JP2004076122A - Plasma surface treatment method and apparatus for the same - Google Patents

Plasma surface treatment method and apparatus for the same Download PDF

Info

Publication number
JP2004076122A
JP2004076122A JP2002240314A JP2002240314A JP2004076122A JP 2004076122 A JP2004076122 A JP 2004076122A JP 2002240314 A JP2002240314 A JP 2002240314A JP 2002240314 A JP2002240314 A JP 2002240314A JP 2004076122 A JP2004076122 A JP 2004076122A
Authority
JP
Japan
Prior art keywords
substrate
surface treatment
plasma
gap
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002240314A
Other languages
Japanese (ja)
Other versions
JP2004076122A5 (en
JP4620322B2 (en
Inventor
Kenji Inoue
井上 賢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E SQUARE KK
Ebatekku Kk
Square Kk E
Original Assignee
E SQUARE KK
Ebatekku Kk
Square Kk E
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E SQUARE KK, Ebatekku Kk, Square Kk E filed Critical E SQUARE KK
Priority to JP2002240314A priority Critical patent/JP4620322B2/en
Publication of JP2004076122A publication Critical patent/JP2004076122A/en
Publication of JP2004076122A5 publication Critical patent/JP2004076122A5/ja
Application granted granted Critical
Publication of JP4620322B2 publication Critical patent/JP4620322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform surface treatment, such as reforming, of a substrate to be treated without damaging the substrate by generating a uniform plasma free of microarcs under pressure approximate to the atmosphere pressure. <P>SOLUTION: Reactive gases are jetted and supplied so as to be confined in a spacing between counter electrodes 2, through which spacing, the substrate 5 to be treated passes, from both of gas jet ports 11 and 11 disposed on the introducing side and discharging side of the substrate 5 to be treated toward the spacing. Further, the oscillation frequency of a high-frequency oscillation machine 12 for supplying a sinusoidal high-frequency voltage to the counter electrodes 2 is made to follow up the resonance frequency of a load side resonance circuit by a PLL (Phase Locked Loop) circuit 15 to prevent the distortion of the supply voltage and to suppress the generation of the microarcs by a steep noise component, thereby continuously forming the stable plasma. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマ表面処理方法およびその装置に関し、さらに詳細には、FPD、FPDのカラーフィルタ、プリント基板、フィルム状基板、シリコンウエハ、フォトマスク、太陽電池等の基板に、常圧近傍圧力下で、プラズマによって表面処理をするプラズマ表面処理技術に関する。
【0002】
【従来の技術】
半導体関連産業では、FPD(フラット・パネル・ディスプレイ)、FPDのカラーフィルタ、プリント基板、フィルム状基板、シリコンウエハ、フォトマスク、太陽電池等の基板に対する様々な表面処理が行われている。これは、親水性または疎水性を与えるための改質処理、残留物の除去等による密着性向上、乾燥等である。
【0003】
親水性または疎水性を与えるための改質処理は、例えば、FPDのガラス基板上に各種膜を成膜するプロセスにおいて、スパッタ処理前、フォトレジスト塗布前、現像液塗布前、フォトレジスト剥離処理前に紫外線、遠紫外線を用いて行われる。しかし、この方法は光励起の反応を利用するので処理時間を短縮するのが困難である。
【0004】
残留物の除去は、FPDのガラス基板上にアモルファスシリコンやポリシリコン、または金属薄膜を、CVDやスパッタリングで堆積させる前処理として行われる。薄膜堆積前の基板上に有機物等の残留物が残っていると、ガラス基板とその薄膜の密着性が悪く剥がれ易くなる場合があるので、これを改善するのである。すなわち、UVランプやエキシマランプ装置を使用して、堆積前に有機物等の残留物を取り除くことで、密着性を向上させる。しかし、この方法も光励起の反応によるので、処理スピードが遅く生産性が悪い。
【0005】
密着性向上は、FPD等の製造工程でUVランプ、エキシマランプを用いてエッチング液、現像液、レジスト液を基板上に塗布する場合の前処理としても行われている。しかし、前述したように、光励起反応では反応速度が遅く、ランプの数が数十本以上になって装置も大型になるため、消費電力も大きかった。
【0006】
上記UVランプ、エキシマランプを使用する方法は、照射時間と共に照度が低下し、所定の性能が得られなくなり交換しなければならない。そのため、ランプ交換コスト、交換のための装置稼動停止を余儀なくされるという問題もある。
【0007】
乾燥は、例えばシリコンウエハに対して行われる。従来は、IPAべーパーを用いた乾燥方法、IPAのマランゴニ現象を利用した乾燥方法、スピン乾燥方法、及びヒーター式乾燥方法などが採用されていた。
【0008】
しかし、これらの方法は、乾燥後の基板上の残留物が問題になる。特に、IPAを用いた場合は、その有機溶剤で廃液が汚染され、環境汚染の問題を生じさせる。
【0009】
以上の問題を解決するために、低圧下での真空プラズマを利用した表面処理の従来技術を採用することも考えられる。しかし、真空プラズマは、気密室内で発生させるため、この気密室と真空ポンプ等の排気機構が必要になり装置導入コストおよび装置設置占有面積が大きくなる。また、バッチ処理となって、ライン搬送による連続処理ができないので、生産性を高くするのが困難である。
【0010】
上記問題を解決するには、常圧近傍圧力下での処理が必要になる。この処理を従来の技術を用いて行う場合、反応ガスとしてヘリウム、空気、窒素、アルゴンガス等を使用し一対の対向電極間にコロナ放電を発生させて表面処理を行うことになる。
しかし、コロナ放電で前記改質等の処理を行った場合、マイクロアークによる基板の熱的、電気的損傷が大きな問題となる。
【0011】
上記方法の改善案として、反応ガス中のヘリウムの使用量を多くして、安定なグロー放電を発生させることも考えられる。しかし、この場合はヘリウムが高価であって相当のガス流量を必要とし、同時に印加電力密度も1 w/cm以上が必要である。このため、反応ガスの使用量と消費電力量が多くなり、ランニングコストが高くなる。また、その場合の電極部及び放電部の発熱により被処理基板への熱損傷を与えてしまう。特に不活性ガスを使用した場合スパッタ効果(2次電子放出現象)により処理基板に対し電極金属部からの金属汚染を引き起こす問題も生じる。
【0012】
また、使用ガス種の組み合わせと処理流量の選定によってグロー放電を発生させて表面処理を行うことも可能である。しかし、この場合は、プリント基板やポリイミド等のフィルム基板中に金属薄膜があると、その金属薄膜部に電界が集中してマイクロアークが発生して薄膜が破損し、またマイクロアークにより基板のダメージも誘発されるという問題もあった。
【0013】
したがって、ポリイミドなどの薄膜上に金属をパターンニングされたものやシリコンウエハ等の処理には不適当であった。
【0014】
【発明が解決しようとする課題】
この発明は、上記問題点を解決することを目的として提案されたもので、被処理基板の表面材質を問わず、大気圧近傍の圧力下でマイクロアークのない均一なプラズマを発生させ、常温状態で基板への表面処理を連続的に行い、基板への処理ダメージなく安定的に表面の有機物除去、表面改質、薄膜堆積等を可能にする処理方法とその装置を提供することを目的とする。
【0015】
また、上記本発明は、IPAを使用しないで廃液による環境汚染を起さず、基板上の残留物の問題も生じさせないで基板の乾燥を行うことをも目的とする。
【0016】
【課題を解決するための手段】
上記目的を達成するために、本発明のプラズマ表面処理方法は、固体誘電体で覆われた一対の対向電極の間隙に大気圧近傍圧力の反応ガスを満たし、この対向電極に高周波電圧を加えて間隙に発生させたプラズマにより、間隙を通過する被処理基板に表面処理をする装置において、被処理基板の導入用開口及び排出用開口を開けて、対向電極の間隙を外部空間と仕切り、反応ガスを、これら導入用開口及び排出用開口の双方から間隙に向け閉じ込めるように噴射供給することによって特微づけられる。
【0017】
上記構成では、被処理基板の導入側と排出側の双方から、間隙内に向けて噴射され、励起されてプラズマとなった反応ガスが、電極間隙内に閉じ込められる作用があり、最小限のガス流量で安定且つ均一なプラズマ生成が可能になると共に、被処理基板の通過方向である電極の長さ方向での均一なプラズマ発生を可能にする。
【0018】
また、本発明のプラズマ表面処理装置は、被処理基板の導入用開口及び排出用開口を開けて、対向電極の間隙を外部空間から仕切る隔壁と、これら導入用開口及び排出用開口の双方から、間隙に向け閉じ込めるように反応ガスを噴射供給するガス噴射口を備え、上記ガス噴射口を、上記導入用開口及び排出用開口について、通過する被処理基板によって二分される間隙の各空間毎に設けたものとして構成される。
【0019】
この装置は、キャビティによって整流となった反応ガスが、導入用開口及び排出用開口に上下に2箇所ずつ、電極の幅方向に延びるように設けられたスリット状のガス噴射口を通して被処理基板の表裏面に別々に供給されるので、プラズマ発生時の被処理基板の表裏面の誘電率を均一化して、表裏面に均一化されたプラズマを発生させることができる。
【0020】
なお、上記一対の電極が固体誘電体で覆われているのは、電極を外気及び使用ガスと隔離して、電極構成金属によって被処理基板が汚染されるのを防止するためである。
【0021】
上記ガス噴射口の噴射方向は、被処理基板の面に対して、5゜〜45°が好ましい。これは、反応ガスの噴射圧力を、電極間隙の内部にまで作用させ、反応ガスを被処理基板に沿わせて間隙内に円滑に供給するためである。これによって、被処理基板の通過方向の電極長さが大きくなっても間隙内のプラズマを均一化できる。
【0022】
また、上記一対の電極内には、冷却液の流路が形成されていることが好ましい。この冷却液の流路には純水または超純水、エチレングリコール、ガルデン、フロリナートなどの循環絶縁液体が、ポンプにより循環圧送され、高周波を印加することによる発熱が抑えられる。これによって、被処理基板の熱損傷を軽減できる。
【0023】
本発明のプラズマ表面処理装置は、高周波電力供給について次の特徴を持つ。すなわち、このプラズマ表面処理装置は、対向して被処理基板を通過させる間隙を形成し、この間隙に大気圧近傍の圧力で反応ガスの供給を受ける一対の電極と、昇圧トランスを介して前記電極に正弦波形の高周波電圧を供給する高周波発振機と、前記電極と前記昇圧トランスの2次側が接続されて生じる並列共振回路の共振周波数の変動に、高周波発振機の発振周波数を追従させるPLL回路を具備したことを特徴とする。
【0024】
このような高周波電力供給方式は、電極間隙の誘電率が、反応ガス種等のプラズマ生成条件により変動しても、電力供給側と負荷側のインピーダンス整合を常に確保できるようにしたものである。
【0025】
これによって、供給電圧の歪を防止し高調波の発生を防止できるので、波高値が大きくて急峻なノイズ成分によるマイクロアークの発生を抑止して、良好なプラズマを安定且つ継続的に生成することができる。
【0026】
また、継続的にプラズマを発生させることができる単位面積当りの最小電力量を小さくできるので、被処理基板へのダメージが極めて小さい表面処理が可能になる。
【0027】
昇圧トランスを持つ上記高周波発振機の発振周波数を、PLL回路によって、前記並列共振回路の共振周波数の変動に追従させる上記高周波電力供給方式は、反応ガスの供給方式に特徴を有する前記表面処理装置に組み込むことができる。
【0028】
上記高周波電力供給方式と反応ガスの供給方式の組合わせによって、それらの効果である安定且つ均一なプラズマ生成が可能に効果が最大となる。
【0029】
なお、上記高周波電力供給方式のみを採用し、上記反応ガスの供給方式を採用しない場合は、ガス流量が多くなるが、均一なプラズマ生成という効果は得られる。
【0030】
以上に説明したプラズマ表面処理装置は、次のような使用方法が可能である。
【0031】
▲1▼被処理基板の基板温度を常温から例えば180℃といった所定の温度まで加熱することにより乾燥、加熱、表面改質の同時処理を行うプラズマ表面処理方法。
【0032】
▲2▼半導体ウエハ処理工程において、現像液や洗浄液等の各種薬液及びレジスト液の塗布工程の前に、被着性改善のための表面改質を行うプラズマ表面処理方法。
【0033】
▲3▼処理基板上に形成された薄膜上に、金属薄膜、誘電体薄膜をCVDやスパッタ装置を用い薄膜堆積させる前に、被着性改善のための表面改質を行うプラズマ表面処理方法。
【0034】
▲4▼IC製造工程において、ウエハ洗浄、ウエットエッチング後の乾燥工程で、ウエハ表面を乾燥させるプラズマ表面処理方法。
【0035】
【実施例】
本発明の一実施形態について、以下に説明する。図1は、本発明の一実施形態である表面処理装置の電極部1の断面図である。図において、2、2は一対の平板電極で、等間隔に対向させてある。この平板電極2、2は、内部に図示しない空洞が形成され、その周囲を固体誘電体3、3で覆っている。平板電極2、2の内部空洞には、冷却液供給パイプ4、4を通して、冷却液である絶縁液体が循環圧送され、平板電極2、2の発熱を抑える。絶縁液体は、例えば、純水または超純水、エチレングリコール、ガルデン、フロリナートなどであり、冷却温度は、例えば、平板電極2、2が120℃以下に保たれるようにして、被処理基板5の熱損傷が起こらないようにしている。
【0036】
固体誘電体3、3で平板電極2、2を覆ったのは、当該電極を外気及び使用ガスと隔離して、平板電極2、2の金属で被処理基板5が汚染されるのを防止するためである。この固体誘電体3、3の比誘電率は、放電間隙に電界を集中させるために、10以上とすることが好ましい。
【0037】
前記固体誘電体3、3の対向面はプラズマを発生させる平行な放電面6、6となり、この間に被処理基板5を通過させる。7、7はその搬送用口ーラである。
【0038】
8、8は一対の電極部カバーで、キャビティ9、9を形成している。 10、10はキャビティ9、9へのガス導入口、11、11、11、11はガス噴射口である。
【0039】
ガス導入口11、11から導入された反応ガスは、キャビティ9、9により整流となり、被処理基板5の導入側と排出側に、各放電面6、6毎に、2つずつ配置されたガス噴射口11、11、11、11を通って放電面6、6の間隙内に噴射される。この噴射が均一に行われるように、ガス噴射口11の構造は、図3に示すように放電面6に沿い図1の紙面と直交する方向(電極の幅方向)に延びるスリット状の開口となり、放電面6に対して適当な角度θを持つように設定されている。この角度付けは、被処理基板5の導入および排出側の固体誘電体3、3の角部を、テーパー面3aとすると共に、キャビティ9、9を形成する電極部カバー8の内部に傾斜板8aを配置することによりなされる。このテーパー面3aと傾斜板8aの傾きと位置を変えることによって、反応ガスの噴射状態を適切なものにすることができる。
【0040】
図1の電極部1を、図1と直交する方向から見た断面図を図2として示す。図1と図2に示す電極部1の構造は、被処理基板5のサイズに応じて放電面6とその周辺部分の大きさを変えて製作することにより、自由に対応できるものとなっている。
【0041】
図4は上記電極部1に高周波電力を供給するために高周波発振機12を接続した電気回路を示すものである。この図には、電極部1のキャパシタンスCと、高周波発振機12の出力側に設けられた昇圧トランス13の二次巻線のインダクタンスLで、並列共振回路14が形成されることを示している。
【0042】
高周波印加によって電極部1にプラズマが発生すると放電面6、6の間隙における誘電率は大きく変動する。なお、この誘電率はプラズマの生成条件(ガス種、ガス流量、高周波電力、被処理基板の材質および厚さ、処理温度等)によって決まるものである。この誘電率の変動により、上記並列共振回路14における共振周波数f=1/〔2π√(LC)〕は大きく変化し、高周波発振機12と電極部1のインピーダンス不整合が生じる。 この場合、反射電力が発生して波形が歪み、大きな波高値で急峻に変動するその高調波成分でプラズマが不安定になり、均一な処理ができないことが予想される。
【0043】
そこで、図4の回路では、高周波発振機12にPLL回路15を設けて、上記並列共振回路14における共振周波数fの変動に追従して高周波発振機12の発振周波数が変動するようにした。
【0044】
これにより、上記共振周波数fに一致した周波数の高周波電圧が、常に並列共振回路14に出力され、共振状態が保たれる。この場合、容量成分(jωC)とインダクタンス成分(jωL)は、その周波数において無視でき、図5の等価回路に示すように純抵抗Rのみで電流Iが決まる。すなわち、この回路で負荷Rである電極部1に最大消費電力を与える条件は、電池Vの内部抵抗rと負荷Rの値を同一にすることであり、このとき電流Iは最大となり、最大電力P=IRが確保される。図6は上記並列共振回路14に供給される高周波電圧の周波数fに対して、並列共振回路14のインピーダンスZの変化と、電極部1で消費される電力Pの変化を示している。すなわち、共振周波数fときインピーダンスZは最小となって、消費電力Pは最大となる。
【0045】
次に、上記図1〜図3に示した反応ガスの供給方式と、図4、図5で説明した高周波電力供給方式を組合わた本発明の具体的な実験結果について説明する。
【0046】
(実験例1)
図1〜図3において、電極幅wを800mm、電極長さlを30mm、電極間距離gを4mm、固体誘電体3の厚さdを3mmとし、固体誘電体の材質として酸化アルミニウム(Al)、電極2の素材としてアルミニウムを採用し、また、図5の高周波発振機12の供給可能電力を20w〜2Kwとして実験を行った。
【0047】
常圧下雰囲気で反応ガスを酸素、窒素、アルゴン、空気、ヘリウムの単体またはその混合ガスを用い放電実験を行ったときの発振周波数を測定した。その場合、プラズマ発生時の周波数は、29KHzから50KHzの間で変化し、各ガス種において共振周波数が変化するのは、電極間に発生するプラズマの誘電率の違いであることが確認できた。
【0048】
このときの出力波形をシンクロスコープで測定するとノイズ成分の少ないサイン波が供給されており、マイクロアークは認められず、ア−クノイズも認められない良好なプラズマが発生していた。
【0049】
しかし、PLL回路15の動作を停止させて、発振周波数を共振領域から外した場合はノイズ成分が多く見られるようになり、このノイズが所定の印加設定電圧を超えマイクロアークを発生させる状況となっていることが認められた。これは、アークノイズが発生するコロナ放電に近い状態であった。このときに電極部1の両極にかかるピーク電圧をシンクロスコープで測定すると印加設定電圧の1.5倍程度になっていた。
【0050】
これらは、並列共振条件を保つことが、波形歪による高調波の発生をなくしてノイズ成分の少ないサイン波を供給でき、ノイズによる瞬間的な電圧上昇を抑制して、マイクロアークをなくすことにつながるということを表している。
【0051】
本発明では、図2に示すように、被処理基板の導入側と排出側の双方から、この電極間隙内に向けて閉じ込めるように反応ガスを噴射している。
この構造は、高周波により一旦励起されイオン化されたガスを放電面6に封じ込めるものであり、最小限のガス流量で安定且つ均一なプラズマ生成が可能になる。これは、それだけプラズマ生成持続最低高周波電力を下げて、被処理基板に対するダメージを少なくできることである。
【0052】
このプラズマ生成持続最低高周波電力は、反応ガスがヘリウム単体の場合で0.013w/cmという値が得られた。
【0053】
また、ガス噴射口11の噴射方向(図1の角度θ)を調整して、プラズマの生成状況を調べると、被処理基板の面に対して、θ=5゜〜45°の範囲で、マイクロアークのない良好なプラズマとなることが分かった。この場合に必要なガス流量は、図8に示すような、一方向に反応ガスを流す場合に比べて1/2程度に減らすことができた。
【0054】
次に、上記実験例1のプラズマ表面処理装置(図1〜図3に示した反応ガスの供給方式と、図4の高周波電力供給方式)を用いて、いくつかの実験を行った。反応ガスに空気を使用しプラズマ照射によるガラス表面の改質実験を行った結果を図7に示す。処理直後に、濡れ性を示す接触角は1.5度程度であったが、時間とともに(1時間放置)少しずつその角度が上昇していくことが分かる。
【0055】
また、ゲート酸化膜を約80Å堆積し、ポリシリコン膜を4000Å、フィールド酸化膜を4000Å堆積させたシリコンウエハを2枚用意し、一方をリファレンスとして残し、他方に本発明装置でプラズマによる表面処理を行った。次に、リファレンスと処理済みウエーハの夫々に対して、IV特性、CV特性の測定を行い、ウエーハ上の同一位置の測定値同士で、比較を行った。これによって絶縁破壊、スパツタ効果などの原因によるそれらの薄膜へのダメージ等を調べたが、処理前の状態とほとんど変化が見られなかった。
【0056】
また、上記本発明の表面処理装置を用い、へリウム、アルゴン、窒素、酸素、空気を単体または混合させて、そのプラズマを発生させると、これらのガス分子が電離、解離へと移行する過程における発光分光計の測定で、発光波長170〜340Åの真空紫外領域の発光がみられた。
【0057】
その発光波長は、ウエハ表面の残留水分を酸素と水素に分解し、完全に乾燥させることが可能なものであった。したがって、IC製造工程において、ウエハ洗浄、ウエットエッチング後の乾燥工程で、ウエハ表面に残留物を残すことなく、また廃液による環境汚染なく乾燥させることが可能になる。
【0058】
以上の実験により、先に列挙した▲1▼乾燥、加熱、表面改質の同時処理、▲2▼半導体ウエハの被着性改善のための表面改質、▲3▼処理基板上に形成された薄膜に、被着性改善のために行う表面改質、▲4▼半導体ウエハ表面乾燥が、マイクロアークによるダメージなく、実施できることが確認された。
【0059】
次に、図8に示すように、反応ガスが電極面に沿って一方向に流れる方式の電極部16を採用し、図4の高周波電力供給方式と組み合わせた実施例を説明する。
【0060】
図8は、本発明のプラズマ表面処理装置の他の実施形態の電極部16を示す断面図である。図において、2、2は一対の平板電極で、等間隔に対向させてある。この平板電極2、2は、内部に図示しない空洞が形成され、その周囲を固体誘電体3、3で覆っている。平板電極2、2の内部空洞には、冷却液供給パイプ4、4を通して、冷却液である純水などの絶縁液体が循環圧送され、図1の構造と同様の作用によって平板電極2、2の発熱を抑える。前記固体誘電体3、3の対向面はプラズマを発生させる平行な放電面となり、この間に被処理基板5を通過させる。7、7はその搬送用口ーラである。
【0061】
17、17は一対の電極部カバーで、キャビティ18、18を形成している。19、19はキャビティ18、18へのガス導入管、20、20はガス排出管、21、21は、キャビティ18を上流と下流に分離する隔壁、22は排気用ブロアー、23は高周波電力供給装置で、図4の高周波発振機12、昇圧トランス13、PLL回路15から構成されている。
【0062】
この電極部16で、ガス導入管19からキャビティ18に入って整流となった反応ガスは、隔壁21で妨げられるので平板電極2、2の間隙を一方向に流れ、ガス排出管20と排気用ブロアー22を通って排気される。
【0063】
この電極構造で、その共振周波数に追従する高周波電力供給装置23(図4の高周波電力供給方式)で実験した結果を説明する。
【0064】
へリウム、アルゴン、窒素、酸素、空気を単体または混合したものを、反応ガスとして用いた。マイクロアークの発生は、反応ガスの流速に依存し、流速が速い程にマイクロアークは少なくなる。常圧のヘリウム単体の場合は、ガス導入管19からの導入圧を0.1kg/cm以上とするとマイクロアークが消えた。さらに、ガス導入管19からの導入量を上回る量を排気用ブロアー22から排気することが好ましいことが分かった。このような、ガス導入法を採用した場合、処理中の被処理基板の残渣物等が基板に再付着するのを防止する効果も観測された。
【0065】
【発明の効果】
本発明のプラズマ表面処理方法は、一対の対向電極の間隙に向け、被処理基板の導入側と排出側の双方から、間隙内に向けて閉じ込めるように反応ガスを噴射する。このため、高周波により一旦励起されイオン化されたガスが放電面付近に封じ込められ、最小限のガス流量で安定且つ均一なプラズマ生成が可能になると共に、被処理基板の通過方向である電極の長さ方向での均一なプラズマ発生を可能にする。
【0066】
本発明のプラズマ表面処理装置のガス噴射口を、上記導入用開口及び排出用開口について、通過する被処理基板によって二分される間隙の各空間毎に設けると、キャビティによって整流となった反応ガスが、被処理基板の表裏面に別々に供給され、プラズマ発生時の被処理基板の表裏面の誘電率を均一化して、被処理基板の通過状態に影響されないで均一なプラズマを発生させることができる。
【0067】
上記ガス噴射口の噴射方向の被処理基板に対する傾斜を、5°〜45°とすると、反応ガスの噴射圧力を、電極間隙の内部にまで作用させながら、被処理基板の表面に沿って流すことができ、被処理基板の通過方向の電極長さが大きくなっても間隙内のプラズマを均一化できる。
【0068】
一対の電極に、冷却液の流路を形成した上記プラズマ表面処理装置は、電極の過熱を抑制して、被処理基板の熱損傷を防止する。
【0069】
本発明のプラズマ表面処理装置は、昇圧トランスを介して一対の電極に正弦波形の高周波電力を供給する高周波発振機にPLL回路を具備させ、電極間隙の誘電率が反応ガス種等のプラズマ生成条件により変動しても、負荷側の共振条件を確保し供給電圧の歪を防止して、安定したプラズマを、低い供給電力で継続的に生成することができる。
【0070】
PLL回路を用いた上記高周波電力供給方式を、前述した本発明の反応ガスの供給方式に組合わせると、安定して均一なプラズマが得られる効果が最大となる。
【0071】
上記プラズマ表面処理装置は、操作が簡単で基板にダメージを与えることが少ない。そこで、次のようなプラズマ表面処理方法として使用して、半導体装置製造の各種表面処理を行うことができる。
【0072】
被処理基板の基板温度を常温から所定温度まで加熱することにより、乾燥、加熱、表面改質の同時処理を行うプラズマ表面処理方法は、高い処理能力が得られる。
【0073】
半導体ウエハ処理工程における各種薬液の塗布工程の前に、被着性改善のための表面改質を行うプラズマ表面処理方法として使用できる。この表面改質は、半導体装置の製造プロセスにおいて、非常に多く行われるものであるため、本発明装置の処理能力の高さにより、工数の削減に有効となる。
【0074】
金属薄膜、誘電体薄膜をCVDやスパッタ装置を用い薄膜堆積させる前に、被着性改善のための表面改質を行うプラズマ表面処理方法として使用できる。この方法も、本発明装置の処理能力の高さにより、工数の削減が可能になる。
【0075】
IC製造工程の各種乾燥工程で、ウエハ表面を乾燥させるプラズマ表面処理方法として使用できる。この方法は、ウエハ表面に残留物を残さず、また廃液による環境汚染がないという利点を有する。
【図面の簡単な説明】
【図1】本発明の一実施形態である表面処理装置の電極部の断面図である。
【図2】本発明の一実施形態である表面処理装置の電極部を図1と直交する方向で切断した断面図である。
【図3】図2のA―A線に沿う断面図である。
【図4】電極部に高周波発振機を接続して構成した本発明の表面処理装置の電気的構成図である。
【図5】図4において電極部と昇圧トランスの二次側によって形成される並列共振回路が、共振条件を満たしたときの等価回路図である。
【図6】図4の並列共振回路に供給される高周波電圧の周波数fに対する、並列共振回路のインピーダンスZと、電極部で消費される電力の変化を共振周波数との関係で示す図である。
【図7】反応ガスに空気を使用しプラズマ照射によるガラス表面の改質実験を行った結果を示す図である。
【図8】本発明の表面処理装置の他の実施形態である電極部の断面図である。
【符号の説明】
1    電極部
2    平板電極
3    固体誘電体
4    冷却液供給パイプ
5    被処理基板
6    放電面
7    搬送用ローラ
8、17 電極部カバー
9、18 キャビテイ
10   ガス導入口
11   ガス噴射口
12   高周波発振機
13   昇圧トランス
14   並列共振回路
15   PLL回路
19   ガス導入管
20   ガス排出管
21   隔壁
22   排気用ブロアー
23   高周波電力供給装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plasma surface treatment method and an apparatus therefor, and more specifically, to a substrate such as an FPD, an FPD color filter, a printed circuit board, a film-shaped substrate, a silicon wafer, a photomask, and a solar cell under a pressure close to normal pressure. The present invention relates to a plasma surface treatment technique for performing surface treatment with plasma.
[0002]
[Prior art]
In the semiconductor-related industry, various surface treatments are performed on substrates such as FPDs (flat panel displays), FPD color filters, printed boards, film-shaped substrates, silicon wafers, photomasks, and solar cells. This includes modification treatment for imparting hydrophilicity or hydrophobicity, improvement in adhesion by removing residues, drying, and the like.
[0003]
The modification treatment for imparting hydrophilicity or hydrophobicity is performed, for example, in a process of forming various films on a glass substrate of an FPD, before a sputtering treatment, before a photoresist coating, before a developing solution coating, and before a photoresist stripping treatment. UV light and far ultraviolet light. However, this method uses a photo-excitation reaction, so that it is difficult to reduce the processing time.
[0004]
Removal of the residue is performed as a pretreatment for depositing amorphous silicon, polysilicon, or a metal thin film on the glass substrate of the FPD by CVD or sputtering. If a residue such as an organic substance remains on the substrate before depositing the thin film, the adhesion between the glass substrate and the thin film may be poor, and the thin film may be easily peeled off. That is, by using a UV lamp or an excimer lamp device to remove residues such as organic substances before deposition, the adhesion is improved. However, this method also involves a reaction of photoexcitation, so that the processing speed is slow and the productivity is poor.
[0005]
The improvement of adhesion is also performed as a pretreatment when an etching solution, a developing solution, and a resist solution are applied to a substrate using a UV lamp or an excimer lamp in a manufacturing process of an FPD or the like. However, as described above, in the photoexcitation reaction, the reaction speed is slow, the number of lamps is increased to several tens or more, and the device becomes large, so that the power consumption is large.
[0006]
In the method using the UV lamp and the excimer lamp, the illuminance decreases with the irradiation time, and the predetermined performance cannot be obtained. For this reason, there is also a problem that the lamp replacement cost and the operation of the apparatus for replacement must be stopped.
[0007]
Drying is performed on, for example, a silicon wafer. Conventionally, a drying method using an IPA vapor, a drying method using the Marangoni phenomenon of IPA, a spin drying method, a heater drying method, and the like have been adopted.
[0008]
However, these methods have a problem of residues on the substrate after drying. In particular, when IPA is used, the waste liquid is contaminated with the organic solvent, which causes a problem of environmental pollution.
[0009]
In order to solve the above problem, it is conceivable to adopt a conventional technique of surface treatment using vacuum plasma under a low pressure. However, since vacuum plasma is generated in an airtight chamber, an exhaust mechanism such as the airtight chamber and a vacuum pump is required, so that the cost for introducing the apparatus and the area occupied by the apparatus increase. Further, since batch processing cannot be performed and continuous processing by line conveyance cannot be performed, it is difficult to increase productivity.
[0010]
In order to solve the above problem, it is necessary to perform a process under a pressure near normal pressure. When this treatment is performed using a conventional technique, surface treatment is performed by using helium, air, nitrogen, argon gas, or the like as a reaction gas and generating corona discharge between a pair of opposed electrodes.
However, when the treatment such as the reforming is performed by corona discharge, thermal and electrical damage of the substrate due to the micro arc becomes a serious problem.
[0011]
As an improvement of the above method, it is conceivable to generate a stable glow discharge by increasing the amount of helium used in the reaction gas. However, in this case, helium is expensive and requires a considerable gas flow rate, and at the same time, the applied power density is 1 w / cm. 2 The above is necessary. For this reason, the usage amount and the power consumption of the reaction gas increase, and the running cost increases. In addition, in this case, heat generation of the electrode unit and the discharge unit causes thermal damage to the substrate to be processed. In particular, when an inert gas is used, there is also a problem that metal contamination from the electrode metal portion on the processing substrate occurs due to a sputtering effect (secondary electron emission phenomenon).
[0012]
Further, it is also possible to perform a surface treatment by generating a glow discharge by selecting a combination of types of gas used and a processing flow rate. However, in this case, if there is a metal thin film in a printed circuit board or a film substrate such as polyimide, an electric field is concentrated on the metal thin film portion, a micro arc is generated, and the thin film is damaged, and the substrate is damaged by the micro arc. Was also triggered.
[0013]
Therefore, it is unsuitable for processing a metal film patterned on a thin film such as polyimide or a silicon wafer.
[0014]
[Problems to be solved by the invention]
The present invention has been proposed for the purpose of solving the above problems, and generates a uniform plasma without a micro-arc under a pressure near the atmospheric pressure, regardless of the surface material of the substrate to be processed, at normal temperature conditions. It is an object of the present invention to provide a processing method and apparatus capable of continuously performing a surface treatment on a substrate with a substrate and stably removing organic substances on the surface, modifying the surface, depositing a thin film, etc. without processing damage to the substrate. .
[0015]
Another object of the present invention is to dry a substrate without using IPA, causing no environmental pollution due to waste liquid, and without causing a problem of residue on the substrate.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the plasma surface treatment method of the present invention fills a gap between a pair of counter electrodes covered with a solid dielectric with a reaction gas at a pressure near atmospheric pressure, and applies a high-frequency voltage to the counter electrodes. In an apparatus for performing a surface treatment on a substrate to be processed passing through the gap by plasma generated in the gap, an opening for introduction and an opening for discharge of the substrate to be processed are opened, the gap between the opposed electrodes is separated from an external space, and a reaction gas is formed. By injecting them into the gap from both the inlet opening and the outlet opening.
[0017]
In the above configuration, the reaction gas, which is injected into the gap from both the introduction side and the discharge side of the substrate to be processed and is excited to be plasma, is confined in the electrode gap, and the minimum gas A stable and uniform plasma can be generated at a flow rate, and a uniform plasma can be generated in a length direction of the electrode, which is a passing direction of the substrate to be processed.
[0018]
Further, the plasma surface treatment apparatus of the present invention, the opening for introduction and the opening for discharge of the substrate to be processed, and a partition partitioning the gap between the counter electrodes from the external space, from both the introduction opening and the discharge opening, A gas injection port for injecting and supplying a reaction gas so as to be confined toward the gap is provided, and the gas injection port is provided for each space of the gap divided by the substrate to be processed with respect to the introduction opening and the discharge opening. It is configured as
[0019]
In this apparatus, the reaction gas rectified by the cavity is supplied to the substrate to be processed through slit-shaped gas injection ports provided so as to extend in the width direction of the electrode at upper and lower positions in the introduction opening and the discharge opening. Since they are separately supplied to the front and back surfaces, the dielectric constant of the front and back surfaces of the substrate to be processed at the time of plasma generation can be made uniform, and uniform plasma can be generated on the front and back surfaces.
[0020]
The reason why the pair of electrodes is covered with the solid dielectric is to isolate the electrodes from the outside air and the gas to be used and to prevent the substrate to be processed from being contaminated by metal constituting the electrodes.
[0021]
It is preferable that the injection direction of the gas injection port is 5 ° to 45 ° with respect to the surface of the substrate to be processed. This is because the injection pressure of the reaction gas is applied to the inside of the electrode gap, and the reaction gas is smoothly supplied into the gap along the substrate to be processed. This makes it possible to make the plasma in the gap uniform even if the electrode length in the passage direction of the substrate to be processed increases.
[0022]
Further, it is preferable that a flow path of the cooling liquid is formed in the pair of electrodes. A circulating insulating liquid, such as pure water or ultrapure water, ethylene glycol, galden, or florinate, is circulated and pumped into the flow path of the cooling liquid by a pump, so that heat generated by applying a high frequency is suppressed. This can reduce thermal damage to the substrate to be processed.
[0023]
The plasma surface treatment apparatus of the present invention has the following features for high-frequency power supply. In other words, the plasma surface treatment apparatus forms a gap through which a substrate to be processed is opposed to each other, and a pair of electrodes receiving a supply of a reaction gas at a pressure near atmospheric pressure in the gap, and the electrode through a step-up transformer. A high-frequency oscillator that supplies a high-frequency voltage having a sinusoidal waveform, and a PLL circuit that causes the oscillation frequency of the high-frequency oscillator to follow the fluctuation of the resonance frequency of the parallel resonance circuit that occurs when the electrode and the secondary side of the step-up transformer are connected. It is characterized by having.
[0024]
In such a high-frequency power supply method, impedance matching between the power supply side and the load side can always be ensured even if the dielectric constant of the electrode gap fluctuates due to plasma generation conditions such as the type of reaction gas.
[0025]
As a result, distortion of the supply voltage can be prevented, and generation of harmonics can be prevented. Therefore, generation of micro-arcs due to a large peak value and a steep noise component can be suppressed, and stable plasma can be generated stably and continuously. Can be.
[0026]
In addition, since the minimum amount of power per unit area that can continuously generate plasma can be reduced, a surface treatment with extremely small damage to a substrate to be processed can be performed.
[0027]
The high-frequency power supply system for causing the oscillation frequency of the high-frequency oscillator having a step-up transformer to follow the fluctuation of the resonance frequency of the parallel resonance circuit by a PLL circuit is provided in the surface treatment apparatus characterized by a reaction gas supply system. Can be incorporated.
[0028]
The combination of the above-described high-frequency power supply system and the reaction gas supply system maximizes the effect of enabling stable and uniform plasma generation.
[0029]
When only the high-frequency power supply method is used and the reaction gas supply method is not used, the gas flow rate increases, but the effect of uniform plasma generation can be obtained.
[0030]
The plasma surface treatment apparatus described above can be used in the following manner.
[0031]
{Circle around (1)} A plasma surface treatment method in which the substrate temperature of the substrate to be treated is heated from a normal temperature to a predetermined temperature, for example, 180 ° C., to simultaneously perform drying, heating, and surface modification.
[0032]
{Circle around (2)} A plasma surface treatment method for performing surface modification for improving adherence in a semiconductor wafer treatment process before applying various chemical solutions such as a developing solution and a cleaning solution and a resist solution.
[0033]
{Circle around (3)} A plasma surface treatment method in which a metal thin film or a dielectric thin film is deposited on a thin film formed on a processing substrate by using a CVD or sputtering apparatus, and the surface is modified to improve the adherence.
[0034]
{Circle around (4)} A plasma surface treatment method for drying a wafer surface in a drying step after wafer cleaning and wet etching in an IC manufacturing process.
[0035]
【Example】
An embodiment of the present invention will be described below. FIG. 1 is a sectional view of an electrode unit 1 of a surface treatment apparatus according to an embodiment of the present invention. In the figure, reference numerals 2 and 2 denote a pair of plate electrodes which are opposed at equal intervals. The plate electrodes 2 and 2 have a cavity (not shown) formed therein, and the periphery thereof is covered with solid dielectrics 3 and 3. An insulating liquid as a cooling liquid is circulated through the cooling liquid supply pipes 4 and 4 into the internal cavities of the plate electrodes 2 and 2 to suppress heat generation of the plate electrodes 2 and 2. The insulating liquid is, for example, pure water or ultrapure water, ethylene glycol, galden, florinate, or the like. The cooling temperature is set, for example, such that the plate electrodes 2 and 2 are kept at 120 ° C. or less, and the substrate 5 to be processed is cooled. To prevent thermal damage.
[0036]
The reason that the plate electrodes 2 and 2 are covered with the solid dielectrics 3 and 3 is that the electrodes are isolated from the outside air and the used gas, and that the substrate 5 to be processed is not contaminated with the metal of the plate electrodes 2 and 2. That's why. The relative permittivity of the solid dielectrics 3, 3 is preferably 10 or more in order to concentrate the electric field in the discharge gap.
[0037]
The opposing surfaces of the solid dielectrics 3, 3 become parallel discharge surfaces 6, 6 for generating plasma, between which the substrate 5 to be processed passes. Reference numerals 7 and 7 denote transfer ports.
[0038]
Reference numerals 8 and 8 denote a pair of electrode unit covers, which form cavities 9 and 9. Reference numerals 10 and 10 denote gas inlets to the cavities 9 and 9, and 11, 11, 11, and 11 denote gas injection ports.
[0039]
The reaction gas introduced from the gas inlets 11 is rectified by the cavities 9, and two gases are disposed on the introduction side and the discharge side of the substrate 5, two for each discharge surface 6, 6. It is injected into the gap between the discharge surfaces 6, 6 through the injection ports 11, 11, 11, 11. As shown in FIG. 3, the structure of the gas injection port 11 is a slit-shaped opening extending in a direction (width direction of the electrode) perpendicular to the plane of FIG. , And has an appropriate angle θ with respect to the discharge surface 6. This angulation is performed by making the corners of the solid dielectrics 3, 3 on the introduction and discharge sides of the substrate 5 to be tapered into a tapered surface 3a, and an inclined plate 8a inside the electrode portion cover 8 forming the cavities 9, 9. This is done by placing By changing the inclination and position of the tapered surface 3a and the inclined plate 8a, the injection state of the reaction gas can be made appropriate.
[0040]
FIG. 2 is a cross-sectional view of the electrode unit 1 of FIG. 1 when viewed from a direction orthogonal to FIG. The structure of the electrode portion 1 shown in FIGS. 1 and 2 can be freely adapted by changing the size of the discharge surface 6 and its peripheral portion in accordance with the size of the substrate 5 to be processed. .
[0041]
FIG. 4 shows an electric circuit to which a high-frequency oscillator 12 is connected to supply high-frequency power to the electrode unit 1. This figure shows that a parallel resonance circuit 14 is formed by the capacitance C of the electrode unit 1 and the inductance L of the secondary winding of the step-up transformer 13 provided on the output side of the high-frequency oscillator 12. .
[0042]
When plasma is generated in the electrode portion 1 by applying a high frequency, the dielectric constant in the gap between the discharge surfaces 6, 6 fluctuates greatly. The dielectric constant is determined by plasma generation conditions (gas type, gas flow rate, high-frequency power, material and thickness of a substrate to be processed, processing temperature, etc.). Due to the change in the dielectric constant, the resonance frequency f in the parallel resonance circuit 14 is changed. o = 1 / [2π√ (LC)] greatly changes, and impedance mismatch between the high-frequency oscillator 12 and the electrode unit 1 occurs. In this case, it is expected that the reflected power is generated and the waveform is distorted, the plasma becomes unstable due to its harmonic component which fluctuates sharply at a large peak value, and uniform processing cannot be performed.
[0043]
Therefore, in the circuit of FIG. 4, a PLL circuit 15 is provided in the high-frequency oscillator 12 so that the resonance frequency f o The oscillation frequency of the high-frequency oscillator 12 fluctuates in accordance with the fluctuation of the frequency.
[0044]
Thereby, the resonance frequency f 0 Is always output to the parallel resonance circuit 14 and the resonance state is maintained. In this case, the capacitance component (jωC) and the inductance component (jωL) can be ignored at that frequency, and the current I is determined only by the pure resistance R as shown in the equivalent circuit of FIG. That is, the condition for giving the maximum power consumption to the electrode unit 1 which is the load R in this circuit is to make the value of the internal resistance r of the battery V and the value of the load R the same. P = I 2 R is secured. FIG. 6 shows a change in the impedance Z of the parallel resonance circuit 14 and a change in the power P consumed by the electrode unit 1 with respect to the frequency f of the high-frequency voltage supplied to the parallel resonance circuit 14. That is, the resonance frequency f 0 At this time, the impedance Z becomes minimum and the power consumption P becomes maximum.
[0045]
Next, specific experimental results of the present invention in which the reaction gas supply method shown in FIGS. 1 to 3 and the high frequency power supply method described in FIGS. 4 and 5 are combined will be described.
[0046]
(Experimental example 1)
1 to 3, the electrode width w is 800 mm, the electrode length 1 is 30 mm, the distance g between the electrodes is 4 mm, the thickness d of the solid dielectric 3 is 3 mm, and aluminum oxide (Al) is used as the material of the solid dielectric. 2 O 3 5), aluminum was used as the material of the electrode 2, and an experiment was performed with the power that can be supplied to the high-frequency oscillator 12 in FIG.
[0047]
Oscillation frequency was measured when a discharge experiment was performed using a single reaction gas of oxygen, nitrogen, argon, air, and helium or a mixed gas thereof in an atmosphere under normal pressure. In this case, it was confirmed that the frequency at the time of plasma generation varied between 29 KHz and 50 KHz, and that the resonance frequency of each gas type changed due to the difference in the dielectric constant of plasma generated between the electrodes.
[0048]
When the output waveform at this time was measured with a synchroscope, a sine wave having a small noise component was supplied, and a good plasma was generated in which no micro arc was recognized and no arc noise was recognized.
[0049]
However, when the operation of the PLL circuit 15 is stopped and the oscillation frequency is out of the resonance region, a lot of noise components are seen, and the noise exceeds a predetermined applied set voltage and a micro arc is generated. It was recognized that. This was a state close to corona discharge where arc noise occurs. At this time, when the peak voltage applied to both electrodes of the electrode unit 1 was measured with a synchroscope, it was about 1.5 times the applied set voltage.
[0050]
In these, maintaining the parallel resonance condition eliminates the generation of harmonics due to waveform distortion and can supply sine waves with little noise component, suppresses instantaneous voltage rise due to noise, and eliminates micro arc It represents that.
[0051]
In the present invention, as shown in FIG. 2, a reaction gas is injected from both the introduction side and the discharge side of the substrate to be treated so as to be confined in the electrode gap.
This structure encloses the gas once excited and ionized by the high frequency in the discharge surface 6, and enables stable and uniform plasma generation with a minimum gas flow rate. This means that the plasma generation sustained minimum high-frequency power can be lowered accordingly, and damage to the substrate to be processed can be reduced.
[0052]
The plasma generation sustained minimum high frequency power is 0.013 w / cm when the reaction gas is helium alone. 2 Was obtained.
[0053]
In addition, when the injection direction of the gas injection port 11 (the angle θ in FIG. 1) is adjusted and the generation state of the plasma is examined, it is found that the angle of the microhole is in the range of θ = 5 ° to 45 ° with respect to the surface of the substrate to be processed. It was found that a good plasma without arc was obtained. In this case, the required gas flow rate could be reduced to about 1/2 as compared with the case where the reaction gas was flowed in one direction as shown in FIG.
[0054]
Next, several experiments were performed using the plasma surface treatment apparatus of Experimental Example 1 described above (the reaction gas supply method shown in FIGS. 1 to 3 and the high-frequency power supply method shown in FIG. 4). FIG. 7 shows the results of an experiment for modifying the glass surface by plasma irradiation using air as the reaction gas. Immediately after the treatment, the contact angle indicating the wettability was about 1.5 degrees, but it can be seen that the angle gradually increased with time (left for one hour).
[0055]
Further, two silicon wafers on which a gate oxide film is deposited at about 80 °, a polysilicon film is deposited at 4000 °, and a field oxide film is deposited at 4000 ° are prepared, one of which is left as a reference, and the other is subjected to surface treatment by plasma using the apparatus of the present invention. went. Next, IV characteristics and CV characteristics were measured for each of the reference and the processed wafer, and the measured values at the same position on the wafer were compared. The thin film was examined for damage to the thin film due to dielectric breakdown, spatter effect, and the like. As a result, almost no change was observed from the state before the treatment.
[0056]
Further, using the surface treatment apparatus of the present invention, helium, argon, nitrogen, oxygen, and air alone or mixed to generate the plasma, these gas molecules in the process of transition to ionization, dissociation Emission spectroscopy showed emission in the vacuum ultraviolet region with an emission wavelength of 170-340 °.
[0057]
The emission wavelength was such that water remaining on the wafer surface was decomposed into oxygen and hydrogen and completely dried. Therefore, in the IC manufacturing process, in the drying process after the wafer cleaning and wet etching, it is possible to dry without leaving any residue on the wafer surface and without causing environmental pollution due to waste liquid.
[0058]
According to the above experiments, (1) simultaneous treatment of drying, heating and surface modification, (2) surface modification for improving the adherence of the semiconductor wafer, (3) formed on the processed substrate It was confirmed that the surface modification for improving the adherence to the thin film, and (4) the drying of the semiconductor wafer surface can be performed without damage by the micro arc.
[0059]
Next, as shown in FIG. 8, an embodiment in which the electrode portion 16 of a type in which the reaction gas flows in one direction along the electrode surface is adopted and combined with the high frequency power supply system of FIG. 4 will be described.
[0060]
FIG. 8 is a sectional view showing an electrode unit 16 of another embodiment of the plasma surface treatment apparatus of the present invention. In the figure, reference numerals 2 and 2 denote a pair of plate electrodes which are opposed at equal intervals. The plate electrodes 2 and 2 have a cavity (not shown) formed therein, and the periphery thereof is covered with solid dielectrics 3 and 3. An insulating liquid such as pure water as a cooling liquid is circulated through the cooling liquid supply pipes 4 and 4 into the internal cavities of the plate electrodes 2 and 2, and the same operation as the structure of FIG. Reduce fever. The opposing surfaces of the solid dielectrics 3, 3 are parallel discharge surfaces for generating plasma, and the substrate 5 to be processed is passed between them. Reference numerals 7 and 7 denote transfer ports.
[0061]
Reference numerals 17 and 17 denote a pair of electrode unit covers, which form cavities 18 and 18. 19, 19 are gas introduction pipes to the cavities 18, 18, 20 and 20 are gas discharge pipes, 21 and 21 are partition walls for separating the cavity 18 upstream and downstream, 22 is an exhaust blower, and 23 is a high-frequency power supply device. 4 includes a high-frequency oscillator 12, a step-up transformer 13, and a PLL circuit 15 shown in FIG.
[0062]
In the electrode section 16, the rectified reaction gas entering the cavity 18 from the gas introduction pipe 19 flows through the gap between the plate electrodes 2 and 2 in one direction because it is blocked by the partition wall 21, and the gas exhaust pipe 20 and the exhaust gas The air is exhausted through the blower 22.
[0063]
A description will be given of the result of an experiment performed with the high-frequency power supply device 23 (the high-frequency power supply system in FIG. 4) that follows the resonance frequency of the electrode structure.
[0064]
Helium, argon, nitrogen, oxygen, and air alone or as a mixture were used as reaction gases. The generation of the micro arc depends on the flow rate of the reaction gas, and the higher the flow rate, the less the micro arc. In the case of helium alone at normal pressure, the introduction pressure from the gas introduction pipe 19 is set to 0.1 kg / cm. 2 Then, the micro arc disappeared. Further, it has been found that it is preferable to exhaust from the exhaust blower 22 an amount exceeding the amount introduced from the gas introduction pipe 19. When such a gas introduction method is employed, an effect of preventing residues and the like of a substrate to be processed from being re-adhered to the substrate during processing has been observed.
[0065]
【The invention's effect】
In the plasma surface treatment method of the present invention, a reactive gas is injected from both the introduction side and the discharge side of the substrate to be treated toward the gap between the pair of opposed electrodes so as to be confined in the gap. For this reason, the gas once excited and ionized by the high frequency is confined in the vicinity of the discharge surface, enabling stable and uniform plasma generation with a minimum gas flow rate, and the length of the electrode in the direction of passage of the substrate to be processed. Enables uniform plasma generation in any direction.
[0066]
When the gas injection port of the plasma surface treatment apparatus of the present invention is provided in each space of the gap bisected by the substrate to be processed with respect to the introduction opening and the discharge opening, the reaction gas rectified by the cavity is formed. Is supplied separately to the front and back surfaces of the substrate to be processed, and the dielectric constant of the front and back surfaces of the substrate to be processed during plasma generation is made uniform, so that uniform plasma can be generated without being affected by the passing state of the substrate to be processed. .
[0067]
Assuming that the inclination of the injection direction of the gas injection port with respect to the substrate to be processed is 5 ° to 45 °, the injection pressure of the reactive gas is caused to flow along the surface of the substrate to be processed while acting even inside the electrode gap. Therefore, even if the electrode length in the direction of passage of the substrate to be processed becomes large, the plasma in the gap can be made uniform.
[0068]
The plasma surface treatment apparatus in which the flow path of the cooling liquid is formed in the pair of electrodes suppresses overheating of the electrodes and prevents thermal damage to the substrate to be processed.
[0069]
The plasma surface treatment apparatus of the present invention is provided with a PLL circuit in a high-frequency oscillator for supplying high-frequency power having a sinusoidal waveform to a pair of electrodes via a step-up transformer, and the dielectric constant of the electrode gap is controlled by a plasma generation condition such as a reactive gas species. Therefore, even if it fluctuates, the resonance condition on the load side can be ensured and the distortion of the supply voltage can be prevented, and stable plasma can be continuously generated with low supply power.
[0070]
When the high-frequency power supply system using the PLL circuit is combined with the above-described reaction gas supply system of the present invention, the effect of obtaining a stable and uniform plasma is maximized.
[0071]
The above-described plasma surface treatment apparatus is easy to operate and causes little damage to the substrate. Therefore, various surface treatments for manufacturing a semiconductor device can be performed by using the following plasma surface treatment method.
[0072]
By heating the substrate temperature of the substrate to be processed from room temperature to a predetermined temperature, the plasma surface treatment method for simultaneously performing the drying, heating, and surface modification can obtain a high processing ability.
[0073]
It can be used as a plasma surface treatment method for performing surface modification for improving adhesion before a coating process of various chemicals in a semiconductor wafer treatment process. Since the surface modification is performed very frequently in the manufacturing process of the semiconductor device, the high processing capability of the device of the present invention is effective in reducing the number of steps.
[0074]
It can be used as a plasma surface treatment method for performing surface modification for improving adhesion before depositing a metal thin film or a dielectric thin film using a CVD or sputtering apparatus. Also in this method, the man-hour can be reduced due to the high processing capacity of the apparatus of the present invention.
[0075]
It can be used as a plasma surface treatment method for drying the wafer surface in various drying processes of an IC manufacturing process. This method has the advantage that no residue is left on the wafer surface and there is no environmental pollution due to waste liquid.
[Brief description of the drawings]
FIG. 1 is a sectional view of an electrode portion of a surface treatment apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the electrode section of the surface treatment apparatus according to the embodiment of the present invention, cut in a direction orthogonal to FIG.
FIG. 3 is a sectional view taken along line AA of FIG. 2;
FIG. 4 is an electrical configuration diagram of the surface treatment apparatus of the present invention in which a high-frequency oscillator is connected to the electrode section.
FIG. 5 is an equivalent circuit diagram when the parallel resonance circuit formed by the electrode section and the secondary side of the step-up transformer in FIG. 4 satisfies resonance conditions.
6 is a diagram showing a change in impedance Z of the parallel resonance circuit and a change in power consumed in the electrode unit with respect to a frequency f of a high-frequency voltage supplied to the parallel resonance circuit in FIG. 4 in relation to a resonance frequency.
FIG. 7 is a diagram showing a result of an experiment of modifying a glass surface by plasma irradiation using air as a reaction gas.
FIG. 8 is a cross-sectional view of an electrode part which is another embodiment of the surface treatment apparatus of the present invention.
[Explanation of symbols]
1 Electrode section
2 Plate electrode
3 Solid dielectric
4 Coolant supply pipe
5 Substrate to be processed
6 Discharge surface
7 Transport rollers
8, 17 Electrode cover
9,18 Cavity
10 Gas inlet
11 Gas injection port
12 High frequency oscillator
13 Step-up transformer
14 Parallel resonance circuit
15 PLL circuit
19 Gas inlet pipe
20 Gas exhaust pipe
21 Partition wall
22 Exhaust blower
23 High-frequency power supply device

Claims (10)

固体誘電体で覆われた一対の対向電極の間隙に大気圧近傍圧力の反応ガスを満たし、この対向電極に高周波電圧を加えて間隙に発生させたプラズマにより、間隙を通過する被処理基板に表面処理をする装置において、
被処理基板の導入用開口及び排出用開口を開けた状態で、対向電極の間隙を外部空間と仕切り、反応ガスを、これら導入用開口及び排出用開口の双方から間隙に向け閉じ込めるように噴射供給することを特徴とするプラズマ表面処理方法。
A gap between a pair of counter electrodes covered with a solid dielectric is filled with a reaction gas at a pressure close to the atmospheric pressure, and a high-frequency voltage is applied to the counter electrodes to generate plasma in the gaps. In the processing device,
With the introduction opening and discharge opening of the substrate to be opened, the gap between the counter electrodes is separated from the external space, and the reaction gas is injected and supplied so as to confine the reaction gas from both the introduction opening and the discharge opening toward the gap. A plasma surface treatment method.
固体誘電体で覆われた一対の対向電極の間隙に大気圧近傍圧力の反応ガスを満たし、この対向電極に高周波電圧を加えて間隙に発生させたプラズマにより、間隙を通過する被処理基板に表面処理をする装置において、
被処理基板の導入用開口及び排出用開口を開けた状態で、対向電極の間隙を外部空間から仕切る隔壁と、これら導入用開口及び排出用開口の双方から、間隙に向け閉じ込めるように反応ガスを噴射供給するガス噴射口を具備し、
上記ガス噴射口は、上記導入用開口及び排出用開口について、通過する被処理基板によって二分される間隙の各空間毎に設けられていることを特徴とするプラズマ表面処理装置。
A gap between a pair of counter electrodes covered with a solid dielectric is filled with a reaction gas at a pressure close to the atmospheric pressure, and a high-frequency voltage is applied to the counter electrodes to generate plasma in the gaps. In the processing device,
With the introduction opening and the discharge opening of the substrate to be opened, the partition wall separating the gap between the counter electrodes from the external space, and the reaction gas so as to be confined toward the gap from both the introduction opening and the discharge opening. Equipped with a gas injection port for injection supply,
The plasma surface treatment apparatus according to claim 1, wherein the gas injection port is provided in each space of the gap divided by the substrate to be processed, with respect to the introduction opening and the discharge opening.
反応ガスを被処理基板に沿って間隙内に供給するガス噴射口の噴射方向が、被処理基板の面に対して、5゜〜45°の傾斜を持つことを特徴とする請求項2に記載したプラズマ表面処理装置。The injection direction of a gas injection port for supplying a reaction gas into a gap along a substrate to be processed has an inclination of 5 ° to 45 ° with respect to a surface of the substrate to be processed. Plasma surface treatment equipment. 電極内に、冷却液の流路が形成されていることを特徴とする請求項2または請求項3に記載したプラズマ表面処理装置。The plasma surface treatment apparatus according to claim 2, wherein a flow path of a cooling liquid is formed in the electrode. 対向して被処理基板を通過させる間隙を形成し、この間隙に大気圧近傍の圧力で反応ガスの供給を受ける一対の電極と、昇圧トランスを介して前記電極に正弦波形の高周波電圧を供給する高周波発振機と、前記電極と前記昇圧トランスの2次側が接続されて生じる並列共振回路の共振周波数の変動に、高周波発振機の発振周波数を追従させるPLL回路を具備したことを特徴とするプラズマ表面処理装置。A gap is formed to pass the substrate to be processed in opposition, and a pair of electrodes receiving the supply of the reaction gas at a pressure near the atmospheric pressure is supplied to the gap, and a high frequency voltage having a sinusoidal waveform is supplied to the electrodes via a boosting transformer. A plasma surface, comprising: a high-frequency oscillator; and a PLL circuit that causes an oscillation frequency of the high-frequency oscillator to follow a fluctuation in a resonance frequency of a parallel resonance circuit that occurs when the electrode and the secondary side of the step-up transformer are connected. Processing equipment. 昇圧トランスを介して一対の電極に正弦波形の高周波電圧を供給する高周波発振機と、前記電極と前記昇圧トランスの2次側が接続されて生じる並列共振回路の共振周波数の変動に、高周波発振機の発振周波数を追従させるPLL回路を具備したことを特徴とする請求項2〜4のいずれか1項に記載したプラズマ表面処理装置。A high-frequency oscillator that supplies a high-frequency voltage having a sinusoidal waveform to a pair of electrodes via a step-up transformer; and a change in resonance frequency of a parallel resonance circuit that occurs when the electrodes and the secondary side of the step-up transformer are connected. The plasma surface treatment apparatus according to any one of claims 2 to 4, further comprising a PLL circuit that tracks an oscillation frequency. 請求項2〜6のいずれか1項に記載したプラズマ表面処理装置を用い、被処理基板の基板温度を常温から所定温度まで加熱することにより、乾燥、加熱、表面改質の同時処理を行うことを特徴とするプラズマ表面処理方法。Simultaneous treatment of drying, heating and surface modification by heating the substrate temperature of the substrate to be processed from a normal temperature to a predetermined temperature using the plasma surface treatment apparatus according to any one of claims 2 to 6. A plasma surface treatment method. 半導体ウエハ処理工程における各種薬液およびレジストの塗布工程の前に、請求項2〜6のいずれか1項に記載したプラズマ表面処理装置を用いて、被着性改善のための表面改質を行うことを特徴とするプラズマ処理方法。Prior to the step of applying various chemicals and resists in a semiconductor wafer processing step, surface modification for improving adhesion is performed using the plasma surface treatment apparatus according to any one of claims 2 to 6. A plasma processing method characterized by the above-mentioned. 処理基板上または処理基板上に形成された薄膜上に、金属薄膜、誘電体薄膜をCVDやスパッタ装置を用い薄膜堆積させる前に、請求項2〜6のいずれか1項に記載したプラズマ表面処理装置を用いて、被着性改善のための表面改質を行うことを特徴とするプラズマ処理方法。The plasma surface treatment according to any one of claims 2 to 6, before depositing a metal thin film or a dielectric thin film on the processing substrate or a thin film formed on the processing substrate using a CVD or a sputtering apparatus. A plasma processing method comprising performing surface modification for improving adherence using an apparatus. IC製造工程において、ウエハ洗浄、ウエットエッチング後の乾燥工程に、請求項2〜6のいずれか1項に記載したプラズマ表面処理装置を用いてウエハ表面を乾燥させることを特徴とするプラズマ表面処理方法。7. A plasma surface treatment method in which a wafer surface is dried using the plasma surface treatment apparatus according to claim 2 in a drying step after wafer cleaning and wet etching in an IC manufacturing process. .
JP2002240314A 2002-08-21 2002-08-21 Plasma surface treatment equipment Expired - Fee Related JP4620322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002240314A JP4620322B2 (en) 2002-08-21 2002-08-21 Plasma surface treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240314A JP4620322B2 (en) 2002-08-21 2002-08-21 Plasma surface treatment equipment

Publications (3)

Publication Number Publication Date
JP2004076122A true JP2004076122A (en) 2004-03-11
JP2004076122A5 JP2004076122A5 (en) 2006-08-17
JP4620322B2 JP4620322B2 (en) 2011-01-26

Family

ID=32023139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240314A Expired - Fee Related JP4620322B2 (en) 2002-08-21 2002-08-21 Plasma surface treatment equipment

Country Status (1)

Country Link
JP (1) JP4620322B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040743A (en) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd Plasma processing method and plasma processing device
JP2006140051A (en) * 2004-11-12 2006-06-01 Sharp Corp Atmospheric pressure plasma treatment device
KR20120117872A (en) * 2010-01-15 2012-10-24 도쿄엘렉트론가부시키가이샤 Switchable neutral beam source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102534617B1 (en) * 2021-04-09 2023-06-23 주식회사 다원시스 Mask and mask frame dry system and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477929A (en) * 1987-09-19 1989-03-23 Mitsubishi Electric Corp Plasma cvd device
JPH02101165A (en) * 1988-10-11 1990-04-12 Ube Ind Ltd Automatic high-frequency matching device
JPH08217897A (en) * 1995-02-13 1996-08-27 Sekisui Chem Co Ltd Method for plasma surface treatment and device for plastic surface treatment
JPH09161994A (en) * 1995-12-07 1997-06-20 Pearl Kogyo Kk High frequency power supply device for generation of discharge plasma and semiconductor manufacturing device
JP2000049000A (en) * 1998-07-31 2000-02-18 Kem Kk Frequency adjusting device
JP2000082595A (en) * 1998-07-08 2000-03-21 Sekisui Chem Co Ltd Discharge plasma processing method of sheet-like base material and device therefor
JP2000353698A (en) * 1999-06-10 2000-12-19 Okura Ind Co Ltd Continuous plasma surface processing method and apparatus
JP2002144231A (en) * 2000-11-09 2002-05-21 Matsushita Electric Works Ltd Surface treatment method and surface treatment device
JP2002228803A (en) * 2001-01-30 2002-08-14 Konica Corp Method for producing low reflection laminate and low reflection laminate
JP2003154256A (en) * 2001-11-22 2003-05-27 Sekisui Chem Co Ltd Discharge plasma treatment apparatus and discharge plasma treatment method using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477929A (en) * 1987-09-19 1989-03-23 Mitsubishi Electric Corp Plasma cvd device
JPH02101165A (en) * 1988-10-11 1990-04-12 Ube Ind Ltd Automatic high-frequency matching device
JPH08217897A (en) * 1995-02-13 1996-08-27 Sekisui Chem Co Ltd Method for plasma surface treatment and device for plastic surface treatment
JPH09161994A (en) * 1995-12-07 1997-06-20 Pearl Kogyo Kk High frequency power supply device for generation of discharge plasma and semiconductor manufacturing device
JP2000082595A (en) * 1998-07-08 2000-03-21 Sekisui Chem Co Ltd Discharge plasma processing method of sheet-like base material and device therefor
JP2000049000A (en) * 1998-07-31 2000-02-18 Kem Kk Frequency adjusting device
JP2000353698A (en) * 1999-06-10 2000-12-19 Okura Ind Co Ltd Continuous plasma surface processing method and apparatus
JP2002144231A (en) * 2000-11-09 2002-05-21 Matsushita Electric Works Ltd Surface treatment method and surface treatment device
JP2002228803A (en) * 2001-01-30 2002-08-14 Konica Corp Method for producing low reflection laminate and low reflection laminate
JP2003154256A (en) * 2001-11-22 2003-05-27 Sekisui Chem Co Ltd Discharge plasma treatment apparatus and discharge plasma treatment method using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040743A (en) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd Plasma processing method and plasma processing device
JP4604591B2 (en) * 2004-07-28 2011-01-05 パナソニック株式会社 Plasma processing method
JP2006140051A (en) * 2004-11-12 2006-06-01 Sharp Corp Atmospheric pressure plasma treatment device
KR20120117872A (en) * 2010-01-15 2012-10-24 도쿄엘렉트론가부시키가이샤 Switchable neutral beam source
KR101989629B1 (en) * 2010-01-15 2019-06-14 도쿄엘렉트론가부시키가이샤 Switchable neutral beam source

Also Published As

Publication number Publication date
JP4620322B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
US10424485B2 (en) Enhanced etching processes using remote plasma sources
TWI623036B (en) Methods and arrangements for plasma processing system with tunable capacitance
US6849154B2 (en) Plasma etching apparatus
KR101104536B1 (en) Plasma processing apparatus
JP2002158219A (en) Discharge plasma processor and processing method using the same
JP2003174012A5 (en)
US20080308134A1 (en) Substrate Processing Apparatus
JP4579522B2 (en) Plasma surface treatment equipment
JP2003209096A (en) Plasma etching treatment method and device therefor
KR19980070319A (en) Dry etching method
JP3254064B2 (en) Plasma processing method
JP4620322B2 (en) Plasma surface treatment equipment
WO2008038901A1 (en) Plasma generator
JP2002151480A (en) Processing method for semiconductor element and device therefor
JP2003317998A (en) Discharge plasma treatment method and apparatus therefor
JP2003133291A (en) Discharge plasma treatment apparatus and discharge plasma treatment method using it
JPH07147273A (en) Etching treatment
US20060016395A1 (en) Plasma processing apparatus
JP2004111949A (en) Method and device for plasma treatment
JP2006005007A (en) Method and device for forming amorphous silicon layer
JP2003100733A (en) Discharge plasma treatment system
JP2002151507A (en) Semiconductor element manufacturing method and apparatus thereof
KR101272101B1 (en) The atmospheric plasma header
JP2004211161A (en) Plasma generating apparatus
JP2002151476A (en) Method and apparatus for removing resist

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees