JP2004075586A - Cyclic ester compound - Google Patents

Cyclic ester compound Download PDF

Info

Publication number
JP2004075586A
JP2004075586A JP2002236247A JP2002236247A JP2004075586A JP 2004075586 A JP2004075586 A JP 2004075586A JP 2002236247 A JP2002236247 A JP 2002236247A JP 2002236247 A JP2002236247 A JP 2002236247A JP 2004075586 A JP2004075586 A JP 2004075586A
Authority
JP
Japan
Prior art keywords
compound
solution
group
atom
cyclic ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002236247A
Other languages
Japanese (ja)
Other versions
JP4677550B2 (en
Inventor
Toshiyuki Takagi
高木 俊之
Motonari Shibaue
芝上 基成
Satoko Fujisaki
藤崎 里子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002236247A priority Critical patent/JP4677550B2/en
Publication of JP2004075586A publication Critical patent/JP2004075586A/en
Application granted granted Critical
Publication of JP4677550B2 publication Critical patent/JP4677550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new chiral cyclic ester compound formed by binding two glycerol molecules through four ester linkages. <P>SOLUTION: The new cyclic ester compound of general formula(1) consists of two glycerols or a derivative thereof having a cyclic ester formed through four ester linkages. This new ester compound is obtained by reaction between a glycerol derivative and a dicarboxylic acid or a derivative thereof. This new cyclic ester compound, being a surfactant, is usable especially as an emulsifier, demulsifier, cleanser, dispersant or hydrotropic agent in the fields of e.g. metal working, mining, surface finishing, cleansing/cleaning, cosmetics, pharmaceuticals, food processing and cooking in the industry and household. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、新規な環状エステル化合物に関するものである。
【0002】
【従来の技術】
グリセロール1分子と2分子の飽和または不飽和脂肪酸によりエステル結合した脂質は界面活性性を有し、採鉱、金属加工、表面仕上げ、及び洗浄用などに使用される各種工業用処理剤、家庭用の各種洗浄剤及び各種清浄剤、医薬品、化粧品や食品用の添加剤などとして広く使用されている。
これらの用途の中でも、特に乳化剤、解乳化剤、洗浄剤、分散剤およびヒドロトロープ剤等として、有用とされている。
従来、この種の不飽和脂肪酸のグリセロールエステルでは、グリセロール1分子と2分子の飽和または不飽和脂肪酸がエステル結合させて、残りの水酸基にリン酸基が結合した非環状のリン脂質化合物が生体内および人為的手段により合成されてきた。これらの物質は、その特性を改善すべく、検討が進められている。
これらの中でエステル部分が環状化されている環状エステル化合物は、分子剛性の特性が改善されるということが考えられるが、実際には、その例を見ない。
【0003】
【発明が解決しようとする課題】
本発明の課題は、グリセロール2分子が4個のエステル結合により結合されて得られるキラルな新規環状エステル化合物を提供することである。
すなわち、グリセロールの2分子が、アルキル、環状アルキル、アリール、アラルキルなどの群から選ばれるカルボン酸と4個のエステル結合により結ばれているキラルな環状エステル化合物を提供することである。
【0004】
【課題を解決するための手段】
本発明者らは、前記課題について鋭意研究を重ね、グリセロール誘導体とジカルボン酸又はその誘導体を反応させることによる、4個のエステル結合により形成された環状エステルを有する2個のグリセロール及びその誘導体である新規な環状化合物を合成することができることを見出した。また、その際、グリセロール誘導体の原料物質として、キラルな化合物である一般式HOCHCH(OH)CHOHで表される化合物を用いると、キラルな環状エステル化合物群を選択的に製造することができることを見出して、本発明を完成させた。
キラルな化合物のグリセロールは、グリセロールの1位または2位若しくは1位と2位の水酸基を保護することにより非反応性の状態としたものであり、光学分割もしくは酵素を用いた分割により得たものであり、又は(S)−(+)−2,2―ジメチル−1,3―ジオキソラン−4−メタノールもしくは(R)−(―)−2,2―ジメチル−1,3―ジオキソラン−4−メタノール、または、(R)−(+)−3―ベンジロキシ−1,2―プロパンジオールもしくは(S)−(−)−3―ベンジロキシ−1,2―プロパンジオールなどを用いるものである。このようなキラルな化合物をジカルボン酸と反応させて、エステル結合を結合させる。反応は2段階で行う。はじめに、ジカルボン酸として、アルキル、環状アルキル、アリール、アラルキルなどの群から選ばれるジカルボン酸又はそのカルボン酸誘導体とキラルな前記グリセロール誘導体と反応させて2つのエステル結合を有するエステル化合物を製造し、引き続いてグリセロール誘導体の他の1つの非反応性OH基を反応性のOH基に変換し、引き続いてジカルボン酸またはジカルボン酸誘導体と反応させることにより目的とするキラルな異性体からなる1群の4個のエステル結合で結ばれた、新規な環状エステル化合物を得ることができることを見出した。すなわち、グリセロールの2分子が、アルキル、環状アルキル、アリール、又はアラルキルから選ばれる有機カルボン酸と4個のエステル結合で結ばれた新規な環状エステル化合物を得ることができることが得られるものである。
【0005】
すなわち、本発明によれば、以下の発明が提供される。
(1)下記一般式(1)で表されることを特徴とする環状エステル化合物。
【化16】(1)

Figure 2004075586
(式中、RとRは有機基を表し、RとRは水素原子、ハロゲン原子、金属原子、リン酸、硫酸、有機基を表す。有機基は炭素数が150以下であり、水素原子、ハロゲン原子、金属原子、酸素原子、窒素原子、硫黄原子、燐原子、珪素原子を含んでも良い。RとR、RとRは同一であっても、異なっていても良い。)
(2)下記一般式(2)で表されることを特徴とする環状エステル化合物。
【化17】(2)
Figure 2004075586
(式中、R〜Rは前記一般式(1)の化合物の置換基と同じである。)
(3)下記一般式(3)で表されることを特徴とする環状エステル化合物。
【化18】(3)
Figure 2004075586
(式中、R〜Rは前記一般式(1)の化合物の置換基と同じである。)
(4)下記一般式(4)から一般式(7)で表される中から選ばれるいずれか一つの環状エステル化合物。
【化19】(4)
Figure 2004075586
【化20】(5)
Figure 2004075586
【化21】(6)
Figure 2004075586
【化22】(7)
Figure 2004075586
(式中、R〜Rは前記一般式(1)の化合物の置換基と同じである。)
(5)下記一般式(8)から一般式(11)で表される中から選ばれるいずれか一つの環状エステル化合物。
【化23】(8)
Figure 2004075586
【化24】(9)
Figure 2004075586
【化25】(10)
Figure 2004075586
【化26】(11)
Figure 2004075586
(式中、R〜Rは、前記一般式(1)の化合物の置換基と同じである。)
(6)下記一般式(12)から一般式(15)で表される中から選ばれるいずれか一つの環状エステル化合物。
【化27】(12)
Figure 2004075586
【化28】(13)
Figure 2004075586
【化29】(14)
Figure 2004075586
【化30】(15)
Figure 2004075586
(式中、R〜Rは、前記一般式(1)の化合物の置換基と同じである。)
【0006】
【発明の実施の形態】
本発明の新規な環状エステル化合物の構造式は、下記一般式(1)〜(3)で表される環状エステル化合物である。
【化31】(1)
Figure 2004075586
【化32】(2)
Figure 2004075586
【化33】(3)
Figure 2004075586
(式中、RとRは有機基を表し、RとRは水素原子、ハロゲン原子、金属原子、リン酸、硫酸、有機基を表す。有機基は炭素数150個以下から構築され、水素原子、ハロゲン原子、金属原子、酸素原子、窒素原子、硫黄原子、燐原子、珪素原子を含んでもよい。RとR、RとRは同一でも異なってもよい。)
【0007】
前記一般式(1)で表される環状エステル化合物は、以下の4つの一般式(4)〜(7)で表される異性体から構成される。
【化34】(1)
Figure 2004075586
【化35】(4)
Figure 2004075586
【化36】(5)
Figure 2004075586
【化37】(6)
Figure 2004075586
【化38】(7)
Figure 2004075586
前記式中、RとRは有機基を表し、RとRは水素原子、ハロゲン原子、金属原子、リン酸、硫酸、有機基を表す。有機基は炭素数が150個以下からなり、水素原子、ハロゲン原子、金属原子、酸素原子、窒素原子、硫黄原子、燐原子、珪素原子を含んでもよい。RとR、RとRは同一でも異なってもよい。
【0008】
前記一般式(2)で表される環状エステル化合物は、以下の4つの一般式(8)〜(11)で表される異性体から構成される。
【化39】(2)
Figure 2004075586
【化40】(8)
Figure 2004075586
【化41】(9)
Figure 2004075586
【化42】(10)
Figure 2004075586
【化43】(11)
Figure 2004075586
前記式中、RとRは有機基を表し、RとRは水素原子、ハロゲン原子、金属原子、リン酸、硫酸、有機基を表す。有機基は、炭素数が150個からなり、水素原子、ハロゲン原子、金属原子、酸素原子、窒素原子、硫黄原子、燐原子、珪素原子を含んでもよい。RとR、RとRは同一でも、異なってもよい。
【0009】
前記一般式(3)で表される環状エステル化合物は、以下の4つの一般式(12)(15)で表される異性体から構成される。
【化44】(3)
Figure 2004075586
【化45】(12)
Figure 2004075586
【化46】(13)
Figure 2004075586
【化47】(14)
Figure 2004075586
【化48】(15)
Figure 2004075586
式中、RとRは有機基を表し、RとRは水素原子、ハロゲン原子、金属原子、リン酸、硫酸、有機基を表す。有機基は炭素数が150個からなり、水素原子、ハロゲン原子、金属原子、酸素原子、窒素原子、硫黄原子、燐原子、珪素原子を含んでもよい。RとR、RとRは同一でも異なってもよい。
【0010】
前記一般式(1)〜(15)で表される環状エステル化合物の置換基について、その内容をより具体的に説明し、化合物について説明する。
置換基RとRは有機基を表す。
有機基は、アルキレン基、フエニレン基、シクロペンチレン基、シクロヘキシレン基などである。
アルキレン基は分岐鎖を有する、又は有しないない基であり、炭素数は、通常100個以下、好ましくは72個以下、さらに好ましくは32個以下である
これらは、グリセロール分子の酸素原子と結合可能なカルボン酸2個を有するジカルボン酸を形成することができるものである。
以下に、これらの基の詳細について、さらに、詳細に説明する。
【0011】
前記の有機基は、置換基として、本発明の化合物を製造する際に、製造反応に関与しない基であれば、含んでいて差し支えない。
具体的には、置換基としては、ハロゲン原子(塩素、フッ素、臭素、ヨウ素)、アルキル基、環状アルキル基、アリール基又はアラルキル基、カルボニル基、アルコキシ基、アルコキシカルボニル基、アシル基、アシルオキシ基、アリールスルホニル基、ニトロ基等が例示される。酸素原子、窒素原子、硫黄原子などを介して結合をしていてもよい。
【0012】
上記一般式中のRとRは、水素原子、ハロゲン原子、金属原子、リン酸、硫酸、1価の有機基を表す。
(1)アルキル基、(2)環状アルキル基、(3)アリール基、(4)アラルキル基から選ばれるものをあげることができる。
【0013】
(1)アルキル基については以下のとおりである。
アルキル基は、直鎖あるいは分岐状アルキル基から選ばれる基である。その炭素数は、通常100個以下、好ましくは72個以下、さらに好ましくは32個以下である。具体的に基をあげると、例えば、メチル基、エチル基、nープロピル基、イソプロピル基、nーブチル基、イソブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、2−メチルブチル基、1−メチルブチル基、n−ヘキシル基、イソヘキシル基、3−メチルペンチル基、2−メチルペンチル基、1−メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2−エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基等を挙げることができる。
場合によっては、これらの基は、二重結合もしくは三重結合の不飽和結合を1個以上、もしくは二重結合と三重結合を共に有してもよい。
(2)環状アルキル基については、シクロペンチル基、シクロヘキシル基、アダマンチル基等を挙げることができる。
(3)アリール基としては、フエニル基、ナフタレン基等を挙げることができる。
(4)アラルキル基としては、ベンジル基、フェネチル基等を挙げることができる。
これらは、環状エステル化合物を生成後に、非反応性のOH基を反応性のOH基に変化させたのちに置換基として導入することができる。
また、前記の(1)から(4)の基にあっては環状エステルを製造する場合の非反応性のOHの場合である。
さらにこれ以外に、(5)糖類、(6)アミン類、(7)アミノ酸類、(8)ペプチド類、(9)核酸からなる群の中から選ばれる基を用いることができる。
また、リン酸や硫酸や珪素などを介して有機基が結合しても良い。
これらは、非反応性のOH基を反応性のOH基に変換後、(5)、(6)、(7)、(8)の化合物と反応させることにより導入することができる。
また、RとRは同一でも異なっていても良い。
【0014】
前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、よう素原子を挙げることができる、有機基に置換した状態であってもよい。
金属原子としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムなどのアルカリ金属、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属、ホウ素、アルミニウム、チタン、錫、鉄などの金属原子を挙げることができる。有機基がこれらを介して含まれていてもよい。
【0015】
有機基に関して、前記(1)から(4)以外の基の場合について説明を挙げる。
(5)糖類としては特に制限はないが、通常は単糖類、オリゴ糖類である。単糖類としてペントース、ヘキソース、デオキシヘキソース、ヘプトース、アミノ糖が挙げられ、具体的にはアラビノース、リボース、キシロース、グルコース、ガラクトース、マンノース、フルクトース、ラムノース、フコース、ジギトキソース、チマロース、オレアンドロース、ジギタロース、アピオース、ハマメロース、ストレプトース、セドヘプチュロース、コリオース、グルコサミン、ガラクトサミン、2−デオキシ−2−メチルアミノグルコースなどが例示される。オリゴ糖類として非還元性オリゴ糖、還元性オリゴ糖が挙げられ、具体的にはショ糖、トレハロース、ゲンチアノース、ラフィノース、乳糖、セルビオース、麦芽糖、ゲンチオビオースなどが例示される。
【0016】
(6)アミン類は通常含まれる炭素の炭素数50以下、酸素数20以下、窒素数30以下、硫黄数5以下、好ましくは、炭素数35以下、酸素数5以下、窒素数15以下、硫黄数3以下、さらに好ましくは、炭素数2〜20、酸素数3以下、窒素数2〜10、硫黄数1以下の範囲で構成される。
(7)アミノ酸類として具体的には、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、アスパラギン酸、グルタミン酸、アスパラギン、グルタミン、リジン、オルニチン、アルギニン、ヒスチジン、ヒドロキシリジン、システイン、シスチン、メチオニン、フェニルアラニン、チロシン、トリプトファン、プロリン、4−ヒドロキシプロリン、トリコロミン酸、イボテン酸、キスカリン酸、カナバニン、カイニン酸、ドモイ酸、1−アミノシクロプロパンカルボン酸、2−(メチレンシクロプロピル)グリシン、ヒポグリシンA、3−シアノアラニン、アベナ酸、ムギネ酸、ミモシン、レボドパ、β−ヒドロキシ−γ−メチルフルタミン酸、5−ヒドロキシトリプトファン、パントテン酸、ラミニン、ベタシアニンなどが例示される。また、タウリンなどスルホン酸基を有するアミン類なども挙げられる。
【0017】
前記アミン類は、ハロゲン原子で置換されていても良く、ハロゲン原子としてフッ素、塩素、臭素、ヨウ素が挙げられ、1個以上置換されていても良い。また、リン酸基とアミノアルコールが結合しても良い。アミノアルコールとしてコリン、エタノールアミン、セリンが挙げられる。
【0018】
(8)ペプチド類としては、特に制限は無いが、通常含窒素ポリマーである。2個以上のアミノ酸による重縮合化合物またはタンパク質、ミオグロビン、ヘモグロビンなどのポリペプチド等が挙げられる。
【0019】
(9)核酸としては、ヌクレオシド、ヌクレオチド、もしくはヌクレオチド単位のポリマー鎖が挙げられる。ヌクレオシドは、シトシン、チミン、アデニン、グアニンの塩基と2−デオキシリボースまたはリボースの糖が結合したものを示す。ヌクレオチドは、ヌクレオシドの糖にリン酸基が結合したものを示す。チミンはウラシルでもよい。
【0020】
前記の有機基には、従来知られている以下の化合物を基として用いて利用する事ができる。市販されている試薬の一例を記載する。
【化49】
Figure 2004075586
【化50】
Figure 2004075586
【0021】
さらに上述の有機基以外にも従来知られている化合物を基として用いて利用することができる。その一例を記載する。
【化51】
Figure 2004075586
Figure 2004075586
Figure 2004075586
Figure 2004075586
【0022】
本発明により得られる環状エステル化合物は界面活性物質であり、各種の界面活性を必要とする製品を製造するときに用いることができる。
本発明の化合物は、キラルな化合物であり、特定の光学異性体のみを選択的に得る事ができ、光学異性体の特性を必要とする製品に利用することにより顕著な効果を挙げることができる。
前記一般式(1)から(3)で表される化合物の立体配置は、グリセロールの2級水酸基の組み合わせに応じて以下の4つの組み合わせで表現することができる。すなわち、2分子のグリセロールの2級水酸基が(R、R)、(R、S)、(S、R)、(S、S)の組み合わせを示す。
【0023】
本発明の化合物の製法は以下の通りである。
グリセロール誘導体とジカルボン酸誘導体を反応させると、4個のエステル結合により形成された環状エステルを有する2個のグリセロール及びその誘導体である新規な環状化合物を合成する。
前記の工程で用いられる、グリセロール誘導体の原料物質には、キラルな化合物である構造式、HOCHCH(OH)CHOHで表される化合物の誘導体である。このキラルなグリセロールに関し、グリセロールの1位または2位若しくは1位と2位の水酸基を保護したものを光学分割もしくは酵素を用いた分割により得たものを用いることができる。具体的には、(S)−(+)−2,2―ジメチル−1,3―ジオキソラン−4−メタノールもしくは(R)−(―)−2,2―ジメチル−1,3―ジオキソラン−4−メタノール、または、(R)−(+)−3―ベンジロキシ−1,2―プロパンジオールもしくは(S)−(−)−3―ベンジロキシ−1,2―プロパンジオールを用いる。
このキラルな化合物に対して、前記有機基のジカルボン酸と反応させる。
エステル結合により結合しようとする有機基であるアルキル基、環状アルキル基、アリール基、アラルキル基などの群から選ばれる基を導入することができる。
【0024】
ジカルボン酸誘導体は、市販もしくは合成したものを用いる。
アルキルジカルボン酸としては、マロン酸、1,12−ドデカンジカルボン酸などのアルキルジカルボン酸、芳香族ジカルボン酸としては、テレフタル酸、ジフェニルジカルボン酸、脂環式ジカルボン酸としては、イソクエン酸ラクトンなどである。
このジカルボン酸は、ジカルボン酸の酸クロライドとして用いることができる。たとえば、ドデカンジオイルジクロライドなどのアルキルジカルボン酸ジクロライド、テレフタル酸ジクロライドなどの芳香族ジカルボン酸クロライド、2−オキソテトラヒドロフラン−4,5−ジカルボン酸ジクロライド(イソクエン酸ラクトンの酸クロライド)などの脂環式ジカルボン酸クロライドなどをあげることができる。
【0025】
エステル結合の生成には、塩酸、硫酸、硝酸などの無機酸を用いることができる。または、ジシクロヘキシルカルボジイミド(DCC)などの縮合剤を用いることができる。
必要に応じて、トリエチルアミン、ピリジン、4−ジメチルアミノピリジン(DMAP)などの塩基と組み合わせることができる。
【0026】
このキラルな化合物からなるグリセロールであって、一つのOH基以外は非反応性の状態とされている化合物と、他の同様にして製造されたキラルな化合物からなるグリセロールであって、一つのOH基以外は非反応性の状態とされている化合物を、前記ジカルボン酸又はジカルボン酸誘導体であるジカルボン酸クロライドと反応させると目的とするキラルな異性体からなる2個のエステル結合により結ばれたエステル化合物を得ることができる。
次に得られたエステル化合物の2つの非反応性の状態のOH基を、反応性のOH基に変換し、前のエステル化と同様の操作を繰り返し、新たに2個のエステル結合により結ばれた合計4個のエステルで結ばれた、目的とする新規な環状エステル化合物を得ることができる。
グリセロールの2分子が、アルキレン基、フエニレン基、シクロペンチレン基、シクロヘキシレン基から選ばれる有機基のジカルボン酸と4個のエステル結合で結ばれた新規な環状エステル化合物を得ることができる。
また、残された非反応性の状態にあるOH基を反応性のOH基に変換すること、さらにその誘導体を製造することができる。
【0027】
【実施例】
以下、本発明につき実施例を挙げて具体的に説明する。本発明はこの具体例に限定されるものではない。
以下に記載する実施例については、以下に示される手順にしたがって、行ったものである。実施例において使用される化合物及び得られる化合物については、実施例では、化合物のあとに番号を付して記載してある(例えば、化合物1、化合物2のように記載)。また、下記の手順に示されるこれらの化合物については、単に番号のみを記載してある。例えば、実施例の化合物1については、1として記載している。また、温度に関して度と記載しているのは、℃を表している。
【化52】
Figure 2004075586
【化53】
Figure 2004075586
【化54】
Figure 2004075586
【化55】
Figure 2004075586
【化56】
Figure 2004075586
【0028】
実施例1
アルゴン雰囲気下、細かく砕いた30当量の水酸化カリウムにジメチルスルホキシドを加え、懸濁状とした。水冷下、(S)−(+)−2,2−ジメチル−1,3−ジオキソラン−4−メタノール(化合物1)のジメチルスルホキシド溶液を滴下した。次に3.5当量のベンジルブロミドを滴下した。室温で3時間撹拌させた後、氷水を加えて反応を止め、酢酸エチルで抽出し、氷水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(5%酢酸エチル/ヘキサン) に通して精製し、化合物2を得た。
同様に(S)−(−)−2,2−ジメチル−1,3−ジオキソラン−4−メタノール(化合物19)から化合物20を得た。
【0029】
実施例2
化合物2に10%酢酸水溶液を加え、90度で3時間加熱した。冷後、酢酸エチルで抽出し、水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(80% 酢酸エチル/ヘキサン) に通して精製し、化合物3を得た。
同様に化合物20から化合物21を得た。
【0030】
実施例3
アルゴン雰囲気下、2当量のイミダゾール、化合物3のジメチルホルムアミド溶液に氷冷下、当量のtert−ブチルクロロジフェニルシラン(TBDPS)を滴下し、同温にて3時間撹拌した。氷水を加えて反応を止め、エーテルで抽出し、氷水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(5〜10%酢酸エチル/ヘキサン)にて精製し、化合物4を得た。
同様に化合物21から化合物22を得た。
【0031】
実施例4
アルゴン雰囲気下、化合物4の1.2当量の4−ジメチルアミノピリジンの無水塩化メチレン溶液に、氷冷下、0.5当量のドデカンジオイルクロライド(化合物5)の無水塩化メチレン溶液を滴下し、室温で5時間攪拌した。
氷水を加えて反応を止め、塩化メチレンで抽出し、冷10%塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(15%酢酸エチル/ヘキサン)に通して精製し、化合物6を得た。
【0032】
実施例5
アルゴン雰囲気下、化合物6の無水テトラヒドロフラン溶液に酢酸を加えた。氷冷下、4当量の1.0MテトラブチルアンモニウムフルオライドのTHF溶液を加え、同温にて10時間撹拌した。氷水を加えた後、エーテルで抽出し、氷水、冷5%塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(40〜50%酢酸エチル/ヘキサン)にて精製し、化合物7を収率92%で得た。
同様に化合物23から化合物24を得た。
【0033】
実施例6
アルゴン雰囲気下、化合物7と0.4当量の4−ジメチルアミノピリジンの無水塩化メチレン溶液に2.4当量のトリエチルアミンを加え、−78度で化合物5の無水塩化メチレン溶液をゆっくり加え、同温にて24時間反応させた。氷水に反応混合液をあけて反応を止め、塩化メチレンで抽出し、冷10%塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(20%酢酸エチル/ヘキサン)に通して精製し、化合物8を収量収率53%で得た。
同様に化合物24から化合物25を得た。
【0034】
化合物8、化合物25は1H−NMRスペクトルにより同定した。
【0035】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:7.28−7.37(10H,m),5.26−5.30(2H,m,), 4.56(2H,d,J=12.2Hz),4.52(2H,d,J=12.2Hz),4.40(2H,dd,J=12.0,2.6Hz),4.19(2H,dd,J=12.0,7.5Hz),3.59(2H,dd,J=10.4,5.3Hz),3.58(2H,dd,J=10.4,5.3Hz),2.33(4H,dt,J=15.5,7.6Hz),2.26(4H,dt,J=15.5,7.6Hz),1.61(8H,ddt,J=15.5,15.5,7.3Hz),1.26−1.32(24H,m).
【0036】
実施例7
化合物8のテトラヒドロフラン溶液に20%水酸化パラジウム/炭素を加え、水素置換し、40分間撹拌した。クロロホルムで希釈後、セライトろ過し、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(5%メタノール/クロロホルム)に通して精製し、化合物9を収率99%で得た。
同様に化合物25から化合物26を得た。
【0037】
化合物9、化合物26はH−NMRスペクトルにより同定した。
【0038】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:5.12−5.16(2H,m),4.38(2H,dd,J=12.2,2.7Hz),4.25(2H,dd,J=12.2,6.7Hz),3.74(4H,dd,J=5.8,5.6Hz),2.35(4H,dt,J=14.8,7.4Hz),2.32(4H,dt,J=14.8,7.4Hz),2.02(2H,dt,J=5.8,2.9Hz),1.65(8H,ddt,J=14.8,14.8,7.6Hz),1.28−1.33(24H,m).
【0039】
実施例8
アルゴン雰囲気下、3当量の2−ブロモエチルジクロロホスフェートのクロロホルム溶液に、氷冷下、5当量のトリエチルアミン、化合物9のクロロホルム溶液を滴下し、同温にて4時間撹拌し、化合物10を得た。
同様に化合物15、化合物26、化合物32から化合物16、化合物27、化合物33をそれぞれ得た。
【0040】
実施例9
化合物10のクロロホルム溶液に0.1N塩化カリウム水溶液を加え、室温にて1時間攪拌した。クロロホルムで抽出、減圧下溶媒を留去し、化合物11を得た。
同様に化合物16、化合物27、化合物33から化合物17、化合物28、化合物34をそれぞれ得た。
【0041】
実施例10
化合物11のアセトニトリル:クロロホルム:イソプロパノール=1:1:1混合溶媒に30%トリエチルアミン水溶液を加え、70℃で2時間加熱した。冷後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(65:25:4〜65:35:8=クロロホルム:メタノール:水)にて精製し、化合物12を収率59%で得た。
【0042】
化合物12、化合物18、化合物29、化合物35は1H−NMRスペクトルにより同定した。
【0043】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:5.14−5.18(2H,m),4.37(2H,dd,J=12.0,2.6Hz),4.14−4.19(4H,m),4.06(2H,dd,J=12.0,4.6Hz),3.89(4H,dd,J=6.7,6.7Hz),3.54(4H,t,J=2.3Hz),3.12(18H,s),2.19−2.25(8H,m),1.40−1.56(8H,m),1.20−1.24(24H,m).
【0044】
実施例11
化合物6のエタノール溶液に20%水酸化パラジウム/炭素を加え、水素置換した後、10時間攪拌した。クロロホルムで希釈後、セライトろ過した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(30%酢酸エチル/ヘキサン)に通して精製し、化合物13を収率82%で得た。
同様に化合物23から化合物30を得た。
【0045】
実施例12
アルゴン気流下、化合物13と触媒量の4−ジメチルアミノピリジンの無水塩化メチレン溶液に2.4当量のトリエチルアミンを加え、−78度にて化合物5の無水塩化メチレン溶液を加え、同温にて24時間撹拌した。反応溶液を氷水にあけ、塩化メチレンで抽出し、冷10%塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(15%酢酸エチル/ヘキサン)に通して精製し、化合物14を収率63%で得た。
同様に化合物30から化合物31を得た。
【0046】
化合物14、化合物32は1H−NMRスペクトルにより同定した。
【0047】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:7.63−7.66(8H,m),7.36−7.45(12H,m),5.19−5.23(2H,m),4.46(2H,dd,J=11.9,2.7Hz),4.23(2H,dd,J=11.9,7.3Hz),3.77(2H,dd,J=10.7,5.5Hz),3.72(2H,dd,J=10.7,4.9Hz),2.26(4H,dt,J=14.2,7.3Hz),2.24(4H,dt,J=14.2,7.3Hz),1.57(8H,ddt,J=14.2,14.2,7.1Hz),1.23−1.30(24H,m),1.04(18H,s).
【0048】
実施例13
アルゴン雰囲気下、化合物14のテトラヒドロフラン溶液に酢酸を加え、氷冷下、1.0Mテトラブチルアンモニウムフルオライドのテトラヒドロフラン溶液を加え、同温にて6時間攪拌した。氷水を加え、エーテルで抽出し、氷水、冷5%塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(5%メタノール/クロロホルム)にて分離を行い、化合物15を収率91%で得た。
同様に化合物31から化合物32を得た。
【0049】
化合物15、化合物32は1H−NMRスペクトルにより同定した。
【0050】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:5.12−5.16(2H,m),4.38(2H,dd,J=12.2,2.6Hz),4.23(2H,dd,J=12.2,6.8Hz),3.73(4H,d,J=5.3Hz),2.45(2H,brs),2.34(4H,dt,J=14.6,7.4Hz),2.31(4H,dt,J=14.6,7.4Hz),1.62(8H,ddt,J=14.6,14.6,7.3Hz),1.27−1.33(24H,m).
【0051】
実施例14
アルゴン雰囲気下、1.2当量のトリエチルアミン、0.2当量の4−ジメチルアミノピリジンの無水塩化メチレン溶液に化合物4の無水塩化メチレン溶液と化合物5の無水塩化メチレン溶液を−78度で同時にゆっくりと加えた。同温度で4時間撹拌後、氷冷まで温度を戻し、化合物22の無水塩化メチレン溶液を滴下し、室温で撹拌した。5時間後、氷5%塩酸水溶液を加え、塩化メチレンで抽出し、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、化合物23を収率55−65%で得た。
【0052】
実施例15
アルゴン雰囲気下、1.2当量のトリエチルアミン、0.2当量の4−ジメチルアミノピリジンの無水塩化メチレン溶液に化合物1の無水塩化メチレン溶液と化合物5の無水塩化メチレン溶液を−78度で同時にゆっくりと加えた。同温度で4時間撹拌後、氷冷まで温度を戻し、化合物4の無水塩化メチレン溶液を滴下し、室温で撹拌した。5時間後、氷5%塩酸水溶液を加え、塩化メチレンで抽出し、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、化合物36を収率50−85%で得た。
同様に化合物1と化合物22と化合物5から化合物45を得た。
【0053】
実施例16
化合物36に80%酢酸水溶液を加え、60度で5時間加熱した。冷後、減圧下溶媒を留去し、化合物37を定量的に得た。
同様に化合物45から化合物46を得た。
【0054】
実施例17
アルゴン雰囲気下、化合物37のジメチルホルムアミド溶液に2当量のイミダゾールを加え、氷冷下、当量のtert−ブチルクロロジフェニルシランを加え、同温にて3時間撹拌した。氷水を加えて反応を止め、エーテルで抽出し、氷水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、化合物38を収率85%で得た。
同様に化合物46から化合物47を得た。
【0055】
実施例18
化合物38のエタノール溶液に20%水酸化パラジウム/炭素を加え、水素置換した後、10時間攪拌した。クロロホルムで希釈後、セライトろ過した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(30%酢酸エチル/ヘキサン)に通して精製し、化合物39を定量的に得た。
同様に化合物47から化合物48を得た。
【0056】
実施例19
アルゴン気流下、化合物39と触媒量の4−ジメチルアミノピリジンの無水塩化メチレン溶液に2.4当量のトリエチルアミンを加え、−78度にて化合物5の無水塩化メチレン溶液を加え、同温にて24時間撹拌した。反応溶液を氷水にあけ、塩化メチレンで抽出し、冷10%塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(15%酢酸エチル/ヘキサン)に通して精製し、化合物40を40−55%で得た。
同様に化合物48から化合物49を得た。
【0057】
化合物40、化合物49は1H−NMRスペクトルにより同定した。
【0058】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:7.63−7.66(8H,m),7.36−7.45(12H,m),5.19−5.23(2H,m),4.46(2H,dd,J=11.9,2.7Hz),4.23(2H,dd,J=11.9,7.3Hz),3.77(2H,dd,J=10.7,5.5Hz),3.72(2H,dd,J=10.7,4.9Hz),2.26(4H,dt,J=14.2,7.3Hz),2.24(4H,dt,J=14.2,7.3Hz),1.57(8H,ddt,J=14.2,14.2,7.1Hz),1.23−1.30(24H,m),1.04(18H,s).
【0059】
実施例20
アルゴン雰囲気下、化合物40のテトラヒドロフラン溶液に酢酸を加え、氷冷下、1.0Mテトラブチルアンモニウムフルオライドのテトラヒドロフラン溶液を加え、同温にて8時間攪拌した。氷水を加え、エーテルで抽出し、氷水、冷5%塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(5%メタノール/クロロホルム)にて分離を行い、化合物41を70−80%で得た。
同様に化合物49から化合物50を得た。
【0060】
化合物41、化合物50は1H−NMRスペクトルにより同定した。
【0061】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:5.12−5.16(2H,m),4.38(2H,dd,J=12.2,2.7Hz),4.25(2H,dd,J=12.2,6.7Hz),3.74(4H,dd,J=5.8,5.6Hz),2.35(4H,dt,J=14.8,7.4Hz),2.32(4H,dt,J=14.8,7.4Hz),2.02(2H,dt,J=5.8,2.9Hz),1.65(8H,ddt,J=14.8,14.8,7.6Hz),1.28−1.33(24H,m).
【0062】
実施例21
アルゴン雰囲気下、3当量の2−ブロモエチルジクロロホスフェートのクロロホルム溶液に、氷冷下、5当量のトリエチルアミン、化合物41のクロロホルム溶液を滴下し、同温にて4時間撹拌し、化合物42を得た。
同様に化合物50から化合物51を得た。
【0063】
実施例22
化合物42のクロロホルム溶液に0.1N塩化カリウム水溶液を加え、室温にて1時間攪拌した。クロロホルムで抽出、減圧下溶媒を留去し、化合物43を得た。
同様に化合物51から化合物52を得た。
【0064】
実施例23
化合物43のアセトニトリル:クロロホルム:イソプロパノール=1:1:1混合溶媒に30%トリエチルアミン水溶液を加え、70℃で2時間加熱した。冷後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(65:25:4〜65:35:8=クロロホルム:メタノール:水)にて精製し、化合物44を50―60%で得た。
同様に化合物52から化合物53を得た。
【0065】
化合物44、化合物53は1H−NMRスペクトルにより同定した。
【0066】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:5.14−5.18(2H,m),4.37(2H,dd,J=12.0,2.6Hz),4.14−4.19(4H,m),4.06(2H,dd,J=12.0,4.6Hz),3.89(4H,dd,J=6.7,6.7Hz),3.54(4H,t,J=2.3Hz),3.12(18H,s),2.19−2.25(8H,m),1.40−1.56(8H,m),1.20−1.24(24H,m).
【0067】
実施例24
アルゴン雰囲気下、化合物1、1.2当量の4−ジメチルアミノピリジンの無水塩化メチレン溶液に、氷冷下、0.5当量の化合物5の無水塩化メチレン溶液を滴下し、室温で4時間攪拌した。氷水を加えて反応を止め、塩化メチレンで抽出し、冷10%塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(10%酢酸エチル/ヘキサン)に通して精製し、化合物54を90−95%で得た。
【0068】
実施例25
化合物54に10%酢酸水溶液を加え、90度で5時間加熱した。冷後、減圧下溶媒を留去し、化合物55を81−96%で得た。
【0069】
実施例26
アルゴン気流下、化合物55と触媒量の4−ジメチルアミノピリジンの無水塩化メチレン溶液に2.4当量のトリエチルアミンを加え、−78度にて化合物5の無水塩化メチレン溶液をゆっくりと5時間掛けて加え、同温にて24時間撹拌した。反応溶液を氷水にあけ、塩化メチレンで抽出し、冷10%塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(50%酢酸エチル/ヘキサン)に通して精製し、化合物56を45−60%で得た。
【0070】
化合物56は1H−NMRスペクトルにより同定した。
【0071】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:4.38(2H,m),4.25−4.23(8H,m),2.35−2.25(8H,m),2.00(2H,bs),1.68−1.65(8H,m),1.33−1.29(24H,m).
【0072】
実施例27
アルゴン雰囲気下、3当量の2−ブロモエチルジクロロホスフェートのクロロホルム溶液に、氷冷下、5当量のトリエチルアミン、化合物56のクロロホルム溶液を滴下し、同温にて4時間撹拌し、化合物57を得た。
【0073】
実施例28
化合物57のクロロホルム溶液に0.1N塩化カリウム水溶液を加え、室温にて1時間攪拌した。クロロホルムで抽出、減圧下溶媒を留去し、化合物58を得た。
【0074】
実施例29
化合物58のアセトニトリル:クロロホルム:イソプロパノール=1:1:1混合溶媒に30%トリエチルアミン水溶液を加え、70℃で2時間加熱した。冷後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(65:25:4〜65:35:8=クロロホルム:メタノール:水)にて精製し、化合物59を50−65%で得た。
【0075】
化合物59は1H−NMRスペクトルにより同定した。
【0076】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:4.41(2H,m),4.32−4.23(8H、m),4.06−3.43(8H,m),3.30(18H,s),2.19−2.25(8H,m),1.40−1.56(8H,m),1.20−1.24(24H,m).
【0077】
実施例30
アルゴン気流下、触媒量の4−ジメチルアミノピリジンの無水塩化メチレン溶液に2.4当量のトリエチルアミンを加え、氷冷下、p−ベンゼンジカルボン酸ジクロライド(化合物60)の無水塩化メチレン溶液と化合物1をゆっくりと同時に加え、同温にて6時間撹拌した。更に化合物19を同温度でゆっくり加え、室温で4時間撹拌した。反応溶液を氷水にあけ、塩化メチレンで抽出し、冷10%塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(15%酢酸エチル/ヘキサン)に通して精製し、化合物61を85%で得た。
【0078】
実施例31
化合物61に10%酢酸水溶液を加え、90度で5時間加熱した。冷後、減圧下溶媒を留去し、化合物62を80−90%で得た。
【0079】
実施例32
アルゴン気流下、化合物62と触媒量の4−ジメチルアミノピリジンの無水塩化メチレン溶液に2.4当量のトリエチルアミンを加え、−78度にて化合物60の無水塩化メチレン溶液をゆっくりと5時間掛けて加え、同温にて24時間撹拌した。反応溶液を氷水にあけ、塩化メチレンで抽出し、冷10%塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(50%酢酸エチル/ヘキサン)に通して精製し、化合物63を50−60%で得た。
【0080】
化合物63は1H−NMRスペクトルにより同定した。
【0081】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:6.26(8H、bs),4.38(2H,m),4.25−4.23(8H,m).
【0082】
実施例33
アルゴン雰囲気下、3当量の2−ブロモエチルジクロロホスフェートのクロロホルム溶液に、氷冷下、5当量のトリエチルアミン、化合物63のクロロホルム溶液を滴下し、同温にて4時間撹拌し、化合物64を得た。
【0083】
実施例34
化合物64のクロロホルム溶液に0.1N塩化カリウム水溶液を加え、室温にて1時間攪拌した。クロロホルムで抽出、減圧下溶媒を留去し、化合物65を得た。
【0084】
実施例35
化合物65のアセトニトリル:クロロホルム:イソプロパノール=1:1:1混合溶媒に30%トリエチルアミン水溶液を加え、70℃で2時間加熱した。冷後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(65:25:4〜65:35:8=クロロホルム:メタノール:水)にて精製し、化合物66を50−60%で得た。
【0085】
化合物66は1H−NMRスペクトルにより同定した。
【0086】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:6.25(8H,m),4.41(2H,m),4.32−4.23(8H、m),4.06−3.43(8H,m),3.30(18H,s).
【0087】
実施例36
アルゴン雰囲気下、1.2当量のトリエチルアミン、0.2当量の4−ジメチルアミノピリジンの無水塩化メチレン溶液に化合物19の無水塩化メチレン溶液と化合物67の無水塩化メチレン溶液を−78度で同時にゆっくりと加えた。同温度で4時間撹拌後、氷冷まで温度を戻し、化合物22の無水塩化メチレン溶液を滴下し、室温で撹拌した。5時間後、氷5%塩酸水溶液を加え、塩化メチレンで抽出し、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、化合物68を収率50−80%で得た。
同様に化合物19と化合物4と化合物67から化合物77を得た。
【0088】
実施例37
化合物68に80%酢酸水溶液を加え、60度で5時間加熱した。冷後、減圧下溶媒を留去し、化合物69を定量的に得た。
同様に化合物77から化合物78を得た。
【0089】
実施例38
アルゴン雰囲気下、化合物69のジメチルホルムアミド溶液に2当量のイミダゾールを加え、氷冷下、当量のtert−ブチルクロロジフェニルシランを加え、同温にて3時間撹拌した。氷水を加えて反応を止め、エーテルで抽出し、氷水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、化合物70を収率70−80%で得た。
同様に化合物78から化合物79を得た。
【0090】
実施例39
化合物70のエタノール溶液に20%水酸化パラジウム/炭素を加え、水素置換した後、10時間攪拌した。クロロホルムで希釈後、セライトろ過した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(30%酢酸エチル/ヘキサン)に通して精製し、化合物71を定量的に得た。
同様に化合物79から化合物80を得た。
【0091】
実施例40
アルゴン気流下、化合物71と触媒量の4−ジメチルアミノピリジンの無水塩化メチレン溶液に2.4当量のトリエチルアミンを加え、−78度にて化合物5の無水塩化メチレン溶液を加え、同温にて24時間撹拌した。反応溶液を氷水にあけ、塩化メチレンで抽出し、冷10%塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(15%酢酸エチル/ヘキサン)に通して精製し、化合物72を30−40%で得た。
同様に化合物80から化合物81を得た。
【0092】
化合物72、化合物81は1H−NMRスペクトルにより同定した。
【0093】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:7.63−7.66(8H,m),7.36−7.45(12H,m),5.23−5.32(2H,m),4.38(2H,dd,J=12.0,2.9Hz),4.19(2H,dd,J=12.0,7.1Hz),3.59(2H,dd,J=10.4,5.2Hz),3.57(2H,dd,J=10.4,5.3Hz),2.32(8H,dt,J=14.9,6.8Hz),1.59(8H,m),1.26(40H,bs).
【0094】
実施例41
アルゴン雰囲気下、化合物72のテトラヒドロフラン溶液に酢酸を加え、氷冷下、1.0Mテトラブチルアンモニウムフルオライドのテトラヒドロフラン溶液を加え、同温にて8時間攪拌した。氷水を加え、エーテルで抽出し、氷水、冷5%塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。濾過後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(5%メタノール/クロロホルム)にて分離を行い、化合物73を70−80%で得た。
同様に化合物81から化合物82を得た。
【0095】
化合物73、化合物82は1H−NMRスペクトルにより同定した。
【0096】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:5.13−5.09(2H,m),4.35(2H,dd,J=12.2,3.4Hz),4.25(2H,dd,J=12.2,6.4Hz),3.74(4H,dd,J=6.4,6.1Hz),2.33(8H,dt,J=17.1,7.6Hz),2.00(2H,t,J=6.4Hz),1.63(8H,m),1.25−1.33(40H,m).
【0097】
実施例42
アルゴン雰囲気下、3当量の2−ブロモエチルジクロロホスフェートのクロロホルム溶液に、氷冷下、5当量のトリエチルアミン、化合物73のクロロホルム溶液を滴下し、同温にて4時間撹拌し、化合物74を得た。
同様に化合物82から化合物83を得た。
【0098】
実施例43
化合物74のクロロホルム溶液に0.1N塩化カリウム水溶液を加え、室温にて1時間攪拌した。クロロホルムで抽出、減圧下溶媒を留去し、化合物75を得た。
同様に化合物83から化合物84を得た。
【0099】
実施例44
化合物75のアセトニトリル:クロロホルム:イソプロパノール=1:1:1混合溶媒に30%トリエチルアミン水溶液を加え、70℃で2時間加熱した。冷後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(65:25:4〜65:35:8=クロロホルム:メタノール:水)にて精製し、化合物76を50―60%で得た。
同様に化合物84から化合物85を得た。
【0100】
化合物76、化合物85は1H−NMRスペクトルにより同定した。
【0101】
結果は以下の通りである。
H−NMR(TMS,CDCl)δ:5.14−5.18(2H,m),4.37(2H,dd,J=12.2,2.7Hz),4.14−4.19(4H,m),4.06(2H,dd,J=12.2,7.5Hz),3.89(4H,dd,J=6.6,5.6Hz),3.54(4H,m),3.12(18H,s),2.19−2.30(8H,m),1.50(8H,m),1.20−1.22(40H,m).
【0102】
【発明の効果】
本発明によれば、同一分子内に2個のグリセロールと4個のエステル結合を有する環状エステル化合物が得られる。これらの化合物は、界面活性性であり、工業および家庭における、たとえば金属加工、採鉱、表面仕上げ、洗浄および清浄、化粧品、医薬および食品加工および調理の分野で、殊に乳化剤、解乳化剤、洗浄剤、分散剤およびヒドロトロープ剤として用いることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel cyclic ester compound.
[0002]
[Prior art]
Lipid esterified with one molecule of glycerol and two molecules of saturated or unsaturated fatty acid has surface activity, and is used for various industrial treatment agents used for mining, metal working, surface finishing, washing, etc. It is widely used as various detergents and various detergents, pharmaceuticals, cosmetics and food additives.
Among these uses, they are particularly useful as emulsifiers, demulsifiers, detergents, dispersants, hydrotropic agents and the like.
Conventionally, in this type of glycerol ester of unsaturated fatty acid, one molecule of glycerol and two molecules of saturated or unsaturated fatty acid are ester-bonded, and a non-cyclic phospholipid compound in which a phosphate group is bonded to the remaining hydroxyl group is used in vivo. And have been synthesized by artificial means. These materials are being studied to improve their properties.
Among them, cyclic ester compounds in which the ester moiety is cyclized may have improved molecular rigidity, but in practice, no examples are found.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel chiral cyclic ester compound obtained by linking two molecules of glycerol by four ester bonds.
That is, an object of the present invention is to provide a chiral cyclic ester compound in which two molecules of glycerol are linked to a carboxylic acid selected from the group of alkyl, cyclic alkyl, aryl, aralkyl and the like by four ester bonds.
[0004]
[Means for Solving the Problems]
Means for Solving the Problems The present inventors have conducted intensive studies on the above-mentioned problem, and obtained two glycerols having a cyclic ester formed by four ester bonds and a derivative thereof by reacting a glycerol derivative with a dicarboxylic acid or a derivative thereof. It has been found that a novel cyclic compound can be synthesized. At this time, as a raw material of the glycerol derivative, a chiral compound represented by the general formula HOCH 2 CH (OH) CH 2 The inventors have found that a compound represented by OH can selectively produce a group of chiral cyclic ester compounds, thereby completing the present invention.
Glycerol, a chiral compound, is a non-reactive state by protecting the 1- or 2-position or the 1- and 2-position hydroxyl groups of glycerol, and is obtained by optical resolution or resolution using an enzyme. Or (S)-(+)-2,2-dimethyl-1,3-dioxolan-4-methanol or (R)-(-)-2,2-dimethyl-1,3-dioxolan-4- Methanol or (R)-(+)-3-benzyloxy-1,2-propanediol or (S)-(-)-3-benzyloxy-1,2-propanediol is used. Such a chiral compound is reacted with a dicarboxylic acid to bond an ester bond. The reaction is performed in two stages. First, as a dicarboxylic acid, an alkyl compound, a cyclic alkyl, an aryl, a carboxylic acid derivative selected from the group of aralkyl and the like and a carboxylic acid derivative thereof and a chiral glycerol derivative to produce an ester compound having two ester bonds. Converting one other non-reactive OH group of the glycerol derivative into a reactive OH group and subsequently reacting it with a dicarboxylic acid or a dicarboxylic acid derivative to form a group consisting of four chiral isomers. It has been found that a novel cyclic ester compound linked by an ester bond can be obtained. That is, it is possible to obtain a novel cyclic ester compound in which two molecules of glycerol are linked to an organic carboxylic acid selected from alkyl, cyclic alkyl, aryl and aralkyl by four ester bonds.
[0005]
That is, according to the present invention, the following inventions are provided.
(1) A cyclic ester compound represented by the following general formula (1).
Embedded image (1)
Figure 2004075586
(Where R 1 And R 2 Represents an organic group, R 3 And R 4 Represents a hydrogen atom, a halogen atom, a metal atom, phosphoric acid, sulfuric acid, or an organic group. The organic group has 150 or less carbon atoms and may include a hydrogen atom, a halogen atom, a metal atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom. R 1 And R 2 , R 3 And R 4 May be the same or different. )
(2) A cyclic ester compound represented by the following general formula (2).
Embedded image (2)
Figure 2004075586
(Where R 1 ~ R 4 Is the same as the substituent of the compound of the general formula (1). )
(3) A cyclic ester compound represented by the following general formula (3).
Embedded image (3)
Figure 2004075586
(Where R 1 ~ R 4 Is the same as the substituent of the compound of the general formula (1). )
(4) Any one of cyclic ester compounds selected from the following general formulas (4) to (7).
(4)
Figure 2004075586
Embedded image (5)
Figure 2004075586
Embedded image (6)
Figure 2004075586
Embedded image (7)
Figure 2004075586
(Where R 1 ~ R 4 Is the same as the substituent of the compound of the general formula (1). )
(5) Any one of cyclic ester compounds selected from the following general formulas (8) to (11).
Embedded image (8)
Figure 2004075586
Embedded image (9)
Figure 2004075586
Embedded image (10)
Figure 2004075586
Embedded image (11)
Figure 2004075586
(Where R 1 ~ R 4 Is the same as the substituent of the compound of the general formula (1). )
(6) Any one of cyclic ester compounds selected from the following general formulas (12) to (15).
Embedded image (12)
Figure 2004075586
Embedded image (13)
Figure 2004075586
(14)
Figure 2004075586
(15)
Figure 2004075586
(Where R 1 ~ R 4 Is the same as the substituent of the compound of the general formula (1). )
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The structural formula of the novel cyclic ester compound of the present invention is a cyclic ester compound represented by the following general formulas (1) to (3).
Embedded image (1)
Figure 2004075586
Embedded image (2)
Figure 2004075586
Embedded image (3)
Figure 2004075586
(Where R 1 And R 2 Represents an organic group, R 3 And R 4 Represents a hydrogen atom, a halogen atom, a metal atom, phosphoric acid, sulfuric acid, or an organic group. The organic group is constructed from 150 or less carbon atoms, and may include a hydrogen atom, a halogen atom, a metal atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom. R 1 And R 2 , R 3 And R 4 May be the same or different. )
[0007]
The cyclic ester compound represented by the general formula (1) is composed of isomers represented by the following four general formulas (4) to (7).
(1)
Figure 2004075586
Embedded image (4)
Figure 2004075586
(5)
Figure 2004075586
Embedded image (6)
Figure 2004075586
(7)
Figure 2004075586
In the above formula, R 1 And R 2 Represents an organic group, R 3 And R 4 Represents a hydrogen atom, a halogen atom, a metal atom, phosphoric acid, sulfuric acid, or an organic group. The organic group has 150 or less carbon atoms and may include a hydrogen atom, a halogen atom, a metal atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom. R 1 And R 2 , R 3 And R 4 May be the same or different.
[0008]
The cyclic ester compound represented by the general formula (2) is composed of isomers represented by the following four general formulas (8) to (11).
Embedded image (2)
Figure 2004075586
(8)
Figure 2004075586
Embedded image (9)
Figure 2004075586
Embedded image (10)
Figure 2004075586
(11)
Figure 2004075586
In the above formula, R 1 And R 2 Represents an organic group, R 3 And R 4 Represents a hydrogen atom, a halogen atom, a metal atom, phosphoric acid, sulfuric acid, or an organic group. The organic group has 150 carbon atoms and may include a hydrogen atom, a halogen atom, a metal atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom. R 1 And R 2 , R 3 And R 4 May be the same or different.
[0009]
The cyclic ester compound represented by the general formula (3) is composed of the following four isomers represented by the general formulas (12) and (15).
Embedded image (3)
Figure 2004075586
Embedded image (12)
Figure 2004075586
(13)
Figure 2004075586
(14)
Figure 2004075586
(15)
Figure 2004075586
Where R 1 And R 2 Represents an organic group, R 3 And R 4 Represents a hydrogen atom, a halogen atom, a metal atom, phosphoric acid, sulfuric acid, or an organic group. The organic group has 150 carbon atoms and may include a hydrogen atom, a halogen atom, a metal atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom. R 1 And R 2 , R 3 And R 4 May be the same or different.
[0010]
The contents of the substituents of the cyclic ester compounds represented by the general formulas (1) to (15) will be described more specifically, and the compounds will be described.
Substituent R 1 And R 2 Represents an organic group.
The organic group includes an alkylene group, a phenylene group, a cyclopentylene group, a cyclohexylene group, and the like.
The alkylene group is a group having or not having a branched chain, and the number of carbon atoms is usually 100 or less, preferably 72 or less, more preferably 32 or less.
These are capable of forming a dicarboxylic acid having two carboxylic acids capable of bonding to an oxygen atom of a glycerol molecule.
Hereinafter, these groups will be described in more detail.
[0011]
The organic group may be included as a substituent as long as it does not participate in the production reaction when producing the compound of the present invention.
Specifically, examples of the substituent include a halogen atom (chlorine, fluorine, bromine, and iodine), an alkyl group, a cyclic alkyl group, an aryl group or an aralkyl group, a carbonyl group, an alkoxy group, an alkoxycarbonyl group, an acyl group, and an acyloxy group. , Arylsulfonyl group, nitro group and the like. The bond may be formed via an oxygen atom, a nitrogen atom, a sulfur atom, or the like.
[0012]
R in the above general formula 3 And R 4 Represents a hydrogen atom, a halogen atom, a metal atom, phosphoric acid, sulfuric acid, or a monovalent organic group.
Examples include those selected from (1) alkyl groups, (2) cyclic alkyl groups, (3) aryl groups, and (4) aralkyl groups.
[0013]
(1) The alkyl group is as follows.
The alkyl group is a group selected from a linear or branched alkyl group. The number of carbon atoms is usually 100 or less, preferably 72 or less, and more preferably 32 or less. Specific examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, 2- Methylbutyl group, 1-methylbutyl group, n-hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, nonyl group , Decyl, undecyl, dodecyl, tetradecyl, hexadecyl, octadecyl, eicosyl and the like.
In some cases, these groups may have one or more double or triple unsaturated bonds, or both a double bond and a triple bond.
(2) Examples of the cyclic alkyl group include a cyclopentyl group, a cyclohexyl group, and an adamantyl group.
(3) Examples of the aryl group include a phenyl group and a naphthalene group.
(4) Examples of the aralkyl group include a benzyl group and a phenethyl group.
These can be introduced as a substituent after converting a non-reactive OH group into a reactive OH group after the formation of the cyclic ester compound.
The above-mentioned groups (1) to (4) correspond to non-reactive OH when producing a cyclic ester.
In addition, a group selected from the group consisting of (5) sugars, (6) amines, (7) amino acids, (8) peptides, and (9) nucleic acid can be used.
Further, an organic group may be bonded via phosphoric acid, sulfuric acid, silicon, or the like.
These can be introduced by converting a non-reactive OH group into a reactive OH group and then reacting with the compounds of (5), (6), (7) and (8).
Also, R 3 And R 4 May be the same or different.
[0014]
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. The halogen atom may be in a state of being substituted with an organic group.
Examples of the metal atom include alkali metals such as lithium, sodium, potassium, rubidium, and cesium; alkaline earth metals such as beryllium, magnesium, calcium, strontium, and barium; and metal atoms such as boron, aluminum, titanium, tin, and iron. be able to. Organic groups may be included via these.
[0015]
Regarding the organic group, the case of a group other than the above (1) to (4) will be described.
(5) The saccharide is not particularly limited, but is usually a monosaccharide or an oligosaccharide. Monosaccharides include pentoses, hexoses, deoxyhexoses, heptose, amino sugars, and specifically, arabinose, ribose, xylose, glucose, galactose, mannose, fructose, rhamnose, fucose, digitoxose, timalose, oleandrose, digitalose, Examples include apiose, hamamelose, streptose, sedoheptulose, coliose, glucosamine, galactosamine, 2-deoxy-2-methylaminoglucose and the like. Examples of the oligosaccharide include non-reducing oligosaccharides and reducing oligosaccharides, and specific examples include sucrose, trehalose, gentianose, raffinose, lactose, cellobiose, maltose, and gentiobiose.
[0016]
(6) The amines usually contain 50 or less carbon atoms, 20 or less oxygen atoms, 30 or less nitrogen atoms, 5 or less sulfur atoms, and preferably 35 or less carbon atoms, 5 or less oxygen atoms, 15 or less nitrogen atoms, It is composed of the number 3 or less, more preferably the number of carbons 2 to 20, the number of oxygen 3 or less, the number of nitrogen 2 to 10 and the number of sulfur 1 or less.
(7) Specific examples of the amino acids include glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, glutamic acid, asparagine, glutamine, lysine, ornithine, arginine, histidine, hydroxylysine, cysteine, cystine, and methionine. Phenylalanine, tyrosine, tryptophan, proline, 4-hydroxyproline, tricominic acid, ibotenic acid, quisqualic acid, canavanine, kainate, domoic acid, 1-aminocyclopropanecarboxylic acid, 2- (methylenecyclopropyl) glycine, hypoglycine A , 3-cyanoalanine, avenic acid, mugineic acid, mimosin, levodopa, β-hydroxy-γ-methylflutamic acid, 5-hydroxytryptophan, pantothenic acid, laminin, betacani For example. In addition, amines having a sulfonic acid group such as taurine are also included.
[0017]
The amines may be substituted with a halogen atom. Examples of the halogen atom include fluorine, chlorine, bromine, and iodine, and one or more amines may be substituted. Further, a phosphoric acid group and an amino alcohol may be bonded. Amino alcohols include choline, ethanolamine, and serine.
[0018]
(8) The peptides are not particularly limited, but are usually nitrogen-containing polymers. Examples include polycondensation compounds with two or more amino acids or polypeptides such as proteins, myoglobin, and hemoglobin.
[0019]
(9) Examples of the nucleic acid include nucleosides, nucleotides, and polymer chains in nucleotide units. The nucleoside refers to a nucleoside in which a base of cytosine, thymine, adenine or guanine is linked to a sugar of 2-deoxyribose or ribose. The nucleotides are those in which a phosphate group is bonded to the sugar of the nucleoside. Thymine may be uracil.
[0020]
As the organic group, the following known compounds can be used as groups. An example of a commercially available reagent is described.
Embedded image
Figure 2004075586
Embedded image
Figure 2004075586
[0021]
Further, in addition to the above-mentioned organic groups, conventionally known compounds can be used as groups. An example is described.
Embedded image
Figure 2004075586
Figure 2004075586
Figure 2004075586
Figure 2004075586
[0022]
The cyclic ester compound obtained by the present invention is a surface active substance, and can be used when producing products requiring various surface activities.
The compound of the present invention is a chiral compound, can selectively obtain only a specific optical isomer, and can exert a remarkable effect when used in a product requiring the properties of the optical isomer. .
The configuration of the compounds represented by the general formulas (1) to (3) can be represented by the following four combinations according to the combination of the secondary hydroxyl groups of glycerol. That is, the secondary hydroxyl group of two molecules of glycerol represents a combination of (R, R), (R, S), (S, R), and (S, S).
[0023]
The production method of the compound of the present invention is as follows.
When the glycerol derivative is reacted with the dicarboxylic acid derivative, two glycerols having a cyclic ester formed by four ester bonds and a novel cyclic compound as a derivative thereof are synthesized.
The raw material of the glycerol derivative used in the above step includes a chiral compound having a structural formula of HOCH 2 CH (OH) CH 2 It is a derivative of the compound represented by OH. With respect to this chiral glycerol, glycerol obtained by protecting the hydroxyl group at the 1-position or the 2-position or the 1- and 2-positions and obtained by optical resolution or resolution using an enzyme can be used. Specifically, (S)-(+)-2,2-dimethyl-1,3-dioxolan-4-methanol or (R)-(-)-2,2-dimethyl-1,3-dioxolan-4 -Use methanol or (R)-(+)-3-benzyloxy-1,2-propanediol or (S)-(-)-3-benzyloxy-1,2-propanediol.
The chiral compound is reacted with the organic group dicarboxylic acid.
A group selected from the group consisting of an alkyl group, a cyclic alkyl group, an aryl group, and an aralkyl group, which are organic groups to be bonded by an ester bond, can be introduced.
[0024]
A commercially available or synthesized dicarboxylic acid derivative is used.
Examples of the alkyl dicarboxylic acid include malonic acid, alkyl dicarboxylic acids such as 1,12-dodecane dicarboxylic acid, and examples of the aromatic dicarboxylic acid include terephthalic acid, diphenyl dicarboxylic acid, and examples of the alicyclic dicarboxylic acid include isocitrate lactone. .
This dicarboxylic acid can be used as an acid chloride of dicarboxylic acid. For example, alicyclic dicarboxylic acids such as alkyl dicarboxylic acid dichlorides such as dodecane dioil dichloride, aromatic dicarboxylic acid chlorides such as terephthalic acid dichloride, and 2-oxotetrahydrofuran-4,5-dicarboxylic acid dichloride (acid chloride of lactone isocitrate). Acid chloride and the like.
[0025]
An inorganic acid such as hydrochloric acid, sulfuric acid, or nitric acid can be used to form an ester bond. Alternatively, a condensing agent such as dicyclohexylcarbodiimide (DCC) can be used.
If necessary, it can be combined with a base such as triethylamine, pyridine or 4-dimethylaminopyridine (DMAP).
[0026]
A glycerol consisting of this chiral compound, wherein the compound is in a non-reactive state except for one OH group, and a glycerol consisting of another similarly produced chiral compound, wherein one OH When a compound which is in a non-reactive state except for a group is reacted with the dicarboxylic acid or dicarboxylic acid chloride which is a dicarboxylic acid derivative, an ester linked by two ester bonds consisting of a desired chiral isomer A compound can be obtained.
Next, the two non-reactive OH groups of the obtained ester compound are converted into reactive OH groups, and the same operation as in the previous esterification is repeated to form two new ester bonds. Thus, a desired novel cyclic ester compound linked by a total of four esters can be obtained.
A novel cyclic ester compound in which two molecules of glycerol are linked to a dicarboxylic acid of an organic group selected from an alkylene group, a phenylene group, a cyclopentylene group, and a cyclohexylene group by four ester bonds can be obtained.
In addition, it is possible to convert the remaining non-reactive OH group into a reactive OH group, and further produce a derivative thereof.
[0027]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples. The present invention is not limited to this specific example.
The examples described below were performed according to the following procedures. In the examples, the compounds used in the examples and the resulting compounds are described by adding numbers after the compounds (for example, described as compound 1, compound 2). In addition, for these compounds shown in the following procedures, only the numbers are described. For example, Compound 1 of the example is described as 1. In addition, degrees described as degrees with respect to temperature represent degrees Celsius.
Embedded image
Figure 2004075586
Embedded image
Figure 2004075586
Embedded image
Figure 2004075586
Embedded image
Figure 2004075586
Embedded image
Figure 2004075586
[0028]
Example 1
Under an argon atmosphere, dimethyl sulfoxide was added to 30 equivalents of finely ground potassium hydroxide to form a suspension. Under cooling with water, a solution of (S)-(+)-2,2-dimethyl-1,3-dioxolan-4-methanol (compound 1) in dimethyl sulfoxide was added dropwise. Next, 3.5 equivalents of benzyl bromide were added dropwise. After stirring at room temperature for 3 hours, the reaction was stopped by adding ice water, extracted with ethyl acetate, washed with ice water and saturated saline, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (5% ethyl acetate / hexane) to obtain Compound 2.
Similarly, compound 20 was obtained from (S)-(−)-2,2-dimethyl-1,3-dioxolan-4-methanol (compound 19).
[0029]
Example 2
A 10% aqueous acetic acid solution was added to compound 2, and the mixture was heated at 90 ° C. for 3 hours. After cooling, the mixture was extracted with ethyl acetate, washed with water, a saturated aqueous solution of sodium hydrogencarbonate and saturated saline, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (80% ethyl acetate / hexane) to obtain Compound 3.
Similarly, compound 21 was obtained from compound 20.
[0030]
Example 3
Under an argon atmosphere, an equivalent amount of tert-butylchlorodiphenylsilane (TBDPS) was added dropwise to a solution of imidazole and compound 3 in dimethylformamide under ice cooling under an argon atmosphere, and the mixture was stirred at the same temperature for 3 hours. The reaction was quenched by adding ice water, extracted with ether, washed with ice water and saturated saline, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (5 to 10% ethyl acetate / hexane) to obtain Compound 4.
Similarly, compound 22 was obtained from compound 21.
[0031]
Example 4
Under an argon atmosphere, to a solution of 1.2 equivalents of 4-dimethylaminopyridine of compound 4 in anhydrous methylene chloride was added dropwise a solution of 0.5 equivalents of dodecanedioil chloride (compound 5) in anhydrous methylene chloride under ice-cooling. Stirred at room temperature for 5 hours.
The reaction was stopped by adding ice water, extracted with methylene chloride, washed sequentially with a cold 10% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution, and a saturated saline solution, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (15% ethyl acetate / hexane) to obtain Compound 6.
[0032]
Example 5
Acetic acid was added to a solution of compound 6 in anhydrous tetrahydrofuran under an argon atmosphere. Under ice-cooling, a THF solution of 4 equivalents of 1.0 M tetrabutylammonium fluoride was added, and the mixture was stirred at the same temperature for 10 hours. After adding ice water, the mixture was extracted with ether, washed with ice water, a cold 5% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution and a saturated saline solution, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (40 to 50% ethyl acetate / hexane) to obtain Compound 7 in 92% yield.
Similarly, compound 24 was obtained from compound 23.
[0033]
Example 6
Under an argon atmosphere, 2.4 equivalents of triethylamine were added to a solution of compound 7 and 0.4 equivalents of 4-dimethylaminopyridine in anhydrous methylene chloride, and a solution of compound 5 in anhydrous methylene chloride was slowly added at -78 ° C. For 24 hours. The reaction mixture was poured into ice water to stop the reaction, extracted with methylene chloride, washed with a cold 10% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution, and a saturated saline solution, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (20% ethyl acetate / hexane) to obtain Compound 8 in a yield of 53%.
Similarly, Compound 25 was obtained from Compound 24.
[0034]
Compound 8 and compound 25 were identified by 1H-NMR spectrum.
[0035]
The results are as follows.
1 H-NMR (TMS, CDCl 3 ) Δ: 7.28-7.37 (10H, m), 5.26-5.30 (2H, m,), 4.56 (2H, d, J = 12.2 Hz), 4.52 (2H , D, J = 12.2 Hz), 4.40 (2H, dd, J = 12.0, 2.6 Hz), 4.19 (2H, dd, J = 12.0, 7.5 Hz), 3. 59 (2H, dd, J = 10.4, 5.3 Hz), 3.58 (2H, dd, J = 10.4, 5.3 Hz), 2.33 (4H, dt, J = 15.5, 7.6 Hz), 2.26 (4H, dt, J = 15.5, 7.6 Hz), 1.61 (8H, ddt, J = 15.5, 15.5, 7.3 Hz), 1.26 -1.32 (24H, m).
[0036]
Example 7
20% palladium hydroxide / carbon was added to a solution of compound 8 in tetrahydrofuran, and the mixture was purged with hydrogen and stirred for 40 minutes. After dilution with chloroform, the mixture was filtered through Celite, and the solvent was distilled off. The residue was purified by silica gel column chromatography (5% methanol / chloroform) to give Compound 9 in 99% yield.
Similarly, compound 26 was obtained from compound 25.
[0037]
Compound 9 and compound 26 1 It was identified by 1 H-NMR spectrum.
[0038]
The results are as follows.
1 H-NMR (TMS, CDCl 3 ) Δ: 5.12-5.16 (2H, m), 4.38 (2H, dd, J = 12.2, 2.7 Hz), 4.25 (2H, dd, J = 12.2, 6) 3.7 Hz), 3.74 (4H, dd, J = 5.8, 5.6 Hz), 2.35 (4H, dt, J = 14.8, 7.4 Hz), 2.32 (4H, dt, J = 14.8, 7.4 Hz), 2.02 (2H, dt, J = 5.8, 2.9 Hz), 1.65 (8H, ddt, J = 14.8, 14.8, 7.6). 6 Hz), 1.28-1.33 (24H, m).
[0039]
Example 8
Under an argon atmosphere, a chloroform solution of 5 equivalents of triethylamine and compound 9 was added dropwise to a chloroform solution of 3 equivalents of 2-bromoethyldichlorophosphate under ice-cooling, followed by stirring at the same temperature for 4 hours to obtain compound 10. .
Similarly, compound 16, compound 27, and compound 33 were obtained from compound 15, compound 26, and compound 32, respectively.
[0040]
Example 9
A 0.1 N aqueous potassium chloride solution was added to a chloroform solution of the compound 10, and the mixture was stirred at room temperature for 1 hour. After extraction with chloroform, the solvent was distilled off under reduced pressure to obtain Compound 11.
Similarly, compound 17, compound 28, and compound 34 were obtained from compound 16, compound 27, and compound 33, respectively.
[0041]
Example 10
A 30% aqueous solution of triethylamine was added to a mixed solvent of the compound 11 in acetonitrile: chloroform: isopropanol = 1: 1: 1, and the mixture was heated at 70 ° C. for 2 hours. After cooling, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (65: 25: 4 to 65: 35: 8 = chloroform: methanol: water) to obtain Compound 12 at a yield of 59%. Was.
[0042]
Compound 12, compound 18, compound 29 and compound 35 were identified by 1H-NMR spectrum.
[0043]
The results are as follows.
1 H-NMR (TMS, CDCl 3 3.) δ: 5.14-5.18 (2H, m), 4.37 (2H, dd, J = 12.0, 2.6 Hz), 4.14-4.19 (4H, m), 4. 06 (2H, dd, J = 12.0, 4.6 Hz), 3.89 (4H, dd, J = 6.7, 6.7 Hz), 3.54 (4H, t, J = 2.3 Hz) , 3.12 (18H, s), 2.19-2.25 (8H, m), 1.40-1.56 (8H, m), 1.20-1.24 (24H, m).
[0044]
Example 11
20% palladium hydroxide / carbon was added to an ethanol solution of compound 6, and the mixture was purged with hydrogen and stirred for 10 hours. After dilution with chloroform, the mixture was filtered through Celite. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (30% ethyl acetate / hexane) to obtain Compound 13 in a yield of 82%.
Similarly, compound 30 was obtained from compound 23.
[0045]
Example 12
Under an argon stream, 2.4 equivalents of triethylamine were added to a solution of compound 13 and a catalytic amount of 4-dimethylaminopyridine in anhydrous methylene chloride, and a solution of compound 5 in anhydrous methylene chloride was added at -78 ° C. Stirred for hours. The reaction solution was poured into ice water, extracted with methylene chloride, washed with a cold 10% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution, and a saturated saline solution, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (15% ethyl acetate / hexane) to obtain Compound 14 with a yield of 63%.
Similarly, compound 31 was obtained from compound 30.
[0046]
Compounds 14 and 32 were identified by 1H-NMR spectrum.
[0047]
The results are as follows.
1 H-NMR (TMS, CDCl 3 ) Δ: 7.63-7.66 (8H, m), 7.36-7.45 (12H, m), 5.19-5.23 (2H, m), 4.46 (2H, dd, J = 11.9, 2.7 Hz), 4.23 (2H, dd, J = 11.9, 7.3 Hz), 3.77 (2H, dd, J = 10.7, 5.5 Hz), 3 0.72 (2H, dd, J = 10.7, 4.9 Hz), 2.26 (4H, dt, J = 14.2, 7.3 Hz), 2.24 (4H, dt, J = 14.2) , 7.3 Hz), 1.57 (8H, ddt, J = 14.2, 14.2, 7.1 Hz), 1.23-1.30 (24H, m), 1.04 (18H, s) .
[0048]
Example 13
Acetic acid was added to a tetrahydrofuran solution of compound 14 under an argon atmosphere, and a 1.0 M tetrabutylammonium fluoride solution in tetrahydrofuran was added under ice cooling, followed by stirring at the same temperature for 6 hours. Ice water was added, extracted with ether, washed with ice water, a cold 5% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution, and a saturated saline solution, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was separated by silica gel column chromatography (5% methanol / chloroform) to obtain Compound 15 at a yield of 91%.
Similarly, compound 32 was obtained from compound 31.
[0049]
Compound 15 and compound 32 were identified by 1H-NMR spectrum.
[0050]
The results are as follows.
1 H-NMR (TMS, CDCl 3 ) Δ: 5.12-5.16 (2H, m), 4.38 (2H, dd, J = 12.2, 2.6 Hz), 4.23 (2H, dd, J = 12.2,6) 2.8 Hz), 3.73 (4H, d, J = 5.3 Hz), 2.45 (2H, brs), 2.34 (4H, dt, J = 14.6, 7.4 Hz), 2.31 (4H, dt, J = 14.6, 7.4 Hz), 1.62 (8H, ddt, J = 14.6, 14.6, 7.3 Hz), 1.27-1.33 (24H, m ).
[0051]
Example 14
Under an argon atmosphere, an anhydrous methylene chloride solution of the compound 4 and an anhydrous methylene chloride solution of the compound 5 are simultaneously and slowly stirred at -78 degrees in a solution of 1.2 equivalents of triethylamine and 0.2 equivalents of 4-dimethylaminopyridine in anhydrous methylene chloride. added. After stirring at the same temperature for 4 hours, the temperature was returned to ice cooling, a solution of Compound 22 in anhydrous methylene chloride was added dropwise, and the mixture was stirred at room temperature. After 5 hours, a 5% hydrochloric acid aqueous solution of ice was added, and the mixture was extracted with methylene chloride. The extract was washed with a saturated aqueous solution of sodium bicarbonate and brine, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure to obtain Compound 23 in a yield of 55 to 65%.
[0052]
Example 15
Under an argon atmosphere, an anhydrous methylene chloride solution of the compound 1 and an anhydrous methylene chloride solution of the compound 5 are slowly and simultaneously added to a solution of 1.2 equivalents of triethylamine and 0.2 equivalents of 4-dimethylaminopyridine in anhydrous methylene chloride at -78 degrees. added. After stirring at the same temperature for 4 hours, the temperature was returned to ice cooling, an anhydrous methylene chloride solution of compound 4 was added dropwise, and the mixture was stirred at room temperature. After 5 hours, a 5% hydrochloric acid aqueous solution of ice was added, and the mixture was extracted with methylene chloride. The extract was washed with a saturated aqueous solution of sodium bicarbonate and brine, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure to obtain Compound 36 in a yield of 50 to 85%.
Similarly, Compound 45 was obtained from Compound 1, Compound 22 and Compound 5.
[0053]
Example 16
An 80% aqueous acetic acid solution was added to Compound 36, and the mixture was heated at 60 ° C. for 5 hours. After cooling, the solvent was distilled off under reduced pressure to give Compound 37 quantitatively.
Similarly, compound 46 was obtained from compound 45.
[0054]
Example 17
Under an argon atmosphere, 2 equivalents of imidazole were added to a solution of the compound 37 in dimethylformamide, and under ice cooling, an equivalent of tert-butylchlorodiphenylsilane was added, followed by stirring at the same temperature for 3 hours. The reaction was quenched by adding ice water, extracted with ether, washed with ice water and saturated saline, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure to obtain Compound 38 in a yield of 85%.
Similarly, compound 47 was obtained from compound 46.
[0055]
Example 18
20% palladium hydroxide / carbon was added to an ethanol solution of compound 38, and the mixture was purged with hydrogen and stirred for 10 hours. After dilution with chloroform, the mixture was filtered through Celite. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (30% ethyl acetate / hexane) to give Compound 39 quantitatively.
Similarly, compound 48 was obtained from compound 47.
[0056]
Example 19
Under an argon stream, 2.4 equivalents of triethylamine were added to a solution of compound 39 and a catalytic amount of 4-dimethylaminopyridine in anhydrous methylene chloride, and a solution of compound 5 in anhydrous methylene chloride was added at -78 ° C. Stirred for hours. The reaction solution was poured into ice water, extracted with methylene chloride, washed with a cold 10% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution, and a saturated saline solution, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (15% ethyl acetate / hexane) to obtain Compound 40 at 40-55%.
Similarly, compound 49 was obtained from compound 48.
[0057]
Compound 40 and compound 49 were identified by 1H-NMR spectrum.
[0058]
The results are as follows.
1 H-NMR (TMS, CDCl 3 ) Δ: 7.63-7.66 (8H, m), 7.36-7.45 (12H, m), 5.19-5.23 (2H, m), 4.46 (2H, dd, J = 11.9, 2.7 Hz), 4.23 (2H, dd, J = 11.9, 7.3 Hz), 3.77 (2H, dd, J = 10.7, 5.5 Hz), 3 0.72 (2H, dd, J = 10.7, 4.9 Hz), 2.26 (4H, dt, J = 14.2, 7.3 Hz), 2.24 (4H, dt, J = 14.2) , 7.3 Hz), 1.57 (8H, ddt, J = 14.2, 14.2, 7.1 Hz), 1.23-1.30 (24H, m), 1.04 (18H, s) .
[0059]
Example 20
Acetic acid was added to a tetrahydrofuran solution of the compound 40 under an argon atmosphere, and a 1.0 M tetrabutylammonium fluoride solution in tetrahydrofuran was added under ice cooling, followed by stirring at the same temperature for 8 hours. Ice water was added, extracted with ether, washed with ice water, a cold 5% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution, and a saturated saline solution, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was separated by silica gel column chromatography (5% methanol / chloroform) to obtain Compound 41 at 70-80%.
Similarly, compound 50 was obtained from compound 49.
[0060]
Compound 41 and compound 50 were identified by 1H-NMR spectrum.
[0061]
The results are as follows.
1 H-NMR (TMS, CDCl 3 ) Δ: 5.12-5.16 (2H, m), 4.38 (2H, dd, J = 12.2, 2.7 Hz), 4.25 (2H, dd, J = 12.2, 6) 3.7 Hz), 3.74 (4H, dd, J = 5.8, 5.6 Hz), 2.35 (4H, dt, J = 14.8, 7.4 Hz), 2.32 (4H, dt, J = 14.8, 7.4 Hz), 2.02 (2H, dt, J = 5.8, 2.9 Hz), 1.65 (8H, ddt, J = 14.8, 14.8, 7.6). 6 Hz), 1.28-1.33 (24H, m).
[0062]
Example 21
Under an argon atmosphere, a chloroform solution of 5 equivalents of triethylamine and compound 41 was added dropwise to a chloroform solution of 3 equivalents of 2-bromoethyldichlorophosphate under ice-cooling, and the mixture was stirred at the same temperature for 4 hours to obtain compound 42. .
Similarly, compound 51 was obtained from compound 50.
[0063]
Example 22
A 0.1 N aqueous potassium chloride solution was added to a chloroform solution of compound 42, and the mixture was stirred at room temperature for 1 hour. After extraction with chloroform, the solvent was distilled off under reduced pressure to obtain Compound 43.
Similarly, compound 52 was obtained from compound 51.
[0064]
Example 23
A 30% aqueous solution of triethylamine was added to a mixed solvent of the compound 43 in acetonitrile: chloroform: isopropanol = 1: 1: 1, and the mixture was heated at 70 ° C. for 2 hours. After cooling, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (65: 25: 4 to 65: 35: 8 = chloroform: methanol: water) to obtain compound 44 at 50-60%. Was.
Similarly, compound 53 was obtained from compound 52.
[0065]
Compound 44 and compound 53 were identified by 1H-NMR spectrum.
[0066]
The results are as follows.
1 H-NMR (TMS, CDCl 3 3.) δ: 5.14-5.18 (2H, m), 4.37 (2H, dd, J = 12.0, 2.6 Hz), 4.14-4.19 (4H, m), 4. 06 (2H, dd, J = 12.0, 4.6 Hz), 3.89 (4H, dd, J = 6.7, 6.7 Hz), 3.54 (4H, t, J = 2.3 Hz) , 3.12 (18H, s), 2.19-2.25 (8H, m), 1.40-1.56 (8H, m), 1.20-1.24 (24H, m).
[0067]
Example 24
Under an argon atmosphere, a solution of 0.5 equivalent of Compound 5 in anhydrous methylene chloride was added dropwise to a solution of Compound 1, 1.2 equivalents of 4-dimethylaminopyridine in anhydrous methylene chloride under ice-cooling, followed by stirring at room temperature for 4 hours. . The reaction was stopped by adding ice water, extracted with methylene chloride, washed sequentially with a cold 10% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution, and a saturated saline solution, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (10% ethyl acetate / hexane) to obtain Compound 54 at 90-95%.
[0068]
Example 25
A 10% aqueous acetic acid solution was added to compound 54, and the mixture was heated at 90 ° C. for 5 hours. After cooling, the solvent was distilled off under reduced pressure to obtain Compound 55 at 81-96%.
[0069]
Example 26
Under an argon stream, 2.4 equivalents of triethylamine were added to a solution of compound 55 and a catalytic amount of 4-dimethylaminopyridine in anhydrous methylene chloride, and a solution of compound 5 in anhydrous methylene chloride was added slowly at -78 ° C over 5 hours. And stirred at the same temperature for 24 hours. The reaction solution was poured into ice water, extracted with methylene chloride, washed with a cold 10% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution, and a saturated saline solution, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (50% ethyl acetate / hexane) to obtain Compound 56 at 45-60%.
[0070]
Compound 56 was identified by its 1 H-NMR spectrum.
[0071]
The results are as follows.
1 H-NMR (TMS, CDCl 3 ) [Delta]: 4.38 (2H, m), 4.25-4.23 (8H, m), 2.35-2.25 (8H, m), 2.00 (2H, bs), 1.68. -1.65 (8H, m), 1.33-1.29 (24H, m).
[0072]
Example 27
Under an argon atmosphere, 5 equivalents of triethylamine and a chloroform solution of compound 56 were added dropwise to a chloroform solution of 3 equivalents of 2-bromoethyldichlorophosphate under ice-cooling, and the mixture was stirred at the same temperature for 4 hours to obtain compound 57. .
[0073]
Example 28
A 0.1 N aqueous potassium chloride solution was added to a chloroform solution of compound 57, and the mixture was stirred at room temperature for 1 hour. After extraction with chloroform, the solvent was distilled off under reduced pressure to obtain Compound 58.
[0074]
Example 29
A 30% aqueous solution of triethylamine was added to a mixed solvent of the compound 58 in acetonitrile: chloroform: isopropanol = 1: 1: 1, and the mixture was heated at 70 ° C. for 2 hours. After cooling, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (65: 25: 4 to 65: 35: 8 = chloroform: methanol: water) to obtain compound 59 at 50-65%. Was.
[0075]
Compound 59 was identified by its 1 H-NMR spectrum.
[0076]
The results are as follows.
1 H-NMR (TMS, CDCl 3 ) Delta: 4.41 (2H, m), 4.32-4.23 (8H, m), 4.06-3.43 (8H, m), 3.30 (18H, s), 2.19. -2.25 (8H, m), 1.40-1.56 (8H, m), 1.20-1.24 (24H, m).
[0077]
Example 30
Under an argon stream, 2.4 equivalents of triethylamine were added to a catalytic amount of 4-dimethylaminopyridine in anhydrous methylene chloride, and an anhydrous methylene chloride solution of p-benzenedicarboxylic acid dichloride (Compound 60) and Compound 1 were added under ice cooling. The mixture was slowly added at the same time, and stirred at the same temperature for 6 hours. Further, compound 19 was slowly added at the same temperature, followed by stirring at room temperature for 4 hours. The reaction solution was poured into ice water, extracted with methylene chloride, washed with a cold 10% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution, and a saturated saline solution, and dried over anhydrous magnesium sulfate. After filtration, the solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (15% ethyl acetate / hexane) to obtain 85% of compound 61.
[0078]
Example 31
A 10% aqueous acetic acid solution was added to compound 61, and the mixture was heated at 90 ° C. for 5 hours. After cooling, the solvent was distilled off under reduced pressure to obtain Compound 62 at 80-90%.
[0079]
Example 32
Under an argon stream, to a solution of compound 62 and a catalytic amount of 4-dimethylaminopyridine in anhydrous methylene chloride, 2.4 equivalents of triethylamine was added, and at -78 ° C, a solution of compound 60 in anhydrous methylene chloride was slowly added over 5 hours. And stirred at the same temperature for 24 hours. The reaction solution was poured into ice water, extracted with methylene chloride, washed with a cold 10% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution, and a saturated saline solution, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (50% ethyl acetate / hexane) to obtain Compound 63 at 50-60%.
[0080]
Compound 63 was identified by its 1 H-NMR spectrum.
[0081]
The results are as follows.
1 H-NMR (TMS, CDCl 3 ) Δ: 6.26 (8H, bs), 4.38 (2H, m), 4.25-4.23 (8H, m).
[0082]
Example 33
Under an argon atmosphere, a chloroform solution of 5 equivalents of triethylamine and compound 63 was added dropwise to a chloroform solution of 3 equivalents of 2-bromoethyldichlorophosphate under ice-cooling, followed by stirring at the same temperature for 4 hours to obtain compound 64. .
[0083]
Example 34
A 0.1 N aqueous solution of potassium chloride was added to a chloroform solution of Compound 64, and the mixture was stirred at room temperature for 1 hour. After extraction with chloroform, the solvent was distilled off under reduced pressure to obtain Compound 65.
[0084]
Example 35
A 30% aqueous triethylamine solution was added to a mixed solvent of the compound 65 in acetonitrile: chloroform: isopropanol = 1: 1: 1, and the mixture was heated at 70 ° C. for 2 hours. After cooling, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (65: 25: 4 to 65: 35: 8 = chloroform: methanol: water) to obtain compound 66 at 50-60%. Was.
[0085]
Compound 66 was identified by 1 H-NMR spectrum.
[0086]
The results are as follows.
1 H-NMR (TMS, CDCl 3 ) Δ: 6.25 (8H, m), 4.41 (2H, m), 4.32-4.23 (8H, m), 4.06-3.43 (8H, m), 3.30 (18H, s).
[0087]
Example 36
Under an argon atmosphere, an anhydrous methylene chloride solution of the compound 19 and an anhydrous methylene chloride solution of the compound 67 were slowly and simultaneously added to a solution of 1.2 equivalents of triethylamine and 0.2 equivalents of 4-dimethylaminopyridine in anhydrous methylene chloride at -78 degrees. added. After stirring at the same temperature for 4 hours, the temperature was returned to ice cooling, a solution of Compound 22 in anhydrous methylene chloride was added dropwise, and the mixture was stirred at room temperature. After 5 hours, a 5% hydrochloric acid aqueous solution of ice was added, and the mixture was extracted with methylene chloride. The extract was washed with a saturated aqueous solution of sodium bicarbonate and brine, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure to obtain Compound 68 in a yield of 50-80%.
Similarly, compound 77 was obtained from compound 19, compound 4 and compound 67.
[0088]
Example 37
An 80% aqueous acetic acid solution was added to compound 68, and the mixture was heated at 60 ° C. for 5 hours. After cooling, the solvent was distilled off under reduced pressure to give Compound 69 quantitatively.
Similarly, compound 78 was obtained from compound 77.
[0089]
Example 38
Under an argon atmosphere, 2 equivalents of imidazole were added to a dimethylformamide solution of the compound 69, and under ice cooling, an equivalent of tert-butylchlorodiphenylsilane was added, followed by stirring at the same temperature for 3 hours. The reaction was quenched by adding ice water, extracted with ether, washed with ice water and saturated saline, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure to obtain Compound 70 in a yield of 70 to 80%.
Similarly, compound 79 was obtained from compound 78.
[0090]
Example 39
20% palladium hydroxide / carbon was added to an ethanol solution of compound 70, and the mixture was purged with hydrogen and stirred for 10 hours. After dilution with chloroform, the mixture was filtered through Celite. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (30% ethyl acetate / hexane) to give Compound 71 quantitatively.
Similarly, compound 80 was obtained from compound 79.
[0091]
Example 40
Under an argon stream, 2.4 equivalents of triethylamine were added to a dry solution of compound 71 and a catalytic amount of 4-dimethylaminopyridine in anhydrous methylene chloride, and a solution of compound 5 in anhydrous methylene chloride was added at -78 ° C. Stirred for hours. The reaction solution was poured into ice water, extracted with methylene chloride, washed with a cold 10% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution, and a saturated saline solution, and dried over anhydrous magnesium sulfate. After filtration, the solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (15% ethyl acetate / hexane) to give Compound 72 at 30-40%.
Similarly, compound 81 was obtained from compound 80.
[0092]
Compound 72 and compound 81 were identified by 1H-NMR spectrum.
[0093]
The results are as follows.
1 H-NMR (TMS, CDCl 3 ) Δ: 7.63-7.66 (8H, m), 7.36-7.45 (12H, m), 5.23-5.32 (2H, m), 4.38 (2H, dd, J = 12.0, 2.9 Hz), 4.19 (2H, dd, J = 12.0, 7.1 Hz), 3.59 (2H, dd, J = 10.4, 5.2 Hz), 3 .57 (2H, dd, J = 10.4, 5.3 Hz), 2.32 (8H, dt, J = 14.9, 6.8 Hz), 1.59 (8H, m), 1.26 ( 40H, bs).
[0094]
Example 41
Under an argon atmosphere, acetic acid was added to a tetrahydrofuran solution of the compound 72, and a 1.0 M tetrabutylammonium fluoride solution in tetrahydrofuran was added under ice cooling, followed by stirring at the same temperature for 8 hours. Ice water was added, extracted with ether, washed with ice water, a cold 5% aqueous hydrochloric acid solution, a saturated aqueous sodium hydrogen carbonate solution, and a saturated saline solution, and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was separated by silica gel column chromatography (5% methanol / chloroform) to obtain 70-80% of compound 73.
Similarly, compound 82 was obtained from compound 81.
[0095]
Compound 73 and compound 82 were identified by 1H-NMR spectrum.
[0096]
The results are as follows.
1 H-NMR (TMS, CDCl 3 ) Δ: 5.13-5.09 (2H, m), 4.35 (2H, dd, J = 12.2, 3.4 Hz), 4.25 (2H, dd, J = 12.2, 6) .4 Hz), 3.74 (4H, dd, J = 6.4, 6.1 Hz), 2.33 (8H, dt, J = 17.1, 7.6 Hz), 2.00 (2H, t, J = 6.4 Hz), 1.63 (8H, m), 1.25-1.33 (40H, m).
[0097]
Example 42
Under an argon atmosphere, a chloroform solution of 5 equivalents of triethylamine and a compound 73 was added dropwise to a chloroform solution of 3 equivalents of 2-bromoethyldichlorophosphate under ice-cooling, followed by stirring at the same temperature for 4 hours to obtain a compound 74. .
Similarly, compound 83 was obtained from compound 82.
[0098]
Example 43
A 0.1N aqueous solution of potassium chloride was added to a chloroform solution of compound 74, and the mixture was stirred at room temperature for 1 hour. After extraction with chloroform, the solvent was distilled off under reduced pressure to obtain Compound 75.
Similarly, compound 84 was obtained from compound 83.
[0099]
Example 44
A 30% aqueous solution of triethylamine was added to a mixed solvent of compound 75 in acetonitrile: chloroform: isopropanol = 1: 1: 1, and the mixture was heated at 70 ° C. for 2 hours. After cooling, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (65: 25: 4 to 65: 35: 8 = chloroform: methanol: water) to obtain compound 76 at 50-60%. Was.
Similarly, compound 85 was obtained from compound 84.
[0100]
Compound 76 and compound 85 were identified by 1H-NMR spectrum.
[0101]
The results are as follows.
1 H-NMR (TMS, CDCl 3 ) Δ: 5.14-5.18 (2H, m), 4.37 (2H, dd, J = 12.2, 2.7 Hz), 4.14-4.19 (4H, m), 4. 06 (2H, dd, J = 12.2, 7.5 Hz), 3.89 (4H, dd, J = 6.6, 5.6 Hz), 3.54 (4H, m), 3.12 (18H , S), 2.19-2.30 (8H, m), 1.50 (8H, m), 1.20-1.22 (40H, m).
[0102]
【The invention's effect】
According to the present invention, a cyclic ester compound having two glycerols and four ester bonds in the same molecule can be obtained. These compounds are surface-active and are used in industry and in the home, for example in the fields of metalworking, mining, surface finishing, washing and cleaning, cosmetics, medicine and food processing and cooking, in particular emulsifiers, demulsifiers, detergents , Dispersants and hydrotropes.

Claims (6)

下記一般式(1)で表されることを特徴とする環状エステル化合物。
【化1】(1)
Figure 2004075586
(式中、RとRは有機基を表し、RとRは水素原子、ハロゲン原子、金属原子、リン酸、硫酸、有機基を表す。有機基は炭素数が150以下であり、水素原子、ハロゲン原子、金属原子、酸素原子、窒素原子、硫黄原子、燐原子、珪素原子を含んでも良い。RとR、RとRは同一であっても、または異なるものであっても良い。)
A cyclic ester compound represented by the following general formula (1):
Embedded image (1)
Figure 2004075586
(Wherein, R 1 and R 2 represent an organic group, and R 3 and R 4 represent a hydrogen atom, a halogen atom, a metal atom, phosphoric acid, sulfuric acid, and an organic group. The organic group has 150 or less carbon atoms. , A hydrogen atom, a halogen atom, a metal atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, wherein R 1 and R 2 , R 3 and R 4 may be the same or different May be used.)
下記一般式(2)で表されることを特徴とする環状エステル化合物。
【化2】(2)
Figure 2004075586
(式中、R〜Rは前記一般式(1)の化合物の置換基と同じである。)
A cyclic ester compound represented by the following general formula (2):
Embedded image (2)
Figure 2004075586
(In the formula, R 1 to R 4 are the same as the substituents of the compound of the general formula (1).)
下記一般式(3)で表されることを特徴とする環状エステル化合物。
【化3】(3)
Figure 2004075586
(式中、R〜Rは前記一般式(1)の化合物の置換基と同じである。)
A cyclic ester compound represented by the following general formula (3).
Embedded image (3)
Figure 2004075586
(In the formula, R 1 to R 4 are the same as the substituents of the compound of the general formula (1).)
下記一般式(4)から一般式(7)で表される中から選ばれるいずれか一つの環状エステル化合物。
【化4】(4)
Figure 2004075586
【化5】(5)
Figure 2004075586
【化6】(6)
Figure 2004075586
【化7】(7)
Figure 2004075586
(式中、R〜Rは前記一般式(1)の化合物の置換基と同じである。)
Any one cyclic ester compound selected from the following general formulas (4) to (7).
(4)
Figure 2004075586
(5)
Figure 2004075586
(6)
Figure 2004075586
(7)
Figure 2004075586
(In the formula, R 1 to R 4 are the same as the substituents of the compound of the general formula (1).)
下記一般式(8)から一般式(11)で表される中から選ばれるいずれか一つの環状エステル化合物。
【化8】(8)
Figure 2004075586
【化9】(9)
Figure 2004075586
【化10】(10)
Figure 2004075586
【化11】(11)
Figure 2004075586
(式中、R〜Rは、前記一般式(1)の化合物の置換基と同じである。)
Any one cyclic ester compound selected from the following general formulas (8) to (11).
(8)
Figure 2004075586
(9)
Figure 2004075586
Embedded image (10)
Figure 2004075586
Embedded image (11)
Figure 2004075586
(In the formula, R 1 to R 4 are the same as the substituents of the compound of the general formula (1).)
下記一般式(12)から一般式(15)で表される中から選ばれるいずれか一つの環状エステル化合物。
【化12】(12)
Figure 2004075586
【化13】(13)
Figure 2004075586
【化14】(14)
Figure 2004075586
【化15】(15)
Figure 2004075586
(式中、R〜Rは、前記一般式(1)の化合物の置換基と同じである。)
Any one cyclic ester compound selected from the following general formulas (12) to (15).
Embedded image (12)
Figure 2004075586
Embedded image (13)
Figure 2004075586
(14)
Figure 2004075586
Embedded image (15)
Figure 2004075586
(In the formula, R 1 to R 4 are the same as the substituents of the compound of the general formula (1).)
JP2002236247A 2002-08-14 2002-08-14 Cyclic ester compound Expired - Lifetime JP4677550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236247A JP4677550B2 (en) 2002-08-14 2002-08-14 Cyclic ester compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236247A JP4677550B2 (en) 2002-08-14 2002-08-14 Cyclic ester compound

Publications (2)

Publication Number Publication Date
JP2004075586A true JP2004075586A (en) 2004-03-11
JP4677550B2 JP4677550B2 (en) 2011-04-27

Family

ID=32020477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236247A Expired - Lifetime JP4677550B2 (en) 2002-08-14 2002-08-14 Cyclic ester compound

Country Status (1)

Country Link
JP (1) JP4677550B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162953A (en) * 2006-12-28 2008-07-17 National Institute Of Advanced Industrial & Technology Cyclic ether amide compound
JP2009519901A (en) * 2005-11-22 2009-05-21 アロマジェン・コーポレーション Glycerol levulinate ketals and their use
US8632612B2 (en) 2010-09-07 2014-01-21 Segetis, Inc. Compositions for dyeing keratin fibers
JP2015172011A (en) * 2014-03-11 2015-10-01 国立研究開発法人産業技術総合研究所 Pseudo-cyclic lipid compound
US9156809B2 (en) 2012-11-29 2015-10-13 Segetis, Inc. Carboxy ester ketals, methods of manufacture, and uses thereof
CN107614475A (en) * 2015-09-24 2018-01-19 欣耀生医股份有限公司 Effective in treatment hepatotoxicity wind agitation and the compound of Fatty Liver Disease and application thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009519901A (en) * 2005-11-22 2009-05-21 アロマジェン・コーポレーション Glycerol levulinate ketals and their use
US8492433B2 (en) 2005-11-22 2013-07-23 Segetis, Inc. Glycerol levulinate ketals and their use in the manufacture of polyurethanes, and polyurethanes formed therefrom
US8906961B2 (en) 2005-11-22 2014-12-09 Segetis, Inc. Glycerol levulinate ketals and their use in the manufacture of polyurethanes, and polyurethanes formed therefrom
JP2008162953A (en) * 2006-12-28 2008-07-17 National Institute Of Advanced Industrial & Technology Cyclic ether amide compound
US8632612B2 (en) 2010-09-07 2014-01-21 Segetis, Inc. Compositions for dyeing keratin fibers
US9156809B2 (en) 2012-11-29 2015-10-13 Segetis, Inc. Carboxy ester ketals, methods of manufacture, and uses thereof
JP2015172011A (en) * 2014-03-11 2015-10-01 国立研究開発法人産業技術総合研究所 Pseudo-cyclic lipid compound
CN107614475A (en) * 2015-09-24 2018-01-19 欣耀生医股份有限公司 Effective in treatment hepatotoxicity wind agitation and the compound of Fatty Liver Disease and application thereof
JP2018537517A (en) * 2015-09-24 2018-12-20 シニュー・ファーマ・インコーポレイテッドSiNew Pharma Inc. Compounds effective for the treatment of hepatotoxicity and fatty liver disease and uses thereof
EP3353144A4 (en) * 2015-09-24 2019-06-05 Sinew Pharma Inc. Compounds effective in treating hepatotoxicity and fatty liver diseases and uses thereof
JP2022009680A (en) * 2015-09-24 2022-01-14 シニュー・ファーマ・インコーポレイテッド Compounds effective for treating hepatotoxicity and fatty liver diseases and uses thereof
JP7261850B2 (en) 2015-09-24 2023-04-20 シニュー・ファーマ・インコーポレイテッド Effective compounds and uses thereof for the treatment of hepatotoxicity and fatty liver disease

Also Published As

Publication number Publication date
JP4677550B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
EP0113599B1 (en) Process for the organic synthesis of oligonucleotides containing galactosamin-uron-acid motives, oligosaccharides obtained and their biological applications
JP7377266B2 (en) Method for producing mannose derivatives
JPH0313239B2 (en)
WO2015106624A1 (en) 2,4(1h,3h)-pyrimidinedione derivatives and preparation method therefor
HUT51282A (en) Process for producing saccharose-poly-ester
JP2004075586A (en) Cyclic ester compound
Csuk et al. Chain elongation of aldonolactones
JP7369989B2 (en) Methods for producing sugar chains, building blocks and compounds for sugar chain synthesis
FI90551B (en) A process for preparing a therapeutically useful sialosyl glyceride
JP4831403B2 (en) Glycero compound having triple bond and film material containing the same
JP2004244388A (en) Sphingolipid derivative
JP2004002215A (en) Method for producing sphingolipid derivative
JP2005239680A (en) Fluorine-containing unsaturated lipid derivative
JP2003286281A (en) Cyclic ether compound
JP4300293B2 (en) Fluorine-containing unsaturated thiol derivative
JP4189485B2 (en) Cyclic amide compound
JP2005060326A (en) Pseudocyclic amide compound and lipid nanotube
WO2003104248A2 (en) Derivatives of uronic (alkyl-d-mannopyranoside) acid, methods for the preparation thereof, and applications thereof
JPH0689015B2 (en) Method for producing tetraacetylarbutin
Doboszewski et al. Synthesis of 4-Deoxy-4-C-hydroxymethyl-α-L-Lyxo-Pyranosyl Thymine
JP6341479B2 (en) Pseudocyclic lipid compounds
JP4019125B2 (en) Highly fluorinated carboxylic acids and processes and intermediates therefor
JPH07145191A (en) Galactosyl phosphonate derivative
JP4756185B2 (en) Ferroelectric liquid crystal compounds
WO2022194924A1 (en) Chiral synthons for the synthesis of chiral phosphorothioates

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4677550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term