JP2004076079A - Thin film for wiring and sputtering target - Google Patents

Thin film for wiring and sputtering target Download PDF

Info

Publication number
JP2004076079A
JP2004076079A JP2002236652A JP2002236652A JP2004076079A JP 2004076079 A JP2004076079 A JP 2004076079A JP 2002236652 A JP2002236652 A JP 2002236652A JP 2002236652 A JP2002236652 A JP 2002236652A JP 2004076079 A JP2004076079 A JP 2004076079A
Authority
JP
Japan
Prior art keywords
film
alloy
wiring
atomic
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002236652A
Other languages
Japanese (ja)
Inventor
Yuichi Suzuki
鈴木 祐一
Toshihiro Man
満 俊宏
Osamu Mochizuki
望月 修
Toshio Inao
稲生 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2002236652A priority Critical patent/JP2004076079A/en
Publication of JP2004076079A publication Critical patent/JP2004076079A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring material which is extremely little in diffusion of Cu and/or Ag to adjacent Si films and low gesistance and a sputtering target for forming the same. <P>SOLUTION: The thin film for wiring is constituted as a laminated structure composed of an alloy film consisting of an alloy composed of at least one of Ag and Cu as essential components and the silicide film of this alloy or the silicide film of constitutive elements other than the essential components of the alloy. More particularly, the laminated structure is formed by subjecting the alloy film formed in contact with the Si film to heat treatment, thereby forming the Si film side of the alloy film as the silicide film. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は液晶、PDP(プラズマディスプレイ)等のFPDや半導体素子に用いられる配線材料に関するものである。
【0002】
【従来の技術】
近年、コンピュータや携帯端末の表示装置として液晶ディスプレイ(Liquid Crystal Display、以下LCDと略す)が採用されている。この液晶ディスプレイのうち、薄膜トランジスター(Thin Film Transistor、以下TFTと略す)を有するアクティブマトリクス型のLCDは、広視野角である特徴を有しておりブラウン管方式に近い表示が可能であることから注目を集めている。
【0003】
このようなTFT型のLCD等ではTFTの電極配線材としてTa、Mo、W、Ta、Ti、Cr、Al単体かこれらの合金が採用されている。最近では、TFT−LCDは大画面化、高精細化を実現するため、より低抵抗の材料が要求されており、Ag系、Cu系の電極配線材が検討されている。
【0004】
ただし、Ag、Cu配線は、耐酸化性に劣り、Si中に拡散しやすいため、素子の特性を劣化させるなどの問題点が指摘されている(Copper−Fundamental Mechanisms for Microelectronic Application,Wiley−Interscience,P29,2000)。
【0005】
今までCu系の材料としては、Cu−Ti(例えば、1988年秋季第49回応用物理学会学術講演会予稿集第2分冊第434頁)、Cu−Zr(例えば、特開平3−196619号公報)、Cu−B(例えば、特開平3−196620号公報)を窒素雰囲気中で加熱処理するものが発表されている。しかしながら、これらは耐酸化性の向上を目的としたものである。
【0006】
【発明が解決しようとする課題】
本発明は、Si膜への拡散が非常に少なく、さらに低抵抗の配線材料を提供するものである。
【0007】
【課題を解決するための手段】
本発明者らは上述のような現状に鑑み、種々の検討を行った。その結果、Ag、Cuの少なくとも一種からなる合金膜とその合金のシリサイド膜あるいはその合金の主成分以外の元素のシリサイド膜との積層構造とすることで、配線材料を構成する元素のSi膜への拡散を防止でき、さらに低抵抗特性を有することを見出し、本発明を完成させるに至った。
【0008】
すなわち、本発明は、Ag、Cuの少なくとも1種を主成分とする合金からなる合金膜と、前記合金のシリサイド膜または前記合金の主成分以外の構成元素のシリサイド膜とを積層した膜からなることを特徴とする配線用薄膜に関する。なお、前記合金の主成分以外の構成元素が2種以上である場合は、前記合金膜に積層するシリサイド膜は、前記構成元素の各々のシリサイド膜であっても良いし、それらの一部又は全部の合金のシリサイド膜であっても良い。ここで、Ag、Cuの少なくとも1種を主成分とする合金とは、▲1▼Agを70原子%以上含む合金、▲2▼Cuを70原子%以上含む合金、又は、▲3▼AgとCuを両者の合計で70原子%以上含む合金のいずれかの合金である。
【0009】
なお、前記Ag、Cuの少なくとも1種を主成分とする合金は、Mg、Ca、Sc、La、Zr、Hf、V、Nb、Ta、Cr、W、Mn、Fe、Ru、Rh、Ir、Pd、Zn、Al、Ga、In、Snから選ばれる1種以上の元素を添加元素として含む合金であることが好ましい。
【0010】
上記の添加元素の添加量は、0.1原子%以上30原子%以下の範囲であることが好ましい。なお、添加元素が2種以上である場合は、それらの添加量の合計が0.1原子%以上30原子%以下の範囲であることが好ましい。
【0011】
さらに、本発明は上記の配線用薄膜において、Si膜に接して形成された、Ag、Cuの少なくとも1種を主成分とする合金からなる合金膜に、熱処理を施すことで、前記合金膜の前記Si膜側をシリサイド膜としたことを特徴とする配線用薄膜に関する。
【0012】
また、本発明は、Ag、Cuの少なくとも1種を主成分とし、W、Fe、Ru、Rh、Ir、Pd、Zn、Snから選ばれる1種以上であることを特徴とするスパッタリングターゲットに関する。
【0013】
ここで、Ag、Cuの少なくとも1種を主成分とするとは、▲1▼Agを70原子%以上含むこと、▲2▼Cuを70原子%以上含むこと、又は、▲3▼AgとCuを両者の合計で70原子%以上含むことを意味する。
【0014】
上記スパッタリングターゲットに関し、上記添加元素の添加量は、0.1原子%以上30原子%以下であることが好ましい。これらの添加元素は1種であっても良いし2種以上であっても良いが、2種以上の場合は、添加量はそれらの合計で0.1原子%以上30原子%以下であることが好ましい。
【0015】
【発明の実施の形態】
以下に本発明をさらに詳細に説明する。
【0016】
図1はSi膜上に形成した本発明の配線用薄膜の一例の構造を示す部分断面図である。図1では、Si膜11上に、シリサイド膜12、M−X合金膜13が積層された2層膜の配線用薄膜が形成されている。
【0017】
本発明の配線用薄膜に用いられるM−X合金の主成分MとしてはAg、Cuの少なくとも1種である。
【0018】
上記配線材の主成分に添加する元素Xとしては、Mg、Ca、Sc、La、Zr、Hf、V、Nb、Ta、Cr、W、Mn、Fe、Ru、Rh、Ir、Pd、Zn、Al、Ga、In、Snから選ばれる1種以上の元素であることが好ましい。
【0019】
主成分へ添加する元素の量は0.1原子%以上30原子%以下が好ましく、より好ましくは0.5原子%以上20%以下、さらに好ましくは0.7原子%以上10原子%以下の範囲である。添加量が30原子%を超えると、膜の抵抗率が大きくなり、配線材料としては実用的でなくなる。添加量が0.1原子%未満ではSiへの拡散防止機能が低下する。
【0020】
本発明の配線用薄膜はスパッタリング法や真空蒸着法等の真空成膜技術により成膜することができる。特に、本発明のM−X系合金ターゲットは、電子ビーム溶解法、真空溶解法、ホットプレス法、HIP法などさまざまな方法で製造することができるが、添加元素の種類等に応じて適宜最適な方法により製造すれば良い。なお、本発明の配線用薄膜をスパッタリング法により形成する場合、ターゲットとして合金ターゲットを使用して成膜するだけではなく、例えばCuターゲットの上に添加元素のチップを置いて、これをターゲットとして成膜することも可能である。
【0021】
本発明は、Si膜上にシリサイド膜とAg合金膜あるいはCu合金膜との2層積層とすることもできるが、Si膜上に形成したAg合金膜あるいはCu合金膜の単層膜を熱処理することでシリサイド膜を形成することが有効である。ここで、熱処理とは、真空中において、シリサイド膜が形成する温度で加熱することである。
【0022】
また、上述した例では、Si膜を下層にしたものであるが、逆に上層にSi膜を形成する場合は、基板上に合金膜、Si膜を積層し熱処理をして使用することができる。
【0023】
【実施例】
以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
【0024】
(実施例1)
純度4NのCu粉末と純度4NのTa粉末をCu−3原子%Taになるように配合し、ポリエチレン製のポットに入れ、乾式ボールミルにより16時間混合し、混合粉末を製造した。
【0025】
この粉末を内径200mmのカーボン製のモールドに入れ、ホットプレス法にて以下の焼結条件により焼結を行った。
【0026】
焼結温度:950℃
荷重:200kg/cm
昇温速度:200℃/h
焼結時間:2時間
雰囲気:真空
得られた焼結体をφ150×5mmtに加工し、インジウム半田を用いて無酸素銅のバッキングプレートにボンディングしてターゲットとした。
【0027】
Siターゲットの上にTaチップを置いたターゲットを用いて、ガラス基板上に形成されたSi膜(200nm)上に、Ta−Si膜(50nm)を成膜した。次にCu−3原子%Taターゲットを用いて、Arガスを雰囲気とし、圧力1Paの条件下で、DCスパッタリング法により、Cu−Ta膜(150nm)を成膜した。このようにして作製した薄膜サンプルの組成、抵抗率及びCuのSiへの拡散を調べた。組成はICP法、抵抗率は4端子法で測定した。また、CuのSiへの拡散の評価は、300℃、30minアニール処理した後、ESCAで分析した。
【0028】
(実施例2)
Cu−3原子%Taターゲットを用いて、ガラス基板上に形成されたSi膜(200nm)上にArガスを雰囲気として、圧力1Paの条件下で、DCスパッタリング法により、Cu−Ta膜(200nm)を成膜した。この後、真空中で30分加熱処理をした。加熱温度は400℃である。このようにして作製した薄膜サンプルを実施例1と同様の方法で評価した。
【0029】
(比較例1)
Ta粉末を混合せず、純度4NのCu粉末のみを用いたこと以外は、実施例1と同様の方法でターゲットを製造した。このターゲットを用いて、実施例2と同様の方法で配線用薄膜を作製し評価した。
【0030】
実施例1、2、比較例1の結果を表1に示す。実施例2において、ESCAの結果から、熱処理により、Ta−Cu−Si層が形成されていることが確認された。表1の拡散の評価は、ESCAの分析結果において、CuのSiへ拡散する深さが3nm以下であるものを○、3nmから5nmであるものを△、5nmを超えるものを×とした。CuにTaを添加し熱処理してTaシリサイド膜を形成することでSiへの拡散が防止できることがわかる。
【0031】
【表1】

Figure 2004076079
(実施例3)
純度4NのCu粉末と、添加物X粉末(X:Mg、Ca、Sc、La、Zr、Hf、V、Nb、Ta、Cr、W、Mn、Fe、Ru、Rh、Ir、Pd、Zn、Al、Ga、In、Sn)をCu−3原子%Xになるように配合した混合粉末を用いたこと以外は、実施例1と同様の方法でターゲットを製造した。このターゲットを用いて、実施例1、2と同様の方法で配線用薄膜を作製し評価した。この結果、上記配線用薄膜の抵抗率はどれも10μΩcm以下で、Siへの拡散が小さく、優れた特性が得られることが確認された。
【0032】
(実施例4)
純度4NのCuからなるφ150×5mmtのターゲット上に、添加物としてTaチップを載せたものをターゲットとし、Taチップの数を変えて、形成される薄膜の組成を変化させたこと以外は、実施例1と同様の方法で種々の組成の配線用薄膜を作製し評価した。
【0033】
(実施例5)
純度4NのCuからなるφ150×5mmtのターゲット上に、添加物としてTaチップを載せたものをターゲットとし、Taチップの数を変えて、形成される薄膜の組成を変化させたこと以外は、実施例2と同様の方法で種々の組成の配線用薄膜を作製し評価した。
【0034】
実施例4、5と比較例1の測定結果を表2、3に示す。Ta添加量が0.1原子%〜30原子%の範囲であれば配線用薄膜の抵抗率は10μΩcm以下で、Siへの拡散が小さい。Ta添加量が0.1原子%未満では、Siへの拡散が大きくなる。Ta添加量が30原子%を超えると、配線用薄膜の抵抗率が10μΩcmを超え、低抵抗配線材料としては実用的ではない。
【0035】
【表2】
Figure 2004076079
【表3】
Figure 2004076079
(実施例6)
Cu粉末の替わりに純度4NのAg粉末を用い、焼結温度を850℃としてターゲットを製造したこと以外は、上記実施例1〜3と同様の方法で配線用薄膜を作製し評価した。なお、実施例6〜7及び比較例2については、AgのSi膜への拡散を測定して評価した。
【0036】
(実施例7)
純度4NのAgからなるφ150×5mmtのターゲット上に、添加物としてTaチップを載せたものをターゲットとし、Taチップの数を変えて、形成される薄膜の組成を変化させたこと以外は、実施例1と同様の方法で種々の組成の配線用薄膜を作製し評価した。
【0037】
(実施例8)
純度4NのAgからなるφ150×5mmtのターゲット上に、添加物としてTaチップを載せたものをターゲットとし、Taチップの数を変えて、形成される薄膜の組成を変化させたこと以外は、実施例2と同様の方法で種々の組成の配線用薄膜を作製し評価した。
【0038】
(比較例2)
純度4NのAg粉末を用い、焼結温度を850℃としてターゲットを製造したこと以外は、比較例1と同様の方法で配線用薄膜を作製し評価した。
【0039】
(実施例9)
純度4NのCu粉末と純度4NのAg粉末と純度4NのTa粉末を50原子%Cu−47原子%Ag−3原子%Taになるように配合したこと以外は、実施例1と同様の方法でターゲットを製造し、このターゲットを用いて、実施例1、2と同様の方法で配線用薄膜を作製し評価した。なお、本実施例においては、CuとAgのSi膜への拡散を測定したが、ともに3nm以下であった。
【0040】
実施例6〜9、比較例2の測定結果を表4〜7に示す。Agの場合もCuの結果と同様に添加物及びシリサイド膜の効果が認められた。
【0041】
【表4】
Figure 2004076079
【表5】
Figure 2004076079
【表6】
Figure 2004076079
【表7】
Figure 2004076079
【発明の効果】
本発明によれば、Ag、Cuの少なくとも1種を主成分とする合金からなる合金膜とその合金のシリサイド膜あるいはその合金の主成分以外の構成元素のシリサイド膜とを積層構造とすることで、配線材料を構成する元素のSiへの拡散が非常に少なく、低抵抗の配線用薄膜を形成することが可能である。
【図面の簡単な説明】
【図1】Si膜上に形成した本発明の配線用薄膜の一例の構造を示す部分断面図である。
【符号の説明】
11:Si膜
12:シリサイド膜
13:M−X合金膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring material used for an FPD such as a liquid crystal and a PDP (plasma display) and a semiconductor element.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a liquid crystal display (hereinafter, abbreviated as LCD) has been employed as a display device of a computer or a portable terminal. Among these liquid crystal displays, an active matrix type LCD having a thin film transistor (hereinafter abbreviated as TFT) has a feature of a wide viewing angle, and is capable of performing display close to a cathode ray tube method. Are gathering.
[0003]
In such a TFT type LCD or the like, Ta, Mo, W, Ta, Ti, Cr, Al alone or an alloy thereof is used as an electrode wiring material of the TFT. In recent years, in order to realize a large screen and high definition of a TFT-LCD, a material having a lower resistance is required, and Ag-based and Cu-based electrode wiring materials are being studied.
[0004]
However, Ag and Cu wirings are inferior in oxidation resistance and easily diffuse into Si, so that problems such as deterioration of device characteristics have been pointed out (Copper-Fundamental Mechanisms for Microelectronic Application, Wiley-Interscience, P29, 2000).
[0005]
Until now, as Cu-based materials, Cu-Ti (for example, the 49th Autumn Meeting of the 1988 Autumn Meeting of the Japan Society of Applied Physics, 2nd volume, p. 434), Cu-Zr (for example, JP-A-3-196519) ), And heat treatment of Cu-B (for example, JP-A-3-196620) in a nitrogen atmosphere. However, these are intended to improve oxidation resistance.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a wiring material having very low diffusion into a Si film and having a low resistance.
[0007]
[Means for Solving the Problems]
The present inventors have made various studies in view of the above-described current situation. As a result, by forming a laminated structure of an alloy film made of at least one of Ag and Cu and a silicide film of the alloy or a silicide film of an element other than the main component of the alloy, the Si film of the element constituting the wiring material can be formed. Have been found to be able to prevent diffusion of the compound and have low resistance characteristics, and have completed the present invention.
[0008]
That is, the present invention comprises a film in which an alloy film composed of an alloy containing at least one of Ag and Cu as a main component and a silicide film of the alloy or a silicide film of a constituent element other than the main component of the alloy are stacked. The present invention relates to a wiring thin film characterized by the above-mentioned. When two or more constituent elements other than the main component of the alloy are used, the silicide film laminated on the alloy film may be a silicide film of each of the constituent elements, or a part or a part of them. A silicide film of all alloys may be used. Here, the alloy containing at least one of Ag and Cu as a main component includes: (1) an alloy containing 70 atomic% or more of Ag, (2) an alloy containing 70 atomic% or more of Cu, or (3) Ag. Any of the alloys containing 70 atomic% or more of Cu in total.
[0009]
The alloys containing at least one of Ag and Cu as main components include Mg, Ca, Sc, La, Zr, Hf, V, Nb, Ta, Cr, W, Mn, Fe, Ru, Rh, Ir, The alloy is preferably an alloy containing at least one element selected from Pd, Zn, Al, Ga, In, and Sn as an additional element.
[0010]
It is preferable that the amount of the additional element be in the range of 0.1 atomic% to 30 atomic%. When two or more additional elements are used, it is preferable that the total amount of these elements be in the range of 0.1 atomic% to 30 atomic%.
[0011]
Further, the present invention provides the above-described wiring thin film, wherein the alloy film formed in contact with the Si film and made of an alloy containing at least one of Ag and Cu as a main component is subjected to a heat treatment, whereby the alloy film is formed. The present invention relates to a thin film for wiring, wherein the Si film side is a silicide film.
[0012]
Further, the present invention relates to a sputtering target characterized in that at least one of Ag and Cu is a main component and at least one selected from W, Fe, Ru, Rh, Ir, Pd, Zn, and Sn.
[0013]
Here, the term "at least one of Ag and Cu as a main component" means that (1) contains 70 atomic% or more of Ag, (2) contains 70 atomic% or more of Cu, or (3) contains Ag and Cu. It means that it contains 70 atom% or more in total of both.
[0014]
With respect to the sputtering target, the amount of the additional element is preferably 0.1 atomic% or more and 30 atomic% or less. These additional elements may be used alone or in combination of two or more. In the case of two or more, the total amount of these elements should be 0.1 atomic% or more and 30 atomic% or less. Is preferred.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0016]
FIG. 1 is a partial sectional view showing the structure of an example of the wiring thin film of the present invention formed on a Si film. In FIG. 1, a two-layer wiring thin film in which a silicide film 12 and an MX alloy film 13 are stacked on a Si film 11 is formed.
[0017]
The main component M of the MX alloy used in the wiring thin film of the present invention is at least one of Ag and Cu.
[0018]
Elements X added to the main component of the wiring material include Mg, Ca, Sc, La, Zr, Hf, V, Nb, Ta, Cr, W, Mn, Fe, Ru, Rh, Ir, Pd, Zn, It is preferably at least one element selected from Al, Ga, In, and Sn.
[0019]
The amount of the element added to the main component is preferably in the range of 0.1 to 30 atomic%, more preferably in the range of 0.5 to 20 atomic%, and still more preferably in the range of 0.7 to 10 atomic%. It is. When the addition amount exceeds 30 atomic%, the resistivity of the film increases, and it is not practical as a wiring material. If the addition amount is less than 0.1 atomic%, the function of preventing diffusion into Si is reduced.
[0020]
The thin film for wiring of the present invention can be formed by a vacuum film forming technique such as a sputtering method or a vacuum evaporation method. In particular, the MX-based alloy target of the present invention can be manufactured by various methods such as an electron beam melting method, a vacuum melting method, a hot pressing method, and a HIP method. What is necessary is just to manufacture by a suitable method. When the wiring thin film of the present invention is formed by a sputtering method, not only a film is formed by using an alloy target as a target, but also, for example, a chip of an additional element is placed on a Cu target, and this is formed as a target. It is also possible to film.
[0021]
According to the present invention, a single-layer Ag alloy film or Cu alloy film formed on a Si film can be heat-treated, although a two-layer stack of a silicide film and an Ag alloy film or a Cu alloy film can be formed on the Si film. Thus, it is effective to form a silicide film. Here, the heat treatment is heating in a vacuum at a temperature at which a silicide film is formed.
[0022]
In the above-described example, the Si film is used as a lower layer. However, when an Si film is formed as an upper layer, an alloy film and a Si film can be stacked on a substrate and heat-treated. .
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to only these Examples.
[0024]
(Example 1)
A 4N-purity Cu powder and a 4N-purity Ta powder were blended so as to have a Cu-3 atomic% Ta, put in a polyethylene pot, and mixed by a dry ball mill for 16 hours to produce a mixed powder.
[0025]
This powder was placed in a carbon mold having an inner diameter of 200 mm, and was sintered by the hot press method under the following sintering conditions.
[0026]
Sintering temperature: 950 ° C
Load: 200kg / cm 2
Heating rate: 200 ° C / h
Sintering time: 2 hours Atmosphere: Vacuum The obtained sintered body was processed into φ150 × 5 mmt, and bonded to an oxygen-free copper backing plate using indium solder to obtain a target.
[0027]
Using a target having a Ta chip placed on a Si target, a Ta-Si film (50 nm) was formed on a Si film (200 nm) formed on a glass substrate. Next, a Cu—Ta film (150 nm) was formed by a DC sputtering method using a Cu—3 at% Ta target in an Ar gas atmosphere under a pressure of 1 Pa. The composition, resistivity, and diffusion of Cu into Si of the thin film sample thus manufactured were examined. The composition was measured by an ICP method, and the resistivity was measured by a four-terminal method. The evaluation of the diffusion of Cu into Si was performed by ESCA after annealing at 300 ° C. for 30 minutes.
[0028]
(Example 2)
Using a Cu-3 atomic% Ta target, a Cu-Ta film (200 nm) is formed on a Si film (200 nm) formed on a glass substrate by DC sputtering under an atmosphere of Ar gas and a pressure of 1 Pa. Was formed. Thereafter, heat treatment was performed in a vacuum for 30 minutes. The heating temperature is 400 ° C. The thin film sample thus produced was evaluated in the same manner as in Example 1.
[0029]
(Comparative Example 1)
A target was manufactured in the same manner as in Example 1 except that only Ta powder having a purity of 4N was used without mixing Ta powder. Using this target, a wiring thin film was prepared and evaluated in the same manner as in Example 2.
[0030]
Table 1 shows the results of Examples 1 and 2 and Comparative Example 1. In Example 2, the result of ESCA confirmed that the Ta—Cu—Si layer was formed by the heat treatment. In the evaluation of the diffusion in Table 1, in the ESCA analysis results, those where the depth of diffusion of Cu into Si was 3 nm or less were evaluated as ○, those from 3 nm to 5 nm as Δ, and those exceeding 5 nm as ×. It is understood that the diffusion into Si can be prevented by adding Ta to Cu and performing heat treatment to form a Ta silicide film.
[0031]
[Table 1]
Figure 2004076079
(Example 3)
4N purity Cu powder and additive X powder (X: Mg, Ca, Sc, La, Zr, Hf, V, Nb, Ta, Cr, W, Mn, Fe, Ru, Rh, Ir, Pd, Zn, A target was manufactured in the same manner as in Example 1, except that a mixed powder in which Al, Ga, In, and Sn were mixed so as to be Cu-3 atomic% X was used. Using this target, a wiring thin film was prepared and evaluated in the same manner as in Examples 1 and 2. As a result, it was confirmed that the resistivity of each of the wiring thin films was 10 μΩcm or less, the diffusion into Si was small, and excellent characteristics were obtained.
[0032]
(Example 4)
Except that a Ta chip was placed as an additive on a φ150 × 5 mmt target made of 4N Cu, and the number of Ta chips was changed to change the composition of the thin film to be formed. In the same manner as in Example 1, thin films for wiring having various compositions were prepared and evaluated.
[0033]
(Example 5)
Except that a Ta chip was placed as an additive on a φ150 × 5 mmt target made of 4N Cu, and the number of Ta chips was changed to change the composition of the thin film to be formed. In the same manner as in Example 2, wiring thin films of various compositions were prepared and evaluated.
[0034]
Tables 2 and 3 show the measurement results of Examples 4 and 5 and Comparative Example 1. When the amount of Ta added is in the range of 0.1 atomic% to 30 atomic%, the resistivity of the wiring thin film is 10 μΩcm or less, and the diffusion into Si is small. When the amount of Ta added is less than 0.1 atomic%, diffusion into Si becomes large. If the amount of Ta exceeds 30 atomic%, the resistivity of the thin film for wiring exceeds 10 μΩcm, which is not practical as a low-resistance wiring material.
[0035]
[Table 2]
Figure 2004076079
[Table 3]
Figure 2004076079
(Example 6)
A thin film for wiring was prepared and evaluated in the same manner as in Examples 1 to 3, except that a target was manufactured at a sintering temperature of 850 ° C. using Ag powder having a purity of 4N instead of the Cu powder. In Examples 6 and 7 and Comparative Example 2, the diffusion of Ag into the Si film was measured and evaluated.
[0036]
(Example 7)
Except that a Ta chip was placed as an additive on a target of φ150 × 5 mmt made of Ag with a purity of 4N, and the composition of the thin film to be formed was changed by changing the number of Ta chips. In the same manner as in Example 1, thin films for wiring having various compositions were prepared and evaluated.
[0037]
(Example 8)
Except that a Ta chip was placed as an additive on a target of φ150 × 5 mmt made of Ag with a purity of 4N, and the composition of the thin film to be formed was changed by changing the number of Ta chips. In the same manner as in Example 2, wiring thin films of various compositions were prepared and evaluated.
[0038]
(Comparative Example 2)
A thin film for wiring was prepared and evaluated in the same manner as in Comparative Example 1 except that a target was manufactured using Ag powder having a purity of 4N and a sintering temperature of 850 ° C.
[0039]
(Example 9)
A method similar to that of Example 1 was used, except that 4N-purity Cu powder, 4N-purity Ag powder, and 4N-purity Ta powder were blended so as to be 50 atomic% Cu-47 atomic% Ag-3 atomic% Ta. A target was manufactured, and a thin film for wiring was produced and evaluated using the target in the same manner as in Examples 1 and 2. In this example, the diffusion of Cu and Ag into the Si film was measured, and both were 3 nm or less.
[0040]
Tables 4 and 7 show the measurement results of Examples 6 to 9 and Comparative Example 2. In the case of Ag, the effects of the additive and the silicide film were recognized as in the case of Cu.
[0041]
[Table 4]
Figure 2004076079
[Table 5]
Figure 2004076079
[Table 6]
Figure 2004076079
[Table 7]
Figure 2004076079
【The invention's effect】
According to the present invention, an alloy film composed of an alloy containing at least one of Ag and Cu as a main component and a silicide film of the alloy or a silicide film of a constituent element other than the main component of the alloy have a laminated structure. In addition, diffusion of elements constituting the wiring material into Si is very small, and a low-resistance wiring thin film can be formed.
[Brief description of the drawings]
FIG. 1 is a partial sectional view showing the structure of an example of a wiring thin film of the present invention formed on a Si film.
[Explanation of symbols]
11: Si film 12: silicide film 13: MX alloy film

Claims (6)

Ag、Cuの少なくとも1種を主成分とする合金からなる合金膜と、前記合金のシリサイド膜または前記合金の主成分以外の構成元素のシリサイド膜とを積層した膜からなることを特徴とする配線用薄膜。A wiring comprising a film in which an alloy film made of an alloy containing at least one of Ag and Cu as a main component and a silicide film of the alloy or a silicide film of a constituent element other than the main component of the alloy are stacked. For thin film. Ag、Cuの少なくとも1種を主成分とする合金が、Mg、Ca、Sc、La、Zr、Hf、V、Nb、Ta、Cr、W、Mn、Fe、Ru、Rh、Ir、Pd、Zn、Al、Ga、In、Snから選ばれる1種以上の元素を添加元素として含む合金であることを特徴とする請求項1に記載の配線用薄膜。An alloy containing at least one of Ag and Cu as a main component is composed of Mg, Ca, Sc, La, Zr, Hf, V, Nb, Ta, Cr, W, Mn, Fe, Ru, Rh, Ir, Pd, and Zn. 2. The wiring thin film according to claim 1, wherein the alloy is an alloy containing at least one element selected from the group consisting of Al, Ga, In, and Sn as an additional element. 添加元素の添加量が0.1原子%以上30原子%以下であることを特徴とする請求項2に記載の配線用薄膜。3. The thin film for wiring according to claim 2, wherein the addition amount of the additional element is 0.1 atomic% or more and 30 atomic% or less. Si膜に接して形成された、Ag、Cuの少なくとも1種を主成分とする合金からなる合金膜に、熱処理を施すことで、前記合金膜の前記Si膜側をシリサイド膜としたことを特徴とする請求項1〜3のいずれか1項に記載の配線用薄膜。A heat treatment is performed on an alloy film formed of an alloy containing at least one of Ag and Cu as a main component and formed in contact with the Si film, so that the Si film side of the alloy film is a silicide film. The wiring thin film according to claim 1. Ag、Cuの少なくとも1種を主成分とし、W、Fe、Ru、Rh、Ir、Pd、Zn、Snから選ばれる1種以上の元素を添加元素として含むことを特徴とするスパッタリングターゲット。A sputtering target characterized in that at least one of Ag and Cu is a main component and one or more elements selected from W, Fe, Ru, Rh, Ir, Pd, Zn, and Sn are added as additional elements. 添加元素の添加量が0.1原子%以上30原子%以下であることを特徴とする請求項5に記載のスパッタリングターゲット。The sputtering target according to claim 5, wherein the addition amount of the additional element is 0.1 atomic% or more and 30 atomic% or less.
JP2002236652A 2002-08-14 2002-08-14 Thin film for wiring and sputtering target Pending JP2004076079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236652A JP2004076079A (en) 2002-08-14 2002-08-14 Thin film for wiring and sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236652A JP2004076079A (en) 2002-08-14 2002-08-14 Thin film for wiring and sputtering target

Publications (1)

Publication Number Publication Date
JP2004076079A true JP2004076079A (en) 2004-03-11

Family

ID=32020752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236652A Pending JP2004076079A (en) 2002-08-14 2002-08-14 Thin film for wiring and sputtering target

Country Status (1)

Country Link
JP (1) JP2004076079A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112989A (en) * 2006-10-05 2008-05-15 Ulvac Japan Ltd Target, film forming method, thin film transistor, panel with thin film transistor, and manufacturing method for thin film transistor
JP2008124450A (en) * 2006-10-19 2008-05-29 Ulvac Japan Ltd Target, film forming method, thin film transistor, panel with thin film transistor, manufacturing method for thin film transistor, and manufacturing method for panel with thin film transistor
JP2008205420A (en) * 2006-10-18 2008-09-04 Mitsubishi Materials Corp Flat panel display wiring and electrode using tft transistor that scarcely generates thermal defect and is excellent in surface state, and sputtering target for forming the same
WO2010013497A1 (en) * 2008-08-01 2010-02-04 三菱マテリアル株式会社 Sputtering target for forming wiring film of flat panel display
JP2010074017A (en) * 2008-09-22 2010-04-02 Mitsubishi Materials Corp Wiring film for thin-film transistor having excellent adhesion and sputtering target for forming the same
EP2220264A1 (en) * 2007-10-24 2010-08-25 H. C. Starck, Inc. Refractory metal-doped sputtering targets
JP2010263033A (en) * 2009-05-01 2010-11-18 Hitachi Cable Ltd Junction electrode structure, method of manufacturing the same, and target material
WO2010143609A1 (en) * 2009-06-12 2010-12-16 株式会社アルバック Method for producing electronic device, electronic device, semiconductor device, and transistor
JP2012060015A (en) * 2010-09-10 2012-03-22 Hitachi Cable Ltd Cu ALLOY SPUTTERING TARGET MATERIAL FOR ELECTRONIC DEVICE WIRING, AND ELEMENT STRUCTURE
JP2015065471A (en) * 2009-10-09 2015-04-09 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112989A (en) * 2006-10-05 2008-05-15 Ulvac Japan Ltd Target, film forming method, thin film transistor, panel with thin film transistor, and manufacturing method for thin film transistor
JP2008205420A (en) * 2006-10-18 2008-09-04 Mitsubishi Materials Corp Flat panel display wiring and electrode using tft transistor that scarcely generates thermal defect and is excellent in surface state, and sputtering target for forming the same
JP2008124450A (en) * 2006-10-19 2008-05-29 Ulvac Japan Ltd Target, film forming method, thin film transistor, panel with thin film transistor, manufacturing method for thin film transistor, and manufacturing method for panel with thin film transistor
EP2220264A1 (en) * 2007-10-24 2010-08-25 H. C. Starck, Inc. Refractory metal-doped sputtering targets
JP2011504547A (en) * 2007-10-24 2011-02-10 ハー ツェー シュタルク インコーポレイテッド Sputtering target doped with refractory metal
EP2220264A4 (en) * 2007-10-24 2010-12-01 Starck H C Inc Refractory metal-doped sputtering targets
JP2010053445A (en) * 2008-08-01 2010-03-11 Mitsubishi Materials Corp Sputtering target for forming wiring film of flat panel display
WO2010013497A1 (en) * 2008-08-01 2010-02-04 三菱マテリアル株式会社 Sputtering target for forming wiring film of flat panel display
US9212419B2 (en) 2008-08-01 2015-12-15 Mitsubishi Materials Corporation Sputtering target for forming wiring film of flat panel display
KR20180088751A (en) * 2008-08-01 2018-08-06 미쓰비시 마테리알 가부시키가이샤 Sputtering target for forming wiring film of flat panel display
KR102118816B1 (en) * 2008-08-01 2020-06-03 미쓰비시 마테리알 가부시키가이샤 Sputtering target for forming wiring film of flat panel display
JP2010074017A (en) * 2008-09-22 2010-04-02 Mitsubishi Materials Corp Wiring film for thin-film transistor having excellent adhesion and sputtering target for forming the same
JP2010263033A (en) * 2009-05-01 2010-11-18 Hitachi Cable Ltd Junction electrode structure, method of manufacturing the same, and target material
WO2010143609A1 (en) * 2009-06-12 2010-12-16 株式会社アルバック Method for producing electronic device, electronic device, semiconductor device, and transistor
JP2015065471A (en) * 2009-10-09 2015-04-09 株式会社半導体エネルギー研究所 Semiconductor device
JP2012060015A (en) * 2010-09-10 2012-03-22 Hitachi Cable Ltd Cu ALLOY SPUTTERING TARGET MATERIAL FOR ELECTRONIC DEVICE WIRING, AND ELEMENT STRUCTURE

Similar Documents

Publication Publication Date Title
JP2004076080A (en) Thin film for wiring and sputtering target
JP3445276B2 (en) Mo-W target for wiring formation, Mo-W wiring thin film, and liquid crystal display device using the same
TWI248978B (en) Ag-based interconnecting film for flat panel display, Ag-base sputtering target and flat panel display
US9017762B2 (en) Method of making molybdenum-containing targets comprising three metal elements
TWI523087B (en) Al alloy film for semiconductor devices
US9150955B2 (en) Method of making molybdenum containing targets comprising molybdenum, titanium, and tantalum or chromium
JP2008506040A (en) Materials for conductive wires made from copper alloys
KR20100084668A (en) Refractory metal-doped sputtering targets
JP2013535571A5 (en) Targets containing molybdenum
TWI452161B (en) Method for producing oxygen-containing copper alloy film
JP2004076079A (en) Thin film for wiring and sputtering target
JP2000294556A (en) Aluminum alloy wiring film excellent in dry etching and target for aluminum alloy wiring film formation
JP2015007280A (en) Cu-Mn ALLOY FILM AND Cu-Mn ALLOY SPUTTERING GATE MATERIAL AND METHOD FOR FORMING Cu-Mn ALLOY FILM
JP2007226058A (en) Liquid crystal display panel, its manufacturing method, and cu alloy sputtering target
JP4503817B2 (en) Sputtering target and thin film
JP2004506814A5 (en)
JP2006077295A (en) Cu-ALLOY WIRING MATERIAL AND Cu-ALLOY SPUTTERING TARGET
JP5622079B2 (en) Sputtering target
JP4905618B2 (en) Wiring forming material, wiring forming sputtering target, wiring thin film and electronic component
JP4264397B2 (en) Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display
JP2007224397A (en) FLAT DISPLAY PANEL AND Cu-SPUTTERING TARGET
JP3913694B2 (en) Mo-W target for wiring formation, Mo-W wiring thin film and liquid crystal display device using the same
JP4720326B2 (en) Ti-W target for sputtering
JP2001125123A (en) Electrode, wiring material and sputtering target for liquid crystal display
JP2007088014A (en) Cu alloy interconnection and cu alloy sputtering target