JP2004076875A - V-belt for heavy load transmission - Google Patents

V-belt for heavy load transmission Download PDF

Info

Publication number
JP2004076875A
JP2004076875A JP2002239428A JP2002239428A JP2004076875A JP 2004076875 A JP2004076875 A JP 2004076875A JP 2002239428 A JP2002239428 A JP 2002239428A JP 2002239428 A JP2002239428 A JP 2002239428A JP 2004076875 A JP2004076875 A JP 2004076875A
Authority
JP
Japan
Prior art keywords
belt
tension band
block
meshing
length direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002239428A
Other languages
Japanese (ja)
Inventor
Ryuichi Kido
城戸 隆一
Sakae Umeda
梅田 栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2002239428A priority Critical patent/JP2004076875A/en
Publication of JP2004076875A publication Critical patent/JP2004076875A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts
    • F16G5/166V-belts, i.e. belts of tapered cross-section consisting of several parts with non-metallic rings

Abstract

<P>PROBLEM TO BE SOLVED: To improve durability of blocks 6 and tension bands 1, 1 and to suppress noise during belt drive of a V-belt B for heavy load transmission, which is equipped with the tension bands 1, 1 composed of endless flat belts and with the multiple blocks 6 having fitting parts 8, 8 for fitting the tension bands thereinto, with contact parts 6a of each of the blocks 6 and the side surfaces of each of the tension bands 1, 1 engagedly fixed to contact a pulley groove surface V, and having upper and lower protruded parts 9, 10 of each of the blocks 6 and upper and lower recessed parts of each of the tension bands 1, 1 engaged to transfer power back and forth. <P>SOLUTION: The maximum thickness Wb in the belt length direction of the upper side protruded part 9 of each of the blocks 6 is made to be longer than the maximum width Wt in the belt length direction of the upper side recessed part 2 of the tension bands 1, 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高負荷伝動用Vベルトに属し、特にその耐久性を高めるとともに走行時の騒音の発生を防ぐための対策に関する技術分野に属する。
【0002】
【従来の技術】
従来より、例えば特開2000−120798号公報等に示されるように、多数のブロックを張力帯にブロック及び張力帯の凹凸噛合構造を利用して係止固定した高負荷伝動用Vベルトがよく知られており、例えば無断変速機の分野で使用されている。この種のVベルトでは、その曲安さを確保するために、各ブロックの張力帯への固定を接着ではなく、物理的な噛合状態により行うようになされている。このベルトは、例えばベルト幅方向に並んだ左右1対の張力帯を備え、この各張力帯の上下面にそれぞれベルト長さ方向に並ぶ多数の被噛合部としての上側凹部及び下側凹部が上下に対応して設けられている。一方、各ブロックのベルト幅方向側部にはそれぞれの張力帯を嵌合するための切り欠き溝状の左右一対の嵌合部が形成され、この各嵌合部の上面に上側噛合部としての上側凸部が、また下面に下側噛合部としての下側凸部がそれぞれ設けられている。そして、上記各ブロックの左右の嵌合部にそれぞれ張力帯を圧入して嵌合することにより、各ブロックが両張力帯に対しベルトの幅方向側面におけるブロック側面の接触部と張力帯側面との両方がプーリ溝面と接触するように係合固定され、ブロックの噛合部と張力帯の被噛合部との噛合によって動力授受が行われるようになっている。
【0003】
ところで、上記各ブロックの張力帯に対する嵌合の固定度が低いと、ベルト走行中にブロックががたついてその振動が顕著になり、ブロック及び張力帯の耐久性の悪化やベルト走行音の増大を引き起こすおそれがある。
【0004】
そこで、従来、張力帯とブロックとの間で確実に固定された嵌合を得るために、各ブロックの上側噛合部及び下側噛合部間のベルト厚さ方向の隙間Tbを張力帯の上側被噛合部及び下側被噛合部間のベルト厚さ方向の厚さTtよりも大きくし(Tb>Tt)、そのベルト厚さ方向の締め代Tb−Tt(以下、縦締め代という)により、各ブロックに張力帯を圧入して係合固定することが知られている。
【0005】
【発明が解決しようとする課題】
ところで、上記従来のものでは、各ブロックに張力帯を圧入するときに縦締め代があるため、張力帯が主としてベルト厚さ方向に圧縮され、その反力として各ブロックの嵌合部には、この嵌合部をベルト厚さ方向に押し拡げようとする力が作用し、ベルト製作時に嵌合部の上下の隅部に圧縮力による残留応力が発生する。
【0006】
また、ベルト走行時には、Vベルトがプーリに巻き付く際の曲げ変形やベルトの雰囲気温度の上昇による張力帯の熱膨張によって嵌合部を押し拡げようとする力を益々助長することになり、ブロックの耐久性に悪影響を及ぼすという問題がある。
【0007】
一方、張力帯においては、熱膨張が発生すると、ブロックの嵌合部により受ける反力による圧縮力が増すことで、張力帯のクリープ変形が増大し、嵌合による各ブロックの張力帯に対する固定度の低下が早まってがたが生じ、ベルト走行時に騒音が発生するという問題がある。
【0008】
本発明は斯かる諸点に鑑みてなされたものであり、その目的とするところは、高負荷伝動用Vベルトにおいて、張力帯を各ブロックに圧入する際の締め代の設定に工夫を加えることにより、ブロック及び張力帯の耐久性を向上させるとともにベルト走行時の騒音を抑えることにある。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、請求項1の発明では、ブロックの嵌合部の上部にベルト長さ方向の締め代を設けるようにした。
【0010】
具体的には、この発明では、ベルト背面側の上面及び底面側の下面にそれぞれベルト長さ方向に並ぶ多数の上側被噛合部及び下側被噛合部が上下に対応して設けられたエンドレスの張力帯と、この張力帯が圧入して嵌合される嵌合部を有し、この嵌合部の上面に張力帯の上側被噛合部と噛合する上側噛合部が、また下面に張力帯の下側被噛合部と噛合する下側噛合部がそれぞれ形成され、ベルト幅方向の側面にプーリ溝面と接触する接触部が設けられた多数のブロックとを備え、各ブロックの嵌合部に張力帯を嵌合することにより、各ブロックが張力帯に対しベルトの幅方向側面におけるブロック側面の接触部と張力帯側面との両方がプーリ溝面と接触するように係合固定され、ブロックの噛合部と張力帯の被噛合部との噛合によって動力授受が行われる高負荷伝動用Vベルトを前提とする。
【0011】
そして、上記各ブロックの上側噛合部または上記張力帯の上側被噛合部のいずれか一方が上側凹部に、また他方が上側凸部にそれぞれ構成されており、上側凸部におけるベルト長さ方向の最大厚さWbが上側凹部におけるベルト長さ方向の最大幅Wtよりも大である構成とする。請求項2の発明では、請求項1の前提と同様の高負荷伝動用Vベルトであって、上記各ブロックの下側噛合部または上記張力帯の下側被噛合部のいずれか一方が下側凹部に、また他方が下側凸部にそれぞれ構成されており、下側凸部におけるベルト長さ方向の最大厚さWbが上記下側凹部におけるベルト長さ方向の最大幅Wtよりも大である構成とする。さらに、請求項3の発明では、請求項1の発明と請求項2の発明とを組み合わせたもので、請求項1の前提と同様の高負荷伝動用Vベルトであって、各ブロックの上側噛合部または上記張力帯の上側被噛合部のいずれか一方が上側凹部に、また他方が上側凸部に、かつ各ブロックの下側噛合部または上記張力帯の下側被噛合部のいずれか一方が下側凹部に、また他方が下側凸部にそれぞれ構成されており、上側凸部におけるベルト長さ方向の最大厚さWbが上側凹部におけるベルト長さ方向の最大幅Wtよりも大であるとともに、下側凸部におけるベルト長さ方向の最大厚さWbが下側凹部におけるベルト長さ方向の最大幅Wtよりも大である構成とする。
【0012】
これらの構成によると、各ブロックの上側、下側噛合部及び張力帯の上側、下側被噛合部の凹凸形状の組み合わせパターンとして4通りのものが考えられるが、いずれの組み合わせでも、少なくとも上下いずれか一方側の凸部におけるベルト長さ方向の最大厚さWbを他方の凹部におけるベルト長さ方向の最大幅Wtよりも大にすることにより、ベルト長さ方向の締め代Wb−Wt(以下、横締め代という)が生じ、この横締め代が生じた状態で張力帯を各ブロックに圧入して嵌合させるため、張力帯を圧入した際には、張力帯が主としてベルト長さ方向に圧縮され、張力帯から各ブロックに作用する反力は主にベルト長さ方向に作用するものとなる。このため、張力帯が各ブロックの嵌合部をベルト厚さ方向に押し拡げようとすることはなく、ブロックの嵌合部の隅部の残留応力の発生を抑制し、ベルト走行時に張力帯が熱膨張してもブロックの耐久性を悪化させることはない。
【0013】
また、張力帯においては、Vベルトが熱膨張しても元々残留応力が抑えられているため、張力帯に作用する圧縮力が抑えられ、そのクリープ変形が抑えられる。このことで、嵌合による張力帯とブロックとの固定度の低下を防ぐことができ、ブロックのがたつきによる張力帯の心線に生じる局所的な曲げ応力を低減させて張力帯の耐屈曲疲労性が向上するとともに、隣接するブロック同士がぶつかり合って発生する打撃音を低減することができる。よって、ブロック及び張力帯の耐久性を向上させるとともにベルト走行時の騒音を抑えることができる。
【0014】
請求項4の発明では、凸部のベルト長さ方向の最大厚さWbと凹部のベルト長さ方向の最大幅Wtとの差Wb−Wtは、ブロック間ピッチをPとして、0.067P以下に設定されるようにする。
【0015】
上記の構成によると、ベルト長さ方向の横締め代を0.067Pよりも大きくすると、凸部における反力が大きくなりすぎ、かえってブロックの耐久寿命が減るおそれがある。従って、横締め代を0.067P以下に設定することにより、本発明の作用効果が顕著に発揮される望ましい高負荷伝動用Vベルトが得られる。
【0016】
請求項5の発明では、張力帯の上側被噛合部及び下側被噛合部間のベルト厚さ方向の厚さTtと、各ブロックの上側噛合部及び下側噛合部間のベルト厚さ方向の隙間Tbとの差Tt−Tb(以下、縦締め代という)が−0.034Tt以上でかつ0.02Tt以下に設定されている構成とする。
【0017】
上記の構成によると、縦締め代を−0.034Ttよりも小さくすると、隙間が大きくなりすぎ、各ブロックの張力帯に対する嵌合の固定度が低くなって、ベルト走行中にブロックががたついてその振動が顕著になり、ブロック及び張力帯の耐久性の悪化やベルト走行音の増大を引き起こすおそれがある。
【0018】
一方、縦締め代を0.02Ttよりも大きくすると、各ブロックに張力帯を圧入するときに、張力帯が主としてベルト厚さ方向に圧縮され、その反力として各ブロックの嵌合部には、この嵌合部をベルト厚さ方向に押し拡げようとする力が作用し、ベルト製作時に嵌合部の上下の隅部に圧縮力による残留応力が発生する。このことでブロック及び張力帯の耐久性に悪影響を及ぼし、場合によってはベルト走行時に騒音が発生するおそれがある。
【0019】
そこで、ベルト厚さ方向の縦締め代を−0.034Tt以上でかつ0.02Tt以下に設定して縦締め代が微小であるか、又は逆に隙間があるようにすることにより、ベルト走行時の温度上昇により、張力帯が熱膨張したとしても、ベルト厚さ方向に隙間がある場合にはその隙間により膨張分が吸収されてブロックの嵌合部を押し拡げようとする力が作用しない。また、隙間がないときには、縦締め代が微小に抑えられていることで、嵌合部を押し拡げようとする力が作用しても、その大きさは小さいため、嵌合部に余計な応力を生じさせることはない。従って、本発明の作用効果が顕著に発揮されるさらに望ましい高負荷伝動用Vベルトが得られる。
【0020】
請求項6の発明では、各ブロックの幅方向左右側面にそれぞれ嵌合部が形成され、この嵌合部に張力帯が嵌合されるようにする。この構成によると、ブロック及び張力帯の耐久性を向上させるとともにベルト走行時の騒音を抑えることができる望ましいVベルトが得られる。
【0021】
【発明の実施の形態】
図5は本発明の実施形態に係る高負荷伝動用VベルトBを示し、このVベルトBは、左右1対のエンドレスの張力帯1,1と、この張力帯1,1にブロック間ピッチP(図3に示す)で連続的に係合固定されたブロック6,6,…とから構成されている。
【0022】
そして、図1にも示すように、各張力帯1は、硬質ゴムからなる保形層1aの内部にアラミド繊維等よりなる高強度高弾性の複数の心線1b,1b,…がスパイラル状に配置されて埋設されたもので、この各張力帯1のベルト背面側の上面には各ブロック6に対応してベルト幅方向に延びる一定ピッチPの溝状の上側被噛合部としての上側凹部2,2,…が、またベルト背面側の下面には上記上側凹部2,2,…に対応してベルト幅方向に延びる一定ピッチPの下側被噛合部としての下側凹部3,3,…がそれぞれベルト長さ方向に並ぶように形成されている。尚、張力帯1の上下表面には、その耐摩耗性を向上させる等の目的で帆布4,4が接着されている。
【0023】
また、上記保形層1aをなす硬質ゴムは、例えばメタクリル酸亜鉛を強化されたH−NBRゴムに、さらにアラミド繊維、ナイロン繊維等の短繊維を強化することで、耐熱性に優れかつ永久変形しがたい硬質ゴムが得られる。この硬質ゴムの硬さは、JIS−C硬度計で計測したときに75°以上のゴム硬度が必要である。
【0024】
さらに、図2に示すように、各ブロック6は、高弾性の硬質樹脂材料等により形成され、その左右側面にプーリ溝面Vに接触する接触部6aを有し、これら各ブロック6の左右の接触部6a,6a同士がなすベルト角度は、プーリ溝面Vのなす角度と同じとされている。
【0025】
また、各ブロック6の接触部6aの上下略中央部、つまりベルト幅方向左右側部に上記各張力帯1を幅方向から着脱可能に嵌装せしめる切り欠き溝状の嵌合部8,8が形成されている。すなわち、各ブロック6は、ベルト幅方向(左右方向)に延びる上側ビーム6bと、下側ビーム6cと、該両ビーム6b,6cの左右中央部同士を上下に接続するピラー6dとからなる略H字状のものとされ、これらに囲まれる部分に嵌合部8が形成されており、各ブロック6の嵌合部8,8にそれぞれ張力帯1,1を圧入して嵌合することで、ブロック6,6,…が張力帯1,1に連続的に固定されている。
【0026】
具体的には、図1に示すように、上記各ブロック6における各嵌合部8の上壁面には上記張力帯1上面の各上側凹部2に噛合する凸条からなる上側噛合部としての上側凸部9が、また嵌合部8の下壁面には上記張力帯1下面の各下側凹部3に噛合する凸条からなる下側噛合部としての下側凸部10がそれぞれ互いに平行に配置されて形成されている。そして、この各ブロック6の上下の凸部9,10をそれぞれ張力帯1の上下の凹部2,3に噛合せしめることで、ブロック6,6,…を張力帯1,1にベルト長さ方向に圧入することにより、VベルトBの幅方向側面におけるブロック6の接触部6a,6aと張力帯1,1の側面との両方がプーリ溝面Vと接触するように係合固定される。この係合状態で各張力帯1に外側側面と各ブロック6の上下の凸部9,10と各張力帯1の上下の凹部2,3との噛合によって動力授受が行われるようになされている。
【0027】
尚、図2に示すように、各ブロック6の内部には各ブロック6の略中央に位置するように軽量アルミニウム合金等からなる補強部材11が埋設されている。そして、例えば張力帯1との噛合部分である上下の凸部9,10や左右側面の接触部6a,6aでは、硬質樹脂中に埋め込まれて各ブロック6の表面に顕れない。しかし、その他の部分ではプーリ溝面V又は張力帯1等と接触することはないので各ブロック6表面に露出してもよい。
【0028】
本発明の特徴として、図3及び図4に示すように、上記各ブロック6の上側凸部9におけるベルト長さ方向の最大厚さWbと、上記上側凹部2におけるベルト長さ方向の最大幅Wtとの差Wb−Wtで求められるベルト長さ方向の横締め代が0mmよりも大きくかつ0.067P以下に設定されている。
【0029】
上記横締め代を0.067Pよりも大きくすると各ブロック6の嵌合部8,8(上側凸部9,9)における反力が大きくなりすぎ、かえって各ブロック6の耐久寿命が減るおそれがある一方、横締め代を0mm以下にすると、嵌合による張力帯1,1と各ブロック6との固定度が低くて各ブロック6にがたつきが生じ、ベルト走行時の騒音が発生するとともに各ブロック6の耐久寿命が減るおそれがあることから、横締め代が0mmよりも大きくかつ0.067P以下に設定されている。
【0030】
さらに、上記張力帯1の上側凹部2の底部及び上記下側凹部3の底部間のベルト厚さ方向の厚さTtと、上記各ブロック6の上側凸部9の先端部及び下側凸部10の先端部間のベルト厚さ方向の隙間Tbとの差Tt−Tbで求められるベルト厚さ方向の縦締め代が−0.034Tt以上でかつ0.02Tt以下に設定されている。
【0031】
そして、上記縦締め代を−0.034Ttよりも小さくすると、張力帯1,1及び各ブロック6間の隙間が大きくなりすぎ、各ブロック6の張力帯1,1に対する嵌合の固定度が低くなって、ベルト走行中にブロック6,6,…ががたついてその振動が顕著になり、ブロック6,6,…及び張力帯1,1の耐久性の悪化やベルト走行音の増大を引き起こすおそれがある。
【0032】
一方、縦締め代を0.02Ttよりも大きくすると、各ブロック6に張力帯1,1を圧入するときに、張力帯1,1が主としてベルト厚さ方向に圧縮され、その反力として各ブロック6の嵌合部8,8には、この嵌合部8,8をベルト厚さ方向に押し拡げようとする力が作用し、ベルト製作時に嵌合部8,8の上下の隅部に圧縮力による残留応力が発生する。このことでブロック6,6,…及び張力帯1,1の耐久性に悪影響を及ぼし、場合によってはベルト走行時に騒音が発生するおそれがある。
【0033】
そこで、ベルト厚さ方向の縦締め代を−0.034Tt以上でかつ0.02Tt以下に設定して縦締め代が微小であるか、又は逆に微小な隙間があるように構成されている。
【0034】
そして、上記範囲の縦締め代及び横締め代により、主に各ブロック6の上側凸部9及び各張力帯1の上側凹部2との嵌合においてベルト長さ方向の圧縮力が発生するように張力帯1,1が各ブロック6に圧入され、このことで張力帯1,1がベルト長さ方向に圧縮されて係合固定されるようになっている。
【0035】
従って、上記実施形態においては、張力帯1,1及び各ブロック6に横締め代を与えることにより、張力帯1,1とブロック6とを圧入して嵌合させるため、張力帯1,1を圧入した際には、張力帯1,1が主としてベルト長さ方向に圧縮され、各ブロック6に作用する反力は主にベルト長さ方向に作用するものとなる。
【0036】
このため、張力帯1,1が各ブロック6の嵌合部8,8をベルト厚さ方向に押し拡げようとすることはなく、嵌合部8,8の隅部の残留応力の発生を抑制し、ベルト走行時に張力帯1,1が熱膨張してもブロック6,6,…の耐久性を悪化させることはない。
【0037】
また、張力帯1,1においては、高負荷伝動用VベルトBが熱膨張しても元々残留応力の発生が抑制されているため、張力帯1,1に作用する圧縮力が抑えられ、そのクリープ変形が抑えられる。このことで、嵌合による張力帯1,1と各ブロック6との固定度の低下を防ぐことができ、各ブロック6のがたつきによる張力帯1,1の心線1b,1b,…に生じる局所的な曲げ応力を低減させて、張力帯1,1の耐屈曲疲労性が向上するとともに、隣接するブロック6,6同士がぶつかり合って発生する打撃音をも低減することができる。
【0038】
さらに、ベルト厚さ方向の縦締め代を−0.034Tt以上でかつ0.02Tt以下に設定して縦締め代が微小であるか、又は逆に隙間があるようにすることにより、ベルト走行時の温度上昇により、張力帯1,1が熱膨張したとしても、その隙間により膨張分が吸収されて各ブロック6の嵌合部8,8を押し拡げようとする力が作用しない。また、隙間がないときには、縦締め代が微小に抑えられていることで、嵌合部8,8を押し拡げようとする力が作用してもその大きさは小さいため、嵌合部8,8に余計な応力を生じさせることはない。
【0039】
尚、上記実施形態では、張力帯1,1は1対のものとしたが、本発明は、1本の張力帯を備えた高負荷伝動用Vベルトにも適用できるのは勿論のことである。
【0040】
また、上記実施形態では、各ブロック6の上側凹部9及び下側凸部10が凸条からなる一方、張力帯の上側凹部2及び下側凹部3が凹形状からなるものとしたが、各ブロック6の上側、下側噛合部及び張力帯1,1の上側、下側被噛合部の凹凸形状の組み合わせパターンとして4通りのものが考えられる。
【0041】
そして、横締め代として上記実施形態では、各ブロック6の上側凸部9におけるベルト長さ方向の最大厚さWbと、上記上側凹部2におけるベルト長さ方向の最大幅Wtとの差Wb−Wtで求められるベルト長さ方向の横締め代を0mmよりも大きくかつ0.067P以下に設定したが、各ブロックの下側凸部10におけるベルト長さ方向の最大厚さWbと、上記下側凹部3におけるベルト長さ方向の最大幅Wtとの差Wb−Wtで求められるベルト長さ方向の横締め代を0mmよりも大きくかつ0.067P以下に設定してもよく、また、これらを組み合わせて上下の両方側に横締め代を設けてもよい。
【0042】
要は、いずれの上記凹凸パターンにおいても、上下の少なくとも一方の横締め代が0mmよりも大きくかつ0.067P以下に設定されていればよい。
【0043】
また、縦締め代として上記実施形態では、張力帯の上側凹部2の底部及び上記下側凹部3の底部間のベルト厚さ方向の厚さTtと、上記各ブロック6の上側凸部9の先端部及び下側凸部10の先端部間のベルト厚さ方向の隙間Tbとの差Tt−Tbで求められるベルト厚さ方向の縦締め代を−0.034Tt以上でかつ0.02Tt以下に設定したが、どのような凹凸パターンであっても本発明の作用効果が発揮されるは勿論のことである。
【0044】
すなわち、張力帯の上側被噛合部及び下側被噛合部間のベルト厚さ方向の厚さTtと、各ブロックの上側噛合部及び下側噛合部間のベルト厚さ方向の隙間Tbとの差Tt−Tbが−0.034Tt以上でかつ0.02Tt以下に設定されている構成であればよい。
【0045】
【実施例】
次に、具体的に実施した実施例について説明する。実施例1〜4として、上記実施形態と同様の構成を持つベルト長さ747mm、ブロック間ピッチP=3mm、ベルト厚さ方向の厚さTt=3mmの高負荷伝動用VベルトB(図5参照)であって、縦締め代が−0.1mm、−0.05mm、0mm及び0.05mmの4種類で、横締め代が0.02mm、0.1mm及び0.2mmの3種類の合計12種類のものを用意した。
【0046】
さらに、比較例として、上記実施例1〜4と縦締め代のみが0.1mmで異なり、横締め代が0.02mm、0.1mm及び0.2mmの3種類のものを用意した。
【0047】
図6に示すように、これら実施例1〜4及び比較例の各高負荷伝動用VベルトBをプーリピッチ径61mmのVプーリからなる駆動プーリPrと、プーリピッチ径151mmの同様の従動プーリPnと、オートテンショナに設けられたプーリピッチ径61mmのテンションプーリPaとに巻き掛けた。また、駆動プーリPr及び従動プーリPn間の中心間距離Lは200mmとした。さらに、テンションプーリPaの押付力により500Nの荷重でベルト張力を付与し、その状態で、駆動プーリPrを回転速度4430rpmでかつ負荷トルク80Nで駆動回転させてVベルトBを両プーリPr,Pn間で走行させた。また、ベルト温度は110℃であった。
【0048】
このとき得られた各VベルトBのブロックの耐久寿命を比較した結果を図7に示す。同図によれば、実施例1〜4及び比較例において、横締め代が0mm以下になると、嵌合による張力帯と各ブロックとの固定度が低下して各ブロックにがたつきが生じ、ベルト走行時の騒音が発生するとともに、各ブロックの耐久寿命が減ることが判明した。また、横締め代を0.2mmよりも大きくすると、各ブロックの嵌合部における反力が大きくなり、かえって各ブロックの耐久寿命が減る場合が増えることが判明した。
【0049】
さらに、比較例のように、縦締め代を0.1mm以上にすると、締め代が大きくなりすぎてかえって無理な残留応力が発生し、耐久寿命が低下する一方、データとしては示していないが、縦締め代を−0.1mmよりも小さくすると、ベルト厚さ方向の隙間の影響が大きくなり、嵌合による張力帯と各ブロックとの固定度が低下して各ブロックにがたつきが生じ、ベルト走行時の騒音が発生するとともに、各ブロックの耐久寿命が減ることが判明した。
【0050】
よって、実施例1〜4のように、横締め代を0mmよりも大きくかつ0.067P以下に設定することにより、嵌合部の奥側の上下の隅部の残留応力の発生を抑制し、ベルト走行時に張力帯が熱膨張しても各ブロックの耐久性を悪化させることはなく、張力帯に作用する圧縮力も抑えられ、そのクリープ変形を抑えることで、嵌合による張力帯と各ブロックとの固定度の低下を防ぐことができ、ブロックのがたつきを抑制することができることが判った。
【0051】
さらに、実施例1〜4のように、縦締め代を−0.034Tt以上でかつ0.02Tt以下に設定することにより、ベルト走行時の温度上昇によって張力帯が熱膨張しても、各ブロックの嵌合部を押し拡げようとする力が作用しないか、又は作用してもその大きさは小さいため、嵌合部に余計な応力を生じさせることはないことが判った。
【0052】
【発明の効果】
以上説明したように、請求項1の発明の高負荷伝動用Vベルトでは、各ブロックの上側噛合部または張力帯の上側被噛合部のいずれか一方を上側凹部に、また他方を上側凸部にそれぞれ構成し、上側凸部におけるベルト長さ方向の最大厚さWbを上側凹部におけるベルト長さ方向の最大幅Wtよりも大とした。また、請求項2の発明の高負荷伝動用Vベルトでは、各ブロックの下側噛合部または張力帯の下側被噛合部のいずれか一方を下側凹部に、また他方を下側凸部にそれぞれ構成し、下側凸部におけるベルト長さ方向の最大厚さWbを下側凹部におけるベルト長さ方向の最大幅Wtよりも大とした。さらに、請求項3の発明の高負荷伝動用Vベルトでは、請求項1の発明と請求項2の発明とを組み合わせた構成とした。これらのことにより、ブロック及び張力帯の耐久性を向上させるとともにベルト走行時の騒音を抑えることができる。
【0053】
請求項4の発明によると、凸部のベルト長さ方向の最大厚さWbと凹部のベルト長さ方向の最大幅Wtとの差Wb−Wtを0.067P以下に設定したことにより、ブロック及び張力帯の耐久性を向上させるとともにベルト走行時の騒音を抑える望ましいVベルトが容易に得られる。
【0054】
請求項5の発明によると、張力帯の上側被噛合部及び上記下側被噛合部間のベルト厚さ方向の厚さTtと、上記各ブロックの上側噛合部及び下側噛合部間のベルト厚さ方向の隙間Tbとの差Tt−Tbを−0.034Tt以上でかつ0.02Tt以下に設定したことにより、ベルト走行時の温度上昇により、張力帯が熱膨張しても、ブロックの嵌合部を押し拡げようとする力が作用しないか、又は作用してもその大きさは小さいため、嵌合部に余計な応力を生じさせることはない。
【0055】
請求項6の発明によると、各ブロックの幅方向左右側面にそれぞれ嵌合部が形成され、この嵌合部に張力帯が嵌合されるようにしたことにより、本発明の作用効果が顕著に発揮される望ましい高負荷伝動用Vベルトが得られる。
【図面の簡単な説明】
【図1】高負荷伝動用Vベルトの側面図である。
【図2】図1のII−II線断面図である。
【図3】ブロックの拡大側面図である。
【図4】張力帯の拡大側面図である。
【図5】本発明の実施形態に係る高負荷伝動用Vベルトの斜視図である。
【図6】実施例における耐久試験装置を概略的に示す図である。
【図7】横締め代及び縦締め代のブロック耐久寿命に及ぼす影響を示す図である。
【符号の説明】
1 張力帯
2 上側凹部(上側被噛合部)
3 下側凹部(下側被噛合部)
6 ブロック
6a 接触部
8 嵌合部
9 上側凸部(上側噛合部)
10 下側凹部(下側噛合部)
V プーリ溝面
B 高負荷伝動用Vベルト
P ブロック間ピッチ
Wb 凸部のベルト長さ方向の最大厚さ
Wt 凹部のベルト長さ方向の最大幅
Tb ベルト厚さ方向の隙間
Tt ベルト厚さ方向の厚さ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention belongs to a high-load transmission V-belt, and particularly to a technical field related to measures for improving durability and preventing generation of noise during traveling.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-120798, a high-load transmission V-belt in which a large number of blocks are locked and fixed to a tension band by using a block and an uneven engagement structure of the tension band is well known. And are used, for example, in the field of continuously variable transmissions. In this type of V-belt, each block is fixed to the tension band not by bonding but by a physical meshing state in order to secure the bending stability. The belt has, for example, a pair of left and right tension bands arranged in the belt width direction, and a plurality of upper concave portions and lower concave portions serving as meshing portions arranged in the belt length direction on the upper and lower surfaces of each tension band are vertically. Is provided in correspondence with. On the other hand, a pair of left and right fitting portions in the form of cutouts for fitting respective tension bands are formed on the belt width direction side portions of the respective blocks, and the upper surface of each of the fitting portions serves as an upper meshing portion. An upper convex portion and a lower convex portion as a lower meshing portion are provided on the lower surface, respectively. Then, the tension bands are press-fitted into the right and left fitting portions of the respective blocks to be fitted to each other, so that each block is in contact with both tension bands between the contact portion of the block side surface in the width direction side surface of the belt and the tension band side surface. Both are engaged and fixed so as to be in contact with the pulley groove surface, and power is transmitted and received by the meshing portion of the block and the meshed portion of the tension band.
[0003]
By the way, if the degree of fixation of each block to the tension band is low, the block rattles during belt running and the vibration becomes remarkable, and the durability of the block and the tension band deteriorates and the belt running noise increases. May cause.
[0004]
Therefore, conventionally, in order to obtain a fixed fit between the tension band and the block, a gap Tb in the belt thickness direction between the upper meshing portion and the lower meshing portion of each block is formed by the upper cover of the tension band. The thickness in the belt thickness direction Tt between the meshing portion and the lower meshed portion is set to be larger than the thickness Tt (Tb> Tt), and the tightening margin Tb-Tt in the belt thickness direction (hereinafter, referred to as a vertical tightening margin) It is known that a tension band is press-fitted into a block to be engaged and fixed.
[0005]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional one, since there is a vertical interference when press-fitting the tension band into each block, the tension band is mainly compressed in the belt thickness direction, and the reaction force is applied to the fitting portion of each block, A force for pushing and expanding the fitting portion in the thickness direction of the belt acts, and a residual stress due to a compressive force is generated at the upper and lower corners of the fitting portion when the belt is manufactured.
[0006]
In addition, when the belt is running, the force for pushing and expanding the fitting portion is further promoted by the bending deformation when the V-belt is wound around the pulley and the thermal expansion of the tension band due to the increase in the ambient temperature of the belt. However, there is a problem that the durability is adversely affected.
[0007]
On the other hand, in the tension band, when thermal expansion occurs, the compressive force due to the reaction force received by the fitting portion of the block increases, so that the creep deformation of the tension band increases, and the degree of fixing of each block to the tension band due to the fitting increases. However, there is a problem that noise occurs when the belt runs.
[0008]
The present invention has been made in view of the above points, and a purpose thereof is to provide a high load transmission V-belt by devising a setting of an interference when press-fitting a tension band into each block. Another object of the present invention is to improve the durability of the block and the tension band and to suppress noise during running of the belt.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, an interference in the belt length direction is provided above the fitting portion of the block.
[0010]
More specifically, in the present invention, an endless endless number of upper and lower engaged portions arranged in the belt length direction on the upper surface on the back surface side of the belt and the lower surface on the bottom surface side are provided corresponding to the upper and lower sides. A tension band, a fitting portion into which the tension band is press-fitted and fitted, an upper meshing portion meshing with an upper meshed portion of the tension band on an upper surface of the fitting portion, and a tension band on the lower surface. A plurality of blocks each having a lower meshing portion meshing with the lower meshed portion, and having a contact portion in contact with the pulley groove surface on a side surface in the belt width direction, and having a tension at a fitting portion of each block. By fitting the band, each block is engaged and fixed to the tension band such that both the contact portion of the block side surface on the side surface in the width direction of the belt and the tension band side surface are in contact with the pulley groove surface. Power transmission by the meshing of the It assumes the V-belt for high load transmission to be carried out.
[0011]
Either the upper meshing portion of each block or the upper meshed portion of the tension band is formed in the upper concave portion, and the other is formed in the upper convex portion, and the upper convex portion has a maximum in the belt length direction. The thickness Wb is larger than the maximum width Wt of the upper concave portion in the belt length direction. According to the second aspect of the present invention, there is provided a high-load transmission V-belt similar to the premise of the first aspect, wherein one of a lower meshing portion of each block and a lower meshed portion of the tension band is lower. The concave portion and the other are configured as lower convex portions, respectively. The maximum thickness Wb of the lower convex portion in the belt length direction is larger than the maximum width Wt of the lower concave portion in the belt length direction. Configuration. Furthermore, the invention of claim 3 is a combination of the invention of claim 1 and the invention of claim 2 and is a high load transmission V-belt similar to the premise of claim 1, wherein the upper mesh of each block Either one of the upper meshed portion of the portion or the tension band is in the upper concave portion, the other is the upper convex portion, and one of the lower meshed portion of each block or the lower meshed portion of the tension band is The lower concave portion and the other are configured as lower convex portions, respectively. The maximum thickness Wb of the upper convex portion in the belt length direction is larger than the maximum width Wt of the upper concave portion in the belt length direction. The maximum thickness Wb of the lower convex portion in the belt length direction is larger than the maximum width Wt of the lower concave portion in the belt length direction.
[0012]
According to these configurations, four types of combination patterns of the uneven shape of the upper side of each block, the upper side of the lower meshing portion and the upper side of the tension band, and the lower side meshed portion can be considered. By making the maximum thickness Wb in the belt length direction of the convex portion on one side larger than the maximum width Wt in the belt length direction of the other concave portion, the interference Wb-Wt (hereinafter, referred to as the belt length direction). When the tension band is press-fitted, the tension band is compressed mainly in the belt length direction. The reaction force acting on each block from the tension band acts mainly on the belt length direction. For this reason, the tension band does not try to expand the fitting portion of each block in the belt thickness direction, suppresses the generation of residual stress at the corner of the fitting portion of the block, and reduces the tension band during belt running. Thermal expansion does not degrade the durability of the block.
[0013]
Further, in the tension band, since the residual stress is originally suppressed even when the V-belt thermally expands, the compressive force acting on the tension band is suppressed, and the creep deformation thereof is suppressed. This prevents a decrease in the degree of fixation between the tension band and the block due to fitting, and reduces local bending stress generated in the core of the tension band due to rattling of the block, thereby preventing the tension band from bending. Fatigue properties are improved, and the impact sound generated when adjacent blocks collide with each other can be reduced. Therefore, it is possible to improve the durability of the block and the tension band, and to suppress noise during running of the belt.
[0014]
According to the invention of claim 4, the difference Wb-Wt between the maximum thickness Wb of the convex portion in the belt length direction and the maximum width Wt of the concave portion in the belt length direction is 0.067P or less, where P is the inter-block pitch. To be set.
[0015]
According to the above configuration, if the lateral tightening allowance in the belt length direction is larger than 0.067P, the reaction force at the convex portion becomes too large, and the durability life of the block may be shortened. Therefore, by setting the lateral tightening allowance to 0.067P or less, a desirable high load transmission V-belt in which the effects of the present invention are remarkably exhibited can be obtained.
[0016]
According to the fifth aspect of the present invention, the thickness Tt of the tension band between the upper meshing portion and the lower meshing portion in the belt thickness direction between the upper meshing portion and the lower meshing portion and the belt thickness direction between the upper meshing portion and the lower meshing portion of each block. The difference Tt−Tb from the gap Tb (hereinafter, referred to as a vertical margin) is set to be −0.034 Tt or more and 0.02 Tt or less.
[0017]
According to the above configuration, if the vertical tightening allowance is smaller than -0.034 Tt, the gap becomes too large, the degree of fixation of each block to the tension band becomes low, and the block rattles during belt running. The vibration becomes remarkable, and there is a possibility that the durability of the block and the tension band is deteriorated and the belt running noise is increased.
[0018]
On the other hand, if the vertical tightening allowance is larger than 0.02Tt, when the tension band is pressed into each block, the tension band is mainly compressed in the belt thickness direction, and the reaction force is applied to the fitting portion of each block, A force for pushing and expanding the fitting portion in the thickness direction of the belt acts, and a residual stress due to a compressive force is generated at the upper and lower corners of the fitting portion when the belt is manufactured. This adversely affects the durability of the block and the tension band, and in some cases, may cause noise during belt running.
[0019]
Therefore, by setting the vertical tightening allowance in the belt thickness direction to be -0.034Tt or more and 0.02Tt or less so that the vertical tightening allowance is minute or conversely, there is a gap, so that the belt running time can be reduced. Even if the tension band thermally expands due to the temperature rise, if there is a gap in the belt thickness direction, the gap absorbs the expansion and no force acts to push and expand the fitting portion of the block. In addition, when there is no gap, since the vertical tightening margin is minutely suppressed, even if a force for pushing and expanding the fitting portion acts, since the magnitude is small, unnecessary stress is applied to the fitting portion. Does not occur. Accordingly, a more desirable high load transmission V-belt in which the effects of the present invention are remarkably exhibited can be obtained.
[0020]
According to the invention of claim 6, a fitting portion is formed on each of the left and right side surfaces in the width direction of each block, and the tension band is fitted to the fitting portion. According to this configuration, it is possible to obtain a desirable V-belt capable of improving the durability of the block and the tension band and suppressing noise during running of the belt.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 5 shows a high-load transmission V-belt B according to an embodiment of the present invention. This V-belt B has a pair of left and right endless tension bands 1, 1 and a pitch P between the blocks. (Shown in FIG. 3) and blocks 6, 6,.
[0022]
As shown in FIG. 1, each tension band 1 has a plurality of high-strength and high-elasticity core wires 1b, 1b,... Made of aramid fiber or the like in a spiral shape inside a shape-retaining layer 1a made of hard rubber. An upper concave portion 2 as a groove-like upper meshing portion having a constant pitch P extending in the belt width direction corresponding to each block 6 on the upper surface on the belt rear side of each tension band 1. , 2,... On the lower surface on the back side of the belt, corresponding to the above-mentioned upper concave portions 2, 2,. Are formed so as to be arranged in the belt length direction. Note that canvases 4 and 4 are adhered to the upper and lower surfaces of the tension band 1 for the purpose of improving the wear resistance and the like.
[0023]
The hard rubber forming the shape-retaining layer 1a is excellent in heat resistance and permanent deformation by reinforcing short fibers such as aramid fibers and nylon fibers to H-NBR rubber reinforced with zinc methacrylate, for example. A difficult hard rubber is obtained. The hardness of this hard rubber requires a rubber hardness of 75 ° or more as measured by a JIS-C hardness tester.
[0024]
Further, as shown in FIG. 2, each block 6 is formed of a highly elastic hard resin material or the like, and has contact portions 6a on its left and right side surfaces to contact the pulley groove surface V. The belt angle formed by the contact portions 6a, 6a is the same as the angle formed by the pulley groove surface V.
[0025]
Notched groove-shaped fitting portions 8, 8 for fitting the above-mentioned tension bands 1 detachably from the width direction are provided at substantially the upper and lower central portions of the contact portion 6a of each block 6, that is, the left and right side portions in the belt width direction. Is formed. In other words, each block 6 has a substantially H shape including an upper beam 6b extending in the belt width direction (lateral direction), a lower beam 6c, and a pillar 6d connecting the left and right central portions of both beams 6b, 6c up and down. A fitting portion 8 is formed in a portion surrounded by these, and the tension bands 1 and 1 are press-fitted into the fitting portions 8 and 8 of each block 6, respectively, and fitted. The blocks 6, 6,... Are continuously fixed to the tension bands 1, 1.
[0026]
Specifically, as shown in FIG. 1, the upper wall of each fitting portion 8 in each block 6 has an upper meshing portion formed of a ridge meshing with each upper concave portion 2 on the upper surface of the tension band 1. A convex portion 9 and a lower convex portion 10 as a lower meshing portion formed of a ridge meshing with each lower concave portion 3 on the lower surface of the tension band 1 on the lower wall surface of the fitting portion 8 are arranged in parallel with each other. It has been formed. By engaging the upper and lower convex portions 9 and 10 of each block 6 with the upper and lower concave portions 2 and 3 of the tension band 1, respectively, the blocks 6, 6,. By press-fitting, both the contact portions 6a, 6a of the block 6 on the side surface in the width direction of the V-belt B and the side surfaces of the tension bands 1, 1 are engaged and fixed so as to contact the pulley groove surface V. In this engaged state, power is transferred to and from each tension band 1 by engaging the outer side surface, the upper and lower convex portions 9 and 10 of each block 6 and the upper and lower concave portions 2 and 3 of each tension band 1 with each other. .
[0027]
As shown in FIG. 2, a reinforcing member 11 made of a lightweight aluminum alloy or the like is embedded in each block 6 so as to be located substantially at the center of each block 6. For example, the upper and lower convex portions 9 and 10 and the contact portions 6a and 6a on the left and right sides, which are meshing portions with the tension band 1, are embedded in the hard resin and do not appear on the surface of each block 6. However, since the other portions do not come into contact with the pulley groove surface V or the tension band 1 or the like, they may be exposed on the surface of each block 6.
[0028]
As shown in FIG. 3 and FIG. 4, the maximum thickness Wb of the upper convex portion 9 of each block 6 in the belt length direction and the maximum width Wt of the upper concave portion 2 in the belt length direction are features of the present invention. Is set to be larger than 0 mm and equal to or less than 0.067P in the belt length direction obtained by the difference Wb-Wt from the above.
[0029]
If the lateral tightening allowance is larger than 0.067P, the reaction force at the fitting portions 8, 8 (upper protrusions 9, 9) of each block 6 becomes too large, and the durability life of each block 6 may be shortened. On the other hand, if the lateral tightening allowance is set to 0 mm or less, the degree of fixation between the tension bands 1 and 1 and the respective blocks 6 due to the fitting is low, and the respective blocks 6 are rattled. Since the durable life of the block 6 may be shortened, the lateral tightening allowance is set to be larger than 0 mm and 0.067P or less.
[0030]
Further, the thickness Tt between the bottom of the upper concave portion 2 and the bottom of the lower concave portion 3 of the tension band 1 in the belt thickness direction, the tip of the upper convex portion 9 and the lower convex portion 10 of each of the blocks 6. The vertical tightening allowance in the belt thickness direction, which is determined by the difference Tt-Tb from the gap Tb in the belt thickness direction between the end portions of the belts, is set to be -0.034 Tt or more and 0.02 Tt or less.
[0031]
When the vertical tightening allowance is smaller than -0.034 Tt, the gap between the tension bands 1 and 1 and each block 6 becomes too large, and the fixing degree of fitting of each block 6 to the tension bands 1 and 1 is low. The blocks 6, 6,... Rattle during the belt running and the vibration becomes remarkable, which may cause deterioration of the durability of the blocks 6, 6,. There is.
[0032]
On the other hand, when the vertical tightening allowance is larger than 0.02 Tt, when the tension bands 1 and 1 are pressed into the respective blocks 6, the tension bands 1 and 1 are mainly compressed in the belt thickness direction, and the reaction force of each block is used as the reaction force. A force is applied to the fitting portions 8, 8 to push the fitting portions 8, 8 in the thickness direction of the belt, and the upper and lower corners of the fitting portions 8, 8 are compressed during belt production. Residual stress is generated by the force. This has an adverse effect on the durability of the blocks 6, 6,... And the tension bands 1, 1, and in some cases, noise may be generated during belt running.
[0033]
Therefore, the vertical tightening allowance in the belt thickness direction is set to be −0.034 Tt or more and 0.02 Tt or less, so that the vertical tightening allowance is minute, or conversely, there is a minute gap.
[0034]
Then, the vertical tightening allowance and the horizontal tightening allowance in the above-mentioned range generate a compressive force in the belt length direction mainly at the time of fitting the upper convex portion 9 of each block 6 and the upper concave portion 2 of each tension band 1. The tension bands 1 and 1 are press-fitted into the respective blocks 6, whereby the tension bands 1 and 1 are compressed in the belt length direction and fixedly engaged.
[0035]
Therefore, in the above-described embodiment, the tension bands 1, 1 and the blocks 6 are press-fitted by fitting the tension bands 1, 1 and the blocks 6 to each other so that the tension bands 1, 1 can be fitted. When press-fitted, the tension bands 1 and 1 are mainly compressed in the belt length direction, and the reaction force acting on each block 6 acts mainly in the belt length direction.
[0036]
For this reason, the tension bands 1 and 1 do not try to expand the fitting portions 8 and 8 of each block 6 in the belt thickness direction, and suppress the generation of residual stress at the corners of the fitting portions 8 and 8. However, the durability of the blocks 6, 6,... Does not deteriorate even if the tension bands 1, 1 thermally expand during belt running.
[0037]
Further, in the tension bands 1 and 1, since the generation of residual stress is suppressed originally even when the high-load transmission V-belt B thermally expands, the compressive force acting on the tension bands 1 and 1 is suppressed. Creep deformation is suppressed. This can prevent a decrease in the degree of fixation between the tension bands 1, 1 and each block 6 due to the fitting, and prevent the cores 1b, 1b,. The generated local bending stress can be reduced, the bending fatigue resistance of the tension bands 1 and 1 can be improved, and the impact sound generated when the adjacent blocks 6 and 6 collide with each other can be reduced.
[0038]
Furthermore, by setting the vertical tightening allowance in the belt thickness direction to be -0.034 Tt or more and 0.02 Tt or less so that the vertical tightening allowance is minute or conversely, there is a gap, so that the belt running time can be reduced. Even if the tension bands 1 and 1 thermally expand due to the temperature rise, the gap absorbs the expansion and the force for pushing and expanding the fitting portions 8 and 8 of each block 6 does not act. Further, when there is no gap, since the vertical tightening allowance is minutely suppressed, even if a force for pushing and expanding the fitting portions 8, 8 is applied, the size is small. 8 does not cause any extra stress.
[0039]
In the above-described embodiment, the tension bands 1 and 1 are a pair. However, the present invention can of course be applied to a high-load transmission V-belt having one tension band. .
[0040]
Further, in the above embodiment, the upper concave portion 9 and the lower convex portion 10 of each block 6 are formed of a convex stripe, while the upper concave portion 2 and the lower concave portion 3 of the tension band are formed of a concave shape. There are four possible combinations of uneven patterns of the upper and lower meshing portions 6 and the upper and lower meshed portions of the tension bands 1 and 1.
[0041]
In the above-described embodiment, the difference Wb−Wt between the maximum thickness Wb of the upper convex portion 9 of each block 6 in the belt length direction and the maximum width Wt of the upper concave portion 2 in the belt length direction is used as the lateral tightening allowance. Is set to be greater than 0 mm and equal to or less than 0.067 P in the belt length direction, but the maximum thickness Wb in the belt length direction at the lower convex portion 10 of each block and the lower concave portion 3, the lateral tightening allowance in the belt length direction obtained by the difference Wb−Wt from the maximum width Wt in the belt length direction may be set to be larger than 0 mm and equal to or less than 0.067P. A horizontal tightening margin may be provided on both the upper and lower sides.
[0042]
In short, in any of the concavo-convex patterns, it is only necessary that at least one of the upper and lower horizontal tightening margins is set to be larger than 0 mm and 0.067P or less.
[0043]
In the above-described embodiment, the thickness Tt between the bottom of the upper concave portion 2 and the bottom of the lower concave portion 3 of the tension band in the belt thickness direction and the tip of the upper convex portion 9 of each block 6 are used as the vertical tightening allowance. The vertical tightening allowance in the belt thickness direction, which is determined by the difference Tt−Tb from the gap Tb in the belt thickness direction between the top portion and the tip portion of the lower convex portion 10 is set to −0.034 Tt or more and 0.02 Tt or less. However, it is needless to say that the operation and effect of the present invention can be exhibited regardless of the uneven pattern.
[0044]
That is, the difference between the thickness Tt of the tension band between the upper meshing portion and the lower meshing portion in the belt thickness direction and the gap Tb between the upper meshing portion and the lower meshing portion of each block in the belt thickness direction. Any configuration may be used as long as Tt−Tb is set to −0.034 Tt or more and 0.02 Tt or less.
[0045]
【Example】
Next, a specific embodiment will be described. As Examples 1 to 4, a high load transmission V-belt B having a belt length of 747 mm, an inter-block pitch P = 3 mm, and a thickness Tt = 3 mm in the belt thickness direction (see FIG. 5) ) In which four types of vertical interference allowances are -0.1 mm, -0.05 mm, 0 mm and 0.05 mm, and three types of horizontal interference allowances are 0.02 mm, 0.1 mm and 0.2 mm. We prepared various kinds.
[0046]
Further, as comparative examples, three types were prepared in which only the vertical allowance was 0.1 mm, and the horizontal allowance was 0.02 mm, 0.1 mm, and 0.2 mm.
[0047]
As shown in FIG. 6, each of the high-load transmission V-belts B of Examples 1 to 4 and Comparative Example was driven by a pulley Pr having a pulley pitch diameter of 61 mm and a driven pulley Pn having a pulley pitch diameter of 151 mm. It was wound around a tension pulley Pa having a pulley pitch diameter of 61 mm provided in the auto tensioner. The center distance L between the driving pulley Pr and the driven pulley Pn was 200 mm. Further, a belt tension is applied with a load of 500 N by the pressing force of the tension pulley Pa, and in this state, the driving pulley Pr is driven to rotate at a rotational speed of 4430 rpm and a load torque of 80 N to move the V belt B between the pulleys Pr and Pn. I ran at. The belt temperature was 110 ° C.
[0048]
FIG. 7 shows the result of comparing the durability life of the blocks of each V belt B obtained at this time. According to the drawing, in Examples 1 to 4 and Comparative Example, when the lateral tightening allowance is 0 mm or less, the degree of fixation between the tension band and each block due to fitting is reduced, and rattling occurs in each block, It was found that noise was generated when the belt ran, and the durability life of each block was reduced. Further, it was found that when the lateral tightening margin was larger than 0.2 mm, the reaction force at the fitting portion of each block was increased, and the durability life of each block was rather reduced.
[0049]
Furthermore, when the vertical interference is set to 0.1 mm or more as in the comparative example, the excessive interference becomes excessively large, and excessive residual stress is generated, thereby shortening the durability life, but is not shown as data. If the vertical tightening allowance is smaller than -0.1 mm, the influence of the gap in the belt thickness direction increases, the degree of fixation between the tension band and each block due to fitting is reduced, and rattling occurs in each block, It was found that noise was generated when the belt ran, and the durability life of each block was reduced.
[0050]
Therefore, as in Examples 1 to 4, by setting the lateral tightening allowance to be greater than 0 mm and equal to or less than 0.067 P, the occurrence of residual stress in the upper and lower corners on the back side of the fitting portion is suppressed, Even if the tension band thermally expands during belt running, the durability of each block is not deteriorated, the compressive force acting on the tension band is also suppressed, and the creep deformation is suppressed, so that the tension band and each block by fitting can be connected. It has been found that a decrease in the degree of fixation can be prevented, and the rattling of the blocks can be suppressed.
[0051]
Furthermore, as in Examples 1 to 4, by setting the vertical tightening allowance to be -0.034 Tt or more and 0.02 Tt or less, even if the tension band is thermally expanded due to a temperature rise during belt running, each block is not affected. It has been found that no force is exerted on the fitting portion, or even if it acts, the force is small, so that no extra stress is generated in the fitting portion.
[0052]
【The invention's effect】
As described above, in the high load transmission V-belt according to the first aspect of the present invention, one of the upper meshing portion of each block or the upper meshed portion of the tension band is formed in the upper concave portion, and the other is formed in the upper convex portion. Each of them was configured such that the maximum thickness Wb of the upper convex portion in the belt length direction was larger than the maximum width Wt of the upper concave portion in the belt length direction. In the high load transmission V-belt according to the second aspect of the present invention, one of the lower meshing portion of each block or the lower meshed portion of the tension band is formed in the lower concave portion, and the other is formed in the lower convex portion. Each of them was configured such that the maximum thickness Wb in the belt length direction of the lower convex portion was larger than the maximum width Wt of the lower concave portion in the belt length direction. Further, the high load transmission V-belt according to the third aspect of the invention has a configuration in which the invention of the first aspect and the invention of the second aspect are combined. Thus, it is possible to improve the durability of the block and the tension band, and to suppress noise during running of the belt.
[0053]
According to the fourth aspect of the present invention, the difference Wb-Wt between the maximum thickness Wb of the convex portion in the belt length direction and the maximum width Wt of the concave portion in the belt length direction is set to 0.067P or less. It is possible to easily obtain a desirable V-belt that improves the durability of the tension band and suppresses noise during belt running.
[0054]
According to the invention of claim 5, the thickness Tt of the tension band between the upper meshed portion and the lower meshed portion in the belt thickness direction, and the belt thickness between the upper meshed portion and the lower meshed portion of each block. By setting the difference Tt−Tb from the gap Tb in the vertical direction to −0.034 Tt or more and 0.02 Tt or less, even if the tension band is thermally expanded due to a temperature rise during belt running, the block is fitted. The force for expanding the portion does not act, or even if it acts, the magnitude is small, so that no extra stress is generated in the fitting portion.
[0055]
According to the sixth aspect of the present invention, the fitting portion is formed on each of the left and right side surfaces in the width direction of each block, and the tension band is fitted to the fitting portion. A desirable high-load transmission V-belt to be exhibited is obtained.
[Brief description of the drawings]
FIG. 1 is a side view of a high-load transmission V-belt.
FIG. 2 is a sectional view taken along line II-II of FIG.
FIG. 3 is an enlarged side view of a block.
FIG. 4 is an enlarged side view of a tension band.
FIG. 5 is a perspective view of a high-load transmission V-belt according to the embodiment of the present invention.
FIG. 6 is a diagram schematically illustrating a durability test apparatus according to an example.
FIG. 7 is a diagram showing the influence of a horizontal tightening allowance and a vertical tightening allowance on a block durability life.
[Explanation of symbols]
1 tension band
2 Upper concave part (upper engaged part)
3 Lower recess (lower engaged part)
6 blocks
6a Contact part
8 Fitting part
9 Upper convex part (upper mesh part)
10 Lower recess (lower meshing part)
V Pulley groove surface
B V belt for high load transmission
P Pitch between blocks
Wb Maximum thickness of convex portion in belt length direction
Wt Maximum width of recess in belt length direction
Tb Belt thickness direction gap
Tt Thickness in belt thickness direction

Claims (6)

ベルト背面側の上面及び底面側の下面にそれぞれベルト長さ方向に並ぶ多数の上側被噛合部及び下側被噛合部が上下に対応して設けられたエンドレスの張力帯と、
上記張力帯が圧入して嵌合される嵌合部を有し、該嵌合部の上面に張力帯の上記上側被噛合部と噛合する上側噛合部が、また下面に張力帯の下側被噛合部と噛合する下側噛合部がそれぞれ形成され、ベルト幅方向の側面にプーリ溝面と接触する接触部が設けられた多数のブロックとを備え、
上記各ブロックの嵌合部に張力帯を嵌合することにより、各ブロックが張力帯に対しベルトの幅方向側面におけるブロック側面の接触部と張力帯側面との両方がプーリ溝面と接触するように係合固定され、ブロックの噛合部と張力帯の被噛合部との噛合によって動力授受が行われる高負荷伝動用Vベルトであって、
上記各ブロックの上側噛合部または上記張力帯の上側被噛合部のいずれか一方が上側凹部に、また他方が上側凸部にそれぞれ構成されており、
上記上側凸部におけるベルト長さ方向の最大厚さWbが上記上側凹部におけるベルト長さ方向の最大幅Wtよりも大であることを特徴とする高負荷伝動用Vベルト。
An endless tension band in which a number of upper meshed portions and lower meshed portions arranged in the belt length direction on the upper surface on the back side of the belt and the lower surface on the bottom side are provided corresponding to the vertical direction,
The tension band has a fitting portion into which the tension band is press-fitted and fitted. An upper meshing portion meshing with the upper meshed portion of the tension band is provided on an upper surface of the fitting portion, and a lower cover is formed on a lower surface thereof. The lower meshing portion meshing with the meshing portion is formed, each including a number of blocks provided with a contact portion that is in contact with the pulley groove surface on the side surface in the belt width direction,
By fitting a tension band to the fitting portion of each block, each block is in contact with the tension band so that both the contact portion of the block side surface and the tension band side surface on the side surface in the width direction of the belt contact the pulley groove surface. A high-load transmission V-belt which is engaged and fixed to the power transmission / reception unit by transmitting and receiving power by the engagement between the meshing portion of the block and the meshed portion of the tension band.
One of the upper meshing portion of each of the blocks or the upper meshed portion of the tension band is configured as an upper concave portion, and the other is configured as an upper convex portion,
A high load transmission V-belt, wherein a maximum thickness Wb of the upper convex portion in the belt length direction is larger than a maximum width Wt of the upper concave portion in the belt length direction.
ベルト背面側の上面及び底面側の下面にそれぞれベルト長さ方向に並ぶ多数の上側被噛合部及び下側被噛合部が上下に対応して設けられたエンドレスの張力帯と、
上記張力帯が圧入して嵌合される嵌合部を有し、該嵌合部の上面に張力帯の上記上側被噛合部と噛合する上側噛合部が、また下面に張力帯の下側被噛合部と噛合する下側噛合部がそれぞれ形成され、ベルト幅方向の側面にプーリ溝面と接触する接触部が設けられた多数のブロックとを備え、
上記各ブロックの嵌合部に張力帯を嵌合することにより、各ブロックが張力帯に対しベルトの幅方向側面におけるブロック側面の接触部と張力帯側面との両方がプーリ溝面と接触するように係合固定され、ブロックの噛合部と張力帯の被噛合部との噛合によって動力授受が行われる高負荷伝動用Vベルトであって、
上記各ブロックの下側噛合部または上記張力帯の下側被噛合部のいずれか一方が下側凹部に、また他方が下側凸部にそれぞれ構成されており、
上記下側凸部におけるベルト長さ方向の最大厚さWbが上記下側凹部におけるベルト長さ方向の最大幅Wtよりも大であることを特徴とする高負荷伝動用Vベルト。
An endless tension band in which a number of upper meshed portions and lower meshed portions arranged in the belt length direction on the upper surface on the back side of the belt and the lower surface on the bottom side are provided corresponding to the vertical direction,
The tension band has a fitting portion into which the tension band is press-fitted and fitted. An upper meshing portion meshing with the upper meshed portion of the tension band is provided on an upper surface of the fitting portion, and a lower cover is formed on a lower surface thereof. The lower meshing portion meshing with the meshing portion is formed, each including a number of blocks provided with a contact portion that is in contact with the pulley groove surface on the side surface in the belt width direction,
By fitting a tension band to the fitting portion of each block, each block is in contact with the tension band so that both the contact portion of the block side surface and the tension band side surface on the side surface in the width direction of the belt contact the pulley groove surface. A high-load transmission V-belt which is engaged and fixed to the power transmission / reception unit by transmitting and receiving power by the engagement between the meshing portion of the block and the meshed portion of the tension band.
One of the lower meshing portion of each block or the lower meshed portion of the tension band is configured as a lower concave portion, and the other is configured as a lower convex portion, respectively.
A high load transmission V-belt, wherein a maximum thickness Wb of the lower convex portion in the belt length direction is larger than a maximum width Wt of the lower concave portion in the belt length direction.
請求項1の高負荷伝動用Vベルトにおいて、
上記各ブロックの下側噛合部または上記張力帯の下側被噛合部のいずれか一方が下側凹部に、また他方が下側凸部にそれぞれ構成されており、
上記下側凸部におけるベルト長さ方向の最大厚さWbが上記下側凹部におけるベルト長さ方向の最大幅Wtよりも大であることを特徴とする高負荷伝動用Vベルト。
The high load transmission V-belt according to claim 1,
One of the lower meshing portion of each block or the lower meshed portion of the tension band is configured as a lower concave portion, and the other is configured as a lower convex portion, respectively.
A high load transmission V-belt, wherein a maximum thickness Wb of the lower convex portion in the belt length direction is larger than a maximum width Wt of the lower concave portion in the belt length direction.
請求項1〜3のいずれか1つの高負荷伝動用Vベルトにおいて、
凸部のベルト長さ方向の最大厚さWbと凹部のベルト長さ方向の最大幅Wtとの差Wb−Wtは、ブロック間ピッチをPとして、0.067P以下に設定されていることを特徴とする高負荷伝動用Vベルト。
The high-load transmission V-belt according to any one of claims 1 to 3,
The difference Wb-Wt between the maximum thickness Wb of the convex portion in the belt length direction and the maximum width Wt of the concave portion in the belt length direction is set to 0.067P or less, where P is the pitch between blocks. V-belt for high load transmission.
請求項1〜4のいずれか1つの高負荷伝動用Vベルトにおいて、
上記張力帯の上側被噛合部及び上記下側被噛合部間のベルト厚さ方向の厚さTtと、上記各ブロックの上側噛合部及び下側噛合部間のベルト厚さ方向の隙間Tbとの差Tt−Tbが−0.034Tt以上でかつ0.02Tt以下に設定されていることを特徴とする高負荷伝動用Vベルト。
The high-load transmission V-belt according to any one of claims 1 to 4,
The thickness Tt between the upper meshing portion and the lower meshing portion of the tension band in the belt thickness direction between the upper meshing portion and the lower meshing portion, and the gap Tb between the upper meshing portion and the lower meshing portion of each block in the belt thickness direction. A high load transmission V-belt, wherein the difference Tt-Tb is set to be -0.034 Tt or more and 0.02 Tt or less.
請求項1〜5のいずれか1つの高負荷伝動用Vベルトにおいて、
各ブロックの幅方向左右側面にそれぞれ嵌合部が形成され、
上記嵌合部に張力帯が嵌合されていることを特徴とする高負荷伝動用Vベルト。
The high-load transmission V-belt according to any one of claims 1 to 5,
A fitting portion is formed on each of the left and right side surfaces in the width direction of each block,
A high load transmission V-belt, wherein a tension band is fitted to the fitting portion.
JP2002239428A 2002-08-20 2002-08-20 V-belt for heavy load transmission Pending JP2004076875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239428A JP2004076875A (en) 2002-08-20 2002-08-20 V-belt for heavy load transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239428A JP2004076875A (en) 2002-08-20 2002-08-20 V-belt for heavy load transmission

Publications (1)

Publication Number Publication Date
JP2004076875A true JP2004076875A (en) 2004-03-11

Family

ID=32022538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239428A Pending JP2004076875A (en) 2002-08-20 2002-08-20 V-belt for heavy load transmission

Country Status (1)

Country Link
JP (1) JP2004076875A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298059A (en) * 2006-04-27 2007-11-15 Mitsuboshi Belting Ltd High load transmission belt
WO2010061564A1 (en) * 2008-11-26 2010-06-03 バンドー化学株式会社 V-belt for high-load transmission
CN104246289A (en) * 2012-03-19 2014-12-24 阪东化学株式会社 V-belt for transmitting high loads

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298059A (en) * 2006-04-27 2007-11-15 Mitsuboshi Belting Ltd High load transmission belt
WO2010061564A1 (en) * 2008-11-26 2010-06-03 バンドー化学株式会社 V-belt for high-load transmission
JP5325895B2 (en) * 2008-11-26 2013-10-23 バンドー化学株式会社 V belt for high load transmission
US8740738B2 (en) 2008-11-26 2014-06-03 Bando Chemical Industries, Ltd. High load transmission V-belt
CN104246289A (en) * 2012-03-19 2014-12-24 阪东化学株式会社 V-belt for transmitting high loads

Similar Documents

Publication Publication Date Title
KR100553057B1 (en) Heavy-duty power transmission v-belt
JPWO2005038295A1 (en) Power transmission chain and power transmission device using the same
TW201042185A (en) Double cogged V-belt for variable speed drive
US4586915A (en) Power transmission system and toothed belt therefor
EP1739325B1 (en) Heavy duty transmission V-belt
EP2365230B1 (en) Power transmission chain and power transmission device
JPH0248772B2 (en)
JP2004076875A (en) V-belt for heavy load transmission
JP2000002304A (en) Chain type power transmission device
JP2001003994A (en) V-belt for transmitting high load and its manufacture
JPH0729331Y2 (en) V belt for high load transmission
EP1258652A2 (en) Belt for variable-speed drives with a continuously variable velocity ratio
JP2003074642A (en) High load transmitting v-belt
EP1440252B1 (en) A belt for a continuously variable transmission
JP2002195351A (en) Heavy load driving belt and block for the heavy load driving belt
JP2009041609A (en) V-belt for high load power transmission
JP6122838B2 (en) V belt for high load transmission
JP6109148B2 (en) V belt for high load transmission
JP2535858Y2 (en) V belt for high load transmission
JPH0331870Y2 (en)
JPH0518514Y2 (en)
JP2001355686A (en) Belt transmission device
JP2000310294A (en) V belt
JP2001090786A (en) Heavy load transmission v belt
JP3008144B2 (en) Continuously variable transmission belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Effective date: 20070625

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070703

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225

A521 Written amendment

Effective date: 20080124

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20080305

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080328