JP2004077031A - Device and method for defrosting and deicing cooler in cooling facility - Google Patents

Device and method for defrosting and deicing cooler in cooling facility Download PDF

Info

Publication number
JP2004077031A
JP2004077031A JP2002238735A JP2002238735A JP2004077031A JP 2004077031 A JP2004077031 A JP 2004077031A JP 2002238735 A JP2002238735 A JP 2002238735A JP 2002238735 A JP2002238735 A JP 2002238735A JP 2004077031 A JP2004077031 A JP 2004077031A
Authority
JP
Japan
Prior art keywords
cooler
valve
temperature
cooling
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002238735A
Other languages
Japanese (ja)
Other versions
JP3742043B2 (en
Inventor
Sadao Nishimura
西村 貞生
Misao Shimizu
清水 操
Sachihiro Yanagisawa
柳沢 祥博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Co Ltd
Original Assignee
Yamato Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Co Ltd filed Critical Yamato Co Ltd
Priority to JP2002238735A priority Critical patent/JP3742043B2/en
Publication of JP2004077031A publication Critical patent/JP2004077031A/en
Application granted granted Critical
Publication of JP3742043B2 publication Critical patent/JP3742043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for defrosting and deicing coolers which directly cool loads in a cooling facility. <P>SOLUTION: In the cooling facility, the coolers with different operating temperatures (low, medium and high) which exist within the facility are sequentially cooled by one refrigerant/heat medium cooling means using the same refrigerant and the same heat medium in such a way that first a low temperature range, then a medium temperature range, and finally a high temperature range are attained. The coolers are communicated with one another by a pipeline in the order of operating temperature from the lowest operating temperature to the highest operating temperature in order to circulate the refrigerant and the heat medium. Further, a refrigerant/head medium cooling means, a pump and a first valve are arranged in series in the pipeline. A bypass line having a second valve in parallel with the refrigerant/heat medium cooling means and the first valve is connected to and disposed in the pipeline. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷却設備における負荷を直接冷却処理する冷却器(以下冷却器という)に付着する霜、氷の除去装置に関するものであり、さらに詳細には、室内温度を26℃に保つための空調用の冷却器、5℃に保たねばならない冷蔵・冷凍容器用の冷却器、0℃に保たねばならない冷蔵・冷凍容器用の冷却器といった、冷却温度の異なる複数の冷却器を備えた冷却設備において、その冷却設備内の高温側の負荷を利用して、低温側の冷却器に付着した霜や氷を融解し、冷却器から霜や氷を取り除く(除霜する)事ができる霜、氷除去装置に関するものである。
【0002】
【従来の技術】
公知のように、0℃近傍、又はそれ以下の温度を保持する冷蔵・冷凍容器や冷蔵庫は、フロンや、アンモニアといった使用冷熱媒液が蒸発する時、気化熱を取得する事により冷却を可能にする原理を採用している。
このような温度領域を冷却する冷蔵庫や冷蔵・冷凍容器は、冷却器(冷却コイル)に循環空気を供給し、冷却された後の空気の温度が0℃以下となるようにする必要がある。
このとき、供給空気に含まれる水分が冷却器にて露点以下まで冷却されると冷却器表面で結露し、さらに継続して冷却されると冷却器(冷却コイル)表面に霜、又は氷となって付着する。コイル表面に付着する氷や霜の量が増すと冷却器の熱伝達率が低下し、冷却能力を低下させ、この結果品温管理に支障をきたす。
そこで、その対策として従来技術では冷却器に付着した霜や氷を取り除く為に、冷却器に電気ヒーターを装着し、除霜、除氷の必要になった時期を見計らい電気を供給し、ヒーターの熱で霜、氷を溶かし、冷却器の冷却能力を保持している。
【0003】
こうした電気ヒータを使用した除霜、除氷装置では、除霜、除氷時に冷却器内への冷熱媒の供給を停止し、次にコイルに装着した電気ヒーターに通電する。それにより、ヒーターが先ず温度上昇する。それに伴って冷却の為に循環している空気と、ヒーターと接触している冷却器コイルの両者がヒーターより熱を得て温度が上昇する。この間も、ヒーターから熱を収得した循環空気は装置内を循環し、冷却設備を暖めてしまいながら、再度冷却器に戻る。冷却器に戻った循環空気は冷却器に接触しながら付着した霜、氷を溶かす役割を担いながら除霜に必要な時間内循環し、除霜を進める。また、冷却器とヒーターとが接触している部分より伝わった熱は直接コイルに付着した霜、氷を溶かす。
上記のような霜、氷除去装置では、冷却器に付着した氷や霜を除去している間、除霜を進めるためには、冷却設備の温度を所定の温度より上昇させてしまうという、矛盾が存在しているが、除霜を早める効果を優先させることから、現在ではやむを得ずこのような除霜方式を採用している。
【0004】
また、除霜中は循環空気を停止し、ヒーターからコイルへ伝えられる熱のみによって除霜する方法もあるが、除霜に多くの時間を要し、結果的に冷却設備内の温度が不適切の状況に長時間置かれてしまうため、一般的には前述した方法を取らざるを得ない。
さらに除霜時に冷蔵設備内の温度を上昇させてしまうため、一日の除霜回数は少なくし、その回数は4〜6回、その時間は15〜30分を要している。
さらに、冷却器に電気ヒータを装着した装置では、電気ヒータが必須の構成となり、また電気ヒータを制御する回路が必要となるなど、冷却設備全体の構成が複雑になり、またコストも上昇する等の問題がある。
また、冷熱媒にブラインを使用した冷却設備において、上記のような電気ヒータを使用せずに、除霜時に必要となる量のブラインを予め暖め用意しておき、除霜、除氷する際に温めたおいた温ブラインを冷ブラインに替わって各冷却器に供給し、除霜、除氷する温ブライン方式も知られている。しかし、このような温ブライン方式では予め所定の量のブラインを温めて用意しておく必要があり、そのために設備構成が複雑になる等の問題もある。
【0005】
【発明が解決しようとする課題】
そこで、本発明は、設備内に存在する低温、中温、高温といった温度の異なる負荷を冷却する冷却器を同一冷熱媒を利用して低温、中温、そして最後に高温域と順次冷却し、各冷却器を冷却したことにより段階的に温度上昇した冷熱媒は冷凍機等により再度冷却され、システム内を再循環する冷却設備において、各温度領域の負荷を冷却除去し、温度が上昇した循環冷熱媒を冷凍機等にて再度冷却せずに、温度上昇したままの冷熱媒を霜の付いた低温域の冷却器に供給し、それに付着した霜を除去する冷却器の霜、氷除去装置を提供し、上記従来の問題点を解決することを目的とする。
【0006】
従来の冷却設備では、冷却運転が、継続されると、低温域の負荷を処理している冷却器に霜が付き、冷却効率が低下し、十分な冷却が行われなくなる。本発明では、このような事態になった時に、各温度領域の負荷対応の冷却運転を停止し、温度が上昇した循環冷熱媒を冷凍機等にて再度冷却せずに、温度上昇したままの冷熱媒をポンプを使用して霜の付いた低温域の冷却器に供給し、それに付着した霜を除去する。
この装置はエネルギーの使用の面から見ると、除霜のためにエネルギーを改めて他より取り込む必要が無く省エネルギーが図ることができる。
また、冷却器における除霜方法そのもののが従来の方法より除霜効率が良いため、短時間且つ、冷蔵・冷凍容器等の冷却設備内の温度を上昇させずに除霜が行え、陳列されている商品の品温管理の質を向上させることができる。
【0007】
【課題を解決するための手段】
このため本発明の採用した技術解決手段は、
一台の冷熱媒冷却手段によって設備内に存在する低温、中温、高温といった作動温度の異なる冷却器を同一冷熱媒にて低温、中温、そして最後に高温域という温度順で順次冷却する冷却設備であって、前記各冷却器は冷熱媒を循環するために作動温度が最低温から最高温まで作動温度順にパイプラインによって連通され、さらに前記パイプラインには前記冷熱媒冷却手段とポンプ、第1バルブが直列に配置され、また、前記冷熱媒冷却手段と第1バルブに対して並列に第2バルブを有するバイパスラインが前記パイプライン中に接続配置されていることを特徴とする冷却設備における冷却器の霜、氷除去装置である。
また、上記に記載の冷却器の霜、氷除去装置において、第1バルブを閉じ、第2バルブをひらき、冷熱媒冷却手段の運転を停止した状態で、ポンプを作動し、最高温の冷却器からの冷熱媒をポンプで直接吸引し、最低温の冷却器に循環することを特徴とした冷却設備における冷却器の霜、氷除去方法である。
また、複数の冷蔵・冷凍容器と、建物内の空調などを行う空調機器と、冷熱媒の熱交換を行う熱交換器と、冷蔵・冷凍容器および空調機器用の冷凍機を備え、前記冷凍機からの冷熱媒が前記冷蔵・冷凍容器の冷却器、空調機器の冷却器、熱交換器を循環する冷却設備であって、前記冷蔵・冷凍容器の冷却器、空調機器の冷却器、熱交換器は作動温度が最低温から最高温まで作動温度順にパイプラインによって接続され、さらにその回路内に直列にポンプ、第1バルブ、冷熱媒を冷却する冷凍機が直列に接続され、また第1バルブと冷凍機とに並列に第2バルブを有するバイパスラインが配置されていることを特徴とする冷却設備における冷却器の霜、氷除去装置である。
また、上記に記載の冷却器の霜、氷除去装置において、第1バルブを閉じ、第2バルブをひらき、冷凍機の運転を停止した状態で、ポンプを作動し、熱交換器からの冷熱媒をポンプで直接吸引し、最低温度の冷蔵・冷凍容器の冷却器に循環することを特徴とした冷却設備における冷却器の霜、氷除去方法である。
また、複数の冷蔵・冷凍容器と、建物内の空調などを行う空調機器と、冷熱媒の熱交換を行う熱交換器と、水とブラインとを所定の割合で混合した水・ブライン混合液を貯蔵しておく蓄熱槽と、前記蓄熱槽内の水・ブライン混合液に蓄熱するための第1冷凍機と、第1冷凍機からの冷媒を蓄熱槽に循環する第1ポンプと、冷蔵・冷凍容器および空調機器用の第2冷凍機と、前記第2冷凍機からの冷媒を冷蔵・冷凍容器の冷却器および空調機器の冷却器、熱交換器に循環する第2ポンプとを備え、前記冷蔵・冷凍容器の冷却器と、空調機器の冷却器および熱交換器は熱交換器は作動温度が最低温から最高温まで作動温度順にパイプラインで接続し、さらにそのパイプライン内に第2ポンプおよび第1バルブ、第2バルブ、第3バルブを配置し、前記第2ポンプの吸引側は蓄熱槽および第1バルブを介して第2冷凍機に、また第2バルブを介して熱交換器に接続され、さらに蓄熱槽は第3バルブを介して第2冷凍機に接続されていることを特徴とする冷却設備における冷却器の霜、氷除去装置である。
また、上記に記載の冷却器の霜、氷除去装置装置において、第1バルブ、第3バルブを閉じ、第2バルブをひらき、第2冷凍機の運転を停止した状態で、第2ポンプを作動し、熱交換器からの冷熱媒を第2ポンプで直接吸引し、最低温度の冷蔵・冷凍容器の冷却器に循環することを特徴とした冷却設備における冷却器の霜、氷除去方法である。
【0008】
【実施の形態】
以下本発明の実施の形態を図面に基づいて説明すると、図1は本発明の第1実施形態に係る霜、氷除去装置の構成図であり、図2は同装置において、除霜、除氷を行っている状態の冷熱媒(温ブライン)を流している状態の説明図である。なお、以下では冷蔵・冷凍・冷凍ショーケースの冷却器を対象として説明する。また○内にバルブの図があるものがバルブが開いた状態を表している。
図1において、1は本冷却設備に設けた冷凍機(R1)、2は第1バルブ、3は第2バルブ、4はポンプ(P1)、5、6は温度の異なる第1、第2冷蔵・冷凍ショーケース(SC−1、SC−2)の冷却器、7は前記第2冷蔵・冷凍ショーケース(SC−2)の冷却器よりも高温の空調機器(AC)の冷却器、8は熱交換器(HEX)である。これらは、第2バルブ3以外は図示の如くパイプラインで直列に接続されており、また第2バルブは冷熱媒冷却手段としての冷凍機1および第1バルブ2と並列に接続されるバイパスライン中に配置される。さらに、前記第1冷蔵・冷凍ショーケース5の冷却器、第2冷蔵・冷凍ショーケース6の冷却器、空調機器7の冷却器、熱交換器8は温度(作動温度)が
第1冷蔵・冷凍ショーケース(SC−1)の冷却器<第2冷蔵・冷凍ショーケース(SC−2)の冷却器<空調機器(AC)の冷却器<熱交換器(HEX)
となっている。
【0009】
前記冷凍機1は、システム内を循環する冷熱媒を冷却する機能を、またポンプP1は冷熱媒を冷蔵・冷凍ショーケースに供給する機能を有している。
この装置では、第1バルブ2を開き、第2バルブ3を閉じた状態で冷凍機1、ポンプ4を作動させると、ポンプ4から出た低温の冷熱媒が、最も作動温度が低い冷蔵・冷凍ショーケース5の冷却器から、順に冷蔵・冷凍ショーケースの冷却器6→空調機器7の冷却器へと流れ、熱交換器8で他冷却系の温まった冷熱媒の熱を除去し、再び冷凍機1へと供給される構成となっている。そして、この冷却設備ではこのような冷熱媒の流れによって第1、第2冷蔵・冷凍ショーケース5、6、空調機器7を作動させる。
【0010】
ところで、前記冷却設備での冷却作業中に、冷却器に供給される空気に含まれる水分が冷却器にて露点以下まで冷却されると冷却器上で結露し、さらに継続して冷却されると冷却器表面に霜、又は氷となって付着する。冷却器表面に付着する氷や霜の量が増すと冷却器の熱伝達率が低下し、冷却能力を低下させ、この結果品温管理に支障をきたすという問題を生じる。
【0011】
そこで、本例では、冷却器に付着した氷や霜を除去する必要が生じると、図2に示すように、一旦、冷凍機(R1)1の運転を停止し、ポンプ(P1)4のみを作動させる。この時、第1バルブ2は閉じ、第2バルブ3を開く。この結果、最も低温域である第1冷蔵・冷凍ショーケース(SC‐1)の冷却器5へ供給される冷熱媒の温度tsは熱交換器(HEX)8を経て温度上昇した温度tHEXとなる。この温度で第1冷蔵・冷凍ショーケースの冷却器5に供給されると循環冷熱媒は第1冷蔵・冷凍ショーケースの冷却器5内の各部位の温度がtHEXより低温であるため、ここでは冷熱媒は逆にやや冷却される。このやや冷却された冷熱媒は次の中温度域である第2冷蔵・冷凍ショーケースの冷却器6、更に高温域の空調機器の冷却器7、熱交換器を経て少しづつ温度上昇する。切り替えた後、初期の段階では各冷蔵・冷凍ショーケースや空調機器の温度は徐々に上昇する。低温域の冷蔵・冷凍ショーケースの冷却器に付着している霜や氷が保有する潜熱量が存在し冷えている間は、この冷却器にやや高い温度の冷熱媒が供給されるため冷却器と冷却器内部を循環する冷熱媒との間において冷却時とは逆の熱の授受が行われ冷熱媒は冷却される。更に、冷熱媒の循環を継続していくと、冷却器表面の霜や氷は溶けきり循環冷熱媒の温度が急激に上昇する。その時が除霜終了のときでもある。こうして冷却器に付着した霜、氷をバルブの切り替えのみで簡単に行うことができる。この間、僅か5分前後で終了する。
【0012】
なお、冷熱媒冷却手段は冷凍機を含む冷熱媒を冷却することができるものを全て含むこととする。また、上記例では冷蔵・冷凍ショーケースが二つ、空調機器一つの例を説明したが、これらの冷蔵・冷凍ショーケースや空調機器は作動温度の異なる負荷を複数準備し、低温、中温、そして最後に高温域という温度順に配置し、低温側から順次冷熱媒を流すようにすることもできることは当然である。
【0013】
続いて第2実施形態を説明する。
第2実施形態は、蓄熱槽を備えた冷却設備に、本除霜、除氷装置を適用したものである。図3において30は蓄熱槽内に氷蓄熱する第1冷凍機(R−1)、31は蓄熱槽冷却用の第1ポンプ、32は蓄熱槽(氷蓄熱槽)、33は第3バルブ、21は冷蔵・冷凍ショーケース(SC−1、SC−2)および空調機器用の第2冷凍機、22は第1バルブ、23は第2バルブ、24は冷蔵・冷凍ショーケースおよび空調用の第2ポンプ(P−2)、25、26は温度の異なる第1、第2冷蔵・冷凍ショーケース(SC−1、SC−2)の冷却器、27は前記第2冷蔵・冷凍ショーケース(SC−2)よりも高温の空調機器(AC)の冷却器、28は熱交換器(HEX)である。これらは、図3に示すようにパイプラインで接続されている。さらに、前記第1冷蔵・冷凍ショーケースの冷却器25、第2冷蔵・冷凍ショーケースの冷却器26、空調機器の冷却器27、熱交換器28は負荷温度(作動温度)が
第1冷蔵・冷凍ショーケース(SC−1)の冷却器<第2冷蔵・冷凍ショーケース(SC−2)の冷却器<空調機器(AC)の冷却器<熱交換器(HEX)
となっている。
【0014】
前記第1冷凍機(R−1)30は(氷)蓄熱槽32内の水・ブライン混合液を冷却する冷凍機であり、第2冷凍機(R−2)21は冷蔵・冷凍ショーケースおよび空調機器用の補助冷凍機である。前記第1冷凍機、第2冷凍機は、いづれも従来公知のものを使用している。
【0015】
(氷)蓄熱槽32は、断熱槽として構成され、第1冷凍機(R−1)30により冷却されたブラインにより蓄熱槽32内の水・ブライン混合液を所定の温度にまで冷却できるようになっている。
【0016】
また、前記冷蔵・冷凍ショーケースについては、冷却温度が、たとえば第1冷蔵・冷凍ショーケース25は−5°C〜0°Cの範囲、第2冷蔵・冷凍ショーケース26では0°C〜+5°Cの範囲のように冷却温度が図中下方に行くにしたがって高くなるようなものとしてあり、冷蔵・冷凍ショーケースの下流には冷蔵・冷凍ショーケースよりも作動温度が高い空調機器が配置され、さらにその下流には熱交換器が配置されている。
なお、冷蔵・冷凍ショーケースは図のように2台に限定することなく、冷却温度勾配をもったものを2台以上接続することも可能であり、さらに冷蔵庫なども接続することができるが、冷蔵・冷凍ショーケースの最終の冷却温度は、空調機器(AC)の冷却温度よりも低いことが重要である。また、空調機器も1台以上とすることも可能である。
【0017】
つづいて、上記構成の氷蓄熱システムの運転状態を図面を参照して説明する。なお、図中太線で示されるパイプラインが運転中のラインを示しており、また、パイプライン中の各バルブの開閉状態は図中に示す図形(○内にバルブの図があるものが開いた状態)により開閉状態を表している。
(1)図3は電力各社によって定められた安価な電気を使用することのできる夜間の時間帯(PM10〜AM8)を利用して(氷)蓄熱槽32に蓄熱する状態の図である。この状態の時には、第2バルブ23、第3バルブ33を閉じ、第1バルブ22を開き、第2冷凍機21、第2ポンプ24を作動し、冷熱媒を冷蔵・冷凍ショーケースの冷却器25、26、空調機器の冷却器27、熱交換器28に循環供給し、各冷却器を作動する。この時間帯は夜間であるため売場やオフィスなどでは空調機器(AC)は運転されず、また冷蔵・冷凍ショーケースは商品の品質を保持するために第2冷凍機(R−2)21が連続運転状態となっている。また、夜間の安価な電力を使用して第1冷凍機(R−1)30、第1ポンプ31を運転し、(氷)蓄熱槽32内の水・ブライン混合液を過冷却し、(氷)蓄熱槽32内に蓄熱しておく。
【0018】
図4は電気料金が通常料金の時間帯(AM8〜PM10)であり、空調機器(AC)と、冷蔵・冷凍ショーケース(SC−1、SC−2)を同時運転している状態の図である(たとえば、店舗が営業開始された直後等、一度に大容積の空間を冷房する必要のある時)。この状態の時は、第3バルブ33を開き、第1バルブ22、第2バルブ23を閉じ、第2ポンプ(P−2)24を運転状態とする。この状態の時は、第2ポンプ(P−2)24により第1冷凍機(R−1)30で蓄熱した(氷)蓄熱槽32の蓄熱利用と、第2冷凍機(R−2)運転とを適切な運転ルールにより、同時またはどちらかからの冷熱が受けられるよう(氷)蓄熱槽32から、低温の水・ブライン混合液を冷蔵・冷凍ショーケースの冷却器25、26→空調機器(AC)の冷却器27→熱交換器28を循環させ、(氷)蓄熱槽32と第2冷凍機(R−2)21の能力とを互いに補完しあう。
【0019】
以上のような冷却作業中に、供給空気に含まれる水分が冷却器にて露点以下まで冷却されると冷却器上で結露し、さらに継続して冷却されると冷却器表面に霜、又は氷となって付着する。冷却器表面に付着する氷や霜の量が増すと冷却器の熱伝達率が低下し、冷却能力を低下させ、この結果品温管理に支障をきたすという問題を生じる。
【0020】
そこで、本例では、冷却器に付着した氷や霜を除去する必要が生じると(あるいは冷却設備運転開始から所定時間(例えば2時間)経過後)、冷熱媒を図5に示すフローに回路を切り替える。このフローにおいては、冷却の対象となる冷却装置全体と冷却熱源との冷熱媒の流れ回路は分断されている。即ち、第1バルブ22、第3バルブ33を閉じ、第2バルブ23を開き、第2ポンプ24を作動する。この結果、最も低温域である冷蔵・冷凍ショーケース(SC‐1)の冷却器へ供給される冷熱媒の温度tsはHEXを経て温度上昇した温度tHEXとなる。この温度で冷蔵設備SC‐1の冷却器に供給されると循環冷熱媒は冷蔵・冷凍ショーケース(SC‐1)内の各部位の温度がtHEXより低温であるため、ここでは冷熱媒は逆にやや冷却される。このやや冷却された冷熱媒は次の中温度域である冷蔵・冷凍ショーケース(SC‐2)の冷却器、更に高温域の空調機器(AC)の冷却器、熱交換器(HEX)を経て少しづつ温度上昇する。切り替えた後、初期の段階では冷蔵設備の温度は徐々に上昇する。
【0021】
この時の各冷却器へ供給される冷熱媒の温度は時間と共に系全体としては温度上昇を始める。低温域の冷蔵設備の冷却器に付着している霜や氷が保有する潜熱量が存在し冷えている間は、この冷却器にやや高い温度の冷熱媒が供給されるため冷却器と冷却器内部を循環する冷熱媒との間において冷却時とは逆の熱の授受が行われ冷熱媒は冷却される。更に、冷熱媒は循環を継続していくと、コイル表面の霜や氷は溶けきり循環冷熱媒の温度が急激に上昇する。その時が除霜終了のときでもある。
この間、僅か5分前後で終了する。
【0022】
以上、本発明に係わる氷蓄熱システムの実施の形態について説明したが、本発明の趣旨の範囲内で種々の形態を実施することが可能である。たとえば、(氷)蓄熱槽への蓄熱の時間帯、蓄熱するために使用する冷凍機の選択、(氷)蓄熱槽内に蓄熱した熱量の有効利用(たとえばバルブの切換や第1冷凍機、第2冷凍機の運転優先順位の選択)などは、対象とするシステムに応じて容易に変更することができる。また、各ポンプやバルブの切換は図示せぬ制御機器によって夫々の状態に合って制御されることは当然である。また、(氷)蓄熱槽への蓄熱は上記例では専用の第1冷凍機を使用しているが、他の休止している冷凍機を利用して蓄熱することも可能である。また、冷蔵・冷凍容器は冷蔵・冷凍ショーケースに限ることなく、専用の冷蔵庫または冷凍庫でもよく、さらに空調機器も各種空調機器を対象とすることができる。さらに上記各実施形態中の熱交換器は、この系のものに限定することなく、広く他の系の熱交換器を利用することができることは当然である。
また、本発明はその精神又は主要な特徴から逸脱することなく他の色々な形で実施することができる。また、前述の実施例はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。
【0023】
【発明の効果】
以上詳細に説明したように、本発明によれば、除霜の為のエネルギーは他の系からのエネルギーを必要とせず、システム系内の熱の移動で処理をしており、従来の電気ヒーターを利用した方式のように外の系からエネルギーを加える方法と比較し多くの省エネルギーが図れる。又、最適除霜終了時とは霜や氷が解け切ったときであり、従来の電気ヒーターを利用した方式のようにエネルギーを加え装置内の循環空気をも積極的に暖め、循環空気のエネルギーを利用し除霜する方式と比較すると除霜中の装置内の温度上昇もほんの少しで済み、冷蔵設備内の温度を低い状態に保ちながら除霜出来るシステムである、等の優れた効果を奏することができる。
【図面の簡単な説明】
【図1】第1実施形態に係る霜、氷除去装置の構成図である。
【図2】同装置において、除霜、除氷を行っている状態の冷熱媒(温ブライン)を流している状態の説明図である。
【図3】第2実施形態に係る霜、氷除去装置の構成図であり、夜間運転の状態の説明図である。
【図4】同霜、氷除去装置の構成図であり、昼間運転の状態の説明図である。
【図5】同装置において、除霜、除氷を行っている状態の冷熱媒(温ブライン)を流している状態の説明図である。
【符号の説明】
1     冷凍機(R1)
2、22  第1バルブ
3、23  第2バルブ
4     ポンプ(P1)
5、6   第1、第2冷蔵・冷凍ショーケース(SC−1、SC−2)の冷却器
7     第2冷蔵・冷凍ショーケース(SC−2)よりも高温の空調機器(AC)の冷却器
8     熱交換器(HEX)(他冷却系用の熱交換器)
21    第2冷凍機(R−2)
24    第2ポンプ(P−2)
25、26 第1、第2冷蔵・冷凍ショーケース(SC−1、SC−2)の冷却器
27    第2冷蔵・冷凍ショーケース(SC−2)よりも高温の空調機器(AC)の冷却器
28    熱交換器(HEX)
30    第1冷凍機(R−1)
31    第1ポンプ(P−1)
32    蓄熱槽
33    第3バルブ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for removing frost and ice adhering to a cooler (hereinafter referred to as a cooler) for directly cooling a load in a cooling facility, and more particularly, to an air conditioner for maintaining an indoor temperature at 26 ° C. Equipped with a plurality of coolers having different cooling temperatures, such as a cooler for refrigeration and freezing containers that must be kept at 5 ° C. and a refrigerator for refrigeration and freezing containers that must be kept at 0 ° C. In equipment, frost and ice that adhere to the cooler on the low temperature side are melted by using the load on the high temperature side in the cooling equipment, and frost and ice can be removed (defrosted) from the cooler. The present invention relates to an ice removing device.
[0002]
[Prior art]
As is well known, refrigeration / freezing containers and refrigerators that maintain a temperature close to 0 ° C. or lower can cool by using heat of vaporization when a used cooling medium such as chlorofluorocarbon or ammonia evaporates. The principle is adopted.
In a refrigerator or a refrigeration / freezing container that cools such a temperature region, it is necessary to supply circulating air to a cooler (cooling coil) so that the temperature of the cooled air is 0 ° C. or less.
At this time, if the water contained in the supply air is cooled to below the dew point by the cooler, dew forms on the surface of the cooler, and if the water is further cooled, frost or ice is formed on the surface of the cooler (cooling coil). To adhere. When the amount of ice or frost adhering to the coil surface increases, the heat transfer coefficient of the cooler decreases, and the cooling capacity decreases, thereby hindering product temperature management.
Therefore, as a countermeasure, in the prior art, in order to remove frost and ice adhering to the cooler, an electric heater was attached to the cooler, and electricity was supplied when the defrosting and deicing became necessary, and the heater was turned on. Melts frost and ice with heat and maintains the cooling capacity of the cooler.
[0003]
In such a defrosting and deicing apparatus using an electric heater, the supply of the cooling medium to the cooler is stopped during defrosting and deicing, and then the electric heater mounted on the coil is energized. Thereby, the temperature of the heater first rises. Accordingly, both the air circulating for cooling and the cooler coil in contact with the heater obtain heat from the heater and the temperature rises. During this time, the circulating air that has obtained heat from the heater circulates through the apparatus and returns to the cooler again while warming the cooling equipment. The circulating air returned to the cooler circulates within the time required for defrosting while contacting the cooler and plays a role of melting the attached frost and ice, thereby promoting defrosting. Further, heat transmitted from a portion where the cooler and the heater are in contact with each other melts frost and ice directly attached to the coil.
In the frost and ice removing device as described above, while removing ice and frost attached to the cooler, in order to proceed with defrosting, the temperature of the cooling equipment is raised above a predetermined temperature. However, since priority is given to the effect of accelerating the defrosting, such a defrosting method is now unavoidably adopted.
[0004]
There is also a method in which circulating air is stopped during defrosting and defrosting is performed only by the heat transferred from the heater to the coil.However, it takes a lot of time to defrost, and as a result, the temperature inside the cooling equipment becomes inappropriate. In general, the above-mentioned method has to be adopted since the user is left in the situation for a long time.
Furthermore, since the temperature inside the refrigeration equipment is increased during defrosting, the number of times of defrosting per day is reduced, and the number of times of defrosting is 4 to 6 times, and the time is 15 to 30 minutes.
Furthermore, in a device in which an electric heater is mounted on a cooler, an electric heater is indispensable configuration, and a circuit for controlling the electric heater is required. For example, the configuration of the entire cooling facility becomes complicated, and the cost increases. There is a problem.
Further, in a cooling facility using brine as a cooling medium, without using an electric heater as described above, an amount of brine required at the time of defrosting is prepared and warmed in advance, and when defrosting and deicing, There is also known a warm brine method in which heated warm brine is supplied to each cooler instead of cold brine, and defrosting and deicing are performed. However, in such a warm brine method, it is necessary to warm and prepare a predetermined amount of brine in advance, and there is a problem that the equipment configuration becomes complicated.
[0005]
[Problems to be solved by the invention]
Accordingly, the present invention provides a cooling device that cools loads having different temperatures such as low temperature, medium temperature, and high temperature existing in the equipment by sequentially cooling the cooler using the same cooling medium to the low temperature, medium temperature, and finally the high temperature region. The cooling medium whose temperature has been increased stepwise by cooling the cooler is cooled again by a refrigerator or the like, and the cooling equipment that recirculates through the system cools and removes the load in each temperature range, thereby increasing the temperature of the circulating cooling medium. A frost and ice removal device for a cooler that supplies a cooling medium with a raised temperature to a cooler in a low-temperature area with frost without removing the refrigeration unit again by a refrigerator or the like, and removes frost attached to the cooler. It is another object of the present invention to solve the above-mentioned conventional problems.
[0006]
In the conventional cooling equipment, when the cooling operation is continued, frost is formed on the cooler that is processing the load in the low temperature range, the cooling efficiency is reduced, and sufficient cooling is not performed. In the present invention, when such a situation occurs, the cooling operation corresponding to the load in each temperature region is stopped, and the circulating cooling medium having the increased temperature is not cooled again by the refrigerator or the like, and the temperature is kept increased. The cooling medium is supplied to a cooler in a low temperature area with a frost using a pump, and frost attached to the cooler is removed.
From the viewpoint of energy use, this device does not need to take in energy for defrosting, and can save energy.
In addition, since the defrosting method itself in the cooler has a higher defrosting efficiency than the conventional method, defrosting can be performed in a short time without increasing the temperature in the cooling equipment such as a refrigeration / freezing container, and is displayed. The quality of product temperature management for existing products can be improved.
[0007]
[Means for Solving the Problems]
Therefore, the technical solution adopted by the present invention is:
A cooling system that cools the coolers with different operating temperatures, such as low temperature, medium temperature, and high temperature, existing in the equipment by one cooling medium cooling means in the same cooling medium in order of low temperature, medium temperature, and finally high temperature. The coolers are circulated through a pipeline in order of operating temperature from a lowest temperature to a highest temperature in order to circulate a cooling medium, and the pipeline further includes a cooling medium cooling means, a pump, and a first valve. Are arranged in series, and a bypass line having a second valve in parallel with the cooling medium cooling means and the first valve is connected and arranged in the pipeline. Frost and ice removal equipment.
In the frost and ice removing device for a cooler described above, the pump is operated in a state where the first valve is closed, the second valve is opened, and the operation of the cooling medium cooling means is stopped, and the highest temperature cooler is operated. A method for removing frost and ice from a cooler in a cooling facility, characterized in that a cooling medium from air is sucked directly by a pump and circulated to a cooler having the lowest temperature.
Further, the refrigerator includes a plurality of refrigeration / freezing containers, an air conditioner for performing air conditioning in the building, a heat exchanger for exchanging heat of a cooling medium, and a refrigerator for the refrigeration / freezing containers and the air conditioning device. Cooling equipment for circulating the cooling medium of the refrigerator / freezer container, the cooler of the air conditioner, and the heat exchanger, wherein the cooler of the refrigerator / freezer container, the cooler of the air conditioner, the heat exchanger Are connected by a pipeline in the order of operating temperature from the lowest temperature to the highest temperature, and a pump, a first valve, a refrigerator for cooling the cooling medium are connected in series in the circuit, and the first valve and A frost and ice removing device for a cooler in a cooling facility, wherein a bypass line having a second valve is disposed in parallel with the refrigerator.
In the above-described apparatus for removing frost and ice from a cooler, the first valve is closed, the second valve is opened, and the operation of the refrigerator is stopped. Is directly sucked by a pump and circulated to a cooler of a refrigeration / freezing container having the lowest temperature.
In addition, a plurality of refrigeration / freezing containers, an air conditioner for performing air conditioning in a building, a heat exchanger for exchanging heat of a cooling medium, and a water / brine mixture obtained by mixing water and brine at a predetermined ratio. A heat storage tank for storing, a first refrigerator for storing heat in the water / brine mixture in the heat storage tank, a first pump for circulating a refrigerant from the first refrigerator to the heat storage tank, and refrigeration / freezing. A second refrigerator for a container and an air conditioner; and a second pump for circulating a refrigerant from the second refrigerator to a cooler of the refrigerator / freezer container, a cooler of the air conditioner, and a heat exchanger. -The cooler of the freezing container, the cooler of the air conditioner and the heat exchanger are connected by a pipeline in order of the operating temperature from the lowest temperature to the highest temperature in the heat exchanger, and the second pump and the second pump are connected in the pipeline. A first valve, a second valve, and a third valve are arranged, The suction side of the second pump is connected to the second refrigerator via the heat storage tank and the first valve, and to the heat exchanger via the second valve, and the heat storage tank is connected to the second refrigerator via the third valve. A frost and ice removing device for a cooler in a cooling facility, wherein the device is connected to a machine.
In the above-described apparatus for removing frost and ice from the cooler, the first pump and the third valve are closed, the second valve is opened, and the operation of the second refrigerator is stopped, and the second pump is operated. A method for removing frost and ice from a cooler in a cooling facility, wherein a cooling medium from a heat exchanger is directly sucked by a second pump and circulated to a cooler of a refrigeration / freezing container having the lowest temperature.
[0008]
Embodiment
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a frost and ice removing apparatus according to a first embodiment of the present invention, and FIG. FIG. 4 is an explanatory diagram of a state in which a cooling medium (hot brine) is flowing while the cooling medium is flowing. In the following, a description will be given of a cooler of a refrigeration / freezing / freezing showcase. In addition, a figure with a valve in a circle indicates a state in which the valve is open.
In FIG. 1, 1 is a refrigerator (R1) provided in the present cooling facility, 2 is a first valve, 3 is a second valve, 4 is a pump (P1), 5 and 6 are first and second refrigerations having different temperatures. -A cooler of the freezer showcase (SC-1, SC-2), 7 is a cooler of the air conditioner (AC) which is higher in temperature than the cooler of the second refrigerated showcase (SC-2), 8 is Heat exchanger (HEX). These are connected in series by a pipeline as shown except for the second valve 3, and the second valve is provided in a bypass line connected in parallel with the refrigerator 1 as the cooling medium cooling means and the first valve 2. Placed in Further, the cooler of the first refrigerated / frozen showcase 5, the cooler of the second refrigerated / frozen showcase 6, the cooler of the air conditioner 7, and the heat exchanger 8 have a temperature (operating temperature) of the first refrigerated / frozen. Cooler of showcase (SC-1) <cooler of second refrigerated / refrigerated showcase (SC-2) <cooler of air conditioner (AC) <heat exchanger (HEX)
It has become.
[0009]
The refrigerator 1 has a function of cooling the cooling medium circulating in the system, and the pump P1 has a function of supplying the cooling medium to the refrigeration / freezing showcase.
In this device, when the refrigerator 1 and the pump 4 are operated in a state where the first valve 2 is opened and the second valve 3 is closed, the low-temperature cooling medium discharged from the pump 4 is refrigerated / refrigerated at the lowest operating temperature. From the cooler of the showcase 5 to the cooler 6 of the refrigeration / freezing showcase and then to the cooler of the air conditioner 7 in order, the heat exchanger 8 removes the heat of the warmed cooling medium of the other cooling system and freezes again. It is configured to be supplied to the machine 1. Then, in this cooling facility, the first and second refrigeration / freezing showcases 5 and 6 and the air conditioner 7 are operated by the flow of the cooling medium.
[0010]
By the way, during the cooling operation in the cooling equipment, when moisture contained in the air supplied to the cooler is cooled to a dew point or lower by the cooler, dew forms on the cooler, and further cooling is performed. Frost or ice adheres to the cooler surface. When the amount of ice or frost adhering to the surface of the cooler increases, the heat transfer coefficient of the cooler decreases, and the cooling capacity decreases.
[0011]
Therefore, in this example, when it becomes necessary to remove ice or frost attached to the cooler, as shown in FIG. 2, the operation of the refrigerator (R1) 1 is temporarily stopped, and only the pump (P1) 4 is operated. Activate. At this time, the first valve 2 closes and the second valve 3 opens. As a result, the temperature ts of the cooling medium supplied to the cooler 5 of the first refrigeration / freezing showcase (SC-1), which is the lowest temperature region, becomes the temperature tHEX that has increased in temperature through the heat exchanger (HEX) 8. . When the circulating cooling medium is supplied to the cooler 5 of the first refrigerated / frozen showcase at this temperature, the temperature of each part in the cooler 5 of the first refrigerated / frozen showcase is lower than tHEX. On the contrary, the cooling medium is slightly cooled. The slightly cooled cooling medium gradually rises in temperature through the cooler 6 of the second refrigeration / freezing showcase which is the next medium temperature range, the cooler 7 of the air conditioner in the high temperature range, and the heat exchanger. After the switch, the temperature of each refrigerated / frozen showcase or air conditioner gradually rises in the initial stage. During the period of cooling due to the amount of latent heat held by the frost and ice attached to the cooler of the refrigerated / frozen showcase in the low-temperature region, a cooler medium with a slightly higher temperature is supplied to this cooler, so the cooler Heat is exchanged between the cooling medium and the cooling medium circulating inside the cooler, and the cooling medium is cooled. Further, when the circulation of the cooling medium is continued, the frost and ice on the surface of the cooler are completely melted, and the temperature of the circulating cooling medium rapidly rises. That time is also the end of defrosting. Thus, frost and ice adhering to the cooler can be easily removed only by switching the valve. During this time, the process is completed in only about 5 minutes.
[0012]
Note that the cooling medium cooling means includes all means capable of cooling the cooling medium including the refrigerator. In the above example, two refrigeration / freezing showcases and one air conditioner were described.However, these refrigeration / freezing showcases and air conditioners prepare a plurality of loads having different operating temperatures, low temperature, medium temperature, and Finally, it is of course possible to arrange the components in the order of the temperature in the high temperature range and to make the cooling medium flow sequentially from the low temperature side.
[0013]
Subsequently, a second embodiment will be described.
In the second embodiment, the present defrosting and deicing apparatus is applied to cooling equipment provided with a heat storage tank. In FIG. 3, reference numeral 30 denotes a first refrigerator (R-1) for storing ice in the heat storage tank, 31 a first pump for cooling the heat storage tank, 32 a heat storage tank (ice heat storage tank), 33 a third valve, 21 Is a second refrigerator for refrigerated / refrigerated showcases (SC-1, SC-2) and air conditioners, 22 is a first valve, 23 is a second valve, and 24 is a refrigerated / refrigerated showcase and a second for air conditioning. Pumps (P-2), 25 and 26 are coolers of the first and second refrigerated / frozen showcases (SC-1, SC-2) having different temperatures, and 27 is the second refrigerated / frozen showcase (SC-). 2) A cooler of the air conditioner (AC) having a higher temperature than that of the air conditioner (28) is a heat exchanger (HEX). These are connected by a pipeline as shown in FIG. Further, the cooler 25 of the first refrigerator / freezer showcase, the cooler 26 of the second refrigerator / freezer showcase, the cooler 27 of the air conditioner, and the heat exchanger 28 have a load temperature (operating temperature) of the first refrigerator / freezer showcase. Cooler of freezer showcase (SC-1) <cooler of second refrigeration / freezer showcase (SC-2) <cooler of air conditioner (AC) <heat exchanger (HEX)
It has become.
[0014]
The first refrigerator (R-1) 30 is a refrigerator for cooling the water / brine mixture in the (ice) heat storage tank 32, and the second refrigerator (R-2) 21 is a refrigerator / freezer showcase and It is an auxiliary refrigerator for air conditioners. Each of the first refrigerator and the second refrigerator uses a conventionally known one.
[0015]
The (ice) heat storage tank 32 is configured as an adiabatic tank so that the water / brine mixture in the heat storage tank 32 can be cooled to a predetermined temperature by the brine cooled by the first refrigerator (R-1) 30. Has become.
[0016]
The cooling temperature of the refrigerated / frozen showcase is, for example, in the range of −5 ° C. to 0 ° C. for the first refrigerated / frozen showcase 25, and 0 ° C. to + 5 ° for the second refrigerated / frozen showcase 26. It is assumed that the cooling temperature becomes higher as going down in the figure as in the range of ° C, and an air conditioner having an operating temperature higher than that of the refrigeration / freezing showcase is arranged downstream of the refrigeration / freezing showcase. Further, a heat exchanger is arranged further downstream.
The number of refrigerated / frozen showcases is not limited to two as shown in the figure. It is possible to connect two or more refrigerators with a cooling temperature gradient, and it is also possible to connect a refrigerator etc. It is important that the final cooling temperature of the refrigerated / frozen showcase is lower than the cooling temperature of the air conditioner (AC). Further, the number of air conditioners may be one or more.
[0017]
Next, an operation state of the ice heat storage system having the above configuration will be described with reference to the drawings. The pipelines indicated by bold lines in the figure indicate operating lines, and the open / closed state of each valve in the pipeline is indicated by the figure shown in the figure. (State) indicates the open / closed state.
(1) FIG. 3 is a diagram illustrating a state in which heat is stored in the (ice) heat storage tank 32 using a nighttime period (PM10 to AM8) in which inexpensive electricity determined by each electric power company can be used. In this state, the second valve 23 and the third valve 33 are closed, the first valve 22 is opened, the second refrigerator 21 and the second pump 24 are operated, and the cooling medium is stored in the refrigerator 25 of the refrigerator / freezer showcase. , 26, a cooler 27 of an air conditioner, and a heat exchanger 28 to operate each cooler. Since this time period is nighttime, the air conditioner (AC) is not operated at the sales floor or office, and the second refrigerator (R-2) 21 is continuously operated in the refrigerator / freezer showcase to maintain the quality of the product. It is running. Further, the first refrigerator (R-1) 30 and the first pump 31 are operated using inexpensive electric power at night to supercool the water / brine mixture in the (ice) heat storage tank 32, ) Heat is stored in the heat storage tank 32.
[0018]
FIG. 4 is a diagram showing a state in which the electricity rate is the time zone of the normal rate (AM8 to PM10) and the air conditioner (AC) and the refrigeration / refrigeration showcases (SC-1, SC-2) are operated simultaneously. Yes (for example, when it is necessary to cool a large volume of space at once, such as immediately after a store is opened). In this state, the third valve 33 is opened, the first valve 22 and the second valve 23 are closed, and the second pump (P-2) 24 is brought into an operating state. In this state, the second pump (P-2) 24 uses the heat stored in the (ice) heat storage tank 32 that has stored heat in the first refrigerator (R-1) 30 and operates the second refrigerator (R-2). According to an appropriate operation rule, a low-temperature water / brine mixture is cooled from the heat storage tank 32 so as to receive the cold heat from the ice storage tank 32 at the same time or from either of them. The AC) cooler 27 → heat exchanger 28 is circulated, and the (ice) heat storage tank 32 and the capacity of the second refrigerator (R-2) 21 complement each other.
[0019]
During the cooling operation as described above, if the moisture contained in the supply air is cooled to below the dew point by the cooler, dew forms on the cooler. And adheres. When the amount of ice or frost adhering to the surface of the cooler increases, the heat transfer coefficient of the cooler decreases, and the cooling capacity decreases.
[0020]
Therefore, in this example, when it becomes necessary to remove ice or frost attached to the cooler (or after a lapse of a predetermined time (for example, 2 hours) from the start of the operation of the cooling equipment), the circuit is changed to the flow shown in FIG. Switch. In this flow, the flow path of the cooling medium between the entire cooling device to be cooled and the cooling heat source is disconnected. That is, the first valve 22 and the third valve 33 are closed, the second valve 23 is opened, and the second pump 24 is operated. As a result, the temperature ts of the cooling medium supplied to the cooler of the refrigeration / freezing showcase (SC-1), which is the lowest temperature region, becomes the temperature tHEX that has increased in temperature through HEX. When the circulating cooling medium is supplied to the cooler of the refrigeration facility SC-1 at this temperature, the temperature of each part in the refrigeration / freezing showcase (SC-1) is lower than tHEX. Slightly cooled. The slightly cooled cooling medium passes through the cooler of the refrigeration / freezing showcase (SC-2), which is the next medium temperature range, and the cooler of the air conditioner (AC) and the heat exchanger (HEX) in the high temperature range. The temperature rises little by little. After the switch, the temperature of the refrigeration equipment gradually increases in the initial stage.
[0021]
At this time, the temperature of the cooling medium supplied to each cooler starts to rise with time in the entire system. During the period of cooling due to the presence of the amount of latent heat held by the frost and ice on the cooler of the refrigeration equipment in the low-temperature area, a cooler medium with a slightly higher temperature is supplied to this cooler, and the cooler and cooler Heat is exchanged between the cooling medium and the cooling medium circulating in the cooling medium, and the cooling medium is cooled. Further, as the cooling medium continues to circulate, the frost and ice on the coil surface melt and the temperature of the circulating cooling medium rapidly rises. That time is also the end of defrosting.
During this time, the process is completed in only about 5 minutes.
[0022]
Although the embodiments of the ice heat storage system according to the present invention have been described above, various embodiments can be implemented within the scope of the present invention. For example, the time period of heat storage in the (ice) heat storage tank, the selection of a refrigerator used for heat storage, the effective use of the amount of heat stored in the (ice) heat storage tank (for example, switching of a valve, the first refrigerator, (Selection of the operation priority of the two refrigerators) can be easily changed according to the target system. Also, the switching of each pump and valve is controlled by a control device (not shown) in accordance with each state. In the above example, the dedicated first refrigerator is used for the heat storage in the (ice) heat storage tank, but it is also possible to store the heat using another stopped refrigerator. Further, the refrigerator / freezer container is not limited to a refrigerator / freezer showcase, but may be a dedicated refrigerator or a freezer, and the air conditioner may be various air conditioners. Further, the heat exchanger in each of the above embodiments is not limited to this type, and it is natural that a heat exchanger of another type can be widely used.
Also, the present invention may be embodied in various other forms without departing from its spirit or essential characteristics. In addition, the above-described embodiments are merely examples in all aspects, and should not be construed as limiting.
[0023]
【The invention's effect】
As described above in detail, according to the present invention, energy for defrosting does not require energy from another system, and is processed by transferring heat in the system system. A large amount of energy can be saved in comparison with a method in which energy is applied from an external system such as a method that uses a system. Also, the end of the optimal defrosting is when the frost and ice are completely melted, and the energy is added and the circulating air in the device is positively warmed as in the method using the conventional electric heater, and the energy of the circulating air is increased. Compared with the method of defrosting using a refrigeration system, the temperature inside the equipment during defrosting is only slightly increased, and it is a system that can defrost while keeping the temperature inside the refrigeration equipment at a low state, etc. be able to.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a frost and ice removing device according to a first embodiment.
FIG. 2 is an explanatory diagram of a state in which a cooling medium (hot brine) is flowing in a state where defrosting and deicing are being performed in the apparatus.
FIG. 3 is a configuration diagram of a frost and ice removing device according to a second embodiment, and is an explanatory diagram of a state of night operation.
FIG. 4 is a configuration diagram of the frost and ice removing device, and is an explanatory diagram of a state of daytime operation.
FIG. 5 is an explanatory diagram of a state in which a cooling medium (hot brine) is flowing in a state where defrosting and deicing are being performed in the apparatus.
[Explanation of symbols]
1 refrigerator (R1)
2, 22 First valve 3, 23 Second valve 4 Pump (P1)
5, 6 Cooler for first and second refrigerated / frozen showcases (SC-1, SC-2) 7 Cooler for air conditioner (AC) higher in temperature than second refrigerated / frozen showcase (SC-2) 8. Heat exchanger (HEX) (heat exchanger for other cooling systems)
21 Second refrigerator (R-2)
24 Second pump (P-2)
25, 26 Cooler of first and second refrigerated / frozen showcases (SC-1, SC-2) 27 Cooler of air conditioner (AC) higher in temperature than second refrigerated / frozen showcase (SC-2) 28 Heat exchanger (HEX)
30 First refrigerator (R-1)
31 1st pump (P-1)
32 Thermal storage tank 33 Third valve

Claims (6)

一台の冷熱媒冷却手段によって設備内に存在する低温、中温、高温といった作動温度の異なる冷却器を同一冷熱媒にて低温、中温、そして最後に高温域という温度順で順次冷却する冷却設備であって、前記各冷却器は冷熱媒を循環するために作動温度が最低温から最高温まで作動温度順にパイプラインによって連通され、さらに前記パイプラインには前記冷熱媒冷却手段とポンプ、第1バルブが直列に配置され、また、前記冷熱媒冷却手段と第1バルブに対して並列に第2バルブを有するバイパスラインが前記パイプライン中に接続配置されていることを特徴とする冷却設備における冷却器の霜、氷除去装置。A cooling system that cools the coolers with different operating temperatures, such as low temperature, medium temperature, and high temperature, existing in the equipment by one cooling medium cooling means in the same cooling medium in order of low temperature, medium temperature, and finally high temperature. The coolers are circulated through a pipeline in order of operating temperature from a lowest temperature to a highest temperature in order to circulate a cooling medium, and the pipeline further includes a cooling medium cooling means, a pump, and a first valve. Are arranged in series, and a bypass line having a second valve in parallel with the cooling medium cooling means and the first valve is connected and arranged in the pipeline. Frost and ice removal equipment. 請求項1に記載の冷却器の霜、氷除去装置において、第1バルブを閉じ、第2バルブをひらき、冷熱媒冷却手段の運転を停止した状態で、ポンプを作動し、最高温の冷却器からの冷熱媒をポンプで直接吸引し、最低温の冷却器に循環することを特徴とした冷却設備における冷却器の霜、氷除去方法。The frost and ice removing device for a cooler according to claim 1, wherein the first valve is closed, the second valve is opened, and the operation of the cooling medium cooling means is stopped, and the pump is operated to provide the highest temperature cooler. A method for removing frost and ice from a cooler in a cooling facility, wherein a cooling medium from the air is sucked directly by a pump and circulated to a cooler having the lowest temperature. 複数の冷蔵・冷凍容器と、建物内の空調などを行う空調機器と、冷熱媒の熱交換を行う熱交換器と、冷蔵・冷凍容器および空調機器用の冷凍機を備え、前記冷凍機からの冷熱媒が前記冷蔵・冷凍容器の冷却器、空調機器の冷却器、熱交換器を循環する冷却設備であって、前記冷蔵・冷凍容器の冷却器、空調機器の冷却器、熱交換器は作動温度が最低温から最高温まで作動温度順にパイプラインによって接続され、さらにその回路内に直列にポンプ、第1バルブ、冷熱媒を冷却する冷凍機が直列に接続され、また第1バルブと冷凍機とに並列に第2バルブを有するバイパスラインが配置されていることを特徴とする冷却設備における冷却器の霜、氷除去装置。A plurality of refrigeration / refrigeration containers, an air conditioner for performing air conditioning inside the building, a heat exchanger for exchanging heat of the cooling medium, and a refrigerator for the refrigeration / refrigeration containers and the air conditioner, A cooling system in which a cooling medium circulates through the refrigerator / freezer container cooler, the air conditioner cooler, and the heat exchanger. The refrigerator / freezer container cooler, the air conditioner cooler, and the heat exchanger operate. The temperature is connected by a pipeline from the lowest temperature to the highest temperature in the order of the operating temperature, and a pump, a first valve, and a refrigerator for cooling the cooling medium are connected in series in the circuit, and the first valve and the refrigerator are connected in series. A frost and ice removing device for a cooler in a cooling facility, wherein a bypass line having a second valve is arranged in parallel with the cooling device. 請求項3に記載の冷却器の霜、氷除去装置において、第1バルブを閉じ、第2バルブをひらき、冷凍機の運転を停止した状態で、ポンプを作動し、熱交換器からの冷熱媒をポンプで直接吸引し、最低温度の冷蔵・冷凍容器の冷却器に循環することを特徴とした冷却設備における冷却器の霜、氷除去方法。4. The apparatus for removing frost and ice of a cooler according to claim 3, wherein the first valve is closed, the second valve is opened, and the operation of the refrigerator is stopped, and the pump is operated to transfer the cooling medium from the heat exchanger. Frost and ice of a cooler in a cooling facility, wherein the water is directly sucked by a pump and circulated to a cooler of a refrigeration / freezing container having the lowest temperature. 複数の冷蔵・冷凍容器と、建物内の空調などを行う空調機器と、冷熱媒の熱交換を行う熱交換器と、水とブラインとを所定の割合で混合した水・ブライン混合液を貯蔵しておく蓄熱槽と、前記蓄熱槽内の水・ブライン混合液に蓄熱するための第1冷凍機と、第1冷凍機からの冷媒を蓄熱槽に循環する第1ポンプと、冷蔵・冷凍容器および空調機器用の第2冷凍機と、前記第2冷凍機からの冷媒を冷蔵・冷凍容器の冷却器および空調機器の冷却器、熱交換器に循環する第2ポンプとを備え、前記冷蔵・冷凍容器の冷却器と、空調機器の冷却器および熱交換器は熱交換器は作動温度が最低温から最高温まで作動温度順にパイプラインで接続し、さらにそのパイプライン内に第2ポンプおよび第1バルブ、第2バルブ、第3バルブを配置し、前記第2ポンプの吸引側は蓄熱槽および第1バルブを介して第2冷凍機に、また第2バルブを介して熱交換器に接続され、さらに蓄熱槽は第3バルブを介して第2冷凍機に接続されていることを特徴とする冷却設備における冷却器の霜、氷除去装置。A plurality of refrigeration / freezing containers, an air conditioner for performing air conditioning in a building, a heat exchanger for exchanging heat of a cooling medium, and a water / brine mixture obtained by mixing water and brine at a predetermined ratio. A heat storage tank to be stored, a first refrigerator for storing heat in the water / brine mixture in the heat storage tank, a first pump for circulating the refrigerant from the first refrigerator to the heat storage tank, A second pump for circulating a refrigerant from the second refrigerator to a cooler for the refrigerator / freezer container, a cooler for the air conditioner, and a heat exchanger for the refrigerant from the second refrigerator; The cooler of the container and the cooler and heat exchanger of the air conditioner are connected by a pipeline in the order of operating temperature from the lowest operating temperature to the highest operating temperature, and a second pump and a first pump are connected in the pipeline. Arranging a valve, a second valve, and a third valve; The suction side of the pump is connected to the second refrigerator through the heat storage tank and the first valve, and to the heat exchanger through the second valve, and the heat storage tank is connected to the second refrigerator through the third valve. A frost and ice removing device for a cooler in a cooling facility, which is characterized in that: 請求項5に記載の冷却器の霜、氷除去装置装置において、第1バルブ、第3バルブを閉じ、第2バルブをひらき、第2冷凍機の運転を停止した状態で、第2ポンプを作動し、熱交換器からの冷熱媒を第2ポンプで直接吸引し、最低温度の冷蔵・冷凍容器の冷却器に循環することを特徴とした冷却設備における冷却器の霜、氷除去方法。The apparatus for removing frost and ice of a cooler according to claim 5, wherein the first pump and the third valve are closed, the second valve is opened, and the operation of the second refrigerator is stopped, and the second pump is operated. A method for removing frost and ice from a cooler in a cooling system, wherein a cold heat medium from a heat exchanger is directly sucked by a second pump and circulated to a cooler of a refrigeration / freezing container having the lowest temperature.
JP2002238735A 2002-08-20 2002-08-20 Apparatus and method for removing frost and ice from cooler in cooling facility Expired - Lifetime JP3742043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002238735A JP3742043B2 (en) 2002-08-20 2002-08-20 Apparatus and method for removing frost and ice from cooler in cooling facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002238735A JP3742043B2 (en) 2002-08-20 2002-08-20 Apparatus and method for removing frost and ice from cooler in cooling facility

Publications (2)

Publication Number Publication Date
JP2004077031A true JP2004077031A (en) 2004-03-11
JP3742043B2 JP3742043B2 (en) 2006-02-01

Family

ID=32022032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238735A Expired - Lifetime JP3742043B2 (en) 2002-08-20 2002-08-20 Apparatus and method for removing frost and ice from cooler in cooling facility

Country Status (1)

Country Link
JP (1) JP3742043B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234227A (en) * 2005-02-23 2006-09-07 Tokyo Electric Power Co Inc:The Heating tower defrosting method
CN115854491A (en) * 2022-12-07 2023-03-28 珠海格力电器股份有限公司 Air conditioner defrosting control method and device, air conditioner and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036658A (en) * 2011-08-08 2013-02-21 Yamato:Kk Cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234227A (en) * 2005-02-23 2006-09-07 Tokyo Electric Power Co Inc:The Heating tower defrosting method
JP4700371B2 (en) * 2005-02-23 2011-06-15 東京電力株式会社 Defrosting method for heating tower
CN115854491A (en) * 2022-12-07 2023-03-28 珠海格力电器股份有限公司 Air conditioner defrosting control method and device, air conditioner and storage medium
CN115854491B (en) * 2022-12-07 2024-06-07 珠海格力电器股份有限公司 Defrosting control method and device for air conditioner, air conditioner and storage medium

Also Published As

Publication number Publication date
JP3742043B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
JP2008514895A (en) Reverse Peltier defrost system
US7454918B2 (en) Refrigeration and defrost control system
US10591200B2 (en) Low energy refrigerator heat source
CN111207534A (en) Refrigeration system, refrigeration equipment and control method of refrigeration system
KR100186666B1 (en) Defrosting device of low temperature
JP2009144951A (en) Defrosting operation control device for refrigerating-freezing device and its method
JP3742043B2 (en) Apparatus and method for removing frost and ice from cooler in cooling facility
US10443913B2 (en) Refrigerator and method for controlling the same
KR101316714B1 (en) Phase Change Material thermal storage type cold store.
CN204944014U (en) A kind of refrigerator
KR20100114296A (en) Apparatus for refrigeration cycle using ice thermal storage and showcase including the apparatus and control method for the same
JP4103384B2 (en) refrigerator
JP2004036974A (en) Refrigerator
JP3856572B2 (en) Heat storage system
CN113631876A (en) Defrosting system
JP3123847B2 (en) Cold storage
JPH11183012A (en) Refrigerating method for open showcase, refrigerator, or the like
CN221324791U (en) Refrigerator with a refrigerator body
JP3853965B2 (en) Heat storage system
JP3326685B2 (en) Refrigeration methods for open showcases, refrigerators, etc.
JP6582102B1 (en) Cooling system
JPH10332178A (en) Heat storage type low-temperature air supply system
JPH0563296U (en) High humidity thawing cold storage
JPH11337192A (en) Heat storage chiller
JPH0424378Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3742043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term