into a deep position of the secondary treatment section 21 of the water tank 20 and undergoes deoxygenation treatment with nitrogen gas ejected from the ejector 50. In particular, since this nitrogen gas is ejected from the ejector 50 at a high speed together with the raw water stream, the raw water 30 is strongly stirred. Moreover, the amount of nitrogen gas is 100 L / min, four times the amount of nitrogen gas newly introduced into the system (25 L / min). Of this, 25 L / min flows into the gas-liquid contact cylinder 10, but the remaining 75 L / min is returned to the nitrogen gas introduction system 70 via the nitrogen gas recirculation system 80.

こうして水槽20の二次処理部21で多重的な脱酸素処理を受けた原水30、すなわち処理水は堰状の隔壁22を越えて隣の受け部23へ流入し、送水系40にて槽外へ排出さる。このとき、系内へ導入される原水量(5トン/時間)の2倍に相当する10トン/時間の処理水が、送水ポンプ41と流量制御弁42との間から原水循環系60を経由してエジェクター50に送られる。すなわち、系内へ導入される原水量は5トン/時間であるが、二次処理部21から受け部23を経て水槽10の外へ排出される処理水は15トン/時間であり、このうちの10トン/時間がエジェクター50に循環するのである。   In this way, the raw water 30 that has undergone multiple deoxygenation treatments in the secondary treatment unit 21 of the water tank 20, that is, the treated water, flows over the weir-shaped partition wall 22 into the adjacent receiving part 23, and outside the tank in the water supply system 40. To be discharged. At this time, 10 tons / hour of treated water corresponding to twice the amount of raw water introduced into the system (5 tons / hour) passes between the feed pump 41 and the flow control valve 42 through the raw water circulation system 60. And sent to the ejector 50. That is, the amount of raw water introduced into the system is 5 tons / hour, but the treated water discharged from the secondary treatment section 21 through the receiving section 23 to the outside of the water tank 10 is 15 tons / hour. 10 ton / hour is circulated to the ejector 50.

その結果、気液接触筒10での脱酸素一次処理を終えた原水30は、水槽20の二次処理部21で繰り返し、エジェクター50からの窒素ガスによる脱酸素二次処理を受ける。しかも、その原水30はエジェクター50内でも窒素ガスとの攪拌を伴う強力な混合作用を受ける。   As a result, the raw water 30 that has been subjected to the primary deoxidation treatment in the gas-liquid contact cylinder 10 is repeatedly received by the secondary treatment unit 21 of the water tank 20 and subjected to the deoxidation secondary treatment using nitrogen gas from the ejector 50. Moreover, the raw water 30 is subjected to a strong mixing action with stirring with nitrogen gas even in the ejector 50.

すなわち、水槽20の二次処理部21内での脱酸素二次処理は、エジェクター50からの窒素ガスの微細気泡及び高速水流による脱酸素処理と、エジェクター50内での窒素ガスと原水30の混合攪拌による脱酸素処理と、原水30がエジェクター50に循環することによるこれらの繰り返しとの三重多元処理となるのである。したがって、本脱酸素装置は1塔構造であるにもかかわらず、2塔構造の脱酸素装置に逼迫する優れた脱酸素性能を示す。   That is, the deoxygenation secondary treatment in the secondary treatment unit 21 of the water tank 20 includes deoxygenation treatment by fine bubbles of nitrogen gas from the ejector 50 and high-speed water flow, and mixing of nitrogen gas and raw water 30 in the ejector 50. This is a triple multi-process comprising a deoxygenation process by stirring and a repetition of these by circulating the raw water 30 to the ejector 50. Therefore, even though this deoxygenation apparatus has a single-column structure, it exhibits excellent deoxygenation performance that is tight to a two-column structure deoxygenation apparatus.

数値的に示せば、本脱酸素装置の気液接触筒10に導入される原水30の温度が20℃、原水中の酸素量がOD値で8.8の場合、気液接触筒10から水槽20の二次処理部21へ流入する段階では1.1程度となり、本脱酸素装置から排出される段階では0.3程度となる。窒素ガス中の酸素濃度は水槽10の二次処理部21での脱酸素処理を終えて気液接触筒10内へ導入される過程で0.2%であり、気液接触筒10の上端部から筒外へ排出される段階で2%程度である。   In numerical terms, when the temperature of the raw water 30 introduced into the gas-liquid contact cylinder 10 of this deoxygenation device is 20 ° C. and the amount of oxygen in the raw water is 8.8 in OD value, the gas-liquid contact cylinder 10 to the water tank It is about 1.1 at the stage of flowing into the 20 secondary processing units 21, and is about 0.3 at the stage of being discharged from the deoxygenation apparatus. The oxygen concentration in the nitrogen gas is 0.2% in the process of finishing the deoxygenation process in the secondary treatment unit 21 of the water tank 10 and introducing it into the gas-liquid contact cylinder 10, and the upper end of the gas-liquid contact cylinder 10. Is about 2% at the stage of being discharged out of the cylinder.

これは図2に示した2塔構造の窒素ガス式脱酸素装置に逼迫する性能である。ちなみに、図2に示した2塔構造の窒素ガス式脱酸素装置の場合、気液接触筒の規模、原水処理量、窒素ガス使用量等の諸仕様、諸条件が同一では、処理水の酸素濃度はOD値で0.2程度となる。ただし、設備コストは、本脱酸素装置の約2倍となる。また、薄膜式脱酸素装置の場合は処理水の酸素濃度はOD値で0.5が限度である。これに対する本脱酸素装置の設備コストはほぼ同じである。   This is a performance close to the two-column nitrogen gas deoxygenation apparatus shown in FIG. Incidentally, in the case of the nitrogen gas type deoxygenation device having a two-column structure shown in FIG. 2, if the specifications and conditions such as the scale of the gas-liquid contact cylinder, the raw water treatment amount, the nitrogen gas usage amount, etc. are the same, The density is about 0.2 in terms of OD value. However, the equipment cost is about twice that of the present deoxygenation device. In the case of a thin film type deoxygenator, the oxygen concentration of treated water is limited to 0.5 in terms of OD value. The equipment cost of this deoxygenation apparatus with respect to this is almost the same.

10 気液接触筒
11 分散板
12 充填材
13 窒素ガス導入口
20 水槽
21 二次処理部
22 堰状の隔壁(堰)
23 受け部
24 レベル計
30 原水
40 送水系
41 送水ポンプ
42 流量制御弁
50 エジェクター
60 原水循環系(原水循環経路)
61 流量制御弁
70 窒素ガス導入系
71 流量制御弁
80 窒素ガス還流系(窒素ガス循環経路)
81 流量制御弁
90 原水導入系
91 流量制御弁
DESCRIPTION OF SYMBOLS 10 Gas-liquid contact cylinder 11 Dispersing plate 12 Filler 13 Nitrogen gas inlet 20 Water tank 21 Secondary processing part 22 Weir-shaped partition (weir)
23 Receiver 24 Level meter 30 Raw water 40 Water supply system 41 Water supply pump 42 Flow control valve 50 Ejector 60 Raw water circulation system (raw water circulation path)
61 Flow control valve 70 Nitrogen gas introduction system 71 Flow control valve 80 Nitrogen gas recirculation system (nitrogen gas circulation path)
81 Flow control valve 90 Raw water introduction system 91 Flow control valve

Claims (5)

流下原水と上昇窒素ガスとが向流接触する対向流型の気液接触筒を水槽上に単独で立設接続した1塔構造の窒素式脱酸素装置であって、当該脱酸素装置内へ窒素ガスを供給する手段として、前記水槽内の原水中にあって当該原水を循環させることにより窒素ガスを吸引するエジェクターを具備し、当該エジェクターは、これによる窒素ガス吸込み可能量が気液接触筒における窒素ガス必要量より大である窒素式脱酸素装置。 A one-column nitrogen-type deoxygenation device in which a counter-flow type gas-liquid contact tube in which counterflowing raw water and rising nitrogen gas are in countercurrent contact with each other is erected on a water tank, and nitrogen is introduced into the deoxygenation device As a means for supplying gas, an ejector for sucking nitrogen gas by circulating the raw water in the raw water in the water tank is provided, and the ejector has an amount of nitrogen gas that can be sucked in the gas-liquid contact cylinder. Nitrogen deoxygenation device that is larger than the nitrogen gas requirement . 請求項1に記載の窒素式脱酸素装置において、水槽内の原水面より上の空間からエジェクターへ窒素ガスを還流させる窒素ガス還流経路を具備する窒素式脱酸素装置。 The nitrogen type deoxygenation apparatus according to claim 1 , comprising a nitrogen gas recirculation path for recirculating nitrogen gas from a space above the raw water surface in the water tank to the ejector. 請求項1又は2に記載の窒素式脱酸素装置において、気液接触筒は、その下部が水槽内の原水中に浸漬するように水槽と連結されている窒素式脱酸素装置。 The nitrogen-type deoxygenation apparatus according to claim 1 or 2 , wherein the gas-liquid contact cylinder is connected to the water tank so that a lower part thereof is immersed in the raw water in the water tank. 請求項3に記載の窒素式脱酸素装置において、水槽は堰により、気液接触筒直下の二次処理部と、堰をオーバーフローした二次処理水が流入する受け部とに区画されている窒素式脱酸素装置。 4. The nitrogen-type deoxygenation apparatus according to claim 3 , wherein the water tank is divided by a weir into a secondary treatment part immediately below the gas-liquid contact cylinder and a receiving part into which the secondary treated water overflowing the weir flows. Type oxygen absorber. 請求項4に記載の窒素式脱酸素装置において、エジェクターへの原水循環経路は、受け部内の二次処理水、又は受け部から排出された処理水をエジェクターへ循環させるように構成されている窒素式脱酸素装置。 The nitrogen-type deoxygenation device according to claim 4 , wherein the raw water circulation path to the ejector is configured to circulate secondary treated water in the receiving part or treated water discharged from the receiving part to the ejector. Type oxygen absorber.
JP2013009718A 2013-01-23 2013-01-23 Nitrogen deoxygenation equipment Active JP5972805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013009718A JP5972805B2 (en) 2013-01-23 2013-01-23 Nitrogen deoxygenation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013009718A JP5972805B2 (en) 2013-01-23 2013-01-23 Nitrogen deoxygenation equipment

Publications (2)

Publication Number Publication Date
JP2014140802A JP2014140802A (en) 2014-08-07
JP5972805B2 true JP5972805B2 (en) 2016-08-17

Family

ID=51422606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013009718A Active JP5972805B2 (en) 2013-01-23 2013-01-23 Nitrogen deoxygenation equipment

Country Status (1)

Country Link
JP (1) JP5972805B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600075748A1 (en) * 2016-07-19 2018-01-19 3V Green Eagle S P A Process and equipment for wet oxidation of wastewater

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597284A (en) * 1979-01-18 1980-07-24 Shin Meiwa Ind Co Ltd Aerator for polluted water
JPH034394Y2 (en) * 1986-07-25 1991-02-05
JPH06254538A (en) * 1993-03-01 1994-09-13 Japan Organo Co Ltd Removing device for dissolving oxygen
JP2000140881A (en) * 1998-11-16 2000-05-23 Nippon Sanso Corp Oxygen dissolution device
JP2006263641A (en) * 2005-03-25 2006-10-05 Toyobo Engineering Kk Gas dissolution method and its apparatus
JP5326377B2 (en) * 2008-06-24 2013-10-30 栗田工業株式会社 Nitrogen displacement deoxygenator

Also Published As

Publication number Publication date
JP2014140802A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
US20080169230A1 (en) Pumping and Dispensing System for Coating Semiconductor Wafers
WO2008153809A3 (en) Ballast water tank circulation treatment system
CN105273771B (en) Desulfurizing device
US20150076083A1 (en) Apparatus and Method for Separation of Oil From Oil-Containing Produced Water
JP5972805B2 (en) Nitrogen deoxygenation equipment
JP5721587B2 (en) Dissolution separation tank and gas-liquid mixing dissolution apparatus
JP2005144320A (en) Fluid mixing apparatus
JP4018099B2 (en) Device for removing dissolved oxygen in liquid and method for removing dissolved oxygen
EP1373144B1 (en) Mechanical oxygen scavenger device
US20150135959A1 (en) Deoxidation apparatus
KR20210074759A (en) Apparatus for ammonia stripping with multi stage
AU2021435297B2 (en) Method and systems for oxygenation of water bodies
KR101157642B1 (en) Apparatus for Dissolving Oxygen Using Bubble
JP4793167B2 (en) Pressure floating separator
US20090184060A1 (en) System and Process for Forming Micro Bubbles in Liquid
CN206940803U (en) A kind of online purification device of oil product
RU59042U1 (en) LIQUID SULFUR DEGASATION DEVICE
KR101010643B1 (en) Agent Mixing Supplier
KR200346814Y1 (en) Reactor for contact gas and liquid
EP2870995A1 (en) Gas dissolver
US2177706A (en) Apparatus for processing motion picture film
US20180134596A1 (en) Microbubble aerator
JP2015116555A (en) Removal device of dissolved oxygen
US20170144910A1 (en) Multistage aeration system
JP2015003291A (en) Biological desulfurization method, and biological desulfurization apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160713

R150 Certificate of patent or registration of utility model

Ref document number: 5972805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250