JP4756185B2 - Ferroelectric liquid crystal compounds - Google Patents

Ferroelectric liquid crystal compounds Download PDF

Info

Publication number
JP4756185B2
JP4756185B2 JP2006157282A JP2006157282A JP4756185B2 JP 4756185 B2 JP4756185 B2 JP 4756185B2 JP 2006157282 A JP2006157282 A JP 2006157282A JP 2006157282 A JP2006157282 A JP 2006157282A JP 4756185 B2 JP4756185 B2 JP 4756185B2
Authority
JP
Japan
Prior art keywords
group
ring
liquid crystal
added
ferroelectric liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006157282A
Other languages
Japanese (ja)
Other versions
JP2007326793A (en
Inventor
真 清水
巌 八谷
政継 秋田
隆司 浜口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITOH OIL CHEMICALS CO., LTD.
Mie University NUC
Original Assignee
ITOH OIL CHEMICALS CO., LTD.
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITOH OIL CHEMICALS CO., LTD., Mie University NUC filed Critical ITOH OIL CHEMICALS CO., LTD.
Priority to JP2006157282A priority Critical patent/JP4756185B2/en
Publication of JP2007326793A publication Critical patent/JP2007326793A/en
Application granted granted Critical
Publication of JP4756185B2 publication Critical patent/JP4756185B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は強誘電性液晶化合物に関し、更に詳しくは、酵素反応を用いることによって、不斉炭素を導入した新規の強誘電性液晶化合物に関する。   The present invention relates to a ferroelectric liquid crystal compound, and more particularly to a novel ferroelectric liquid crystal compound into which an asymmetric carbon is introduced by using an enzyme reaction.

強誘電性液晶は、現在最も研究が盛んに行われている液晶材料の1つで、次世代の液晶材料として期待されている。一般に、強誘電性液晶を与える化合物には、少なくとも、比較的フレキシブルな部分、極性基、不斉炭素、環構造部分等が存在していることが必要とされており、かかる強誘電性液晶材料としては種々のものが知られている。しかしながら、このような分子構造を有する材料の範囲としては、必ずしも広範囲には検討されておらず、限定されたものしか開発されていなかった。   Ferroelectric liquid crystal is one of the most actively studied liquid crystal materials and is expected as the next generation liquid crystal material. In general, a compound giving a ferroelectric liquid crystal is required to have at least a relatively flexible portion, a polar group, an asymmetric carbon, a ring structure portion, and the like. Various types are known. However, the range of materials having such a molecular structure has not necessarily been studied extensively, and only limited ones have been developed.

一方、酵素反応等を利用して、人に優しいファインケミカルズの合成、環境調和型の反応の開発が行われている。例えば、環境への負荷が少ないという特徴を持った生体触媒としてリパーゼを用い、リパーゼの示す高い基質特異性並びに立体選択性を利用し、例えばヒマシ油から種々の化合物を製造することも知られている(特許文献1〜3、非特許文献1、2)。しかしながら、環境への負荷が少ない生体触媒を用いて強誘電性液晶材料を合成する検討は殆どなされていなかった。   On the other hand, human-friendly fine chemicals synthesis and environment-friendly reactions are being developed using enzyme reactions and the like. For example, it is also known that lipase is used as a biocatalyst having a low environmental impact, and various compounds are produced from castor oil, for example, utilizing the high substrate specificity and stereoselectivity exhibited by lipase. (Patent Documents 1 to 3, Non-Patent Documents 1 and 2). However, there has been little research on synthesizing a ferroelectric liquid crystal material using a biocatalyst having a low environmental load.

例えば、特許文献4、5には、リパーゼを用いた、光学活性なハロゲン原子含有アルコールの製造方法が記載されており、これらが強誘電性液晶化合物の原料として用いられる可能性があることが示唆されてはいるが、実際にそれらを原料として得られた液晶化合物についての記載はなく、従って当然のことながら液晶性を示すデータは得られていなかった。   For example, Patent Documents 4 and 5 describe a method for producing an optically active halogen atom-containing alcohol using lipase, suggesting that these may be used as raw materials for ferroelectric liquid crystal compounds. However, there is no description of the liquid crystal compounds actually obtained using these as raw materials, and accordingly, data showing liquid crystal properties has not been obtained.

特開平02−013389号公報Japanese Patent Laid-Open No. 02-013389 特開2001−314735号公報JP 2001-314735 A 特開2005−237304号公報JP 2005-237304 A 特開平6−056721号公報JP-A-6-056721 特開2000−287696号公報JP 2000-287696 A 畑中、後藤、「固定化リパーゼによるヒマシ油の連続加水分解」、北九州工業専門高等学校報告、第36巻(2003年1月)、第65〜70頁Hatanaka, Goto, “Continuous hydrolysis of castor oil with immobilized lipase”, Kitakyushu Technical High School Report, Volume 36 (January 2003), 65-70 Charlotta Turner et al,「Lipase-CatalyzedMethanolysis of Triricinolein in Organic Solvent to Produce1,2(2,3)-Diricinolein」, Lipids,Vol.38(11),1197-1206(2003)Charlotta Turner et al, `` Lipase-CatalyzedMethanolysis of Triricinolein in Organic Solvent to Produce1,2 (2,3) -Diricinolein '', Lipids, Vol. 38 (11), 1197-1206 (2003)

本発明は上記背景技術に鑑みてなされたものであり、その課題は、新規な強誘電性液晶化合物を提供することにある。   The present invention has been made in view of the above-mentioned background art, and an object thereof is to provide a novel ferroelectric liquid crystal compound.

本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、酵素反応を用いて得られた不斉炭素を有する化合物を原料にし、更に化学反応を行うことによって、実際に液晶性を示す化合物を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor made liquid crystallinity by actually using a compound having an asymmetric carbon obtained by an enzymatic reaction as a raw material and further performing a chemical reaction. The present inventors have found a compound to be shown and completed the present invention.

すなわち、本発明は、不斉炭素原子を含有する化合物であって、該不斉炭素原子が酵素反応を用いて導入されたものであることを特徴とする強誘電性液晶化合物を提供するものである。   That is, the present invention provides a ferroelectric liquid crystal compound comprising an asymmetric carbon atom, wherein the asymmetric carbon atom is introduced using an enzymatic reaction. is there.

また本発明は、一般式(1)で表される化学構造を有する化合物、又は、上記強誘電性液晶化合物を提供するものである。

Figure 0004756185
[一般式(1)中、Xは置換基を有していてもよい芳香族環又は連結芳香族環を示し、Rは置換基を有していてもよい炭素数1〜24のアルキル基又は炭素数2〜24のアルケニル基を示し、Rは置換基を有していてもよい炭素数1〜6のアルキル基又は−COR'(R'は置換基を有していてもよい炭素数1〜6のアルキル基又はフェニル基を示す)を示し、Rは置換基を有していてもよい炭素数1〜13のアルキル基を示す。] Moreover, this invention provides the compound which has a chemical structure represented by General formula (1), or the said ferroelectric liquid crystal compound.
Figure 0004756185
[In General Formula (1), X represents an aromatic ring or a linked aromatic ring which may have a substituent, and R 1 represents an alkyl group having 1 to 24 carbon atoms which may have a substituent. Or an alkenyl group having 2 to 24 carbon atoms, wherein R 2 is an optionally substituted alkyl group having 1 to 6 carbon atoms or —COR ′ (R ′ is an optionally substituted carbon). R 3 represents an alkyl group having 1 to 13 carbon atoms which may have a substituent. ]

本発明によれば、人に優しい環境調和型の酵素反応を利用して、不斉炭素を有し液晶性を示す化合物を得ることができ、新規な強誘電性液晶化合物を提供できる。   According to the present invention, a compound having an asymmetric carbon and exhibiting liquid crystallinity can be obtained by utilizing an environmentally friendly enzyme reaction that is friendly to humans, and a novel ferroelectric liquid crystal compound can be provided.

以下、本発明について説明するが、本発明は以下の実施の形態に限定されるものではなく、任意に変形して実施することができる。   Hereinafter, the present invention will be described. However, the present invention is not limited to the following embodiments, and can be arbitrarily modified and implemented.

本発明は、不斉炭素原子を含有する化合物であって、該不斉炭素原子が酵素反応を用いて導入されたものであることを特徴とする強誘電性液晶化合物である。酵素反応を用いれば、環境に負荷をかけることがないのみならず、酵素反応が有する高い基質特異性や立体選択性を利用でき、純度の高い光学異性体を得ることができ、高性能の強誘電性液晶化合物が効率よく得ることが可能である。   The present invention is a ferroelectric liquid crystal compound containing an asymmetric carbon atom, wherein the asymmetric carbon atom is introduced using an enzymatic reaction. Enzymatic reactions can be used not only to put a burden on the environment, but also to utilize the high substrate specificity and stereoselectivity of enzymatic reactions, to obtain high-purity optical isomers, and high performance and strength. A dielectric liquid crystal compound can be obtained efficiently.

本発明によれば、ジアステレオマー比(以下、「%de」と略記することがある)の大きな化合物を好適に得ることが可能である。本発明においては、「%de」は液晶性を示す程度に充分に大きければ特に限定はないが、70以上が好ましく、80以上が特に好ましく、90以上が更に好ましい。ここで、「%de」は、実施例記載の方法で測定し、そのように測定した値として定義される。   According to the present invention, it is possible to suitably obtain a compound having a large diastereomer ratio (hereinafter sometimes abbreviated as “% de”). In the present invention, “% de” is not particularly limited as long as it is sufficiently large to exhibit liquid crystallinity, but is preferably 70 or more, particularly preferably 80 or more, and further preferably 90 or more. Here, “% de” is defined as a value measured by the method described in the examples and measured in such a manner.

強誘電性液晶化合物中に存在する不斉炭素原子が、酵素反応を用いて導入されたものであれば、具体的な強誘電性液晶化合物の化学構造は特に限定されないが、下記の一般式(1)で表される化学構造を有する化合物が好ましい。

Figure 0004756185
[一般式(1)中、Xは置換基を有していてもよい芳香族環又は連結芳香族環を示し、Rは置換基を有していてもよい炭素数1〜24のアルキル基又は炭素数2〜24のアルケニル基を示し、Rは置換基を有していてもよい炭素数1〜6のアルキル基又は−COR'(R'は置換基を有していてもよい炭素数1〜6のアルキル基又はフェニル基を示す)を示し、Rは置換基を有していてもよい炭素数1〜13のアルキル基を示す。] The specific chemical structure of the ferroelectric liquid crystal compound is not particularly limited as long as the asymmetric carbon atom present in the ferroelectric liquid crystal compound is introduced by an enzymatic reaction, but the following general formula ( A compound having the chemical structure represented by 1) is preferred.
Figure 0004756185
[In General Formula (1), X represents an aromatic ring or a linked aromatic ring which may have a substituent, and R 1 represents an alkyl group having 1 to 24 carbon atoms which may have a substituent. Or an alkenyl group having 2 to 24 carbon atoms, wherein R 2 is an optionally substituted alkyl group having 1 to 6 carbon atoms or —COR ′ (R ′ is an optionally substituted carbon). R 3 represents an alkyl group having 1 to 13 carbon atoms which may have a substituent. ]

一般式(1)中、Xは置換基を有していてもよい芳香族環又は連結芳香族環である。連結芳香族環とは1種又は2種以上の芳香族環が直接単結合で結合しているものをいう。ここで、芳香族環又は「連結芳香族環に含まれる1つの芳香族環」としては特に限定はないが、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環等の縮合炭化水素環;ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、プリン環、キノリン環、カルバゾール環等の窒素含有芳香族ヘテロ環;フラン環、チオフェン環、オキサゾール環、チアゾール環等の酸素若しくはイオウ含有芳香族ヘテロ環等が挙げられる。   In general formula (1), X is an aromatic ring or a linked aromatic ring which may have a substituent. A linked aromatic ring refers to one in which one or more aromatic rings are directly bonded by a single bond. Here, the aromatic ring or “one aromatic ring included in the linked aromatic ring” is not particularly limited, but is a condensed hydrocarbon ring such as a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyrene ring; Nitrogen-containing aromatic heterocycles such as pyrrole ring, imidazole ring, pyrazole ring, pyridine ring, pyrimidine ring, purine ring, quinoline ring, and carbazole ring; oxygen or sulfur-containing aromatics such as furan ring, thiophene ring, oxazole ring, and thiazole ring Group heterocycle and the like.

芳香族環又は「連結芳香族環に含まれる1つの芳香族環」として、特に好ましくはベンゼン環又はピリミジン環である。また、連結芳香族環としては、これらの芳香族環が単結合で結合したもの、すなわち、ビフェニル環、フェニルピリミジン環、ビピリミジン環等が特に好ましいものとして挙げられる。   The aromatic ring or “one aromatic ring included in the linked aromatic ring” is particularly preferably a benzene ring or a pyrimidine ring. Examples of the linked aromatic ring include those in which these aromatic rings are bonded by a single bond, that is, a biphenyl ring, a phenylpyrimidine ring, a bipyrimidine ring, and the like.

Xは置換基を有していてもよいが、その置換基として特に限定はなく、例えば、メチル基、エチル基等の低級アルキル基;水酸基;メトキシル基、エトキシル基等の低級アルコキシル基;フッ素、塩素等のハロゲン基;メトキシメチル基、メトキシエトキシメチル基等が挙げられる。   X may have a substituent, but the substituent is not particularly limited. For example, a lower alkyl group such as a methyl group or an ethyl group; a hydroxyl group; a lower alkoxyl group such as a methoxyl group or an ethoxyl group; fluorine, Halogen groups such as chlorine; methoxymethyl group, methoxyethoxymethyl group and the like.

一般式(1)中、Rは、置換基を有していてもよい炭素数1〜24個のアルキル基、又は、置換基を有していてもよい炭素数2〜24個のアルケニル基である。炭素数は好ましくは12〜22個、特に好ましくは14〜20個である。Rがアルケニル基の場合、二重結合の数は、液晶性の示し易さの点から、1〜5個が好ましく、1〜3個が特に好ましい。 In general formula (1), R 1 is an alkyl group having 1 to 24 carbon atoms which may have a substituent, or an alkenyl group having 2 to 24 carbon atoms which may have a substituent. It is. The number of carbon atoms is preferably 12-22, particularly preferably 14-20. When R 1 is an alkenyl group, the number of double bonds is preferably 1 to 5 and particularly preferably 1 to 3 from the viewpoint of easy liquid crystallinity.

中の置換基としては液晶性を示さなくなるようなものでなければ特に限定はないが、下記するようにヒマシ油を原料とするリシノール酸が水酸基を有することもあり、水酸基又は水酸基から誘導されるアルキルオキシ基、アリールオキシ基、エステル基等の置換基が好ましい。 The substituent in R 1 is not particularly limited as long as it does not exhibit liquid crystallinity, but ricinoleic acid using castor oil as a raw material may have a hydroxyl group as described below, and is derived from the hydroxyl group or the hydroxyl group. Substituents such as alkyloxy groups, aryloxy groups and ester groups are preferred.

