JP2929690B2 - Deoxidizer for pure water production equipment - Google Patents

Deoxidizer for pure water production equipment

Info

Publication number
JP2929690B2
JP2929690B2 JP25151290A JP25151290A JP2929690B2 JP 2929690 B2 JP2929690 B2 JP 2929690B2 JP 25151290 A JP25151290 A JP 25151290A JP 25151290 A JP25151290 A JP 25151290A JP 2929690 B2 JP2929690 B2 JP 2929690B2
Authority
JP
Japan
Prior art keywords
water
treated
tank
nitrogen gas
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25151290A
Other languages
Japanese (ja)
Other versions
JPH03249906A (en
Inventor
猛 篠田
和彦 滝野
則男 寺沢
信子 橋本
等 佐藤
康之 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11800652&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2929690(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Plant Construction Co Ltd filed Critical Hitachi Plant Construction Co Ltd
Publication of JPH03249906A publication Critical patent/JPH03249906A/en
Application granted granted Critical
Publication of JP2929690B2 publication Critical patent/JP2929690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は純水製造装置の脱酸素装置に係り、特に被処
理水中に窒素ガスを通気させて被処理水中の溶存酸素の
除去する純水製造装置の脱酸素装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deoxidizer for a pure water producing apparatus, and more particularly to pure water for removing dissolved oxygen in treated water by passing nitrogen gas through the treated water. The present invention relates to a deoxidizer for a manufacturing apparatus.

〔従来の技術〕[Conventional technology]

近年、IC、LSI等の半導体製造工程に於いては、その
半導体を洗浄する為に純水が使用されている。前記純水
は、前記半導体の集積度の高密度化に伴って水質の品質
に係わる要求が厳しくなっている。
In recent years, in the process of manufacturing semiconductors such as ICs and LSIs, pure water has been used to clean the semiconductors. With respect to the pure water, the demand for the quality of the water is becoming stricter as the degree of integration of the semiconductor is increased.

従来、前記純水を製造する装置として、真空脱気装置
が用いられている。
Conventionally, a vacuum deaerator has been used as an apparatus for producing the pure water.

前記真空脱気装置は、スチームエジェクタや水封ポン
プでその内部を真空化にした脱気塔内に、被処理水を噴
霧して被処理水中の溶存酸素を除去する装置である。
The vacuum deaerator is a device that removes dissolved oxygen in the water to be treated by spraying the water to be treated into a deaeration tower whose inside is evacuated by a steam ejector or a water ring pump.

しかしながら、前記真空脱気装置は、前述した要求水
質を満足する為に前記脱気塔の高さを10m以上にしなげ
ればならない。このような高さの脱気塔は屋外に設置せ
ざるを得ず、この為、屋内に設置される純水製造装置か
ら脱気塔までの配管長さが長くなり、これによって配管
から有機物等が溶出したり、配管内に菌が発生したりす
るので、高品質の純水を得るこができないという欠点が
ある。
However, in order to satisfy the above-mentioned required water quality, the vacuum deaerator needs to have a height of the deaeration tower of 10 m or more. The deaeration tower of such a height must be installed outdoors, and therefore the length of the pipe from the pure water production equipment installed indoors to the deaeration tower becomes longer, which causes the pipe to lose organic matter, etc. Is eluted or bacteria are generated in the piping, so that high-quality pure water cannot be obtained.

更に、前記真空脱気装置は、脱気性能が低いという欠
点がある。即ち、真空脱気塔に多数のスチームエジェク
タや水封ポンプ等を取付けて、これら全てを稼働しても
処理水中に於けるDO(酸素含有率)値を50〜100ppb程度
にしか低減させることができない。近時、純水中の溶存
酸素が前記半導体に悪影響を与えない為には、前記DO値
を10ppb以下にしなげればならないことが判明されてい
る。従って、真空脱気塔で製造された純水は、半導体の
洗浄に使用できないという欠点がある。
Further, the vacuum deaerator has a drawback that the deaeration performance is low. That is, even if many steam ejectors and water seal pumps are installed in the vacuum degassing tower and all these are operated, the DO (oxygen content) value in the treated water can be reduced only to about 50 to 100 ppb. Can not. Recently, it has been found that the DO value must be 10 ppb or less so that dissolved oxygen in pure water does not adversely affect the semiconductor. Therefore, there is a drawback that pure water produced by a vacuum degassing tower cannot be used for cleaning semiconductors.

そこで、このような高品質の純水を製造する脱酸素装
置として、窒素ガスを利用した脱酸素装置がある。
Therefore, as a deoxidizer for producing such high-quality pure water, there is a deoxidizer using nitrogen gas.

窒素ガスを利用した前記脱酸素装置は、被処理水が貯
留された槽の底部から窒素ガスを散気板を介して吹き出
し、窒素ガスの気泡を被処理水に通気させ、被処理水中
の溶存酸素を気泡内に取り込んで除去するようにしたも
のてある。
The deoxygenation apparatus using nitrogen gas blows nitrogen gas from the bottom of the tank in which the water to be treated is stored through a diffuser plate to allow bubbles of the nitrogen gas to flow through the water to be treated, thereby dissolving the water in the water to be treated. In some cases, oxygen is taken into bubbles and removed.

第10図には前記窒素ガスを利用した脱酸素装置の実施
例が示されている。
FIG. 10 shows an embodiment of a deoxygenating apparatus using the nitrogen gas.

貯留槽10内には被処理水12が貯留され、この貯留槽10
の底部近傍に窒素ガス吹出装置14が取付けられる。前記
窒素ガス吹出装置14の上面には散気板16が敷設され、こ
の散気板16はバルブ18、ダクト20を介して送り込まれた
窒素ガスを前記被処理水に対して気泡状に吹き出すこと
ができる。
The treated water 12 is stored in the storage tank 10, and the storage tank 10
A nitrogen gas blowing device 14 is attached near the bottom of the device. A diffuser plate 16 is laid on the upper surface of the nitrogen gas blowing device 14, and the diffuser plate 16 blows nitrogen gas sent through a valve 18 and a duct 20 into the water to be treated in a bubble form. Can be.

前記散気板16の上方には被処理水送液パイプ22が取付
けられ、この被処理水送液パイプ22の下面には送液され
た被処理水を前記散気板16方向に向けて吹き出す吹出口
22a、22a…が形成される。従って、前記吹出口22a、22a
…から吹き出された被処理水は、前記散気板16から気泡
状に吹き出された窒素ガスと混合して被処理水中の溶存
酸素が窒素ガスの気泡内に取り込まれ、被処理水12の水
面から矢印方向に蒸発して貯留槽10の天井面排気口24か
ら外部に排気される。このようにして溶存酸素が除去さ
れた処理水は、貯留槽10の水面部近傍に取付けられたト
ラフ26の開口部26aから流入し、貯留槽10の側面開口部2
8を介して図示しない純水取出装置に送り出される。
A treated water feed pipe 22 is attached above the diffuser plate 16, and the treated water fed to the lower surface of the treated water feed pipe 22 is blown out toward the diffuser plate 16. Outlet
Are formed. Therefore, the outlets 22a, 22a
Is mixed with nitrogen gas blown out from the diffuser plate 16 in a bubble form, and dissolved oxygen in the water to be treated is taken in the bubbles of the nitrogen gas. And evaporates in the direction of the arrow, and is exhausted to the outside from the ceiling surface exhaust port 24 of the storage tank 10. The treated water from which dissolved oxygen has been removed in this way flows in from the opening 26a of the trough 26 attached near the water surface of the storage tank 10, and the side opening 2a of the storage tank 10
It is sent to a pure water removal device (not shown) via 8.

具体的には、溶存酸素濃度が8〜9mg/の被処理水に
純度99.9995%以上の窒素ガスを通気させると、脱酸素
後の処理水の酸素濃度が0.5mg/程度にまで減少する。
これによって、DO値を純水の要求水質である10ppb以下
にすることができる。
Specifically, when nitrogen gas having a purity of 99.9995% or more is passed through the water to be treated having a dissolved oxygen concentration of 8 to 9 mg /, the oxygen concentration of the treated water after deoxygenation is reduced to about 0.5 mg /.
As a result, the DO value can be reduced to 10 ppb or less, which is the required quality of pure water.

ところで、窒素ガスを利用する前記脱酸素装置の原理
は、第11図に示す水に対するガスの溶解度(Henry's la
w)の説明図から明らかなように、窒素ガスの純度が99.
99%以上であれば被処理水中の溶存酸素を十分に10ppb
以下にすることができる。
By the way, the principle of the deoxygenation device using nitrogen gas is based on the solubility of gas in water (Henry's lane shown in FIG. 11).
As is clear from the illustration in w), the purity of nitrogen gas is 99.
If the concentration is 99% or more, the dissolved oxygen in the water to be treated is sufficiently 10ppb
It can be:

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、従来の脱酸素装置は、貯留槽に貯留さ
れる被処理水の容積に対する窒素ガスの容積(以下、気
液比という)が低下すると、前記要求水質である10ppb
以下を達成することができない。そこで、前記10ppb以
下を満足する為には、窒素ガスを大量に吹き出さなけれ
ばならず、これにより脱酸素装置のランニングコストが
高くなるという欠点がある。
However, when the volume of nitrogen gas (hereinafter referred to as a gas-liquid ratio) with respect to the volume of the water to be treated stored in the storage tank is reduced, the conventional deoxygenating apparatus has the required water quality of 10 ppb.
The following cannot be achieved: Therefore, in order to satisfy the above 10 ppb or less, a large amount of nitrogen gas must be blown out, which has a disadvantage that the running cost of the deoxidizer increases.

また、前記脱気塔を増加すれば被処理水のDO値は低下
するが、脱気塔を増加することに伴い窒素ガスの吹き出
し総量が増加するので、脱酸素装置のイニシャルコスト
が高くなるという欠点がある。
Further, if the number of the degassing towers is increased, the DO value of the water to be treated is decreased, but the total amount of nitrogen gas blown out increases as the number of the degassing towers is increased, so that the initial cost of the deoxygenating apparatus is increased. There are drawbacks.

本発明はこのような事情に鑑みて成されたもので、窒
素ガスを効率良く利用して脱酸素装置に於けるランニン
グコスト及びイニシャルコストを削減することができる
純水製造装置の脱酸素装置を提供することを目的とす
る。
The present invention has been made in view of such circumstances, and provides a deoxygenation apparatus of a pure water production apparatus capable of efficiently using nitrogen gas to reduce running costs and initial costs in the deoxygenation apparatus. The purpose is to provide.

〔課題を解決する為の手段〕[Means for solving the problem]

本発明は、前記目的を達成する為に、被処理水が貯留
された槽の底部から窒素ガスを吹き出し前記被処理水に
通気させて被処理水中の溶存酸素を除去する純水製造装
置の脱酸素装置に於いて、前記槽(30、32)は複数設置
されて被処理水が流動可能に順次連通されると共に、下
流側の槽(32)に貯留された被処理水を通気した窒素ガ
スが隣接する上流側の槽(30)に供給可能に順次連通さ
れたことを特徴とする。
In order to achieve the above object, the present invention provides a deionized water purification apparatus for removing dissolved oxygen in the water to be treated by blowing nitrogen gas from the bottom of the tank in which the water to be treated is stored and passing the gas through the water to be treated. In the oxygen device, a plurality of the tanks (30, 32) are provided so that the water to be treated is sequentially communicated so that the water to be treated can flow therethrough, and the nitrogen gas is supplied through the water to be treated stored in the downstream tank (32). Are sequentially connected so that they can be supplied to the adjacent upstream tank (30).

〔作用〕[Action]

本発明によれば、被処理水が流動可能に順次連通され
た複数の槽(30、32)に対し、下流側の槽(32)に窒素
ガスを吹き出して被処理水を通気したこの窒素ガスを捕
集して下流側の槽(32)に隣接する上流側の槽(30)に
供給し、更にこの窒素ガスを捕集して隣接する上流側の
槽に順次供給する。このように、窒素ガスを下流側の槽
(32)から上流側の槽に順次供給するように槽(30、3
2)を連通したので、槽の設置台数が増加しても窒素ガ
スを効率良く利用して被処理水の脱酸素に寄与すること
ができる。
According to the present invention, a nitrogen gas is blown into a downstream tank (32) to aerate a plurality of tanks (30, 32) in which the water to be treated is sequentially communicated so that the water to flow can flow the water to be treated. Is collected and supplied to the upstream tank (30) adjacent to the downstream tank (32), and this nitrogen gas is collected and supplied to the adjacent upstream tank sequentially. In this way, the tanks (30, 3) are supplied so that nitrogen gas is sequentially supplied from the downstream tank (32) to the upstream tank.
Since 2) is connected, even if the number of installed tanks increases, nitrogen gas can be efficiently used to contribute to deoxygenation of the water to be treated.

〔実施例〕〔Example〕

以下添付図面に従って本発明に係る純水製造装置の脱
酸素装置の好ましい実施例を詳説する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a deoxidizer for a pure water production apparatus according to the present invention will be described below in detail with reference to the accompanying drawings.

第1図は本発明に係る純水製造装置の脱酸素装置の第
1実施例が示されている。
FIG. 1 shows a first embodiment of a deoxidizer of a pure water production apparatus according to the present invention.

第1図に於いて、図中右側の脱気塔30は被処理水の流
動方向の上流側に設置され、図中左側の脱気塔32は下流
側に設置される。
In FIG. 1, the deaeration tower 30 on the right side in the figure is installed on the upstream side in the flow direction of the water to be treated, and the deaeration tower 32 on the left side in the figure is installed on the downstream side.

前記脱気塔30内には、仕切板34、36、38が等間隔で設
置される。前記仕切板34は、その水面部近傍に連通口34
aが形成され、前記仕切板36には底部近傍に連通口36aが
形成される。また、前記仕切板38には水面部近傍に連通
口38aが形成される。更に、前記脱気塔30の図中右側底
部近傍には流入口40が形成され、図中左側底部近傍には
流出口42が形成される。
In the degassing tower 30, partition plates 34, 36, 38 are installed at equal intervals. The partition plate 34 has a communication port 34 near its water surface.
a is formed, and the partition plate 36 is formed with a communication port 36a near the bottom. A communication port 38a is formed in the partition plate 38 near the water surface. Further, an inlet 40 is formed near the right bottom portion of the degassing tower 30 in the drawing, and an outlet 42 is formed near the left bottom portion in the drawing.

前記流入口40は、配水管100及び送水ポンプ102を介し
て被処理水貯留槽104に連通され、この送水ポンプ102を
作動することにより被処理水貯留槽104に貯留された被
処理水106が配水管100を介して脱気塔30に供給される。
また、前記流出口42は配水管44、ポンプ46、配水管48を
介して前述した脱気塔32に連通されている。
The inflow port 40 is communicated with a treated water storage tank 104 via a water distribution pipe 100 and a water supply pump 102, and the treated water 106 stored in the treated water storage tank 104 is operated by operating the water supply pump 102. The water is supplied to the deaeration tower 30 via the water distribution pipe 100.
The outlet 42 is connected to the above-described deaerator 32 via a water pipe 44, a pump 46, and a water pipe 48.

従って、前記流入口40から供給された被処理水は、脱
気塔30の内壁面と仕切板34との間で画成された流路50を
図中矢印方向に流動し、仕切板34の連通口34aから仕切
板34と仕切板36とで画成された通路52に送り込まれる。
流路52に送り込まれた被処理水は、仕切板36の連通口36
aから仕切板36と仕切板38とで画成された流路54に送り
込まれ、更に仕切板38の連通口38aから仕切板38と脱気
塔30の内壁面と画成された流路56に送り込まれる。流路
56に送り込まれた被処理水は、前記流出口42からポンプ
46に吸引されて配水管48を介して前記脱気塔32の流出口
58から脱気塔32内に送り込まれる。
Therefore, the water to be treated supplied from the inflow port 40 flows through the flow path 50 defined between the inner wall surface of the deaeration tower 30 and the partition plate 34 in the direction of the arrow in the drawing, and It is fed into the passage 52 defined by the partition plate 34 and the partition plate 36 from the communication port 34a.
The water to be treated that has been sent into the flow path 52 is
a into the flow path 54 defined by the partition plate 36 and the partition plate 38, and further from the communication port 38a of the partition plate 38, the flow path 56 defined by the partition plate 38 and the inner wall surface of the degassing tower 30. Sent to. Channel
The water to be treated fed into 56 is pumped from the outlet 42
The outlet of the degassing tower 32 is sucked by the pipe 46 through a water pipe 48.
From 58, it is sent into the degassing tower 32.

前記脱気塔30の水面部近傍には排水管108が連通さ
れ、脱気塔30内を流動する被処理水の水位が前記連通口
34a、38aよりも上昇した時に、上昇分の余分な被処理水
がこの排水管108を介して前記被処理水貯留槽104に循環
される。
A drain pipe 108 is communicated near the water surface of the deaeration tower 30, and the level of the water to be treated flowing in the deaeration tower 30 is controlled by the communication port.
When the water rises above 34a and 38a, excess water to be treated is circulated to the water to be treated storage tank 104 through the drain pipe 108.

一方、前記脱気塔30の底部には、窒素ガス吹出装置60
が取付けられる。前記窒素ガス吹出装置60の上面には、
窒素ガス吹出装置60から吹き出された窒素ガスを気泡化
する散気板62が敷設される。前記窒素ガス吹出装置60
は、ダクト64を介して前述した脱気塔32の天井面開口部
66に連通される。
On the other hand, a nitrogen gas blowing device 60 is provided at the bottom of the degassing tower 30.
Is attached. On the upper surface of the nitrogen gas blowing device 60,
A diffuser plate 62 is provided to foam the nitrogen gas blown from the nitrogen gas blower 60. The nitrogen gas blowing device 60
Is a ceiling opening of the degassing tower 32 described above through a duct 64.
Communicated to 66.

ところで、前記脱気塔32内には、仕切板68、70、72、
74が設置される。前記仕切板68の水面部近傍には連通口
68aが形成され、仕切板70の底部近傍には連通口70aが形
成される。また、仕切板72の水面部近傍には連通口72a
が形成され、更に仕切板74の水面部近傍には連通口74a
が形成される。従って、脱気塔30からの被処理水は、脱
気塔32の流入口58から脱気塔32の内壁面と仕切板68とで
画成された流路76を図中矢印方向に流動し、仕切板68の
連通口68aから仕切板68と仕切板70とで画成された流路7
8に送り込まれる。流路78に送り込まれた被処理水は、
仕切板70の連通口70aから仕切板70と仕切板72とで画成
された流路80に送り込まれ、仕切板72の連通口72aから
仕切板72と仕切板74とで画成された流路82に送り込まれ
る。更に、流路82に送り込まれた被処理水は、仕切板74
の連通口74aから仕切板74と脱気塔32の内壁面とで画成
された流路84に送り込まれ、流入口86からレベルコント
ローラ88に送り込まれる。
By the way, in the deaeration tower 32, partition plates 68, 70, 72,
74 will be installed. A communication port is provided near the water surface of the partition plate 68.
68a are formed, and a communication port 70a is formed near the bottom of the partition plate 70. A communication port 72a is provided near the water surface of the partition plate 72.
A communication port 74a is formed near the water surface of the partition plate 74.
Is formed. Accordingly, the water to be treated from the degassing tower 30 flows from the inlet 58 of the degassing tower 32 through the flow path 76 defined by the inner wall surface of the degassing tower 32 and the partition plate 68 in the direction of the arrow in the figure. The flow path 7 defined by the partition plate 68 and the partition plate 70 from the communication port 68a of the partition plate 68.
Sent to 8. The water to be treated sent into the flow path 78 is
The flow is sent from the communication port 70a of the partition plate 70 to the flow path 80 defined by the partition plate 70 and the partition plate 72, and the flow defined by the partition plate 72 and the partition plate 74 from the communication port 72a of the partition plate 72. It is sent to the road 82. Further, the water to be treated fed into the flow path 82 is
From the communication port 74a of the deaerator 32 and the flow path 84 defined by the partition plate 74 and the inner wall surface of the degassing tower 32, and is sent to the level controller 88 from the inlet 86.

前記レベルコントローラ88は第2図に示すように、フ
ロート110、連結ロッド112及びテーパ弁114とから構成
される。前記テーパ弁114は排水口116を開閉可能なテー
パ形状に形成され、その上端部に前記連結ロッド112下
端部が連結されている。連結ロッド112の上端部には前
記フロート110が挿入され、このフロート110が一対のボ
ルト118、118に挟持されて固定されている。また、フロ
ート110は、前記ボルト118、118の連結ロッド112に対す
る螺合位置を変えることにより、前記テーパ弁114と距
離を調節することができる。更に、レベルコントローラ
88は、前記連結ロッド112が上下一対のガイド板120、12
2に支持されていることにより水位の変化に応じて上下
方向のみに移動することができる。
As shown in FIG. 2, the level controller 88 includes a float 110, a connecting rod 112, and a taper valve 114. The taper valve 114 is formed in a tapered shape capable of opening and closing the drain port 116, and the lower end of the connecting rod 112 is connected to the upper end thereof. The float 110 is inserted into the upper end of the connecting rod 112, and the float 110 is sandwiched and fixed by a pair of bolts 118,118. Further, the distance between the float 110 and the taper valve 114 can be adjusted by changing the screwing position of the bolts 118, 118 with the connecting rod 112. Furthermore, a level controller
88, the connecting rod 112 is a pair of upper and lower guide plates 120, 12
By being supported by 2, it can move only in the vertical direction according to a change in water level.

従って、脱気塔32内の処理水の水位が一定の水位を超
えると、前記レベルコントローラ88のフロート110が処
理水の水位ほ上昇に伴って浮き、そしてテーパ弁114が
排水口116を開放する。即ち、前記水位が所定の水位を
超えた際に、処理水が前記流入口86からレベルコントロ
ーラ88に送り込まれ、排水口116から配水管90及び第1
図に示した背圧バルブ124を介して処理水タンク126に貯
留される。また、前記フロート110とテーパ弁114との距
離は前述したように変えることができるので、脱気塔32
内の水位を適宜に調節することができる。
Therefore, when the level of the treated water in the degassing tower 32 exceeds a certain level, the float 110 of the level controller 88 floats as the level of the treated water rises, and the taper valve 114 opens the drain port 116. . That is, when the water level exceeds a predetermined water level, treated water is sent from the inflow port 86 to the level controller 88, and the treated water is discharged from the drain port 116 to the water distribution pipe 90 and the first
It is stored in the treated water tank 126 via the back pressure valve 124 shown in the figure. Further, the distance between the float 110 and the taper valve 114 can be changed as described above.
The water level inside can be adjusted appropriately.

前記脱気塔32の底部には、窒素ガス吹出装置92が設け
られる。また、窒素ガス吹出装置92の上面には、散気板
94が敷設される。この散気板94は、窒素ガス吹出装置92
から吹き出された窒素ガスを散気して脱気塔32内の処理
水全域に気泡変した窒素ガスを供給する為に取付けられ
る。前記窒素ガス吹出装置92は、ダクト96を介して図示
しない窒素ガス供給装置に連通される。
At the bottom of the degassing tower 32, a nitrogen gas blowing device 92 is provided. A diffuser plate is provided on the upper surface of the nitrogen gas blower 92.
94 will be laid. The diffuser plate 94 is provided with a nitrogen gas blowing device 92.
It is attached to diffuse the nitrogen gas blown out of the deaeration tower 32 and supply the bubbled nitrogen gas to the entire treated water in the degassing tower 32. The nitrogen gas blowing device 92 is connected to a nitrogen gas supply device (not shown) via a duct 96.

次に、前記の如く構成された純水製造装置の脱酸素装
置の作用について説明する。
Next, the operation of the deoxidizer of the pure water producing apparatus configured as described above will be described.

先ず、被処理水は脱気塔30の流入口40から供給され、
ポンプ46の吸引作動により前述した流路50、52、54、56
を通過して流出口42から配水管44、48を介して脱気塔32
に送り込まれる。そして、前記流路50、52、54、56を通
過する被処理水は、窒素ガス吹出装置60からの窒素ガス
により、被処理水中に溶存する酸素が所定量除去され
る。除去された酸素ぱ、前記窒素ガスの気泡中に取り込
まれて被処理水の水面から蒸発し、脱気塔30の天井面に
開口された排出口98から外部へ排気される。これによっ
て、被処理水は、脱気塔30内の流路50、52、54、56を通
過しながら窒素ガスに通気されるので、仕切板34、36、
38を設けない従来の脱気塔と比較して流路の長さ分だけ
窒素ガスが多く供給される。従って、窒素ガスを効率良
く利用することができる。
First, the water to be treated is supplied from the inlet 40 of the degassing tower 30,
By the suction operation of the pump 46, the flow paths 50, 52, 54, 56
From the outlet 42 through the water pipes 44 and 48 to the deaeration tower 32
Sent to. A predetermined amount of oxygen dissolved in the water to be treated is removed from the water to be treated passing through the flow paths 50, 52, 54, and 56 by the nitrogen gas from the nitrogen gas blowing device 60. The removed oxygen is taken in the bubbles of the nitrogen gas, evaporates from the surface of the water to be treated, and is exhausted to the outside through an outlet 98 opened on the ceiling surface of the degassing tower 30. As a result, the water to be treated is passed through the flow paths 50, 52, 54, and 56 in the degassing tower 30 and is passed through the nitrogen gas, so that the partition plates 34, 36,
Compared to a conventional degassing tower without 38, more nitrogen gas is supplied by the length of the flow path. Therefore, the nitrogen gas can be used efficiently.

尚、前記窒素ガス吹出装置60から吹き出される窒素ガ
スは、前述した脱気塔32の排出口66からパイプ64を介し
て供給される。
The nitrogen gas blown from the nitrogen gas blowing device 60 is supplied from the outlet 66 of the degassing tower 32 via a pipe 64.

前記脱気塔32内に送り込まれた(溶存酸素がある程度
除去された)被処理水は、前述した流路76、78、80、8
2、84を介して流入口86からレベルコントローラ88に流
入し、配水管90、背圧バルブ12を介して処理水タンク12
6に貯留される。前記被処理水は、前記流路76、78、8
0、82、84を通過する際、窒素ガス供給装置90から散気
板94を介して送り込まれる窒素ガスにより被処理水中の
溶存酸素が更に除去されて処理水、即ち純水に精製され
る。このように、脱気塔32内に流路76、78、80、82、94
を画成して、窒素ガスを効率良く被処理水に通気させる
ようにしたので、従来の脱気塔よりも効率良く被処理水
中の溶存酸素を除去することができる。
The water to be treated fed into the degassing tower 32 (to which dissolved oxygen has been removed to some extent) flows into the above-described flow channels 76, 78, 80, 8
The water flows into the level controller 88 from the inflow port 86 via the inlet 84 and the treated water tank 12 via the water distribution pipe 90 and the back pressure valve 12.
Stored in 6. The water to be treated is supplied to the flow paths 76, 78, 8
When passing through O, 82, and 84, dissolved oxygen in the water to be treated is further removed by nitrogen gas sent from the nitrogen gas supply device 90 via the diffuser plate 94, and purified into treated water, that is, purified water. As described above, the channels 76, 78, 80, 82, 94
And the nitrogen gas is efficiently passed through the water to be treated, so that the dissolved oxygen in the water to be treated can be removed more efficiently than in a conventional degassing tower.

また、前記窒素ガス吹出装置92から吹き出された窒素
ガスは、溶存酸素と共に水面から矢印方向に上昇して脱
気塔32の排出口66かダクト64を介して前述した脱気塔30
に供給される。従って、本実施例によれば、脱気塔毎に
窒素ガスを供給し排気していた従来の脱酸素装置と比較
して、窒素ガスの消費量を大幅に削減することができ
る。
Further, the nitrogen gas blown out from the nitrogen gas blowing device 92 rises in the direction of the arrow from the water surface together with the dissolved oxygen, and flows through the discharge port 66 of the degassing tower 32 or the duct 64.
Supplied to Therefore, according to the present embodiment, it is possible to significantly reduce the consumption of nitrogen gas as compared with a conventional deoxidizer in which nitrogen gas is supplied and exhausted for each degassing tower.

第3図には本発明に係る脱酸素装置と従来の脱酸素装
置との脱酸素量を比較した説明図が示されている。
FIG. 3 is an explanatory diagram comparing the amount of deoxidation between the deoxidizer according to the present invention and the conventional deoxygenator.

第3図によれば、第1図に示した本発明に係る脱酸素
装置を使用すると、溶存酸素が8.5ppmの被処理水を気液
比0.75で要求水質である10ppbに処理することができ
る。また、第10図に示した従来の脱酸素装置を使用する
と、気液比0.75で前記10ppbを達成する為には、脱気塔
が10塔必要であり、また、脱気塔を削減する為には、気
液比を大幅にアップさせなければならないことが判明し
た。従って、本発明の脱酸素装置によれば、従来の脱酸
素装置と比較して脱気塔の削減及び気液比の低減、即
ち、少ない窒素ガス量で効率良く被処理水中の溶存酸素
を除去できることが判明した。
According to FIG. 3, by using the deoxidizer according to the present invention shown in FIG. 1, it is possible to treat water to be treated having a dissolved oxygen of 8.5 ppm to a required water quality of 10 ppb at a gas-liquid ratio of 0.75. . Further, when the conventional deoxygenation apparatus shown in FIG. 10 is used, in order to achieve the above 10 ppb at a gas-liquid ratio of 0.75, 10 degassing towers are required, and in order to reduce the number of degassing towers. It was found that the gas-liquid ratio had to be greatly increased. Therefore, according to the deoxidizer of the present invention, the number of degassing towers and the gas-liquid ratio are reduced as compared with the conventional deoxygenator, that is, the dissolved oxygen in the water to be treated is efficiently removed with a small amount of nitrogen gas. It turns out that it can be done.

ここで本発明の脱酸素装置と従来の脱酸素装置との性
能比較試験の結果を第1表に示す。
Table 1 shows the results of performance comparison tests between the oxygen scavenger of the present invention and the conventional oxygen scavenger.

第1表によれば、気液比を0.75で一定にすると本発明
の脱酸素装置では、脱気塔数が2塔で賄えるにも係わら
ず、従来の脱酸素装置Aでは10塔の必要になる。また、
ランニングコスト比は同じであるが、イニシャルコスト
比は5倍に増加することが判明した、次に、従来の脱酸
素装置Bの気液比を1.0にして脱酸素を行うと、脱気塔
数を10塔から8塔にまで減少させることができるが、ラ
ンニングコスト比が1.33倍に増加する。次いで、従来の
脱酸素装置Cでは気液比を2.0にすると、脱気塔数を5
塔まで減少させることができるが、ランニングコスト比
が2.67倍に増加する。
According to Table 1, when the gas-liquid ratio is kept constant at 0.75, the conventional deoxygenation apparatus A requires 10 columns, although the deoxygenation apparatus of the present invention can cover two degassing towers. Become. Also,
It was found that the running cost ratio was the same, but the initial cost ratio was increased by a factor of 5. Next, when deoxygenation was performed with the gas-liquid ratio of the conventional deoxidizer B set to 1.0, the number of degassing towers was increased. Can be reduced from 10 towers to 8 towers, but the running cost ratio increases by 1.33 times. Next, if the gas-liquid ratio is set to 2.0 in the conventional deoxygenator C, the number of degassing towers is 5
The tower can be reduced, but the running cost ratio increases to 2.67 times.

従って、本発明に係る脱酸素装置によれば、従来の脱
酸素装置と比較して脱気塔数を削減することができ、気
液比を大幅に減少させることができる。また、ランニン
グコスト及びイニシャルコストにおいても大幅に削減す
るとができる。
Therefore, according to the oxygen scavenger according to the present invention, the number of degassing towers can be reduced as compared with the conventional oxygen scavenger, and the gas-liquid ratio can be greatly reduced. In addition, running costs and initial costs can be significantly reduced.

ところで、本発明の脱酸素装置によれば第4図に示す
ように、供給される被処理水DO値が変動しても、溶存酸
素が除去された処理水中のDO値を略一定にすることがで
きる。
By the way, according to the deoxidizer of the present invention, as shown in FIG. 4, even if the DO value of the supplied water to be treated fluctuates, the DO value in the treated water from which dissolved oxygen has been removed is made substantially constant. Can be.

尚、第1図に示した脱気塔30、32の間にポンプ46を設
置したのは、供給される被処理水量の変動や窒素ガスの
圧力変動により、窒素ガス及び被処理水の流動が一定と
ならず被処理水の水深が変化し、これに伴って被処理水
の水質が不安定になるのを防止する為である。従って、
ポンプ46を設置することにより、窒素ガスのガス圧の変
動が生じても脱気塔32に対して一定量の被処理水を供給
することができる。
The pump 46 is installed between the deaeration towers 30 and 32 shown in FIG. 1 because the flow of the nitrogen gas and the water to be treated is changed by the fluctuation of the supplied water and the pressure of the nitrogen gas. This is to prevent the water to be treated from varying in depth and not being constant, and the water quality of the to-be-treated water being thereby unstable. Therefore,
By installing the pump 46, a constant amount of water to be treated can be supplied to the degassing tower 32 even when the gas pressure of the nitrogen gas fluctuates.

また、本実施例の特徴は、脱気塔30、32を多段に配設
して多段処理を行うことで、所要溶存酸素を得ることで
もある。このような多段脱気塔に於いて、共通の窒素ガ
スを各脱気塔30、32に均等に供給する為には、各脱気塔
30、32の水位を一定にして各脱気塔30、32に貯留された
被処理水の水頭を同値にしなげればならない。その為
に、各脱気塔30、32の被処理水の水位の上昇又は下降の
水流による圧損が極力小さくなるような通水流速に設定
する必要がある。
The feature of the present embodiment is also to obtain required dissolved oxygen by arranging the deaeration towers 30 and 32 in multiple stages and performing multistage processing. In such a multi-stage degassing tower, in order to supply a common nitrogen gas to each of the degassing towers 30 and 32 equally,
The head of the water to be treated stored in each of the deaeration towers 30 and 32 must be set to the same value while keeping the water levels of the 30 and 32 constant. For this purpose, it is necessary to set the flow rate such that the pressure loss due to the rise or fall of the water level of the water to be treated in each of the degassing towers 30 and 32 is minimized.

従って、このような要求を満足する為に、脱気塔30で
は被処理水貯留槽104からの供給量を脱気塔30から脱気
塔32への供給量よりも多量にし、これによって生じる脱
気塔30内での余分な処理水を排水管108から被処理水貯
留際104に常時戻るように工夫している。
Therefore, in order to satisfy such demands, in the deaeration tower 30, the supply amount from the water to be treated storage tank 104 is made larger than the supply amount from the deaeration tower 30 to the deaeration tower 32. It is devised that excess treated water in the gas tower 30 always returns from the drain pipe 108 to the to-be-treated water storage 104.

また、脱気塔32からの窒素ガスを脱気槽30の曝気用ガ
スとして再利用する為に、脱気塔32内の上部空間は脱気
塔30を曝気し得るだけの圧力で保持されていなければな
らない。即ち、脱気塔32内の上部空間の圧力は、脱気塔
30の水頭圧に散気板62での圧力損失を加えた圧力以上で
なければならない。従って、脱気塔32に脱気塔30と同様
な排気管108を設けて処理水を得ようとすると、脱気塔3
2からの排窒素ガスが脱気塔30方向に流れず、排水管90
を通過して処理水タンク126に流れるので、本発明の目
的を達成することができない。
In order to reuse the nitrogen gas from the degassing tower 32 as the gas for aeration of the degassing tank 30, the upper space in the degassing tower 32 is maintained at a pressure sufficient to aerate the degassing tower 30. There must be. That is, the pressure in the upper space in the degassing tower 32 is
The pressure must be equal to or greater than the sum of the head pressure of 30 and the pressure loss at the diffuser plate 62. Therefore, when the same exhaust pipe 108 as the degassing tower 30 is provided in the degassing tower 32 to obtain treated water, the degassing tower 3
The nitrogen gas discharged from 2 does not flow toward the degassing tower 30 and the drain pipe 90
And flows to the treated water tank 126, so that the object of the present invention cannot be achieved.

そこで、このような不具合を解消すると共に脱気塔32
の水位を一定にする為に、処理水通過ラインにレベルコ
ントローラ88、背圧バルブ124を設置して処理水通過ラ
インに背圧をかけ、前記窒素ガスが排水管90に流れず、
且つ水位が一定になるように工夫している。
Therefore, such a problem is solved and the degassing tower 32
In order to keep the water level constant, a level controller 88 and a back pressure valve 124 are installed in the treated water passage line to apply back pressure to the treated water passage line, and the nitrogen gas does not flow to the drain pipe 90,
And it is devised to keep the water level constant.

尚、本実施例では、仕切板34、38(脱気塔32の仕切板
68、72も含む)に連通口34a、38a(68a、72a)を形成す
るとしたが、これに限られるものではなく、第5図に示
すように仕切板34、38を仕切板36に対して段差を付けて
取付けるようにしても良い。
In this embodiment, the partition plates 34 and 38 (the partition plates of the degassing tower 32) are used.
The communication ports 34a, 38a (68a, 72a) are formed at the communication ports 34a, 38a (including 68, 72). However, the invention is not limited to this, and the partition plates 34, 38 are connected to the partition plate 36 as shown in FIG. It may be attached with a step.

また、第6図、第7図に示すように、上部開口部12
8、130が形成された内筒132を脱気塔30(脱気塔32も含
む)の内部に設置し、更にこの内筒132内に仕切板134を
取付けて被処理水を図中矢印で示すように流動させるよ
うにしても良い。
Also, as shown in FIGS. 6 and 7, the upper opening 12
The inner cylinder 132 having the 8, 130 formed therein is installed inside the degassing tower 30 (including the degassing tower 32), and a partition plate 134 is further mounted inside the inner cylinder 132, and the water to be treated is indicated by an arrow in the figure. You may make it flow as shown.

更に、第8図、第9図に示すように、仕切板136、13
8、140、142を十字状に連結して脱気塔30(脱気塔32も
含む)の内部に設置し、被処理水を図中反時計回りに流
動させるようにしても良い。
Further, as shown in FIG. 8 and FIG.
8, 140, and 142 may be connected in a cross shape and installed inside the degassing tower 30 (including the degassing tower 32) so that the water to be treated flows counterclockwise in the figure.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明に係る純水製造装置の脱酸
素装置によれば、被処理水が流動可能に槽を順次連通
し、また下流側の槽の被処理水を通気した窒素ガスを隣
接する上流側の槽に順次供給するようにしたので、窒素
ガスを効率良く被処理水の脱酸素に寄与させることがで
き、これにより脱気塔数を大幅に削減することができ
る。
As described above, according to the deoxygenating apparatus of the pure water production apparatus according to the present invention, the water to be treated is sequentially communicated with the tank so that the water can flow, and the nitrogen gas that has passed through the water to be treated in the downstream tank is adjacent to the tank. The nitrogen gas can be efficiently contributed to the deoxygenation of the water to be treated, and the number of degassing towers can be greatly reduced.

また、本発明に係る脱酸素装置によれば、従来の脱酸
素装置と比較してランニングコスト及びイニシャルコス
トを大幅に削減することができる。
Moreover, according to the oxygen scavenger according to the present invention, the running cost and initial cost can be significantly reduced as compared with the conventional oxygen scavenger.

更に、下流側の槽の処理流出口にレベルコントローラ
を設置し、このレベルコントローラに連通された処理水
通過ラインに背圧バルブを取付けたので、下流側からの
窒素ガス上流側の各槽に安定して供給することができ
る。
In addition, a level controller was installed at the treatment outlet of the downstream tank, and a back pressure valve was attached to the treated water passage line connected to this level controller, so that each tank on the nitrogen gas upstream side from the downstream side was stable. Can be supplied.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る純水製造装置の脱酸素装置の第1
実施例を示す説明図、第2図は本発明に係る純水製造装
置に設置されたレベルコントローラの実施例を示す断面
図、第3図は本発明に係る純水製造装置の脱酸素装置と
従来の脱酸素装置との脱酸素性能を比較した説明図、第
4図は被処理水のDO変動における処理水のDOとの関係を
示す説明図、第5図は本発明に係る純水製造装置の脱酸
素装置の第2実施例を示す説明図、第6図は本発明に係
る純水製造装置の脱酸素装置の第3実施例を示す上面
図、第7図は第6図に於ける正面図、第8図は本発明に
係る純水製造装置の脱酸素装置の第4実施例を示す上面
図、第9図は第8図に於ける正面図、第10図は従来の純
水製造装置の脱酸素装置の実施例を示す説明図、第11図
は水に対するガスの溶解度の関係を示す説明図である。 30、32……脱気塔、34、36、38、68、70、72、74……仕
切板、46……ポンプ、50、52、54、56、76、78、80、8
2、84……流路、60、92……窒素ガス吹出装置、62、94
……散気板、88……レベルコントローラ、104……被処
理水貯留槽、110……フロート、114……テーパ弁、124
……背圧バルブ、126……処理水タンク。
FIG. 1 is a first deoxygenator of a pure water production apparatus according to the present invention.
FIG. 2 is an explanatory view showing an embodiment, FIG. 2 is a cross-sectional view showing an embodiment of a level controller installed in the pure water producing apparatus according to the present invention, and FIG. 3 is a deoxygenating apparatus of the pure water producing apparatus according to the present invention. FIG. 4 is an explanatory diagram comparing the deoxidation performance with a conventional deoxidizer, FIG. 4 is an explanatory diagram showing the relationship between the DO fluctuation of the water to be treated and the DO of the treated water, and FIG. 5 is the pure water production according to the present invention. FIG. 6 is an explanatory view showing a second embodiment of the deoxidizer of the apparatus, FIG. 6 is a top view showing a third embodiment of the deoxidizer of the pure water production apparatus according to the present invention, and FIG. 8 is a top view showing a fourth embodiment of the deoxidizer of the pure water producing apparatus according to the present invention, FIG. 9 is a front view in FIG. 8, and FIG. FIG. 11 is an explanatory view showing an embodiment of a deoxygenating apparatus of a water producing apparatus, and FIG. 11 is an explanatory view showing a relationship between solubility of gas in water. 30, 32 ... degassing tower, 34, 36, 38, 68, 70, 72, 74 ... partition plate, 46 ... pump, 50, 52, 54, 56, 76, 78, 80, 8
2, 84… Flow path, 60, 92… Nitrogen gas blowing device, 62, 94
... diffuser plate, 88 ... level controller, 104 ... treated water storage tank, 110 ... float, 114 ... taper valve, 124
…… Back pressure valve, 126 …… Treatment water tank.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 信子 東京都千代田区内神田1丁目1番14号 日立プラント建設株式会社内 (72)発明者 佐藤 等 東京都千代田区内神田1丁目1番14号 日立プラント建設株式会社内 (72)発明者 八木 康之 東京都千代田区内神田1丁目1番14号 日立プラント建設株式会社内 (56)参考文献 特開 昭59−154109(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 19/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuko Hashimoto 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Inside Hitachi Plant Construction Co., Ltd. (72) Inventor, etc. 1-11-1 Uchikanda, Chiyoda-ku, Tokyo No. Hitachi Plant Construction Co., Ltd. (72) Inventor Yasuyuki Yagi 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Hitachi Plant Construction Co., Ltd. (56) References JP-A-59-154109 (JP, A) (58) ) Surveyed field (Int.Cl. 6 , DB name) B01D 19/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被処理水が貯留された槽の底部から窒素ガ
スを吹き出し前記被処理水に通気させて被処理水中の溶
存酸素を除去する純水製造装置の脱酸素装置に於いて、 前記槽は複数設置されて被処理水が流動可能に順次連通
されると共に、下流側の槽に貯留された被処理水を通気
した窒素ガスが隣接する上流側の槽に供給可能に順次連
通されたことを特徴とする純水製造装置の脱酸素装置。
1. A deoxygenating apparatus for a pure water producing apparatus, wherein nitrogen gas is blown out from a bottom portion of a tank in which water to be treated is stored and aerated through the water to be treated to remove dissolved oxygen in the water to be treated. A plurality of tanks were installed, and the water to be treated was sequentially communicated so as to be able to flow, and the nitrogen gas that had passed through the water to be treated stored in the downstream tank was sequentially communicated so that it could be supplied to the adjacent upstream tank. A deoxygenation device for a pure water production device, characterized in that:
【請求項2】前記槽は槽内に複数の仕切板が所定間隔で
配設されて複数の流路に分割され、前記複数の仕切板に
は底部近傍の連通口と水面部近傍の連通口とが交互に形
成されて複数の流路が順次連通されたことを特徴とする
請求項(1)記載の純水製造装置の脱酸素装置。
2. The tank has a plurality of partition plates disposed at predetermined intervals in the tank and divided into a plurality of flow paths. The plurality of partition plates have a communication port near a bottom and a communication port near a water surface. The deoxygenating apparatus for a pure water production apparatus according to claim 1, wherein the plurality of flow paths are formed alternately and a plurality of flow paths are sequentially communicated.
【請求項3】前記槽同士を連通する被処理水の流動系路
に、上流側の槽の被処理水を通気した前記窒素ガスが前
記流動系路を通過して下流側の槽に逆流しないように背
圧バルブを取付けたことを特徴とする請求項(1)記載
の純水製造装置の脱酸素装置。
3. The nitrogen gas which has passed the water to be treated in the upstream tank through the flow path of the water to be treated, which communicates the tanks, does not flow back through the flow path to the tank in the downstream side. The deoxygenating apparatus for a pure water producing apparatus according to claim 1, wherein the back pressure valve is mounted as described above.
【請求項4】最上流側の槽に供給する被処理水の供給量
を最上流側の槽から下流側の槽への流動量よりも多くす
ると共に、最上流側の槽の水面部近傍に排水管を取付
け、前記供給量から流動量を減算した余分な被処理水を
この排水管から排水させて最上流側の槽の水位を一定に
保持するようにしたいことを特徴とする請求項(19)記
載の純水製造装置の脱酸素装置。
4. The supply amount of the water to be treated supplied to the most upstream tank is made larger than the flow amount from the most upstream tank to the downstream tank. A drain pipe is attached, and it is desired that excess treated water obtained by subtracting a flow rate from the supply rate be drained from the drain pipe so as to maintain a constant water level in the uppermost stream side tank. 19) The deoxidizer of the pure water production apparatus described in the above.
【請求項5】前記下流側の各槽に、被処理水の水位を適
宜に調節可能なレベルコントローラを設置し、このレベ
ルコントローラを前記背圧バルブと連通したことを特徴
とする請求項(3)記載の純水製造装置の脱酸素装置。
5. The apparatus according to claim 3, wherein a level controller capable of appropriately adjusting the level of the water to be treated is provided in each of the downstream tanks, and the level controller is connected to the back pressure valve. ).
JP25151290A 1990-01-22 1990-09-20 Deoxidizer for pure water production equipment Expired - Fee Related JP2929690B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-12269 1990-01-22
JP1226990 1990-01-22

Publications (2)

Publication Number Publication Date
JPH03249906A JPH03249906A (en) 1991-11-07
JP2929690B2 true JP2929690B2 (en) 1999-08-03

Family

ID=11800652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25151290A Expired - Fee Related JP2929690B2 (en) 1990-01-22 1990-09-20 Deoxidizer for pure water production equipment

Country Status (1)

Country Link
JP (1) JP2929690B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012125820A1 (en) * 2011-03-15 2012-09-20 Mks Instruments, Inc. System to remove dissolved gases selectively from liquids

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646400B1 (en) * 1993-04-14 2001-07-18 Nippon Sanso Corporation Dissolved oxygen reducing apparatus
JP4563138B2 (en) * 2004-10-25 2010-10-13 アサヒビール株式会社 Gas-liquid separation device and beer storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012125820A1 (en) * 2011-03-15 2012-09-20 Mks Instruments, Inc. System to remove dissolved gases selectively from liquids
GB2501861A (en) * 2011-03-15 2013-11-06 Mks Instr Inc System to remove dissolved gases selectively from liquids
US8882885B2 (en) 2011-03-15 2014-11-11 Mks Instruments, Inc. System to remove dissolved gases selectively from liquids
GB2501861B (en) * 2011-03-15 2018-11-28 Mks Instr Inc System to remove dissolved gases selectively from liquids

Also Published As

Publication number Publication date
JPH03249906A (en) 1991-11-07

Similar Documents

Publication Publication Date Title
US3840216A (en) Vacuum aeration of liquid waste effluent
US3808123A (en) Method and apparatus for the treatment of influent waters such as sewage
CN102701307B (en) Wastewater ammonia nitrogen blow-off treatment reaction device
EP0956121B1 (en) Method and device for bringing a gas and a liquid into contact with one another
CN103977602B (en) Gas-liquid separation device and the sewage-treatment plant with this gas-liquid separation device
JP2929690B2 (en) Deoxidizer for pure water production equipment
US7597801B2 (en) Fluids fluxion method and plant for wastewater treatment
JP6278796B2 (en) Deodorization device
JP4018099B2 (en) Device for removing dissolved oxygen in liquid and method for removing dissolved oxygen
JPH0813359B2 (en) Wastewater treatment equipment containing nitrogen
CA2027913C (en) Dissolved gas stripping apparatus and methods
JP3068244B2 (en) Method and apparatus for heating and multi-step degassing of makeup water using steam in a power plant
WO2020222654A1 (en) Installation for multiple skimming
JP2002301305A (en) Deaeration unit and deaeration apparatus
KR101745896B1 (en) Apparatus for renediating with multistage polluted ground water by VOCs
CN215102105U (en) A multistage air supporting splitter for sewage treatment
CN113830885B (en) Defoaming method for aerobic tank of sewage treatment biochemical system
RU2151634C1 (en) Water aerator
JP2005095791A (en) Production method of deoxidized water and its apparatus
US10843115B2 (en) Method of removing impurities
CN108609733B (en) Device and method for retarding sludge calcification by IC anaerobic reactor
JP4072507B2 (en) Oil / water separator
JP2002320959A (en) Method for removing dissolved oxygen in water and device therefor
JP2005028289A (en) Continuous type multi-stage gas-liquid contact apparatus
JP2003190738A (en) Method for desulfurizing combustion exhaust gas

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees