JP2004077041A - Heat pump heat accumulation air conditioning system - Google Patents

Heat pump heat accumulation air conditioning system Download PDF

Info

Publication number
JP2004077041A
JP2004077041A JP2002238933A JP2002238933A JP2004077041A JP 2004077041 A JP2004077041 A JP 2004077041A JP 2002238933 A JP2002238933 A JP 2002238933A JP 2002238933 A JP2002238933 A JP 2002238933A JP 2004077041 A JP2004077041 A JP 2004077041A
Authority
JP
Japan
Prior art keywords
air
heat
space
conditioned
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002238933A
Other languages
Japanese (ja)
Inventor
Matsuo Morita
森田 満津雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Kohki Co Ltd
Original Assignee
Kimura Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Kohki Co Ltd filed Critical Kimura Kohki Co Ltd
Priority to JP2002238933A priority Critical patent/JP2004077041A/en
Publication of JP2004077041A publication Critical patent/JP2004077041A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump heat accumulation air conditioning system capable of effectively using a heat accumulation energy with no waste. <P>SOLUTION: The air conditioning system is provided with a heat pump type air conditioner A in which an evaporator 2, a condenser 3 and a compressor constituting a coolant circulation circuit C are integrally provided; an air feed passage 5 for the air conditioned air heat-exchanged in the evaporator 2 from the air conditioner to a heat accumulation space F and a space E to be air-conditioned formed in a building; an air returning passage 6 for the evaporator air from the heat accumulation space F and the space E to be air-conditioned to the air conditioner A; an air discharge passage 14 for feeding the air heat-exchanged in the condenser 3 from the air conditioner A to the outdoor; a suction passage 15 for the condenser air from the heat accumulation space F and the outdoor to the air conditioner A; and a damper mechanism D capable of adjusting an air feed ratio of the air conditioned air to the heat accumulation space F and the space E to be air-conditioned, an air returning ratio of the evaporator air from the heat accumulation space F and the space E to be air-conditioned and a suction ratio from the heat accumulation space F and the outdoor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はヒートポンプ蓄熱空調システムに関する。
【0002】
【従来の技術】
例えば夏季の室内空調において、熱負荷の低い夜間は躯体に蓄熱し、熱負荷の高い日中は躯体に蓄えた冷熱を空調用の循環空気に放出させて空調し、空調機の電力負荷の平準化を図るシステムが知られている。
【0003】
【発明が解決しようとする課題】
ところが、このように蓄熱を空調用の循環空気に利用するだけでは、熱負荷ピーク時に対応困難な場合があり、それに対処するには空調機の容量を大きくする必要がある。そのため大型でコストの掛かる空調機が必要となり、しかも、熱負荷のピーク時は比較的短期間・短時間で、それ以外の期間・時間はフル運転できず効率が悪くなり無駄が多かった。そこで、これらの問題点を解決するヒートポンプ空調システムを提供することを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成するために、本発明は、冷媒循環回路を構成する蒸発器と凝縮器と圧縮機とを一体に設けたヒートポンプ式の空調機と、建物内に形成された蓄熱空間と被空調空間とに前記ヒートポンプ式空調機から前記蒸発器で熱交換した空調空気を送る給気路と、前記蓄熱空間と前記被空調空間とから前記ヒートポンプ式空調機に蒸発器用空気を送る還気路と、前記ヒートポンプ式空調機から屋外に前記凝縮器で熱交換した空気を送る排気路と、前記蓄熱空間と前記屋外から前記ヒートポンプ式空調機に凝縮器用空気を送る吸気路と、前記空調空気の前記蓄熱空間と前記被空調空間への給気割合と前記蒸発器用空気の前記蓄熱空間と前記被空調空間からの還気割合と前記蓄熱空間と前記屋外からの吸気割合とを調整自在なダンパ機構と、を備えた。さらに、冷媒循環回路を、空調機のケーシングに対して取出・収納自在に構成した。さらに、蒸発器と凝縮器のフィンチューブを楕円管で構成した。
【0005】
【発明の実施の形態】
図1と図2は、本発明のヒートポンプ蓄熱空調システムの一実施例を示しており、このヒートポンプ蓄熱空調システムは、冷媒循環回路Cを構成する蒸発器2と凝縮器3と圧縮機4とを一体に設けたヒートポンプ式の空調機Aと、建物内に形成された蓄熱空間Fと被空調空間Eとに前記ヒートポンプ式空調機Aから前記蒸発器2で熱交換した空調空気を送る給気路5と、前記蓄熱空間Fと前記被空調空間Eとから前記ヒートポンプ式空調機Aに蒸発器用空気を送る還気路6と、前記ヒートポンプ式空調機Aから屋外に前記凝縮器3で熱交換した空気を送る排気路14と、前記蓄熱空間Fと前記屋外から前記ヒートポンプ式空調機Aに凝縮器用空気を送る吸気路15と、前記空調空気の前記蓄熱空間Fと前記被空調空間Eへの給気割合と前記蒸発器用空気の前記蓄熱空間Fと前記被空調空間Eからの還気割合と前記蓄熱空間Fと前記屋外からの吸気割合とを調整自在なダンパ機構Dと、を備えている。なお、実線及び点線の白抜き矢印は送風方向を示す。
【0006】
蓄熱空間Fは、蓄熱体としてのスラブなどの建物躯体と天井壁などにて形成された天井チャンバや床下チャンバなどである。Bはヒートポンプ式の外調機で、屋外からの外気を蒸発器と加湿器で温湿度調整して被空調空間Eと蓄熱空間Fへ所定割合で給気し、被空調空間Eからの還気を凝縮器で熱回収して屋外に排気する。この被空調空間Eと蓄熱空間Fへの給気割合はダンパ16にて調整する。
【0007】
空調機Aは、ケーシング1内に、送風機11と蒸発器2を設けた蒸発送風路17と、送風機12と凝縮器3を設けた凝縮送風路18と、を備えている。ケーシング1には、吸気口7、給気口8、還気口9及び排気口10を形成し、還気口9と給気口8を蒸発送風路17にて連通連結し、吸気口7と排気口10を凝縮送風路18にて連通連結する。この給気口8に給気路5を、還気口9に還気路6を、排気口10に排気路14を、吸気口7に吸気路15を、それぞれ接続する。給気路5と還気路6と吸気路15にはそれぞれ風量調整用ダンパa、b、c、d、eを設けてダンパ機構Dを構成し、図示省略のコントローラなどにてダンパ機構Dを制御し、所定の風量割合に調整する。
【0008】
冷媒循環回路Cは、蒸発器2、凝縮器3、圧縮機4、図示省略の受液器、膨張弁及び冷媒循環方向の切換弁等を配管接続して成り、蒸発器2及び凝縮器3の吸熱と放熱を切換自在に構成する。この空調機Aでは、還気口9から取入れた空気を蒸発器2の流通冷媒で熱交換して給気口8から給気し、同時に吸気口7から取入れた空気で凝縮器3の流通冷媒を熱交換して吸熱又は放熱し排気口10から排気する。凝縮器3と蒸発器2のフィンチューブ19は低圧損の楕円管で構成する(図3参照)のが好ましいが円形管でもよい。この冷媒循環回路Cは、ケーシング1に対して取出・収納自在に構成する。例えば、ケーシング1内に着脱自在に取付けられるフレーム13に、冷媒循環回路Cを固定して一体化し、ケーシング1の一面に開口部を形成し、この開口部に対して冷媒循環回路付フレーム13を取出・収納自在に構成する。開口部には、着脱又は開閉自在な外装板を設ける。なお、前述以外の構成で冷媒循環回路Cを取出・収納自在に設けるも自由である。
【0009】
次に運転例を説明する。低熱負荷の夜間では、ダンパb、dを開、ダンパa、c、eを閉にして空調機Aと蓄熱空間Fの間でのみ空調空気を循環させて蓄熱する。高熱負荷の日中では、ダンパa、c、dを開、ダンパb、eを閉にして、蓄えた冷熱や温熱を蒸発器用空気に放出して熱負荷を下げつつ、空調機Aと被空調空間Eの間で空調空気を循環させて空調し、熱負荷ピーク時には、さらにダンパeを開いて蓄えた冷熱や温熱を蒸発器用空気と凝縮器用空気の両方に放出して最大限に熱負荷を下げつつ、空調機Aと被空調空間Eの間で空調空気を循環させて空調する。このとき、被空調空間Eと蓄熱空間Fの空気量は外調機Bの給排気により調整する。このように空調空気の蓄熱空間Fと被空調空間Eへの給気割合と蒸発器用空気の蓄熱空間Fと被空調空間Eからの還気割合と蓄熱空間Fと屋外からの吸気割合とを調整して熱負荷に応じた運転を行うことができる。
【0010】
なお、給気路5と還気路6と吸気路15の構成の変更は自由で、例えば分岐ダクトを使わずにダクトを2本ずつ用いたり、また、ダンパa〜eの構造、数量、位置の変更も自由である。蓄熱空間Fとしては、天井側空間のみならず床下側空間や壁側空間であってもよい。
【0011】
【発明の効果】
請求項1の発明では、低熱負荷時に蓄えた冷熱や温熱を、熱負荷ピーク時に蒸発器用空気と凝縮器用空気の両方に放出して空調機を運転できるので、空調機の大容量化(大型化)を防止し高効率運転とコスト低減を図れる。冷媒循環回路を一体に設けたヒートポンプ式空調機なので、設置後の冷媒配管工事が不要となり施工が簡単で屋内設置も容易で、別個に熱源機などの付帯設備が不要で設備コストの低減を図れる。
請求項2の発明では、ケーシング全体を取り外すことなく冷媒循環回路のみをケーシングから取出して冷媒回収作業やメンテナンスを容易に行え、取付け収納にも手間がかからない。また、冷媒循環回路だけ交換することにより、リニューアル時のコストダウンも図れる。
請求項3の発明では、高風速で使用しても圧力損失が増加せずかつ熱交換能力も低下しないので小型の蒸発器と凝縮器を使用でき空調機をさらにコンパクト化できる。また、通常風速では圧力損失が減少して熱交換効率が向上するので小型の送風機を用いることができ騒音低減を図れる。
【図面の簡単な説明】
【図1】本発明の一実施例を示すシステム図である。
【図2】空調機の断面図である。
【図3】フィンチューブの断面図である。
【符号の説明】
1  ケーシング
2  蒸発器
3  凝縮器
4  圧縮機
5  給気路
6  還気路
14 排気路
15 吸気路
19 フィンチューブ
A  空調機
C  冷媒循環回路
D  ダンパ機構
E  被空調空間
F  蓄熱空間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat pump heat storage air conditioning system.
[0002]
[Prior art]
For example, in indoor air conditioning in the summer, heat is stored in the frame during the night when the heat load is low, and in the daytime when the heat load is high, the cold heat stored in the frame is released to the circulating air for air conditioning for air conditioning. There is known a system for realizing the conversion.
[0003]
[Problems to be solved by the invention]
However, simply using the heat storage for the circulating air for air conditioning as described above may be difficult to cope with at the time of the peak heat load. To deal with this, it is necessary to increase the capacity of the air conditioner. Therefore, a large-sized and costly air conditioner is required. In addition, during a peak heat load, a relatively short period and a short period of time are required. Then, it aims at providing the heat pump air conditioning system which solves these problems.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a heat pump type air conditioner in which an evaporator, a condenser and a compressor constituting a refrigerant circulation circuit are integrally provided, a heat storage space formed in a building, and an air conditioning system. An air supply passage for sending air-conditioned air heat-exchanged by the evaporator from the heat pump air conditioner to a space; and a return air passage for sending evaporator air from the heat storage space and the air-conditioned space to the heat pump air conditioner. An exhaust path for sending air heat exchanged by the condenser from the heat pump type air conditioner to the outside, an intake path for sending condenser air from the heat storage space and the outside to the heat pump type air conditioner, A damper mechanism that can adjust a proportion of air supplied to the heat storage space and the space to be air-conditioned, a rate of return air from the heat storage space and the space to be air-conditioned for the evaporator air, and a rate of intake air from the heat storage space and the outdoors. , I was painting. Further, the refrigerant circulation circuit is configured to be able to be taken out and stored in the casing of the air conditioner. Further, the fin tubes of the evaporator and the condenser were constituted by elliptic tubes.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
1 and 2 show an embodiment of a heat pump heat storage air conditioning system according to the present invention. In this heat pump heat storage air conditioning system, an evaporator 2, a condenser 3, and a compressor 4 constituting a refrigerant circuit C are arranged. An air supply passage for sending conditioned air heat-exchanged by the evaporator 2 from the heat pump type air conditioner A to a heat pump type air conditioner A integrally provided, and a heat storage space F and a space to be air conditioned E formed in a building. 5, heat return space 6 for sending evaporator air from the heat storage space F and the space to be air-conditioned E to the heat pump air conditioner A, and heat exchange in the condenser 3 from the heat pump air conditioner A to the outdoors. An exhaust passage 14 for sending air; an intake passage 15 for sending condenser air from the heat storage space F and the outside to the heat pump air conditioner A; and a supply of the conditioned air to the heat storage space F and the air-conditioned space E. The air ratio and the steam And a, a damper mechanism D can freely adjust the intake rate from the outdoor and the thermal storage space F and return air proportion from the thermal storage space F and the target air-conditioned space E dexterity air. The solid and dotted outline arrows indicate the direction of air flow.
[0006]
The heat storage space F is a ceiling chamber, an underfloor chamber, or the like formed by a building frame such as a slab as a heat storage body and a ceiling wall. B is a heat pump type external conditioner. The outside air from the outside is adjusted in temperature and humidity by an evaporator and a humidifier to supply air to the air-conditioned space E and the heat storage space F at a predetermined rate, and to return air from the air-conditioned space E. Is recovered in a condenser and exhausted outdoors. The proportion of air supply to the air-conditioned space E and the heat storage space F is adjusted by the damper 16.
[0007]
The air conditioner A includes, in the casing 1, an evaporative air passage 17 provided with the blower 11 and the evaporator 2, and a condensed air passage 18 provided with the blower 12 and the condenser 3. The casing 1 is formed with an intake port 7, a supply port 8, a return port 9, and an exhaust port 10. The return port 9 and the supply port 8 are connected to each other through an evaporative air passage 17, and are connected to the intake port 7. The exhaust port 10 is connected and connected by a condensing air passage 18. The air supply port 5 is connected to the air supply path 5, the return air path 9 is connected to the return air path 6, the exhaust port 10 is connected to the exhaust path 14, and the intake port 7 is connected to the intake path 15. The air supply path 5, the return air path 6, and the intake path 15 are respectively provided with dampers a, b, c, d, and e for adjusting the air volume to form a damper mechanism D. The damper mechanism D is controlled by a controller (not shown). Control and adjust to a predetermined air volume ratio.
[0008]
The refrigerant circuit C is formed by connecting the evaporator 2, the condenser 3, the compressor 4, a liquid receiver (not shown), an expansion valve, a refrigerant circulation direction switching valve, and the like with piping. Heat absorption and heat radiation can be switched freely. In the air conditioner A, the air taken in from the return air port 9 exchanges heat with the refrigerant flowing through the evaporator 2 and is supplied from the air supply port 8, and at the same time, the air taken in from the intake port 7 flows through the refrigerant flowing through the condenser 3. Heat is exchanged to absorb heat or dissipate heat and exhausted from the exhaust port 10. The fin tubes 19 of the condenser 3 and the evaporator 2 are preferably formed of low pressure drop elliptical tubes (see FIG. 3), but may be circular tubes. The refrigerant circuit C is configured to be able to be taken out and stored in the casing 1. For example, the refrigerant circulation circuit C is fixed to and integrated with a frame 13 which is detachably mounted in the casing 1, an opening is formed on one surface of the casing 1, and a frame 13 with a refrigerant circulation circuit is formed on the opening. It is constructed so that it can be taken out and stored freely. The opening is provided with a detachable or openable / closable exterior plate. It is to be noted that the refrigerant circulation circuit C may be provided so as to be freely taken out and stored in a configuration other than that described above.
[0009]
Next, an operation example will be described. At night with a low heat load, the dampers b and d are opened and the dampers a, c and e are closed to circulate the conditioned air only between the air conditioner A and the heat storage space F to store heat. During the day when the heat load is high, the dampers a, c and d are opened and the dampers b and e are closed to release the stored cold or warm heat to the air for the evaporator, thereby reducing the heat load, and controlling the air conditioner A and the air conditioning. Air conditioning is circulated between the spaces E for air conditioning. During peak heat loads, the damper e is further opened to release the stored cold or warm heat to both the evaporator air and the condenser air to maximize the heat load. While lowering, air is circulated between the air conditioner A and the space to be air-conditioned E for air conditioning. At this time, the amount of air in the air-conditioned space E and the heat storage space F is adjusted by the supply and exhaust of the air conditioner B. In this manner, the supply ratio of the conditioned air to the heat storage space F and the conditioned space E, the return air ratio of the evaporator air from the heat storage space F and the conditioned space E, the heat storage space F, and the intake ratio from the outside are adjusted. As a result, the operation according to the heat load can be performed.
[0010]
The configuration of the air supply path 5, the return air path 6, and the intake path 15 may be freely changed. For example, two ducts may be used without using a branch duct, and the structure, quantity, and position of the dampers a to e. The change of is also free. The heat storage space F may be not only a ceiling space but also a floor space or a wall space.
[0011]
【The invention's effect】
According to the first aspect of the present invention, the air conditioner can be operated by releasing the cold or warm heat stored during the low heat load to both the air for the evaporator and the air for the condenser at the peak of the heat load. ) To prevent high efficiency operation and cost reduction. Since it is a heat pump type air conditioner with an integrated refrigerant circulation circuit, there is no need to install refrigerant piping after installation, so installation is easy, indoor installation is easy, and additional equipment such as a heat source unit is unnecessary, reducing equipment costs. .
According to the second aspect of the present invention, only the refrigerant circulation circuit is taken out of the casing without removing the entire casing, so that the refrigerant recovery operation and maintenance can be easily performed. Further, by replacing only the refrigerant circuit, the cost can be reduced at the time of renewal.
According to the third aspect of the present invention, even when used at a high wind speed, the pressure loss does not increase and the heat exchange capacity does not decrease, so that a small-sized evaporator and condenser can be used, and the air conditioner can be made more compact. At normal wind speeds, pressure loss is reduced and heat exchange efficiency is improved, so that a small blower can be used and noise can be reduced.
[Brief description of the drawings]
FIG. 1 is a system diagram showing one embodiment of the present invention.
FIG. 2 is a cross-sectional view of the air conditioner.
FIG. 3 is a sectional view of a fin tube.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Casing 2 Evaporator 3 Condenser 4 Compressor 5 Supply path 6 Return path 14 Exhaust path 15 Intake path 19 Fin tube A Air conditioner C Refrigerant circulation circuit D Damper mechanism E Air-conditioned space F Heat storage space

Claims (3)

冷媒循環回路Cを構成する蒸発器2と凝縮器3と圧縮機4とを一体に設けたヒートポンプ式の空調機Aと、建物内に形成された蓄熱空間Fと被空調空間Eとに前記ヒートポンプ式空調機Aから前記蒸発器2で熱交換した空調空気を送る給気路5と、前記蓄熱空間Fと前記被空調空間Eとから前記ヒートポンプ式空調機Aに蒸発器用空気を送る還気路6と、前記ヒートポンプ式空調機Aから屋外に前記凝縮器3で熱交換した空気を送る排気路14と、前記蓄熱空間Fと前記屋外から前記ヒートポンプ式空調機Aに凝縮器用空気を送る吸気路15と、前記空調空気の前記蓄熱空間Fと前記被空調空間Eへの給気割合と前記蒸発器用空気の前記蓄熱空間Fと前記被空調空間Eからの還気割合と前記蓄熱空間Fと前記屋外からの吸気割合とを調整自在なダンパ機構Dと、を備えたことを特徴とするヒートポンプ蓄熱空調システム。A heat pump type air conditioner A integrally provided with an evaporator 2, a condenser 3, and a compressor 4 constituting a refrigerant circuit C, and a heat pump space F and a space E to be air-conditioned formed in a building. An air supply passage 5 for sending air-conditioned air heat-exchanged in the evaporator 2 from the air conditioner A; 6, an exhaust path 14 for sending the heat-exchanged air from the heat pump type air conditioner A to the outside to the outside, and an intake path for sending condenser air from the heat storage space F and the outside to the heat pump type air conditioner A. 15, an air supply ratio of the conditioned air to the heat storage space F and the air-conditioned space E, a return air ratio of the evaporator air from the heat storage space F and the air-conditioned space E, the heat storage space F, Adjustable ratio of outdoor intake The heat pump heat storage air conditioning system comprising: the damper mechanism D, and. 冷媒循環回路Cを、空調機Aのケーシング1に対して取出・収納自在に構成した請求項1記載のヒートポンプ蓄熱空調システム。The heat pump heat storage air conditioning system according to claim 1, wherein the refrigerant circulation circuit (C) is configured to be able to be taken out and stored in the casing (1) of the air conditioner (A). 蒸発器2と凝縮器3のフィンチューブ19を楕円管で構成した請求項1又は2記載のヒートポンプ蓄熱空調システム。The heat pump thermal storage air conditioning system according to claim 1 or 2, wherein the fin tubes (19) of the evaporator (2) and the condenser (3) are constituted by elliptical tubes.
JP2002238933A 2002-08-20 2002-08-20 Heat pump heat accumulation air conditioning system Pending JP2004077041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002238933A JP2004077041A (en) 2002-08-20 2002-08-20 Heat pump heat accumulation air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002238933A JP2004077041A (en) 2002-08-20 2002-08-20 Heat pump heat accumulation air conditioning system

Publications (1)

Publication Number Publication Date
JP2004077041A true JP2004077041A (en) 2004-03-11

Family

ID=32022178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238933A Pending JP2004077041A (en) 2002-08-20 2002-08-20 Heat pump heat accumulation air conditioning system

Country Status (1)

Country Link
JP (1) JP2004077041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149873A (en) * 2010-12-27 2012-08-09 Kimura Kohki Co Ltd Floor installation type air conditioner for single-span

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149873A (en) * 2010-12-27 2012-08-09 Kimura Kohki Co Ltd Floor installation type air conditioner for single-span

Similar Documents

Publication Publication Date Title
US6405543B2 (en) High-efficiency air-conditioning system with high-volume air distribution
JP4582243B2 (en) Dehumidification system
JP2009036413A (en) Geothermal heat pump-type dry air conditioning system
JP3506333B2 (en) Ceiling heat recovery machine
JP5102579B2 (en) Air conditioning system
JP4042688B2 (en) Bathroom air conditioner
JP2894571B2 (en) Air conditioning systems and air conditioners
JP2010243005A (en) Dehumidification system
JP3567459B2 (en) Heat pump type air conditioner
JP3614775B2 (en) Heat pump air conditioner
JP5548921B2 (en) Heat source air conditioner
JP2004077041A (en) Heat pump heat accumulation air conditioning system
JP2010243003A (en) Dehumidification system
JP3603844B2 (en) External heat recovery system
JP2938759B2 (en) Air heat source type heat pump air conditioner
JP3818379B2 (en) Recessed floor air conditioner
JP3565276B2 (en) Heat pump type air conditioner
JP2004177049A (en) Slimmed air-conditioner
JP3709862B2 (en) Heat pump air conditioning system
JP3726796B2 (en) Integrated air conditioner for wall installation
JP3726797B2 (en) Integrated air conditioner for ceiling installation
JP3617623B2 (en) Heat pump air conditioner
JP2002323232A (en) Ceiling-mounted heat pump type air conditioner
JP2000310433A (en) Ice storage air conditioning system
JP2002276993A (en) Ceiling-mounted heat pump type air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050929