本発明の強誘電性液晶化合物は、ヒマシ油又はヒマシ油の誘導体を原料として合成されたものであることが、環境に負荷を与えず、安価であり、酵素反応を受け易い等の点で特に好ましい。ヒマシ油はグリセロールのトリカルボン酸エステルであり、該カルボン酸はリシノール酸(12−ヒドロキシ−9−オクタデセン酸)を主成分とする。従って、Rは、リシノール酸(12−ヒドロキシ−9−オクタデセン酸)からカルボキシルのとれた、すなわち「−(CHCH=CHCHCH(OH)(CHCH」であることが特に好ましい。また、リシノール酸の水素化物(12−ヒドロキシオクタデカン酸)を原料とすることも好ましいので、Rは、リシノール酸の水素化物(12−ヒドロキシオクタデカン酸)からカルボキシルのとれた、すなわち「−(CH10CH(OH)(CHCH」であることも特に好ましい。 The ferroelectric liquid crystal compound of the present invention is synthesized from castor oil or a castor oil derivative as a raw material, particularly in that it does not give an environmental load, is inexpensive, and is susceptible to an enzymatic reaction. preferable. Castor oil is a tricarboxylic acid ester of glycerol, and the carboxylic acid is mainly composed of ricinoleic acid (12-hydroxy-9-octadecenoic acid). Accordingly, R 1 is carboxylated from ricinoleic acid (12-hydroxy-9-octadecenoic acid), that is, “— (CH 2 ) 7 CH═CHCH 2 CH (OH) (CH 2 ) 5 CH 3 ”. It is particularly preferred. It is also preferable to use ricinoleic acid hydride (12-hydroxyoctadecanoic acid) as a raw material, so that R 1 is a carboxyl taken from ricinoleic acid hydride (12-hydroxyoctadecanoic acid), that is, “— (CH 2) 10 CH (OH) ( CH 2) 5 that CH 3 "is also particularly preferred.

一般式(1)中、Rは、
(a)置換基を有していてもよい炭素数1〜6個のアルキル基、又は、
(b)−COR'(R'は、置換基を有していてもよい炭素数1〜6個のアルキル基、又は、置換基を有していてもよいフェニル基を示す)
である。
が上記(a)又は(b)である場合に、リパーゼ等の酵素を用いた酵素反応によって、ジアステレオマー比(%de)の大きな光学異性体が高収率で得られる。
In general formula (1), R 2 is
(A) an optionally substituted alkyl group having 1 to 6 carbon atoms, or
(B) —COR ′ (R ′ represents an optionally substituted alkyl group having 1 to 6 carbon atoms, or an optionally substituted phenyl group)
It is.
When R 2 is the above (a) or (b), an optical isomer having a large diastereomeric ratio (% de) can be obtained in a high yield by an enzymatic reaction using an enzyme such as lipase.

(a)置換基を有していてもよい炭素数1〜6個のアルキル基のアルキル基としては特に限定はないが、メチル基、エチル基、プロピル基等が好ましく、メチル基が反応性の点で特に好ましい。また、該アルキル基に対する置換基としては、メトキシル基、エトキシル基、ベンジルオキシ基、ビニル基、フェニル基、メトキシエトキシル基等が、酵素反応によってジアステレオマー比(%de)の大きな光学異性体が高収率で得られる点で特に好ましい。   (A) The alkyl group having 1 to 6 carbon atoms which may have a substituent is not particularly limited, but is preferably a methyl group, an ethyl group, a propyl group, or the like, and the methyl group is reactive. Particularly preferred in terms. As the substituent for the alkyl group, methoxyl group, ethoxyl group, benzyloxy group, vinyl group, phenyl group, methoxyethoxyl group, etc. are optical isomers having a large diastereomeric ratio (% de) by enzymatic reaction. This is particularly preferable in that it can be obtained in a high yield.

上記「置換基を有していてもよい炭素数1〜6個のアルキル基」がメチル基であり、かつ、該置換基がメトキシル基、エトキシル基、ベンジルオキシ基、ビニル基、フェニル基又はメトキシエトキシル基であるもの、すなわちそれらに対応してそれぞれ、メトキシメチル基、エトキシメチル基、ベンジルオキシメチル基、アリル基又はベンジル基であるものが更に好ましい。   The above “optionally substituted alkyl group having 1 to 6 carbon atoms” is a methyl group, and the substituent is a methoxyl group, an ethoxyl group, a benzyloxy group, a vinyl group, a phenyl group or a methoxy group. More preferred are those which are ethoxyl groups, that is, those corresponding to methoxymethyl group, ethoxymethyl group, benzyloxymethyl group, allyl group or benzyl group, respectively.

(b)−COR'としては、R'が、置換基を有していてもよい炭素数1〜6個のアルキル基、又は、置換基を有していてもよいフェニル基であれば特に限定はないが、アルキル基としてはメチル基、エチル基、プロピル基等が、酵素反応によって、高純度の光学異性体が高収率で得られる点で好ましい。それらの置換基としては特に限定はなく、例えば、メチル基、エチル基等の低級アルキル基;フッ素、塩素等のハロゲン基等が挙げられる。(b)−COR'として特に好ましくは、アセチル基、ベンゾイル基等である。   (B) -COR 'is particularly limited as long as R' is an alkyl group having 1 to 6 carbon atoms which may have a substituent or a phenyl group which may have a substituent. However, as the alkyl group, a methyl group, an ethyl group, a propyl group, or the like is preferable because a high-purity optical isomer can be obtained in a high yield by an enzymatic reaction. These substituents are not particularly limited, and examples thereof include lower alkyl groups such as a methyl group and an ethyl group; halogen groups such as fluorine and chlorine. (B) -COR 'is particularly preferably an acetyl group, a benzoyl group or the like.

一般式(1)中、Rは置換基を有していてもよい炭素数1〜13個のアルキル基であることが必須であるが、炭素数3〜9個のアルキル基であることが好ましく、炭素数5〜7個のアルキル基であることが特に好ましい。 In general formula (1), R 3 is an optionally substituted alkyl group having 1 to 13 carbon atoms, but is an alkyl group having 3 to 9 carbon atoms. An alkyl group having 5 to 7 carbon atoms is particularly preferable.

一般式(1)で表される化合物の合成方法は、酵素反応を用いて不斉炭素原子を導入できさえすれば特に限定はない。また、後述する実施例に具体的に記載された合成方法が特に好ましいものとして挙げられる。更に、実施例に示唆されている合成反応の要旨を逸脱しない範囲の合成方法、実施例に記載された合成方法を変形した合成方法等も好ましいものとして挙げられる。中でも特に、酵素反応を用いて不斉炭素原子を導入される化合物が、一般式(2)で表されるものであることが、リパーゼ等の酵素を用いた酵素反応によって、高純度の光学異性体が高収率で得られるので好ましい。   The method for synthesizing the compound represented by the general formula (1) is not particularly limited as long as an asymmetric carbon atom can be introduced using an enzymatic reaction. In addition, the synthesis methods specifically described in Examples described later are particularly preferable. Furthermore, a synthesis method within a range not departing from the gist of the synthesis reaction suggested in the examples, a synthesis method obtained by modifying the synthesis methods described in the examples, and the like are also preferable. In particular, the compound in which an asymmetric carbon atom is introduced using an enzyme reaction is represented by the general formula (2), which indicates that high-purity optical isomerism is achieved by an enzyme reaction using an enzyme such as lipase. The body is preferred because it is obtained in high yield.

Figure 0004756185
[一般式(2)中、Rは置換基を有していてもよい炭素数1〜24のアルキル基又は炭素数2〜24のアルケニル基を示し、Rは置換基を有していてもよい炭素数1〜6のアルキル基又は−COR'(R'は置換基を有していてもよい炭素数1〜6のアルキル基又はフェニル基を示す)を示す。]
Figure 0004756185
[In General Formula (2), R 1 represents an optionally substituted alkyl group having 1 to 24 carbon atoms or an alkenyl group having 2 to 24 carbon atoms, and R 2 has a substituent group. Or an alkyl group having 1 to 6 carbon atoms or —COR ′ (R ′ represents an optionally substituted alkyl group or phenyl group having 1 to 6 carbon atoms). ]

リパーゼ等を用いた酵素反応によって、例えば、下記の反応式(3)が進行し、本発明の強誘電性液晶化合物の原料となる化合物(反応式(3)中の「1−MAG」(1−モノアシルグリセロール))が、高純度の光学異性体として得られる。

Figure 0004756185
By the enzymatic reaction using lipase or the like, for example, the following reaction formula (3) proceeds, and the compound (“1-MAG” in the reaction formula (3) (1 Monoacylglycerol)) is obtained as a highly pure optical isomer.
Figure 0004756185

ここで、一般式(2)及び反応式(3)中のR及びRは、上記した一般式(1)中のものと同じであり、また、好ましい範囲等も同様である。 Here, R 1 and R 2 in the general formula (2) and the reaction formula (3) are the same as those in the general formula (1) described above, and preferred ranges and the like are also the same.

反応式(3)中の「1,3−DAG」(1,3−ジアシルグリセロール)は、グリセロールのトリカルボン酸エステルを、常法に従って、−OCORを−ORに置換して得られる一般には光学活性を示さない化合物である。 "1, 3-DAG" in the reaction formula (3) (1,3-diacylglycerol) is a tricarboxylic acid ester of glycerol, according to a conventional method, generally obtained by substituting -OCOR 1 to -OR 2 is It is a compound that does not show optical activity.

この場合、上記「グリセロールのトリカルボン酸エステル」としては、下記に示すトリリシノール酸グリセリドであることが、それがヒマシ油の主成分であり、ヒマシ油は塗料、潤滑剤、医薬品、化粧品等の用途に幅広く用いられており、重要な産業材料であるので特に好ましい。また、粘度が高く、水酸基価が大きく、石油系溶剤に溶けにくく、エーテル系溶媒に溶けやすく、高純度に得られる等の点でも特に好ましい。また、下記の式中、炭素間二重結合に水素を付加させた水素化物や、下記の式中の水酸基に反応を加えることによって水酸基を別の置換基とした化合物も、上記「グリセロールのトリカルボン酸エステル」として、同様の理由から好ましい。   In this case, the above-mentioned “tricarboxylic acid ester of glycerol” is a triricinoleic acid glyceride shown below, which is the main component of castor oil, which is used for paints, lubricants, pharmaceuticals, cosmetics, etc. It is particularly preferred because it is an important industrial material. Further, it is particularly preferable in that it has a high viscosity, a high hydroxyl value, is hardly soluble in petroleum solvents, is easily soluble in ether solvents, and can be obtained with high purity. In addition, in the following formula, a hydride obtained by adding hydrogen to a carbon-carbon double bond, and a compound in which a hydroxyl group is made another substituent by adding a reaction to the hydroxyl group in the following formula are also described in the above-mentioned “glycerol tricarboxylic acid”. The “acid ester” is preferable for the same reason.

Figure 0004756185
Figure 0004756185

反応式(3)に用いられる酵素としては特に限定はないが、常温・常圧下で特別な装置を使用せずに加水分解反応やエステル化反応が行える点でリパーゼが好ましい。リパーゼとしては、不斉炭素原子を導入し易いものであれば特に限定はないが、シュードモナス・セパシア菌(Pseudomonas cepacia)由来のリパーゼPS、シュードモナス・フルオレッセンス菌(Pseudomonas fluorescens)由来のリパーゼAK、ブタ膵臓(Porcine pancreas)由来のリパーゼPPL、カンジダ菌(Candida antarctica)由来のリパーゼCAL、カンジダ菌(Candida rugosa)由来のリパーゼAY等が好ましいものとして挙げられる。このうち、シュードモナス・セパシア菌(Pseudomonas cepacia)由来のリパーゼPS、又は、シュードモナス・フルオレッセンス菌(Pseudomonas fluorescens)由来のリパーゼAKが、加水分解速度が速く、また、ジアステレオ選択性が高い等の点で特に好ましい。   The enzyme used in the reaction formula (3) is not particularly limited, but lipase is preferable in that hydrolysis and esterification can be performed without using a special apparatus at normal temperature and pressure. The lipase is not particularly limited as long as it can easily introduce an asymmetric carbon atom, but lipase PS derived from Pseudomonas cepacia, lipase AK derived from Pseudomonas fluorescens, pig Preferred examples include lipase PPL derived from pancreas (Porcine pancreas), lipase CAL derived from Candida antarctica, lipase AY derived from Candida rugosa, and the like. Among them, lipase PS derived from Pseudomonas cepacia or lipase AK derived from Pseudomonas fluorescens has a high hydrolysis rate and high diastereoselectivity. Is particularly preferable.

酵素反応は、上記酵素等を用い、大気雰囲気下、一般式(2)で表される化合物等を、例えば有機溶媒−リン酸緩衝溶液中で行うことが好ましい。このとき、Rが上記した範囲のものであると、反応式(3)において、光学活性を示す1−MAGが効率よく生成する。 The enzyme reaction is preferably performed using, for example, the above-described enzyme or the like and the compound represented by the general formula (2) in an organic solvent-phosphate buffer solution in an air atmosphere. At this time, when R 2 is in the above-described range, 1-MAG showing optical activity is efficiently produced in the reaction formula (3).

1−MAGの水酸基に、R−O−X−COOH(式中、R、Xは、一般式(1)と同様である)を、常法に従って反応させて、一般式(1)で示される化合物を得ることができる。 R 3 —O—X—COOH (wherein R 3 and X are the same as those in the general formula (1)) are reacted with the hydroxyl group of 1-MAG according to a conventional method to give a general formula (1) The compounds shown can be obtained.

一般式(1)で表される化合物が、強誘電性液晶化合物として用いられ得る理由を以下に記すが、本発明は以下の理由によって何ら限定されるものではない。また、以下の化合物例に限定されるものでもない。   The reason why the compound represented by the general formula (1) can be used as a ferroelectric liquid crystal compound is described below, but the present invention is not limited to the following reason. Moreover, it is not limited to the following compound examples.

すなわち、下記の構造は一般的な強誘電性液晶の構造を表したものである。液晶性を示す化合物のほとんどは低分子の有機化合物であり、長細い立体構造をしている。左右非対称な一般式(1)で表される化合物は、下記の構造に類似しているために、強誘電性液晶化合物になり得たと考えられる。

Figure 0004756185
That is, the following structure represents a general ferroelectric liquid crystal structure. Most of the compounds exhibiting liquid crystallinity are low molecular organic compounds and have a long and thin three-dimensional structure. The compound represented by the left-right asymmetric general formula (1) is considered to have been able to be a ferroelectric liquid crystal compound because it is similar to the following structure.
Figure 0004756185

上記の構造で末端基とは、比較的フレキシブルな部分(一般式(1)中のR、R)であり、それは1−モノアシルグリセロール(1−MAG)の脂肪鎖の部分等に対応している。また極性基とは電子の偏りを持つ官能基であり、カルボニル基が対応している。更に、一般式(1)で表される化合物は不斉炭素を有している。つまり、ヒマシ油等のトリアシルグリセロールから誘導した化合物から、酵素反応によって1−モノアシルグリセロール(1−MAG)に変換することによって、強誘電性液晶の不斉炭素を持つフラグメントとなり、残りの環構造部分を導入することによって強誘電性液晶化合物を得ることができたと考えられる。 In the above structure, the terminal group is a relatively flexible part (R 1 and R 3 in the general formula (1)), which corresponds to a fatty chain part of 1-monoacylglycerol (1-MAG) and the like. is doing. A polar group is a functional group having an electron bias, and corresponds to a carbonyl group. Furthermore, the compound represented by the general formula (1) has an asymmetric carbon. That is, a compound derived from triacylglycerol, such as castor oil, is converted into 1-monoacylglycerol (1-MAG) by an enzymatic reaction to become a fragment having an asymmetric carbon of a ferroelectric liquid crystal, and the remaining ring It is considered that a ferroelectric liquid crystal compound could be obtained by introducing a structural portion.

このように、高い立体選択性で1−モノアシルグリセロール(1−MAG)を得る方法として、容易な実験操作で、環境に優しい手法であるリパーゼ等の酵素を利用した加水分解又はアシル転位によって、強誘電性液晶化合物を得ることができた。   As described above, as a method for obtaining 1-monoacylglycerol (1-MAG) with high stereoselectivity, hydrolysis or acyl rearrangement using an enzyme such as lipase, which is an environmentally friendly method, is performed by an easy experimental operation. A ferroelectric liquid crystal compound could be obtained.

以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded.

<NMRスペクトル、赤外吸収スペクトルの測定方法>
NMRスペクトルは、日本電子社製α−500 EX−270を用い、内部標準にテトラメチルシラン(TMS)を使用して常法に従って測定した。赤外吸収スペクトルは、日本分光社製FT/IR−460を使用し、常法に従って測定した。
<Method for measuring NMR spectrum and infrared absorption spectrum>
The NMR spectrum was measured according to a conventional method using α-500 EX-270 manufactured by JEOL Ltd. and tetramethylsilane (TMS) as an internal standard. The infrared absorption spectrum was measured according to a conventional method using FT / IR-460 manufactured by JASCO Corporation.

<比旋光度([α]D 26)の測定方法>
比旋光度([α]D 26)は、旋光度計、日本分光社製 P−1020を使用して、常法に従って測定した。
<Measurement method of specific rotation ([α] D 26 )>
Specific rotation ([α] D 26 ) was measured according to a conventional method using a polarimeter, P-1020 manufactured by JASCO Corporation.

<ジアステレオマー比(%de)の決定方法>
すべての化合物のジアステレオマー比(%de)の決定方法は、生成物の水酸基をすべてベンゾイル化した誘導体を、高速液体クロマトグラフィーを用い測定することによって決定した。高速液体クロマトグラフィーは、展開溶媒(ヘキサン:2−プロパノール=70:1)で、日立製作所社製、L−400UV Detector L−600 Pumpを使用し、ダイセル化学社製CHIRALCEL ODを用い測定した。
<Diastereomeric ratio (% de) determination method>
The method for determining the diastereomeric ratio (% de) of all the compounds was determined by measuring a derivative in which all the hydroxyl groups of the product were benzoylated using high performance liquid chromatography. The high performance liquid chromatography was measured with a developing solvent (hexane: 2-propanol = 70: 1) using a L-400UV Detector L-600 Pump manufactured by Hitachi, Ltd. and a CHIRALCEL OD manufactured by Daicel Chemical.

<原料、溶剤等の調製>
トリリシノール酸グリセリドは、伊藤製油社製のヒマシ油を、展開溶媒(ヘキサン:酢酸エチル=4:1)で、シリカゲルカラムクロマトグラフィーを用い精製し、純粋なトリリシノール酸グリセリドを得た。テトラヒドロフラン(THF)は、ナトリウムベンゾフェノンケチルから使用直前に蒸留したものを使用し、1,4−ジオキサンは水素化カルシウムで前乾燥したものを水素化カルシウム存在下で加熱還流し、その後蒸留したものを使用した。その他の試薬類は、市販品を蒸留するか若しくはそのまま使用した。カラムクロマトグラフィーを用いた精製には充填剤に関東化学社製シリカゲル60N(球状、中性)を使用し、薄層クロマトグラフィーを用いた精製では、Merck Kisel Gel PF254を担持したものを使用した。全ての反応は特別な場合を除き、アルゴン気流下で行ない、反応容器はセプタムで栓をし、無水溶媒や混合物は乾燥したシリンジを用いて移し変えた。
<Preparation of raw materials, solvents, etc.>
Triricinoleic acid glyceride was obtained by purifying castor oil manufactured by Ito Oil Co., Ltd. with a developing solvent (hexane: ethyl acetate = 4: 1) using silica gel column chromatography to obtain pure triricinoleic acid glyceride. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl immediately before use, and 1,4-dioxane was heated and refluxed in the presence of calcium hydride after pre-dried with calcium hydride, and then distilled. used. As other reagents, commercially available products were distilled or used as they were. For purification using column chromatography, silica gel 60N (spherical, neutral) manufactured by Kanto Chemical Co., Inc. was used for purification, and for purification using thin layer chromatography, a material carrying Merck Kisel Gel PF254 was used. All reactions were conducted under a stream of argon except under special circumstances, the reaction vessel was capped with a septum, and anhydrous solvents and mixtures were transferred using a dry syringe.

1.酵素反応に用いる原料の合成
原料合成例1
<1,3−ジ−12−ヒドロキシ−cis−9−オクタデノイルグリセロールの合成>
50mLの二口ナスフラスコにグリセロール(368.4mg、4.0mmol)と、4−ジメチルアミノピリジン(390.9mg、3.2mmol)を秤量して加え、アルゴン置換をした。ジクロロメタン(2.0mL)を加えた後、リシノール酸(1193.8mg、4.0mmol)にジクロロメタン(2.0mL)を加えて反応系に滴下し、ジクロロメタン(2.0mL)で洗浄し、洗浄液を反応系に加えることを2回繰り返した。
1. Synthetic raw material synthesis example 1
<Synthesis of 1,3-di-12-hydroxy -cis-9-Okutade cell noil glycerol>
Glycerol (368.4 mg, 4.0 mmol) and 4-dimethylaminopyridine (390.9 mg, 3.2 mmol) were weighed and added to a 50 mL two-necked eggplant flask, and purged with argon. Dichloromethane (2.0 mL) was added, dichloromethane (2.0 mL) was added to ricinoleic acid (1193.8 mg, 4.0 mmol) and added dropwise to the reaction system, and the mixture was washed with dichloromethane (2.0 mL). The addition to the reaction system was repeated twice.

0℃にし5分間攪拌した後、1,3−ジシクロへキシルカルボジイミド(990.4mg、4.8mmol)にジクロロメタン(2.0mL)を加え反応系に滴下し、もう一度ジクロロメタン(2.0mL)で洗浄し、洗浄液を反応系に加え、16時間攪拌した後、酢酸エチルを用いセライトろ過をし、ろ液を0.5M塩酸で洗浄し、無水硫酸ナトリウムで乾燥させた。綿栓ろ過したろ液をエバポレーターで濃縮し粗生成物を得た。   After stirring at 0 ° C. for 5 minutes, dichloromethane (2.0 mL) was added to 1,3-dicyclohexylcarbodiimide (990.4 mg, 4.8 mmol), and the mixture was added dropwise to the reaction system, and washed once more with dichloromethane (2.0 mL). The washing solution was added to the reaction system and stirred for 16 hours, and then filtered through Celite using ethyl acetate, and the filtrate was washed with 0.5 M hydrochloric acid and dried over anhydrous sodium sulfate. The filtrate filtered with a cotton plug was concentrated by an evaporator to obtain a crude product.

得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1)で精製し、下記の1,3−ジ−12−ヒドロキシ−cis−9−オクタデノイルグリセロールを得た。

Figure 0004756185
収率 :27% (712.6mg)
Rf値:0.6(ヘキサン:酢酸エチル=1:1)
形状 :無色オイル状 The resulting crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 5: 1) to give the 1,3-di-12-hydroxy -cis-9-Okutade cell noil glycerol below.
Figure 0004756185
Yield: 27% (712.6 mg)
Rf value: 0.6 (hexane: ethyl acetate = 1: 1)
Shape: colorless oil

1H NMR(270MHz,CDCl3):δ0.82-0.92(m,6H),1.20-1.40(m,32H),1.40-1.52(m,4H),1.52-1.61(m,7H),2.00-2.13(m,4H),2.14-2.25(m,4H),2.33(t,J=7.4Hz,4H),3.55-3.69(m,2H),4.03-4.29(m,5H),5.33-5.48(m,2H),5.48-5.65(m,2H) 1 H NMR (270 MHz, CDCl 3 ): δ 0.82-0.92 (m, 6H), 1.20-1.40 (m, 32H), 1.40-1.52 (m, 4H), 1.52-1.61 (m, 7H), 2.00- 2.13 (m, 4H), 2.14-2.25 (m, 4H), 2.33 (t, J = 7.4Hz, 4H), 3.55-3.69 (m, 2H), 4.03-4.29 (m, 5H), 5.33-5.48 ( m, 2H), 5.48-5.65 (m, 2H)

13C NMR(67.8MHz,CDCl3):δ14.0,14.1,22.5,24.7,25.6,27.2,28.9,29.2,31.7,34.0,35.2,36.7,64.9,67.9,71.4,76.5,77.0,77.5,125.2.133.0.173.6.173.7 13 C NMR (67.8 MHz, CDCl 3 ): δ 14.0, 14.1, 22.5, 24.7, 25.6, 27.2, 28.9, 29.2, 31.7, 34.0, 35.2, 36.7, 64.9, 67.9, 71.4, 76.5, 77.0, 77.5, 125.2.133.0.173.6.173.7

原料合成例2
<1,3−ジ−12−ヒドロキシ−cis−9−オクタデノイル−2−O−メトキシメチルグリセロールの合成>
原料合成例2−(1)
[2−O−メトキシメチル−1,3−ベンジリデングリセロールの合成]
50mLの二口ナスフラスコに、1,3−ベンジリデングリセロール(3.63g、19.8mmol)を秤量して加えアルゴン置換をした。ジクロロメタン(10.0mL)を加えたあと、ジイソプロピルエチルアミン(10.3mL、59.3mmol)を加えた。メチルクロロメチルエーテル(5.5mL、59.3mmol)を反応系に滴下し室温で19時間攪拌した後、1Mの塩酸を加えることによって反応を停止させた。ジクロロメタンで抽出し硫酸ナトリウムで乾燥させた。綿栓ろ過したろ液をエバポレーターで濃縮し粗生成物を得た。
Raw material synthesis example 2
<Synthesis of 1,3-di-12-hydroxy -cis-9-Okutade cell noil -2-O-methoxymethyl-glycerol>
Raw material synthesis example 2- (1)
[Synthesis of 2-O-methoxymethyl-1,3-benzylideneglycerol]
1,3-benzylideneglycerol (3.63 g, 19.8 mmol) was weighed and added to a 50 mL two-necked eggplant flask and purged with argon. Dichloromethane (10.0 mL) was added followed by diisopropylethylamine (10.3 mL, 59.3 mmol). Methyl chloromethyl ether (5.5 mL, 59.3 mmol) was added dropwise to the reaction system and stirred at room temperature for 19 hours, and then the reaction was stopped by adding 1 M hydrochloric acid. Extracted with dichloromethane and dried over sodium sulfate. The filtrate filtered with a cotton plug was concentrated by an evaporator to obtain a crude product.

得られた粗生成物を再結晶(ヘキサン:ベンゼン=4:3)で精製し、下記の2−O−メトキシメチル−1,3−ベンジリデングリセロールを得た。

Figure 0004756185
収率 :42%(1.86g)
Rf値:0.5(ヘキサン:酢酸エチル=1:1)
形状 :白色粉末結晶 The obtained crude product was purified by recrystallization (hexane: benzene = 4: 3) to obtain the following 2-O-methoxymethyl-1,3-benzylideneglycerol.
Figure 0004756185
Yield: 42% (1.86 g)
Rf value: 0.5 (hexane: ethyl acetate = 1: 1)
Shape: White powder crystal

1H NMR(270MHz,CDCl3):δ3.45(s, 3H),3.60-3.61(m,1H),4.13(d,J=1.3Hz,2H),4.31(d,J=1.3Hz,2H),4.82(s,2H),5.57(s,1H),7.34-7.37(m,3H),7.48-7.53(m,2H) 1 H NMR (270 MHz, CDCl 3 ): δ 3.45 (s, 3H), 3.60-3.61 (m, 1H), 4.13 (d, J = 1.3 Hz, 2H), 4.31 (d, J = 1.3 Hz, 2H ), 4.82 (s, 2H), 5.57 (s, 1H), 7.34-7.37 (m, 3H), 7.48-7.53 (m, 2H)

13C NMR(67.8MHz,CDCl3):δ55.0,67.6,69.2,94.5,100.8,125.8,127.8,128.5,137.8 13 C NMR (67.8 MHz, CDCl 3 ): δ 55.0, 67.6, 69.2, 94.5, 100.8, 125.8, 127.8, 128.5, 137.8

IR (CHCl3):2955,1454,1388,1215,1143,1036,745cm-1 IR (CHCl 3 ): 2955, 1454, 1388, 1215, 1143, 1036, 745 cm -1

原料合成例2−(2)
[2−O−メトキシメチルグリセロールの合成]
50mLの二口ナスフラスコに、原料合成例2−(1)で得られた2−O−メトキシメチル−1,3−ベンジリデングリセロール(547.3mg、2.44mmol)を秤量して加え、続いて10%パラジウム−炭素(542.4mg、0.49mmol)、メタノール(5.0mL)を加え水素置換をした。室温で13時間攪拌した後、セライトろ過をすることによって、10%パラジウム−炭素を除去し、反応を停止させ、エバポレーターで濃縮することによって、下記の2−O−メトキシメチルグリセロールを得た。
Raw material synthesis example 2- (2)
[Synthesis of 2-O-methoxymethylglycerol]
To a 50 mL two-necked eggplant flask, 2-O-methoxymethyl-1,3-benzylideneglycerol (547.3 mg, 2.44 mmol) obtained in Raw Material Synthesis Example 2- (1) was weighed and added. 10% palladium-carbon (542.4 mg, 0.49 mmol) and methanol (5.0 mL) were added to perform hydrogen replacement. After stirring for 13 hours at room temperature, 10% palladium-carbon was removed by celite filtration, the reaction was stopped, and the following 2-O-methoxymethylglycerol was obtained by concentrating with an evaporator.

Figure 0004756185
収率 :94%(313.5mg)
Rf値:0.2(ジクロロメタン:メタノール=9:1)
形状 :無色オイル状
Figure 0004756185
Yield: 94% (313.5 mg)
Rf value: 0.2 (dichloromethane: methanol = 9: 1)
Shape: colorless oil

1H NMR(270MHz,CDCl3):δ3.12(brs,1H), 3.45(s,3H),3.61-3.75(m,5H),4.77(s,2H) 1 H NMR (270 MHz, CDCl 3 ): δ 3.12 (brs, 1H), 3.45 (s, 3H), 3.61-3.75 (m, 5H), 4.77 (s, 2H)

13C NMR(67.8MHz,CDCl3):δ55.6,62.5,80.9,96.6 13 C NMR (67.8 MHz, CDCl 3 ): δ 55.6, 62.5, 80.9, 96.6

IR(CHCl3):3415,2944,1647,1455,1036,910,618 cm-1 IR (CHCl 3 ): 3415, 2944, 1647, 1455, 1036, 910,618 cm −1

原料合成例2−(3)
[1,3−ジ−12−ヒドロキシ−cis−9−オクタデノイル−2−O−メトキシメチルグリセロールの合成]
50mLの二口ナスフラスコに、原料合成例2−(2)で得られた2−O−メトキシメチルグリセロール(800.3mg、5.90mmol)と4−ジメチルアミノピリジン(1441.6mg、11.8mmol)を秤量して加え、アルゴン置換をした。リシノール酸(4210.5mg、14.11mmol)にジクロロメタン(2.0mL)を加えて反応系に滴下し、その後、ジクロロメタン(1.5mL)で洗浄し、洗浄液を反応系に加えることを2回繰り返した。
Raw material synthesis example 2- (3)
Synthesis of 1,3-di-12-hydroxy -cis-9-Okutade cell noil -2-O-methoxymethyl glycerol]
In a 50 mL two-necked eggplant flask, 2-O-methoxymethylglycerol (800.3 mg, 5.90 mmol) obtained in Raw Material Synthesis Example 2- (2) and 4-dimethylaminopyridine (1441.6 mg, 11.8 mmol) were prepared. ) Was weighed and added to replace with argon. Dichloromethane (2.0 mL) was added to ricinoleic acid (4210.5 mg, 14.11 mmol) and added dropwise to the reaction system, then washed with dichloromethane (1.5 mL), and the washing solution was added to the reaction system twice. It was.

0℃にし5分間攪拌した後、1,3−ジシクロへキシルカルボジイミド(4669.4mg、23.6mmol)にジクロロメタン(2.0mL)を加え反応系に滴下し、もう一度ジクロロメタン(2.0mL)で洗浄し、洗浄液を反応系に加え、16時間攪拌した。その後、酢酸エチルを用いセライトろ過をし、ろ液を0.5M塩酸で洗浄し無水硫酸ナトリウムで乾燥させた。綿栓ろ過したろ液をエバポレーターで濃縮し粗生成物を得た。   After stirring at 0 ° C. for 5 minutes, dichloromethane (2.0 mL) was added to 1,3-dicyclohexylcarbodiimide (4669.4 mg, 23.6 mmol), and the mixture was added dropwise to the reaction system, and washed once more with dichloromethane (2.0 mL). The washing solution was added to the reaction system and stirred for 16 hours. Thereafter, the mixture was filtered through Celite using ethyl acetate, and the filtrate was washed with 0.5 M hydrochloric acid and dried over anhydrous sodium sulfate. The filtrate filtered with a cotton plug was concentrated by an evaporator to obtain a crude product.

得られた粗生成物を、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1)で精製し、下記の1,3−ジ−12−ヒドロキシ−cis−9−オクタデノイル−2−O−メトキシメチルグリセロールを得た。

Figure 0004756185
収率 :52%(2129.3mg)
Rf値:0.7(ヘキサン:酢酸エチル=1:1)
形状 :無色オイル状 The resulting crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 5: 1) to give 1,3-di-12-hydroxy -cis-9-Okutade cell noil -2-O-following Methoxymethylglycerol was obtained.
Figure 0004756185
Yield: 52% (2219.3 mg)
Rf value: 0.7 (hexane: ethyl acetate = 1: 1)
Shape: colorless oil

1H NMR(270MHz,CDCl3):δ0.85-0.96(m, 6H),1.20-1.40(m,32H),1.40-1.52(m,4H),1.52-1.61(m,6H),2.00-2.13(m,4H),2.20(m,4H),2.33(t,J=7.4Hz,4H),3.40(s,3H),3.55-3.69(m,2H),4.01(t,J=5.0Hz,1H),4.11-4.17(m,2H),4.20-4.26(m,2H),4.71(s,2H),5.38-5.51(m,2H),5.53-5.60(m,2H) 1 H NMR (270 MHz, CDCl 3 ): δ 0.85-0.96 (m, 6H), 1.20-1.40 (m, 32H), 1.40-1.52 (m, 4H), 1.52-1.61 (m, 6H), 2.00- 2.13 (m, 4H), 2.20 (m, 4H), 2.33 (t, J = 7.4Hz, 4H), 3.40 (s, 3H), 3.55-3.69 (m, 2H), 4.01 (t, J = 5.0Hz , 1H), 4.11-4.17 (m, 2H), 4.20-4.26 (m, 2H), 4.71 (s, 2H), 5.38-5.51 (m, 2H), 5.53-5.60 (m, 2H)

13C NMR(67.8MHz,CDCl3):δ13.7,13.8,20.6,22.3,24.5,25.4,27.0,28.7,28.8,29.1,29.2,31.5,33.7,35.0,36.5,55.1,60.0,63.0,71.0,72.2,95.5,125.2,132.3 13 C NMR (67.8 MHz, CDCl 3 ): δ 13.7, 13.8, 20.6, 22.3, 24.5, 25.4, 27.0, 28.7, 28.8, 29.1, 29.2, 31.5, 33.7, 35.0, 36.5, 55.1, 60.0, 63.0, 71.0,72.2,95.5,125.2,132.3

IR(neat):2926,1739,1540,1037,677,441cm-1 IR (neat): 2926,1739,1540,1037,677,441cm -1

原料合成例3
<1,3−ジ−12−ヒドロキシ−cis−9−オクタデノイル−2−O−ベンジルオキシメチルグリセロールの合成>
原料合成例3−(1)
[1,3−ジ−O−tert−ブチルジメチルシリルグリセロールの合成]
100mLの二口ナスフラスコに、グリセロール(1668.4mg、18mmol)とジメチルアミノピリジン(3518.4mg、28.8mmol)を秤量して加えアルゴン置換をした。ジクロロメタン(18mL)を加えたあと、トリエチルアミン(5.1mL)を加えた。tert−ブチルジメチルシリルクロリド(5426.3mg、36.0mmol)に、ジクロロメタン(8mL)を加えて反応系に滴下し、ジクロロメタン(5mL)で洗浄し、洗浄液を反応系に加えることを2回繰り返した。16時間攪拌したあと、水を加えることによって反応を停止させた。ジエチルエーテルで抽出した後、集めた有機層を水、飽和塩化アンモニウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥させた。綿栓ろ過したろ液をエバポレーターで濃縮し粗生成物を得た。
Raw material synthesis example 3
<Synthesis of 1,3-di-12-hydroxy -cis-9-Okutade cell noil -2-O-benzyloxymethyl glycerol>
Raw Material Synthesis Example 3- (1)
[Synthesis of 1,3-di-O-tert-butyldimethylsilylglycerol]
Glycerol (1668.4 mg, 18 mmol) and dimethylaminopyridine (3518.4 mg, 28.8 mmol) were weighed and added to a 100 mL two-necked eggplant flask and purged with argon. Dichloromethane (18 mL) was added followed by triethylamine (5.1 mL). Dichloromethane (8 mL) was added to tert-butyldimethylsilyl chloride (5426.3 mg, 36.0 mmol), added dropwise to the reaction system, washed with dichloromethane (5 mL), and adding the washing solution to the reaction system was repeated twice. . After stirring for 16 hours, the reaction was stopped by adding water. After extraction with diethyl ether, the collected organic layer was washed with water and a saturated aqueous solution of ammonium chloride and dried over anhydrous sodium sulfate. The filtrate filtered with a cotton plug was concentrated by an evaporator to obtain a crude product.

得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=15:1)で精製し、下記の1,3−ジ−O−tert−ブチルジメチルシリルグリセロールを得た。

Figure 0004756185
収率 :77%(4440.0mg) 分子式:C1536Si
Rf値:0.32(ヘキサン:酢酸エチル=3:1)
形状 :無色オイル状 The obtained crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 15: 1) to obtain the following 1,3-di-O-tert-butyldimethylsilylglycerol.
Figure 0004756185
Yield: 77% (4440.0 mg) Molecular formula: C 15 H 36 O 3 Si 2
Rf value: 0.32 (hexane: ethyl acetate = 3: 1)
Shape: colorless oil

以上は文献既知であり、下記の文献に従って合成した。
参考文献:J.M.Chong,K.K.Sokoll,Tetrahedoron Lett.,33,879(1992).
The above is known in the literature and was synthesized according to the following literature.
References: JMChong, KKSokoll, Tetrahedoron Lett., 33, 879 (1992).

原料合成例3−(2)
[1,3−ジ−O−tert−ブチル−2−O−ベンジルオキシメチルグリセロールの合成]
50mLの二口ナスフラスコに、原料合成例3−(1)で得られた1,3−ジ−O−tert−ブチルジメチルシリルグリセロール(774.5mg、2.40mmol)を秤量して加えアルゴン置換をした。ジクロロメタン(10mL)を加え、0℃にし5分間攪拌した後、ジイソプロピルエチルアミン(0.52mL)を加えた。ベンジルクロロメチルエーテル(0.4mL)を加え、5分間攪拌した後に、室温に戻し14時間攪拌した。水を加えることによって反応を停止させ、ジエチルエーテルで抽出した後、集めた有機層を水、飽和塩化アンモニウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥させた。綿栓ろ過したろ液をエバポレーターで濃縮し粗生成物を得た。
Raw Material Synthesis Example 3- (2)
[Synthesis of 1,3-di-O-tert-butyl-2-O-benzyloxymethylglycerol]
To a 50 mL two-necked eggplant flask, 1,3-di-O-tert-butyldimethylsilylglycerol (774.5 mg, 2.40 mmol) obtained in Raw Material Synthesis Example 3- (1) was weighed and added, and purged with argon. Did. Dichloromethane (10 mL) was added, the mixture was stirred at 0 ° C. for 5 minutes, and diisopropylethylamine (0.52 mL) was added. Benzyl chloromethyl ether (0.4 mL) was added and stirred for 5 minutes, then returned to room temperature and stirred for 14 hours. The reaction was stopped by adding water and extracted with diethyl ether. The collected organic layer was washed with water and saturated aqueous ammonium chloride solution and dried over anhydrous sodium sulfate. The filtrate filtered with a cotton plug was concentrated by an evaporator to obtain a crude product.

得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=25:1)で精製し、下記の1,3−ジ−O−tert−ブチル−2−O−ベンジルオキシメチルグリセロールを得た。

Figure 0004756185
収率 :83%(880.7mg) 分子式:C2344Si
Rf値:0.6(ヘキサン:酢酸エチル=3:1)
形状 :無色オイル状 The obtained crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 25: 1) to obtain the following 1,3-di-O-tert-butyl-2-O-benzyloxymethylglycerol. .
Figure 0004756185
Yield: 83% (880.7mg) Molecular formula: C 23 H 44 O 4 Si 2
Rf value: 0.6 (hexane: ethyl acetate = 3: 1)
Shape: colorless oil

以上は文献既知であり、下記の文献に従って合成した。
参考文献:J. M. Chong,K.K.Sokoll,Tetrahedoron Lett.,33,879(1992).
The above is known in the literature and was synthesized according to the following literature.
References: JM Chong, KKSokoll, Tetrahedoron Lett., 33, 879 (1992).

原料合成例3−(3)
[2−O−ベンジルオキシメチルグリセロールの合成]
50mLの二口ナスフラスコに、原料合成例3−(2)で得られた1,3−ジ−O−tert−ブチル−2−O−ベンジルオキシメチルグリセロール(1432.5mg、3.25mmol)を秤量して加え、アルゴン置換をした。1MのテトラブチルアンモニウムフルオリドTHF溶液(13mL、13mmol)を加え、3時間攪拌した。水を加えることによって反応を停止させ、酢酸エチル、ジエチルエーテル、クロロホルムで各2回ずつ抽出し、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥させた。綿栓ろ過したろ液をエバポレーターで濃縮し粗生成物を得た。
Raw Material Synthesis Example 3- (3)
[Synthesis of 2-O-benzyloxymethylglycerol]
In a 50 mL two-necked eggplant flask, 1,3-di-O-tert-butyl-2-O-benzyloxymethylglycerol (1432.5 mg, 3.25 mmol) obtained in Raw Material Synthesis Example 3- (2) was added. Weighed and added, and replaced with argon. 1M tetrabutylammonium fluoride in THF (13 mL, 13 mmol) was added and stirred for 3 hours. The reaction was stopped by adding water, extracted twice with ethyl acetate, diethyl ether, and chloroform, washed with a saturated aqueous sodium chloride solution, and dried over anhydrous sodium sulfate. The filtrate filtered with a cotton plug was concentrated by an evaporator to obtain a crude product.

得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製し、下記の2−O−ベンジルオキシメチルグリセロールを得た。

Figure 0004756185
収率 :48%(336.6mg) 分子式:C1116
Rf値:0.1(ヘキサン:酢酸エチル=1:2)
形状 :無色オイル状 The obtained crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain the following 2-O-benzyloxymethylglycerol.
Figure 0004756185
Yield: 48% (336.6 mg) Molecular formula: C 11 H 16 O 4
Rf value: 0.1 (hexane: ethyl acetate = 1: 2)
Shape: colorless oil

以上は文献既知であり、下記の文献に従って合成した。
参考文献:J. M.Chong,K.K.Sokoll,Tetrahedoron Lett.,33,879(1992).
The above is known in the literature and was synthesized according to the following literature.
References: JMChong, KKSokoll, Tetrahedoron Lett., 33, 879 (1992).

原料合成例3−(4)
[1,3−ジ−12−ヒドロキシ−cis−9−オクタデノイル−2−O−ベンジルオキシメチルグリセロールの合成]
30mLの二口ナスフラスコに、原料合成例3−(3)で得られた2−O−ベンジルオキシメチルグリセロール(61.9mg、0.29mmol)と4−ジメチルアミノピリジン(57.0mg、0.47mmol)を秤量して加え、アルゴン置換をした。リシノール酸(348.1mg、1.17mmol)にジクロロメタン(0.5mL)を加えて反応系に滴下し、ジクロロメタン(0.5mL)で洗浄し、洗浄液を反応系に加えることを2回繰り返した。
Raw Material Synthesis Example 3- (4)
Synthesis of 1,3-di-12-hydroxy -cis-9-Okutade cell noil -2-O-benzyloxymethyl glycerol]
In a 30 mL two-necked eggplant flask, 2-O-benzyloxymethylglycerol (61.9 mg, 0.29 mmol) obtained in the raw material synthesis example 3- (3) and 4-dimethylaminopyridine (57.0 mg, 0. 47 mmol) was weighed and added to replace with argon. Dichloromethane (0.5 mL) was added to ricinoleic acid (348.1 mg, 1.17 mmol), added dropwise to the reaction system, washed with dichloromethane (0.5 mL), and adding the washing solution to the reaction system was repeated twice.

次いで、0℃にし5分間攪拌した後、1,3−ジシクロへキシルカルボジイミド(150.6mg、0.73mg)に、ジクロロメタン(0.5mL)を加え反応系に滴下し、もう一度ジクロロメタン(1.0mL)で洗浄し、洗浄液を反応系に加え、17時間攪拌した後、酢酸エチルを用いセライトろ過をし、ろ液を0.5M塩酸で洗浄し、無水硫酸ナトリウムで乾燥させた。綿栓ろ過したろ液をエバポレーターで濃縮し粗生成物を得た。   Next, after stirring at 0 ° C. for 5 minutes, dichloromethane (0.5 mL) was added to 1,3-dicyclohexylcarbodiimide (150.6 mg, 0.73 mg) and added dropwise to the reaction system, and dichloromethane (1.0 mL) was added again. The solution was added to the reaction system, stirred for 17 hours, filtered through Celite using ethyl acetate, and the filtrate was washed with 0.5 M hydrochloric acid and dried over anhydrous sodium sulfate. The filtrate filtered with a cotton plug was concentrated by an evaporator to obtain a crude product.

得られた粗生成物を薄層クロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製し、下記の1,3−ジ−12−ヒドロキシ−cis−9−オクタデノイル−2− O−ベンジルオキシメチルグリセロールを得た。

Figure 0004756185
収率 :70%(158.8mg)
Rf値:0.7(ヘキサン:酢酸エチル=1:1)
形状 :無色オイル状 The resulting crude product by thin layer chromatography (hexane: ethyl acetate = 2: 1) to give the following 1,3-di-12-hydroxy -cis-9-Okutade cell noil-2-O-benzyl Oxymethylglycerol was obtained.
Figure 0004756185
Yield: 70% (158.8 mg)
Rf value: 0.7 (hexane: ethyl acetate = 1: 1)
Shape: colorless oil

1H NMR(270MHz、CDCl3):δ0.85-0.96(m,6H),1.20-1.40(m,34H),1.40-1.52(m,4H),1.52-1.68(m,4H),2.00-2.13(m,4H),2.17-2.25(m,4H),2.30(t,J=7.6Hz,4H),3.55-3.69(m,2H),4.08-4.30(m,5H),4.65(s,2H),4.85(s,2H),5.33-5.48(m,2H),5.49-5.61(m,2H),7.24-7.40(m,5H) 1 H NMR (270 MHz, CDCl 3 ): δ 0.85-0.96 (m, 6H), 1.20-1.40 (m, 34H), 1.40-1.52 (m, 4H), 1.52-1.68 (m, 4H), 2.00- 2.13 (m, 4H), 2.17-2.25 (m, 4H), 2.30 (t, J = 7.6Hz, 4H), 3.55-3.69 (m, 2H), 4.08-4.30 (m, 5H), 4.65 (s, 2H), 4.85 (s, 2H), 5.33-5.48 (m, 2H), 5.49-5.61 (m, 2H), 7.24-7.40 (m, 5H)

13C NMR(67.8MHz、CDCl3):δ14.0,22.6,24.8,25.7,27.3,29.0,29.3,29.5,31.8,34.0,35.3,36.8,63.2,69.5,71.4,72.5,93.7,125.2,127.7,128.4,133.2,137.5,173.4 13 C NMR (67.8 MHz, CDCl 3 ): δ 14.0, 22.6, 24.8, 25.7, 27.3, 29.0, 29.3, 29.5, 31.8, 34.0, 35.3, 36.8, 63.2, 69.5, 71.4, 72.5, 93.7, 125.2, 127.7,128.4,133.2,137.5,173.4

IR(neat):3446,2927,1737,1454,1172,1039,733cm-1 IR (neat): 3446,2927,1737,1454,1172,1039,733cm -1

2.酵素反応
上記で合成した原料を用い、以下の表1〜4に示した化合物を、表1〜4に示した反応で合成した。

Figure 0004756185
2. Enzyme reaction Using the raw materials synthesized above, the compounds shown in Tables 1 to 4 below were synthesized by the reactions shown in Tables 1 to 4.
Figure 0004756185

Figure 0004756185
表2中、「BOM」はベンジルオキシメチル基を示し、「MOM」はメトキシメチル基を示す。
Figure 0004756185
In Table 2, “BOM” represents a benzyloxymethyl group, and “MOM” represents a methoxymethyl group.

Figure 0004756185
「Bn」はベンジル基を示す。
Figure 0004756185
“Bn” represents a benzyl group.

Figure 0004756185
「Bn」はベンジル基を示す。
Figure 0004756185
“Bn” represents a benzyl group.

上記の表1〜4に示した化合物を、酵素を用いて以下のように合成した。表1〜4に示した化合物のうち代表的なものの具体的な合成方法を下記に示す。   The compounds shown in Tables 1 to 4 above were synthesized using enzymes as follows. Specific synthesis methods of representative ones of the compounds shown in Tables 1 to 4 are shown below.

酵素反応例1
<1−モノ−12−ヒドロキシ−cis−9−オクタデノイルグリセロールの合成>
(表1のEntry1の合成)
大気雰囲気下、30mLの二口ナスフラスコに、原料合成例1で得られた1,3−ジ−12−ヒドロキシ−cis−9−オクタデノイルグリセロール(43.7mg、0.067mmol)を秤量して加えた後、THF(0.4mL)、リン酸緩衝溶液(1.2mL)を加えた。天野エンザイム株式会社製のLipase PS(4.0mg)を秤量し反応系に加えた後、室温で20分攪拌した。グラスロートを使って酢酸エチルでセライトろ過をして酵素を除去することによって、反応を停止させた。そのろ液を食塩水で洗い、エバポレーターで濃縮し粗生成物を得た。
Enzyme reaction example 1
<Synthesis of 1-mono-12-hydroxy -cis-9-Okutade cell noil glycerol>
(Synthesis of Entry 1 in Table 1)
Air atmosphere, in a two-neck eggplant flask 30 mL, obtained in Starting Material Synthesis Example 1 1,3-12-hydroxy -cis-9-Okutade cell decanoyl glycerol (43.7 mg, 0.067 mmol) were weighed Then, THF (0.4 mL) and a phosphate buffer solution (1.2 mL) were added. Lipase PS (4.0 mg) manufactured by Amano Enzyme Inc. was weighed and added to the reaction system, and then stirred at room temperature for 20 minutes. The reaction was stopped by removing the enzyme by celite filtration with ethyl acetate using a glass funnel. The filtrate was washed with brine and concentrated with an evaporator to obtain a crude product.

得られた粗生成物をカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1)で精製し、表1のEntry1の、すなわち、下記の1−12−ヒドロキシ−cis−9−オクタデノイルグリセロールを得た。

Figure 0004756185
収率 :26%(6.4mg)
Rf値:0.7(ヘキサン:酢酸エチル=1:1)
形状 :無色オイル状 The resulting crude product was purified by column chromatography (hexane: ethyl acetate = 5: 1) to give the Entry1 in Table 1, i.e., to obtain a 1-12- hydroxy -cis-9-Okutade cell noil glycerol follows It was.
Figure 0004756185
Yield: 26% (6.4 mg)
Rf value: 0.7 (hexane: ethyl acetate = 1: 1)
Shape: colorless oil

1H NMR(270MHz、CDCl3):δ0.82-0.96(m,3H),1.22-1.40(m,16H),1.42-1.53(m,2H),1.53-1.90(m,4H),2.00-2.13(m,2H),2.17-2.26(m,2H),2.33(t,J=7.4Hz,2H),3.51-3.71(m,3H),3.83-3.97(m,1H),4.12-4.25(m,2H),5.36-5.45(m,1H),5.48-5.58(m,1H) 1 H NMR (270 MHz, CDCl 3 ): δ 0.82-0.96 (m, 3H), 1.22-1.40 (m, 16H), 1.42-1.53 (m, 2H), 1.53-1.90 (m, 4H), 2.00- 2.13 (m, 2H), 2.17-2.26 (m, 2H), 2.33 (t, J = 7.4Hz, 2H), 3.51-3.71 (m, 3H), 3.83-3.97 (m, 1H), 4.12-4.25 ( m, 2H), 5.36-5.45 (m, 1H), 5.48-5.58 (m, 1H)

測定例1
酵素反応例1で得られた化合物(表1のEntry1の化合物)のジアステレオマー比(%de)の測定
<1,2−O−ジベンゾイル−3−モノ−12−ベンジルオキシ−cis−9−オクタデノイルグリセロールの合成>
(1−モノ−12−ヒドロキシ−cis−9−オクタデノイルグリセロール(表1のEntry1の化合物)のベンゾイル化)
30mLの二口ナスフラスコに、酵素反応例1で得られた1−モノ−12−ヒドロキシ−cis−9−オクタデノイルグリセロール(表1のEntry1の化合物)(4.4mg、0.012mmol)を秤量して加えアルゴン置換をした。ジクロロメタン(1.5mL)、ピリジン(0.02mL、0.26mmol)を加え、0℃にし5分間攪拌した後、塩化ベンゾイル(0.04mL、0.24mmol)を滴下した。室温で13.5時間攪拌した後、2M塩酸で反応を停止した。
Measurement example 1
Measurement of diastereomeric ratio (% de) of the compound obtained in Enzyme Reaction Example 1 (compound of Entry 1 in Table 1) <1,2-O-dibenzoyl-3-mono-12-benzyloxy-cis-9- synthesis of Okutade cell noil glycerol>
(Benzoylation of 1-mono-12-hydroxy -cis-9-Okutade cell decanoyl glycerol (compound of Entry1 in Table 1))
Two-necked eggplant flask 30 mL, obtained in the enzymatic reaction Example 1 1-mono-12-hydroxy -cis-9-Okutade cell decanoyl glycerol (compound of Entry1 in Table 1) a (4.4 mg, 0.012 mmol) Weighed and added argon. Dichloromethane (1.5 mL) and pyridine (0.02 mL, 0.26 mmol) were added, the mixture was stirred at 0 ° C. for 5 minutes, and then benzoyl chloride (0.04 mL, 0.24 mmol) was added dropwise. After stirring at room temperature for 13.5 hours, the reaction was quenched with 2M hydrochloric acid.

酢酸エチルで抽出し、集めた有機層を水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。綿栓ろ過したろ液をエバポレーターで濃縮し、粗生成物を得た。   The mixture was extracted with ethyl acetate, and the collected organic layer was washed with water, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The filtrate filtered through a cotton plug was concentrated with an evaporator to obtain a crude product.

得られた粗生成物を薄層クロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製し、更に薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:1)で精製し、下記の1,2−O−ジベンゾイル−3−モノ−12−ベンジルオキシ−cis−9−オクタデノイルグリセロールを得た。これのジアステレオマー比(%de)は28%であった。これより、酵素反応例1で得られた化合物(表1のEntry1の化合物)のジアステレオマー比(%de)は、表1に示したように28%であることが判った。

Figure 0004756185
収率 :94%(7.6mg)
Rf値:0.8(ヘキサン:酢酸エチル=1:2)
形状 :無色オイル状 The obtained crude product was purified by thin layer chromatography (hexane: ethyl acetate = 9: 1), and further purified by thin layer chromatography (hexane: ethyl acetate = 1: 1). It was obtained O- dibenzoyl-3-mono-12-benzyloxy--cis-9-Okutade cell noil glycerol. Its diastereomeric ratio (% de) was 28%. From this, it was found that the diastereomer ratio (% de) of the compound obtained in Enzyme Reaction Example 1 (the compound of Entry 1 in Table 1) was 28% as shown in Table 1.
Figure 0004756185
Yield: 94% (7.6 mg)
Rf value: 0.8 (hexane: ethyl acetate = 1: 2)
Shape: colorless oil

1H NMR(270MHz、CDCl3):δ0.86(t,J=6.6Hz,3H),1.16-1.41(m,16H),1.52-1.73(m,4H),1.93-2.08(m,2H),2.31(t,J=7.6Hz,2H),2.42(dd,J=6.1,11.7Hz,2H),4.41-4.71(m,4H),5.09-5.18(m,1H),5.37-5.451(m,2H),5.57-5.75(m,1H),7.39-7.45(m,6H),7.51-7.59(m,3H),8.01-8.05(m,6H) 1 H NMR (270 MHz, CDCl 3 ): δ 0.86 (t, J = 6.6 Hz, 3H), 1.16-1.41 (m, 16H), 1.52-1.73 (m, 4H), 1.93-2.08 (m, 2H) , 2.31 (t, J = 7.6Hz, 2H), 2.42 (dd, J = 6.1,11.7Hz, 2H), 4.41-4.71 (m, 4H), 5.09-5.18 (m, 1H), 5.37-5.451 (m , 2H), 5.57-5.75 (m, 1H), 7.39-7.45 (m, 6H), 7.51-7.59 (m, 3H), 8.01-8.05 (m, 6H)

酵素反応例1において、表1のEntry1に代えて、表1のEntry2〜4に示した条件とした以外は酵素反応例1と同様にして、表1のEntry2〜4を合成した。また、測定例1と同様にして、ベンゾイル化してジアステレオマー比(%de)を測定することによって、表1のEntry2〜4に示した化合物のジアステレオマー比(%de)を得た。結果を表1にまとめて記載する。   In Enzyme Reaction Example 1, Entry 2 to 4 in Table 1 were synthesized in the same manner as in Enzyme Reaction Example 1 except that the conditions shown in Entry 2 to 4 in Table 1 were used instead of Entry 1 in Table 1. Moreover, it carried out similarly to the measurement example 1, and obtained the diastereomeric ratio (% de) of the compound shown to Entry2-4 of Table 1 by benzoylating and measuring diastereomeric ratio (% de). The results are summarized in Table 1.

酵素反応例2
<1−モノ−12−ヒドロキシ−cis−9−オクタデノイル−2−O−ベンジルオキシメチルグリセロールの合成>
(表2のEntry1の合成)
大気雰囲気下、30mLの二口ナスフラスコに、原料合成例3(最終的に原料合成例3−(4))で得られた1,3−ジ−12−ヒドロキシ−cis−9−オクタデノイル−2−O−ベンジルオキシメチルグリセロール(77.3mg、0.10mmol)を秤量して加え、THF(0.5mL)、リン酸緩衝溶液(1.5mL)を加えた。Lipase AK(5.0mg)を秤量し反応系に加えた後、室温で30分攪拌した。グラスロートを使って酢酸エチルでセライトろ過をして酵素を除去することによって、反応を停止させた。そのろ液を食塩水で洗い、エバポレーターで濃縮し粗生成物を得た。
Enzyme reaction example 2
<Synthesis of 1-mono-12-hydroxy -cis-9-Okutade cell noil -2-O-benzyloxymethyl glycerol>
(Synthesis of Entry 1 in Table 2)
Air atmosphere, in a two-neck eggplant flask 30 mL, Starting Material Synthesis Example 3 (final Starting Material Synthesis Example 3- (4)) obtained in 1,3-12-hydroxy -cis-9-Okutade cell noil -2-O-benzyloxymethylglycerol (77.3 mg, 0.10 mmol) was weighed and added, and THF (0.5 mL) and phosphate buffer solution (1.5 mL) were added. Lipase AK (5.0 mg) was weighed and added to the reaction system, and then stirred at room temperature for 30 minutes. The reaction was stopped by removing the enzyme by celite filtration with ethyl acetate using a glass funnel. The filtrate was washed with brine and concentrated with an evaporator to obtain a crude product.

得られた粗生成物を薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:1)で精製し、表2のEntry1の、すなわち、下記の1−モノ−12−ヒドロキシ−cis−9−オクタデノイル−2−O−ベンジルオキシメチルグリセロールを得た。

Figure 0004756185
収率 :14%(6.8mg)
Rf値:0.5(ヘキサン:酢酸エチル=1:1)
形状 :無色オイル状
[α]D 26=+13.7(c0.068,CHCl3
ここで、「c0.068」という表現は、物質濃度(溶質g/溶液100mL)を表し、以下同様である。CHCl3は測定に用いた溶媒である。すなわちこの場合は、「(上記測定物質0.068g)/(CHCl3溶液100mL)」を表す。 The resulting crude product by thin layer chromatography (hexane: ethyl acetate = 1: 1) to give the Entry1 in Table 2, i.e., the following 1-mono-12-hydroxy -cis-9-Okutade cell noil -2-O-benzyloxymethylglycerol was obtained.
Figure 0004756185
Yield: 14% (6.8 mg)
Rf value: 0.5 (hexane: ethyl acetate = 1: 1)
Shape: colorless oil [α] D 26 = + 13.7 (c 0.068, CHCl 3 )
Here, the expression “c0.068” represents the substance concentration (solute g / 100 mL of solution), and so on. CHCl 3 is the solvent used for the measurement. That is, in this case, “(the measurement substance 0.068 g) / (CHCl 3 solution 100 mL)” is represented.

1H NMR(270MHz、CDCl3):δ0.86-0.90(m,3H),1.29-1.46(m,18H),1.60-1.67(m,2H),2.01-2.06(m,2H),2.18-2.23(m,2H),2.28-2.34(m,2H),2.58-2.63(m,1H),3.61-3.70(m,3H),3.89-3.92(m,1H),4.15-4.25(m,2H),4.62-4.66(m,2H),4.86-4.88(m,2H),5.37-5.44(m,1H),5.53-5.57(m,1H),7.30-7.38(m,5H) 1 H NMR (270 MHz, CDCl 3 ): δ 0.86-0.90 (m, 3H), 1.29-1.46 (m, 18H), 1.60-1.67 (m, 2H), 2.01-2.06 (m, 2H), 2.18- 2.23 (m, 2H), 2.28-2.34 (m, 2H), 2.58-2.63 (m, 1H), 3.61-3.70 (m, 3H), 3.89-3.92 (m, 1H), 4.15-4.25 (m, 2H ), 4.62-4.66 (m, 2H), 4.86-4.88 (m, 2H), 5.37-5.44 (m, 1H), 5.53-5.57 (m, 1H), 7.30-7.38 (m, 5H)

13C NMR(67.8MHz、CDCl3):δ14.1,22.6,24.8,25.3,25.7,27.3,29.0,29.3,29.5,31.8,34.1,35.3,36.8,62.5,63.2,70.0,71.4,76.5,77.0,71.4,76.5,77.0,77.5,94.5,125.2,127.9,128.5,133.3,137.2,173.7 13 C NMR (67.8 MHz, CDCl 3 ): δ 14.1, 22.6, 24.8, 25.3, 25.7, 27.3, 29.0, 29.3, 29.5, 31.8, 34.1, 35.3, 36.8, 62.5, 63.2, 70.0, 71.4, 76.5, 77.0,71.4,76.5,77.0,77.5,94.5,125.2,127.9,128.5,133.3,137.2,173.7

IR(neat):3429,2928,2856,1739,1456,1171,1040,735,699cm-1 IR (neat): 3429,2928,2856,1739,1456,1171,1040,735,699cm -1

測定例2
酵素反応例2で得られた化合物(表2のEntry1の化合物)のジアステレオマー比(%de)の測定
<1−O−ベンゾイル−2−O−ベンジルオキシメチル−3−モノ−12−ベンジルオキシ−cis−9−オクタデノイルグリセロールの合成>
(1−モノ−12−ヒドロキシ−cis−9−オクタデノイル−2−O−ベンジルオキシメチルグリセロール(表2のEntry1の化合物)のベンゾイル化)
30mLの二口ナスフラスコに、酵素反応例2で得られた1−モノ−12−ヒドロキシ−cis−9−オクタデノイルグリセロール(表2のEntry1の化合物)(11.0mg、0.022mmol)を秤量して加えアルゴン置換をした。ジクロロメタン(1.5mL)、ピリジン(0.02mL、0.24mmol)を加え、0℃にし5分間攪拌した後、塩化ベンゾイル(0.04mL、0.26mmol)を滴下した。室温で2時間攪拌した後、2M塩酸で反応を停止した。酢酸エチルで抽出し、集めた有機層を水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。綿栓ろ過したろ液をエバポレーターで濃縮し、粗生成物を得た。
Measurement example 2
Measurement of diastereomeric ratio (% de) of the compound obtained in Enzyme Reaction Example 2 (the compound of Entry 1 in Table 2) <1-O-benzoyl-2-O-benzyloxymethyl-3-mono-12-benzyl synthesis of oxy -cis-9-Okutade cell noil glycerol>
(Benzoylation of 1-mono-12-hydroxy -cis-9-Okutade cell noil -2-O-benzyloxymethyl glycerol (compound of Entry1 in Table 2))
Two-necked eggplant flask 30 mL, obtained in the enzymatic reaction Example 2 1-mono-12-hydroxy -cis-9-Okutade cell decanoyl glycerol (compound of Entry1 in Table 2) (11.0 mg, 0.022 mmol) Weighed and added argon. Dichloromethane (1.5 mL) and pyridine (0.02 mL, 0.24 mmol) were added, the mixture was stirred at 0 ° C. for 5 minutes, and then benzoyl chloride (0.04 mL, 0.26 mmol) was added dropwise. After stirring at room temperature for 2 hours, the reaction was quenched with 2M hydrochloric acid. The mixture was extracted with ethyl acetate, and the collected organic layer was washed with water, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The filtrate filtered through a cotton plug was concentrated with an evaporator to obtain a crude product.

得られた粗生成物を薄層クロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製した後、更に薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:1)で精製し、下記の1−O−ベンゾイル−2−O−メトキシメチル−3−モノ−12−ベンジルオキシ−cis−9−オクタデノイルグリセロールを得た。これのジアステレオマー比(%de)は71%であった。これより、酵素反応例1で得られた化合物(表2のEntry1の化合物)のジアステレオマー比(%de)は、表2に示したように71%であることが判った。

Figure 0004756185
収率 :68%(10.9mg)
Rf値:0.75(ヘキサン:酢酸エチル=1:1)
形状 :無色オイル状
[α]D 26=+9.32(c0.068,CHCl3) The obtained crude product was purified by thin layer chromatography (hexane: ethyl acetate = 9: 1) and further purified by thin layer chromatography (hexane: ethyl acetate = 1: 1). - to obtain a benzoyl -2-O-methoxymethyl-3-mono-12-benzyloxy--cis-9-Okutade cell noil glycerol. The diastereomer ratio (% de) thereof was 71%. From this, it was found that the diastereomer ratio (% de) of the compound obtained in Enzyme Reaction Example 1 (the compound of Entry 1 in Table 2) was 71% as shown in Table 2.
Figure 0004756185
Yield: 68% (10.9 mg)
Rf value: 0.75 (hexane: ethyl acetate = 1: 1)
Shape: colorless oil [α] D 26 = + 9.32 (c 0.068, CHCl 3 )

1H NMR(270MHz、CDCl3):δ0.86(t,J=6.6Hz,3H),1.23-1.41(m,16H),1.59-1.73(m,4H),1.98-2.04(m,2H),2.30(t,J=7.6Hz,2H),2.42(dd,J=6.1,11.7Hz,2H),4.23-4.53(m,5H),4.66(s,2H),4.90(s,2H),5.09-5.18(m,1H),5.37-5.49(m,2H),7.26-7.34(m,5H),7.39-7.45(m,4H),7.51-7.59(m,2H),8.01-8.05(m,4H) 1 H NMR (270 MHz, CDCl 3 ): δ 0.86 (t, J = 6.6 Hz, 3H), 1.23-1.41 (m, 16H), 1.59-1.73 (m, 4H), 1.98-2.04 (m, 2H) , 2.30 (t, J = 7.6Hz, 2H), 2.42 (dd, J = 6.1,11.7Hz, 2H), 4.23-4.53 (m, 5H), 4.66 (s, 2H), 4.90 (s, 2H), 5.09-5.18 (m, 1H), 5.37-5.49 (m, 2H), 7.26-7.34 (m, 5H), 7.39-7.45 (m, 4H), 7.51-7.59 (m, 2H), 8.01-8.05 (m , 4H)

13C NMR(67.8MHz、CDCl3):δ14.1,22.6,24.8,25.4,27.3,29.1,29.5,31.7,32.0,33.7,34.1,63.3,64.0,69.7,72.6,73.1,76.8,77.0,77.3,93.8,124.1,127.8,128.2,128.4,129.5,129.7,132.7,133.2,137.7,166.2,173.6 13 C NMR (67.8 MHz, CDCl 3 ): δ 14.1, 22.6, 24.8, 25.4, 27.3, 29.1, 29.5, 31.7, 32.0, 33.7, 34.1, 63.3, 64.0, 69.7, 72.6, 73.1, 76.8, 77.0, 77.3,93.8,124.1,127.8,128.2,128.4,129.5,129.7,132.7,133.2,137.7,166.2,173.6

IR(neat):2929,2855,1720,1452,1273,1174,1112,1027,712cm-1 IR (neat): 2929,2855,1720,1452,1273,1174,1112,1027,712cm -1

酵素反応例2において、表2のEntry1に代えて、表2のEntry2〜4に示した条件とした以外は酵素反応例2と同様にして、表2のEntry2〜4を合成した。また、測定例2と同様にして、ベンゾイル化してジアステレオマー比(%de)を測定することによって、表2のEntry2〜4に示した化合物のジアステレオマー比(%de)を得た。結果を表2にまとめて記載する。   In Enzyme Reaction Example 2, Entry 2 to 4 in Table 2 were synthesized in the same manner as in Enzyme Reaction Example 2 except that the conditions shown in Entry 2 to 4 in Table 2 were used instead of Entry 1 in Table 2. Moreover, it carried out similarly to the measurement example 2, and obtained the diastereomeric ratio (% de) of the compound shown to Entry2-4 of Table 2 by benzoylating and measuring diastereomeric ratio (% de). The results are summarized in Table 2.

酵素反応例3
<1−モノ−12−ヒドロキシ−cis−9−オクタデノイル−2−O−メトキシメチルグリセロールの合成>
(表2のEntry5の合成)
大気雰囲気下、30mLの二口ナスフラスコに、原料合成例2(最終的に原料合成例2−(3))で得られた1,3−ジ−12−ヒドロキシ−cis−9−オクタデノイル−2−O−メトキシメチルグリセロール(1186.2mg、1.70mmol)を秤量して加え、THF(8.0mL)、リン酸緩衝溶液(24.0mL)を加えた。Lipase PS(101.6mg)を秤量し反応系に加えた後、室温で25分攪拌した。グラスロートを使って酢酸エチルでセライトろ過をして酵素を除去することによって、反応を停止させた。そのろ液を食塩水で洗い、エバポレーターで濃縮し粗生成物を得た。
Enzyme reaction example 3
<Synthesis of 1-mono-12-hydroxy -cis-9-Okutade cell noil -2-O-methoxymethyl-glycerol>
(Synthesis of Entry5 in Table 2)
Air atmosphere, in a two-neck eggplant flask 30 mL, obtained in Starting Material Synthesis Example 2 (final Starting Material Synthesis Example 2- (3)) 1,3-di-12-hydroxy -cis-9-Okutade cell noil -2-O-methoxymethylglycerol (1186.2 mg, 1.70 mmol) was weighed and added, and THF (8.0 mL) and phosphate buffer solution (24.0 mL) were added. Lipase PS (101.6 mg) was weighed and added to the reaction system, and then stirred at room temperature for 25 minutes. The reaction was stopped by removing the enzyme by celite filtration with ethyl acetate using a glass funnel. The filtrate was washed with brine and concentrated with an evaporator to obtain a crude product.

得られた粗生成物をカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)で精製し、表2のEntry5の、すなわち、下記の1−モノ−12−ヒドロキシ−cis−9−オクタデノイル−2−O−メトキシメチルグリセロールを得た。

Figure 0004756185
収率 :32%(224.4mg)
Rf値:0.5(ヘキサン:酢酸エチル=1:1)
形状 :無色オイル状 The resulting crude product was purified by column chromatography (hexane: ethyl acetate = 4: 1) to give the Entry5 in Table 2, i.e., the following 1-mono-12-hydroxy -cis-9-Okutade cell noil - 2-O-methoxymethylglycerol was obtained.
Figure 0004756185
Yield: 32% (224.4 mg)
Rf value: 0.5 (hexane: ethyl acetate = 1: 1)
Shape: colorless oil

1H NMR(270MHz、CDCl3):δ0.82-0.96(m,3H),1.22-1.40(m,17H),1.42-1.53(m,2H),1.53-1.70(m,2H),2.00-2.13(m,2H),2.17-2.26(m,2H),2.33(t,J=7.4Hz,2H),3.15(brs,1H),3.41(s,3H),3.58-3.71(m,2H),3.79-3.87(m,1H),4.12-4.26(m,2H),4.74(s,2H),5.36-5.45(m,1H),5.48-5.58(m,1H) 1 H NMR (270 MHz, CDCl 3 ): δ 0.82-0.96 (m, 3H), 1.22-1.40 (m, 17H), 1.42-1.53 (m, 2H), 1.53-1.70 (m, 2H), 2.00- 2.13 (m, 2H), 2.17-2.26 (m, 2H), 2.33 (t, J = 7.4Hz, 2H), 3.15 (brs, 1H), 3.41 (s, 3H), 3.58-3.71 (m, 2H) , 3.79-3.87 (m, 1H), 4.12-4.26 (m, 2H), 4.74 (s, 2H), 5.36-5.45 (m, 1H), 5.48-5.58 (m, 1H)

13C NMR(67.8MHz、CDCl3):δ13.9,14.0,22.5,24.7,25.6,27.2,28.9,29.0,29.2,29.4,31.7,34.0,35.2,36.7,55.5,62.3,63.2,71.4,76.5,96.4,125.2,132.9,173.6 13 C NMR (67.8 MHz, CDCl 3 ): δ 13.9, 14.0, 22.5, 24.7, 25.6, 27.2, 28.9, 29.0, 29.2, 29.4, 31.7, 34.0, 35.2, 36.7, 55.5, 62.3, 63.2, 71.4, 76.5,96.4,125.2,132.9,173.6

測定例3
酵素反応例3で得られた化合物(表2のEntry5の化合物)のジアステレオマー比(%de)の測定
<1−O−ベンゾイル−2−O−メトキシメチル−3−モノ−12−ベンジルオキシ−cis−9−オクタデノイルグリセロールの合成>
(1−モノ−12−ヒドロキシ−cis−9−オクタデノイル−2−O−メトキシメチルグリセロール(表2のEntry5の化合物)のベンゾイル化)
30mLの二口ナスフラスコに、酵素反応例3で得られた1−モノ−12−ヒドロキシ−cis−9−オクタデノイルグリセロール(表2のEntry5の化合物)(2.7mg、0.0065mmol)を秤量して加えアルゴン置換をした。ジクロロメタン(1.5mL)、ピリジン(0.02mL、0.24mmol)を加え、0℃にし5分間攪拌した後、塩化ベンゾイル(0.04mL、0.26mmol)を滴下した。室温で14時間攪拌した後、2M塩酸で反応を停止した。酢酸エチルで抽出し、集めた有機層を水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。綿栓ろ過したろ液をエバポレーターで濃縮し、粗生成物を得た。
Measurement example 3
Measurement of diastereomer ratio (% de) of the compound obtained in Enzyme Reaction Example 3 (compound of Entry 5 in Table 2) <1-O-benzoyl-2-O-methoxymethyl-3-mono-12-benzyloxy synthesis of -cis-9-Okutade cell noil glycerol>
(Benzoylation of 1-mono-12-hydroxy -cis-9-Okutade cell noil -2-O-methoxymethyl-glycerol (compound of Entry5 in Table 2))
Two-necked eggplant flask 30 mL, obtained in the enzyme reaction Example 3 1-mono-12-hydroxy -cis-9-Okutade cell decanoyl glycerol (compound of Entry5 in Table 2) (2.7mg, 0.0065mmol) Weighed and added argon. Dichloromethane (1.5 mL) and pyridine (0.02 mL, 0.24 mmol) were added, the mixture was stirred at 0 ° C. for 5 minutes, and then benzoyl chloride (0.04 mL, 0.26 mmol) was added dropwise. After stirring at room temperature for 14 hours, the reaction was quenched with 2M hydrochloric acid. The mixture was extracted with ethyl acetate, and the collected organic layer was washed with water, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The filtrate filtered through a cotton plug was concentrated with an evaporator to obtain a crude product.

得られた粗生成物を薄層クロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製した後、更に薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:1)で精製し、下記の1−O−ベンゾイル−2−O−メトキシメチル−3−モノ−12−ベンジルオキシ−cis−9−オクタデノイルグリセロールを得た。これのジアステレオマー比(%de)は94%であった。これより、酵素反応例3で得られた化合物(表2のEntry5の化合物)のジアステレオマー比(%de)は、表2に示したように94%であることが判った。

Figure 0004756185
収率 :99%(4.0mg)
Rf値:0.65(ヘキサン:酢酸エチル=1:1)
形状 :無色オイル状 The obtained crude product was purified by thin layer chromatography (hexane: ethyl acetate = 9: 1) and further purified by thin layer chromatography (hexane: ethyl acetate = 1: 1). - to obtain a benzoyl -2-O-methoxymethyl-3-mono-12-benzyloxy--cis-9-Okutade cell noil glycerol. Its diastereomeric ratio (% de) was 94%. From this, it was found that the diastereomer ratio (% de) of the compound obtained in Enzyme Reaction Example 3 (the compound of Entry5 in Table 2) was 94% as shown in Table 2.
Figure 0004756185
Yield: 99% (4.0 mg)
Rf value: 0.65 (hexane: ethyl acetate = 1: 1)
Shape: colorless oil

1H NMR(270MHz、CDCl3):δ0.86(t,J=6.6Hz 3H),1.26-1.38(m,16H),1.59-1.70(m,4H),2.01-2.05(m,2H),2.33(t,J=7.6Hz2H),2.43(dd,J=5.9,11.6Hz,2H),3.39(s,3H),4.15-4.51(m,5H),4.76(s,2H),5.11-5.16(m,1H),5.38-5.47(m,2H),7.40-7.47(m,4H),7.52-7.57(m,2H),8.00-8.06(m,4H) 1 H NMR (270 MHz, CDCl 3 ): δ 0.86 (t, J = 6.6 Hz 3H), 1.26-1.38 (m, 16H), 1.59-1.70 (m, 4H), 2.01-2.05 (m, 2H), 2.33 (t, J = 7.6Hz2H), 2.43 (dd, J = 5.9,11.6Hz, 2H), 3.39 (s, 3H), 4.15-4.51 (m, 5H), 4.76 (s, 2H), 5.11-5.16 (m, 1H), 5.38-5.47 (m, 2H), 7.40-7.47 (m, 4H), 7.52-7.57 (m, 2H), 8.00-8.06 (m, 4H)

13C NMR(67.8MHz、CDCl3):δ14.0,22.5,24.8,25.4,27.3,29.0,29.1,29.2,29.5,31.7,32.0,33.7,34.1,55.6,63.4,64.0,72.7,74.6,77.2,96.0,124.1,128.2,128.4,129.5,129.6,129.7,130.7,132.7,133.2,166.2,173.5 13 C NMR (67.8 MHz, CDCl 3 ): δ 14.0, 22.5, 24.8, 25.4, 27.3, 29.0, 29.1, 29.2, 29.5, 31.7, 32.0, 33.7, 34.1, 55.6, 63.4, 64.0, 72.7, 74.6, 77.2,96.0,124.1,128.2,128.4,129.5,129.6,129.7,130.7,132.7,133.2,166.2,173.5

IR(neat):2928,2856,1721,1602,1453,1273,1172,1111,1070,1031,921,712,447,418cm-1 IR (neat): 2928,2856,1721,1602,1453,1273,1172,1111,1070,1031,921,712,447,418cm -1

酵素反応例3において、表2のEntry5に代えて、表2のEntry6に示した条件とした以外は酵素反応例3と同様にして、表2のEntry6を合成した。また、測定例3と同様にして、ベンゾイル化してジアステレオマー比(%de)を測定することによって、表2のEntry6に示した化合物のジアステレオマー比(%de)を得た。結果を表2にまとめて記載する。   In enzyme reaction example 3, instead of entry 5 in table 2, entry 6 in table 2 was synthesized in the same manner as in enzyme reaction example 3 except that the conditions shown in entry 6 in table 2 were used. Moreover, it carried out similarly to the measurement example 3, and obtained the diastereomeric ratio (% de) of the compound shown to Entry6 of Table 2 by benzoylating and measuring a diastereomeric ratio (% de). The results are summarized in Table 2.

酵素反応例4
<ビニル12−ヒドロキシオクタデ−9−エノエートをアシルドナーとするPPLによる2−O−ベンジルグリセロールの非対称化反応>
(表3のEntry1の合成)
30mLの二口ナスフラスコに、下記の文献の方法に従って合成したビニル12−ヒドロキシオクタデ−9−エノエート1)(32.5mg、0.100mmol)を秤量して加え、アルゴン置換をした。2−O−ベンジルグリセロール(18.2mg、0.100mmol)にアセトニトリル(0.5mL)を加えて反応系に滴下し、アセトニトリル(0.5mL)で洗浄し、洗浄液を反応系に加えることを2回繰り返した。50℃にし、5分間撹拌した後、PPL(20.0mg)を秤量し直接反応系に加えた。3.5時間撹拌した後、グラスロートを使ってセライトろ過し酵素を除去し、酢酸エチルでセライトを洗浄した。そのろ液をエバポレーターで濃縮し粗生成物を得た。
C. Waldinger, M. Schneider, J. Am. Oil. Chem. Soc., 73, 1513(1996)
Enzyme reaction example 4
<Asymmetrication of 2-O-benzylglycerol with PPL using vinyl 12-hydroxyoctade-9-enoate as an acyl donor>
(Synthesis of Entry 1 in Table 3)
Vinyl 12-hydroxyoctade-9-enoate 1) (32.5 mg, 0.100 mmol) synthesized according to the method of the following document was weighed and added to a 30 mL two-necked eggplant flask, and the atmosphere was replaced with argon. Acetonitrile (0.5 mL) was added to 2-O-benzylglycerol (18.2 mg, 0.100 mmol), added dropwise to the reaction system, washed with acetonitrile (0.5 mL), and the washing solution was added to the reaction system. Repeated times. After stirring at 50 ° C. for 5 minutes, PPL (20.0 mg) was weighed and added directly to the reaction system. After stirring for 3.5 hours, celite was filtered using a glass funnel to remove the enzyme, and the celite was washed with ethyl acetate. The filtrate was concentrated with an evaporator to obtain a crude product.
C. Waldinger, M. Schneider, J. Am. Oil. Chem. Soc., 73, 1513 (1996)

得られた粗生成物を薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:2)で精製し、表3のEntry1の、すなわち、下記の1−モノ12−ヒドロキシ−cis−9−オクタデノイル−2−O−ベンジルグリセロールを得た。

Figure 0004756185
収率 :15%(7.1mg)
Rf値:0.58(ヘキサン:酢酸エチル=1:1)
形状 :無色オイル状 The resulting crude product by thin layer chromatography (hexane: ethyl acetate = 1: 2) to give the Entry1 in Table 3, namely, the following 1-mono 12-hydroxy -cis-9-Okutade cell noil - 2-O-benzylglycerol was obtained.
Figure 0004756185
Yield: 15% (7.1 mg)
Rf value: 0.58 (hexane: ethyl acetate = 1: 1)
Shape: colorless oil

1H NMR(270MHz、CDCl3):δ0.88(t,J=6.3Hz,3H),1.23-1.30(m,16H),1.43-1.49(m,2H),1.59-1.64(m,3H),2.01-2.13(m,3H),2.21(t,J=6.8Hz,2H),2.32(t,J=7.4Hz,2H),3.59-3.72(m,4H),4.23-4.25(m,2H),4.58-4.74(m,2H),5.38-5.58(m,2H),7.30-7.36(m,5H) 1 H NMR (270 MHz, CDCl 3 ): δ 0.88 (t, J = 6.3 Hz, 3H), 1.23-1.30 (m, 16H), 1.43-1.49 (m, 2H), 1.59-1.64 (m, 3H) , 2.01-2.13 (m, 3H), 2.21 (t, J = 6.8Hz, 2H), 2.32 (t, J = 7.4Hz, 2H), 3.59-3.72 (m, 4H), 4.23-4.25 (m, 2H ), 4.58-4.74 (m, 2H), 5.38-5.58 (m, 2H), 7.30-7.36 (m, 5H)

13C NMR(67.8MHz、CDCl3):δ173.8,137.8,133.3,128.5,128.0,127.8,125.2,77.2,72.1,71.5,62.6,62.0,36.8,35.3,34.2,31.8,29.5,29.3,29.1,29.0,29.0,27.3,25.7,24.9,22.6,14.1 13 C NMR (67.8 MHz, CDCl 3 ): δ 173.8, 137.8, 133.3, 128.5, 128.0, 127.8, 125.2, 77.2, 72.1, 71.5, 62.6, 62.0, 36.8, 35.3, 34.2, 31.8, 29.5, 29.3, 29.1, 29.0, 29.0, 27.3, 25.7, 24.9, 22.6, 14.1

IR(neat):3418,2927,2857,1736,1457,1178,1117,1060,737,699cm-1 IR (neat): 3418,2927,2857,1736,1457,1178,1117,1060,737,699cm -1

測定例4
酵素反応例4で得られた化合物(表3のEntry1の化合物)のジアステレオマー比(%de)の測定
<1−O−ベンゾイル−2−O−ベンジル−3−モノ−12−ベンジルオキシ−cis−9−オクタデノイルグリセロールの合成>
(1−モノ12−ヒドロキシ−cis−9−オクタデノイル−2−O−ベンジルグリセロール(表3のEntry1の化合物)のベンゾイル化)
酵素反応例4で得られた1−モノ12−ヒドロキシ−cis−9−オクタデノイル−2−O−ベンジルグリセロール(表3のEntry1の化合物)(4.8mg、0.0104mmol)を、30mLの二口ナスフラスコに入れ、アルゴン置換をした。そこにジクロロメタン(1.5mL)を加え、さらにピリジン(0.02mL、0.24mmol)を加えた。0℃にし5分間撹拌した後、ベンゾイルクロリド(0.04mL、0.26mmol)を滴下した。室温で12時間撹拌した後、2M塩酸で反応を停止した。酢酸エチルで抽出し、集めた有機層を水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。綿栓ろ過したろ液をエバポレーターで濃縮し、粗生成物を得た。
Measurement example 4
Measurement of diastereomeric ratio (% de) of the compound obtained in Enzyme Reaction Example 4 (compound of Entry 1 in Table 3) <1-O-benzoyl-2-O-benzyl-3-mono-12-benzyloxy- the synthesis of cis-9- Okutade cell noil glycerol>
(Benzoylation of 1-mono 12-hydroxy -cis-9-Okutade cell noil -2-O-benzyl glycerol (compound of Entry1 in Table 3))
Obtained in the enzyme reaction Example 4 1-mono 12-hydroxy -cis-9-Okutade cell noil -2-O-benzyl glycerol (compound of Entry1 in Table 3) (4.8mg, 0.0104mmol), the 30mL The flask was placed in a two-necked eggplant flask and purged with argon. Dichloromethane (1.5 mL) was added thereto, and further pyridine (0.02 mL, 0.24 mmol) was added. After stirring at 0 ° C. for 5 minutes, benzoyl chloride (0.04 mL, 0.26 mmol) was added dropwise. After stirring at room temperature for 12 hours, the reaction was quenched with 2M hydrochloric acid. The mixture was extracted with ethyl acetate, and the collected organic layer was washed with water, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The filtrate filtered through a cotton plug was concentrated with an evaporator to obtain a crude product.

得られた粗生成物を薄層クロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製した後、更に薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:1)で精製をし、下記の1−O−ベンゾイル2−O−ベンジル−3−モノ−12−ベンゾイルオキシ−cis−9−オクタデノイルグリセロールを得た。これのジアステレオマー比(%de)は60%であった。これより、酵素反応例4で得られた化合物(表3のEntry1の化合物)のジアステレオマー比(%de)は、表3に示したように60%であることが判った。

Figure 0004756185
収率 :42%(12.9mg)
Rf値:0.82(ヘキサン:酢酸エチル=1:1)
形状 :無色オイル状 The obtained crude product was purified by thin layer chromatography (hexane: ethyl acetate = 9: 1), and further purified by thin layer chromatography (hexane: ethyl acetate = 1: 1). was obtained O- benzoyl 2-O- benzyl-3-mono-12-benzoyloxy -cis-9-Okutade cell noil glycerol. The diastereomer ratio (% de) of this was 60%. From this, it was found that the diastereomer ratio (% de) of the compound obtained in Enzyme Reaction Example 4 (the compound of Entry 1 in Table 3) was 60% as shown in Table 3.
Figure 0004756185
Yield: 42% (12.9 mg)
Rf value: 0.82 (hexane: ethyl acetate = 1: 1)
Shape: colorless oil

1H NMR(270MHz、CDCl3):δ0.85(t,J=5.3 Hz,3H),1.21-1.32(m,16H),1.57-1.67(m,4H),2.00-2.05(m,2H),2.31(t,J=7.4Hz,2H),2.42(dd,J=5.9,11.9Hz,2H),3.97(t,J=5.2Hz,1H),4.22-4.52(m,4H),4.71(s,2H),5.09-5.16(m,1H),5.38-5.49(m,2H),7.26-7.34(m,5H),7.37-7.47(m,4H),7.52-7.60(m,2H),8.00-8.05(m,4H) 1 H NMR (270 MHz, CDCl 3 ): δ 0.85 (t, J = 5.3 Hz, 3H), 1.21-1.32 (m, 16H), 1.57-1.67 (m, 4H), 2.00-2.05 (m, 2H) , 2.31 (t, J = 7.4Hz, 2H), 2.42 (dd, J = 5.9, 11.9Hz, 2H), 3.97 (t, J = 5.2Hz, 1H), 4.22-4.52 (m, 4H), 4.71 ( s, 2H), 5.09-5.16 (m, 1H), 5.38-5.49 (m, 2H), 7.26-7.34 (m, 5H), 7.37-7.47 (m, 4H), 7.52-7.60 (m, 2H), 8.00-8.05 (m, 4H)

13C NMR(67.8MHz、CDCl3):δ173.5,166.2,166.2,137.7,133.1,132.7,132.7,130.8,129.7,129.5,128.4,128.4,128.2,127.9,127.8,124.1,74.6,74.4,72.1,63.7,63.0,34.1,33.7,32.0,31.7,29.5,29.2,29.1,29.1,29.1,27.3,25.3,24.9,22.6,14.0 13 C NMR (67.8 MHz, CDCl 3 ): δ 173.5, 166.2, 166.2, 137.7, 133.1, 132.7, 132.7, 130.8, 129.7, 129.5, 128.4, 128.4, 128.2, 127.9, 127.8, 124.1, 74.6, 74.4, 72.1, 63.7, 63.0, 34.1, 33.7, 32.0, 31.7, 29.5, 29.2, 29.1, 29.1, 29.1, 27.3, 25.3, 24.9, 22.6, 14.0

IR(neat):2928,2857,2361,1720,1602,1453,1314,1273,1174,1111,1069,1027,712 cm-1 IR (neat): 2928,2857,2361,1720,1602,1453,1314,1273,1174,1111,1069,1027,712 cm -1

酵素反応例4において、表3のEntry1に代えて、表3のEntry2〜3及び表4のEntry1〜5に示した条件とした以外は酵素反応例4と同様にして、表3のEntry2〜3、表4のEntry1〜5を合成した。また、測定例4と同様にして、ベンゾイル化してジアステレオマー比(%de)を測定することによって、表3のEntry2〜3及び表4のEntry1〜5に示した化合物のジアステレオマー比(%de)を得た。結果を表3及び表4にまとめて記載する。   In Enzyme Reaction Example 4, in place of Entry 1 in Table 3, the conditions shown in Entry 2 to 3 in Table 3 and Entry 1 to 5 in Table 4 were the same as in Enzyme Reaction Example 4 except that Entry 2 to 3 in Table 3 were used. , Entry 1 to 5 in Table 4 were synthesized. Further, in the same manner as in Measurement Example 4, benzoylation and diastereomer ratio (% de) were measured to determine the diastereomeric ratios of the compounds shown in Entry 2 to 3 in Table 3 and Entry 1 to 5 in Table 4 ( % De). The results are summarized in Tables 3 and 4.

3.液晶合成
合成例1
<1−O−4−ヘキシルオキシビフェニル−4−カルボキシ−2−O−メトキシメチル−3−モノ−12−ヒドロキシ−cis−9−オクタデノイルグリセロールの合成>
30mLの二口ナスフラスコに、酵素反応例3で得られた表2のEntry5の化合物1−モノ−12−ヒドロキシ−cis−9−オクタデノイル−2−O−メトキシメチルグリセロール(55.5mg、0.133mmol)を加え、4−ジメチルアミノピリジン(37.4mg、0.31mmol)を秤量して加え、アルゴン置換をした。4−(4−ヘキシルオキシフェニル)安息香酸(59.6mg、0.20mmol)にジクロロメタン(1.0mL)を加えて反応系に滴下し、ジクロロメタン(1.0mL)で洗浄し、洗浄液を反応系に加えることを2回繰り返した。
3. Liquid crystal synthesis synthesis example 1
<Synthesis of 1-O-4-hexyloxy-4-carboxy -2-O-methoxymethyl-3-mono-12-hydroxy -cis-9-Okutade cell noil glycerol>
Two-necked eggplant flask 30mL, Entry5 of the compounds of Table 2 obtained in the enzyme reaction Example 3 1-mono-12-hydroxy -cis-9-Okutade cell noil -2-O-methoxymethyl-glycerol (55.5 mg, 0.133 mmol) was added, and 4-dimethylaminopyridine (37.4 mg, 0.31 mmol) was weighed and added to perform argon replacement. Dichloromethane (1.0 mL) was added to 4- (4-hexyloxyphenyl) benzoic acid (59.6 mg, 0.20 mmol), added dropwise to the reaction system, and washed with dichloromethane (1.0 mL). Was added twice.

0℃にし5分間攪拌した後、1,3−ジシクロへキシルカルボジイミド(68.7mg、0.33mmol)にジクロロメタン(1.0mL)を加え反応系に滴下しもう一度ジクロロメタン(1.0mL)で洗浄し、洗浄液を反応系に加え、48時間攪拌した後、酢酸エチルを用いセライトろ過をし、ろ液を0.5M塩酸水で洗浄し無水硫酸ナトリウムで乾燥させた。綿栓ろ過したろ液をエバポレーターで濃縮し粗生成物を得た。   After stirring at 0 ° C. for 5 minutes, dichloromethane (1.0 mL) was added to 1,3-dicyclohexylcarbodiimide (68.7 mg, 0.33 mmol), and the mixture was added dropwise to the reaction system, and washed again with dichloromethane (1.0 mL). The washing solution was added to the reaction system and stirred for 48 hours, followed by Celite filtration using ethyl acetate, and the filtrate was washed with 0.5 M aqueous hydrochloric acid and dried over anhydrous sodium sulfate. The filtrate filtered with a cotton plug was concentrated by an evaporator to obtain a crude product.

得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=6:1)で精製し、下記の1−O−4−ヘキシルオキシビフェニル−4−カルボキシ−2−O−メトキシメチル−3−モノ−12−ヒドロキシ−cis−9−オクタデノイルグリセロールを得た。

Figure 0004756185
収率 :33%(30.5mg)
Rf値:0.5(ヘキサン:酢酸エチル=3:1)
形状 :無色オイル状
[α]D 26=+0.91(c0.29,CHCl3) The obtained crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 6: 1), and the following 1-O-4-hexyloxybiphenyl-4-carboxy-2-O-methoxymethyl-3- to obtain a mono-12-hydroxy -cis-9-Okutade cell noil glycerol.
Figure 0004756185
Yield: 33% (30.5 mg)
Rf value: 0.5 (hexane: ethyl acetate = 3: 1)
Shape: colorless oil [α] D 26 = + 0.91 (c0.29, CHCl 3 )

1H NMR(270MHz、CDCl3):δ0.80-0.90(m,6H),1.20-1.40(m,22H),1.40-1.53(m,4H),1.52-1.72(m,3H),1.76-1.86(m,2H),1.98-2.12(m,2H),2.18-2.23(m,2H),2.35(t,J=7.4
Hz,2H),3.41(s,3H),3.55-3.68(m,1H),4.01(t,J=6.6Hz,2H),4.11-4.58(m,5H),4.77(s,2H),5.37-5.44(m,1H),5.50-5.59(m,1H),6.95-7.00(m,2H),7.48-7.64(m,4H),8.04-8.09(m,2H)
1 H NMR (270 MHz, CDCl 3 ): δ 0.80-0.90 (m, 6H), 1.20-1.40 (m, 22H), 1.40-1.53 (m, 4H), 1.52-1.72 (m, 3H), 1.76- 1.86 (m, 2H), 1.98-2.12 (m, 2H), 2.18-2.23 (m, 2H), 2.35 (t, J = 7.4
Hz, 2H), 3.41 (s, 3H), 3.55-3.68 (m, 1H), 4.01 (t, J = 6.6Hz, 2H), 4.11-4.58 (m, 5H), 4.77 (s, 2H), 5.37 -5.44 (m, 1H), 5.50-5.59 (m, 1H), 6.95-7.00 (m, 2H), 7.48-7.64 (m, 4H), 8.04-8.09 (m, 2H)

13C NMR(67.8MHz、CDCl3):δ14.0,14.1,22.6,24.8,25.7,27.4,29.0,29.1,29.2,29.3,29.5,31.6,31.8,34.1,35.4,36.8,55.663.4,63.9,71.5,72.7,77.2,96.0,114.9,125.2,126.3,126.5,127.7,128.0,128.3,130.2,132.0,133.3,145.6,159.5,166.2,173.5 13 C NMR (67.8 MHz, CDCl 3 ): δ 14.0, 14.1, 22.6, 24.8, 25.7, 27.4, 29.0, 29.1, 29.2, 29.3, 29.5, 31.6, 31.8, 34.1, 35.4, 36.8, 55.663.4, 63.9,71.5,72.7,77.2,96.0,114.9,125.2,126.3,126.5,127.7,128.0,128.3,130.2,132.0,133.3,145.6,159.5,166.2,173.5

IR(neat):2929,2857,1721,1605,1497,1466,1274,1186,1111,1035,829,757cm-1 IR (neat): 2929,2857,1721,1605,1497,1466,1274,1186,1111,1035,829,757cm -1

合成例2
上記合成例1において、酵素反応例3で得られた表2のEntry5の化合物に代えて、酵素反応例1で得られた表1のEntry1〜4の化合物、酵素反応例2で得られた表2のEntry1〜4の化合物、酵素反応例3で得られた表2のEntry6の化合物、酵素反応例4で得られた表3のEntry1〜3の化合物と表4のEntry1〜5の化合物をそれぞれ用いた以外は合成例1と同様にして4−(4−ヘキシルオキシフェニル)安息香酸を反応させ、それぞれの化合物に対応した化合物を得た。
Synthesis example 2
In Synthesis Example 1 above, instead of the compound of Entry 5 in Table 2 obtained in Enzyme Reaction Example 3, the compounds of Entry 1 to 4 in Table 1 obtained in Enzyme Reaction Example 1 and the table obtained in Enzyme Reaction Example 2 2, the compounds of Entry 1 to 4 of Table 2, the compounds of Entry 6 of Table 2 obtained in Enzyme Reaction Example 3, the compounds of Entry 1 to 3 of Table 3 obtained in Enzyme Reaction Example 4 and the compounds of Entry 1 to 5 of Table 4 were respectively obtained. 4- (4-Hexyloxyphenyl) benzoic acid was reacted in the same manner as in Synthesis Example 1 except that it was used to obtain compounds corresponding to the respective compounds.

評価例
<DSC曲線の測定>
熱分析システムを用いて、試料として上記合成例1で得られた1−O−4−ヘキシロキシビフェニル−4−カルボキシ−2−O−メトキシメチル−3−モノ−12−ヒドロキシ−cis−9−オクタデノイルグリセロールを測定した。試料は室温から始め、室温、50℃、−100℃、200℃、−100℃、室温の順で毎分5℃ずつ変化させることによって、−100℃から200℃まで昇温させた時の熱の吸収、及び、200℃から−100℃まで降温させた時の熱の発熱を測定した。なお、200℃と−100℃では、それぞれ5分間その温度を保った。結果を図1に示す。
Evaluation Example <Measurement of DSC Curve>
Using a thermal analysis system, 1-O-4-hexyloxybiphenyl-4-carboxy-2-O-methoxymethyl-3-mono-12-hydroxy-cis-9- obtained in Synthesis Example 1 as a sample was used as a sample. the Okutade cell noil glycerol was measured. The sample starts at room temperature and is heated at a temperature from −100 ° C. to 200 ° C. by changing 5 ° C. per minute in the order of room temperature, 50 ° C., −100 ° C., 200 ° C., −100 ° C., and room temperature. And the exotherm of heat when the temperature was lowered from 200 ° C. to −100 ° C. were measured. In addition, at 200 degreeC and -100 degreeC, the temperature was maintained for 5 minutes, respectively. The results are shown in FIG.

昇温方向に図1のDSC曲線を見てみると、熱の吸収であるピークa、b、c、dの4つが確認できる。これは温度の上昇と共に固相から3種類の液晶相を経由し、液相になっている事を示している。ある試料を熱分析すると、その物質の相は他の相へと相転位するときピークとなって現れる。つまり図1の昇温方向のDSC曲線は、ピークaは、固相から液晶相への相転位の際のピークであり、dのピークは液晶相から液相への相転位を表していると考えられ、すなわち、−20℃付近から75℃付近の間で液晶相が確認できた。   Looking at the DSC curve in FIG. 1 in the temperature rising direction, four peaks a, b, c, and d, which are heat absorption, can be confirmed. This indicates that the liquid phase is changed from the solid phase through the three liquid crystal phases as the temperature rises. When a sample is subjected to thermal analysis, the phase of the substance appears as a peak when it undergoes a phase transition to another phase. That is, in the DSC curve in the temperature rising direction of FIG. 1, the peak a is a peak at the time of phase transition from the solid phase to the liquid crystal phase, and the peak of d represents the phase transition from the liquid crystal phase to the liquid phase. In other words, a liquid crystal phase could be confirmed between about −20 ° C. and about 75 ° C.

降温方向でも同じように、ピークe、fの2つが確認できた。すなわち、1つの液晶相を経由する相転位がみられ、−20℃付近から75℃付近の間で液晶相が確認できた。   Similarly, two peaks e and f were confirmed in the temperature decreasing direction. That is, a phase transition via one liquid crystal phase was observed, and a liquid crystal phase could be confirmed between about −20 ° C. and about 75 ° C.

以上より、一般式(1)で表される化合物は液晶相を有する可能性があることが判った。   From the above, it was found that the compound represented by the general formula (1) may have a liquid crystal phase.

本発明による液晶化合物は、環境調和型であり、生成効率にも優れた酵素反応を利用して不斉炭素を導入した新規な強誘電性液晶化合物は、ディスプレイ等に広く利用されるものである。   The liquid crystal compound according to the present invention is environmentally friendly, and a novel ferroelectric liquid crystal compound in which an asymmetric carbon is introduced using an enzyme reaction excellent in production efficiency is widely used for displays and the like. .

合成例1で合成された化合物のDSC曲線の一例である。2 is an example of a DSC curve of the compound synthesized in Synthesis Example 1.

Claims (2)

不斉炭素原子を含有し光学活性を示す強誘電性液晶材料であって、該不斉炭素原子が酵素反応を用いて導入されたものであり、かつ、下記一般式(1)で表される化学構造を有するものであることを特徴とする強誘電性液晶材料。
Figure 0004756185
[一般式(1)中、
Xは、メチル基、エチル基、水酸基、メトキシル基、エトキシル基、ハロゲン基、メトキシメチル基及びメトキシエトキシメチル基よりなる群より選ばれる置換基を有していてもよい、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、プリン環、キノリン環、カルバゾール環、フラン環、チオフェン環、オキサゾール環又はチアゾール環を示し、
は、水酸基、アルキルオキシ基、アリールオキシ基及びエステル基よりなる群より選ばれる置換基を有していてもよい、炭素数1〜24のアルキル基又は炭素数2〜24のアルケニル基を示し、
は、メトキシル基、エトキシル基、ベンジルオキシ基、ビニル基、フェニル基及びメトキシエトキシル基よりなる群より選ばれる置換基を有していてもよい炭素数1〜6のアルキル基又は−COR'(R'は、低級アルキル基又はハロゲン基を置換基として有していてもよい、炭素数1〜6のアルキル基又はフェニル基を示す)を示し、
は置換基を有していてもよい炭素数1〜13のアルキル基を示す。]
A ferroelectric liquid crystal material containing an asymmetric carbon atom and exhibiting optical activity, wherein the asymmetric carbon atom is introduced using an enzyme reaction, and is represented by the following general formula (1) A ferroelectric liquid crystal material characterized by having a chemical structure.
Figure 0004756185
[In general formula (1),
X may have a substituent selected from the group consisting of a methyl group, an ethyl group, a hydroxyl group, a methoxyl group, an ethoxyl group, a halogen group, a methoxymethyl group and a methoxyethoxymethyl group, a benzene ring, a naphthalene ring, Anthracene ring, phenanthrene ring, pyrene ring, pyrrole ring, imidazole ring, pyrazole ring, pyridine ring, pyrimidine ring, purine ring, quinoline ring, carbazole ring, furan ring, thiophene ring, oxazole ring or thiazole ring,
R 1 represents an alkyl group having 1 to 24 carbon atoms or an alkenyl group having 2 to 24 carbon atoms, which may have a substituent selected from the group consisting of a hydroxyl group, an alkyloxy group, an aryloxy group, and an ester group. Show
R 2 is a C 1-6 alkyl group which may have a substituent selected from the group consisting of a methoxyl group, an ethoxyl group, a benzyloxy group, a vinyl group, a phenyl group and a methoxyethoxyl group, or —COR ′. (R ′ represents a lower alkyl group or a halogen group which may have a substituent as a substituent, an alkyl group having 1 to 6 carbon atoms or a phenyl group),
R 3 represents an alkyl group having 1 to 13 carbon atoms which may have a substituent. ]
上記一般式(1)において、Rが、−(CHCH=CHCHCH(OH)(CHCH、又は、−(CH10CH(OH)(CHCHである請求項1に記載の強誘電性液晶材料。 In the general formula (1), R 1 is — (CH 2 ) 7 CH═CHCH 2 CH (OH) (CH 2 ) 5 CH 3 or — (CH 2 ) 10 CH (OH) (CH 2 ). The ferroelectric liquid crystal material according to claim 1, wherein the ferroelectric liquid crystal material is 5 CH 3 .
JP2006157282A 2006-06-06 2006-06-06 Ferroelectric liquid crystal compounds Expired - Fee Related JP4756185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157282A JP4756185B2 (en) 2006-06-06 2006-06-06 Ferroelectric liquid crystal compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157282A JP4756185B2 (en) 2006-06-06 2006-06-06 Ferroelectric liquid crystal compounds

Publications (2)

Publication Number Publication Date
JP2007326793A JP2007326793A (en) 2007-12-20
JP4756185B2 true JP4756185B2 (en) 2011-08-24

Family

ID=38927520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157282A Expired - Fee Related JP4756185B2 (en) 2006-06-06 2006-06-06 Ferroelectric liquid crystal compounds

Country Status (1)

Country Link
JP (1) JP4756185B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196236A (en) * 1987-10-08 1989-04-14 Dainippon Ink & Chem Inc Antifogging synthetic resin film for agricultural use
JP4547470B2 (en) * 2004-02-27 2010-09-22 株式会社三重ティーエルオー Optically active glycerol diricinoleate and process for producing the same

Also Published As

Publication number Publication date
JP2007326793A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
US20170226075A1 (en) Synthesis of Non-Ionic Surfactants From 5-Hydroxymethyl-2-Furfural, Furan-2,5-Dimethanol and Bis-2,5-Dihydroxymethyl-Tetrahydrofurans
HU207288B (en) Process for enenthioselective producing phenyl-isoserine derivatives
BRPI0718792A2 (en) ORGANIC COMPOUNDS
WO2002070512A1 (en) Method for producing 2-azetidinone derivative
JP4756185B2 (en) Ferroelectric liquid crystal compounds
Itoh et al. gem-Difluorocyclopropane as core molecule candidate for liquid crystal compounds
CN102212081B (en) Preparation method of chiral intermediate product for synthesis of statins
JP2006111624A (en) Method for producing lysophosphatidylcholine
JP4677550B2 (en) Cyclic ester compound
JP4825947B2 (en) Process for producing unsaturated aminodiols
US5280096A (en) Substantially pure diol and triol stereoisomers, method of preparation and polymers thereof
EP0350334B1 (en) A process for producing fluorine-containing compounds
Itoh et al. Chemo-enzymatic synthesis of spiro type gem-difluorocyclopropane as core molecule candidate for liquid crystal compounds
KR100611931B1 (en) Chiral Alkoxy Alcohols, Chiral 1,3-Phenylene-bis[44-alkoxyphenyliminomethyl]benzoates and Processes for Preparation thereof
Marhold et al. Synthesis of optically active 2-fluoroalk-1-en-3-yl esters and chirality transfer in their Claisen-type rearrangements
JP3121656B2 (en) Optically active glycidol derivative and method for producing the same
Kitazume et al. Synthetic approach to optically pure trifluoromethylated compounds
JP2008189589A (en) Phosphorylcholine group-containing cyclic ketal compound, method for producing the same, and method for producing phosphatidylcholine group-containing diol compound
JP2010024232A (en) Optically active benzoate compound, and method for producing the same
JP2808544B2 (en) Optically active compound and method for producing the same
JP3134786B2 (en) 2-Azabicyclo [3.3.0] octane derivatives, their production and optical resolution of diols or amino alcohols
JPH1087541A (en) Optically active alcohol and its production
JP4133328B2 (en) Preparation of 3- [2-{(methylsulfonyl) oxy} ethoxy] -4- (triphenylmethoxy) -1-butanol, methanesulfonate
JPH0660114B2 (en) Optically active alcohol compound
JP3895320B2 (en) Optically active 1,3-propanediol derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees