JP2004075527A - Carbon fiber reinforced carbon composite material and sliding material using the same - Google Patents

Carbon fiber reinforced carbon composite material and sliding material using the same Download PDF

Info

Publication number
JP2004075527A
JP2004075527A JP2003183424A JP2003183424A JP2004075527A JP 2004075527 A JP2004075527 A JP 2004075527A JP 2003183424 A JP2003183424 A JP 2003183424A JP 2003183424 A JP2003183424 A JP 2003183424A JP 2004075527 A JP2004075527 A JP 2004075527A
Authority
JP
Japan
Prior art keywords
composite material
carbon
fiber reinforced
carbon fiber
carbon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003183424A
Other languages
Japanese (ja)
Other versions
JP4066896B2 (en
Inventor
Yutaka Kawamata
川俣 裕
Kazuo Niwa
丹羽 一夫
Toshihiro Fukagawa
深川 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003183424A priority Critical patent/JP4066896B2/en
Publication of JP2004075527A publication Critical patent/JP2004075527A/en
Application granted granted Critical
Publication of JP4066896B2 publication Critical patent/JP4066896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber reinforced carbon material-made sliding material suitable as a material for an airplane or a high speed vehicle. <P>SOLUTION: The carbon fiber reinforced carbon composite material has characteristic of ≥8.5 kg/mm<SP>2</SP>tensile strength, ≥1.8 g/cm<SP>3</SP>bulk density, ≥100 W/mK heat conductivity and ≤10% porosity. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、強度及び摩擦、摺動特性に優れ、特に高速度・高エネルギー車の摺動材に適した炭素繊維強化炭素複合材に関するものである。
【0002】
【従来の技術】
一般に炭素繊維強化炭素複合材(以下、「C/C複合材」という。)はPAN系、ピッチ系、或いはレーヨン系などの長短炭素繊維にフェノール樹脂、フラン樹脂などの熱硬化性樹脂、或いはピッチ類などの熱可塑性樹脂等を含浸、又は混合して加熱成形したものを非酸化性雰囲気において焼成し、さらに緻密化、黒鉛化処理することにより製造されている。
【0003】
C/C複合材は摩擦特性、機械特性、耐熱性に優れ、かつ軽量であることから航空機や車両用のブレーキとして用いられている。C/C複合材に用いる炭素繊維の強化法としては、2次元織物、所謂織布を用いたり、本発明の如く短繊維を用いる方法があるが、均一な摩擦面が容易に得られること、安価であること等から、一般に短繊維強化型のC/C複合材が摩擦材として用いられてきた。しかしながら、近年の航空機や車両の大型化、高速化に伴って、より高熱容量、高熱伝導率、高強度がC/C複合材に要求されるようになってきた。特に航空機や高速車両用のC/C複合材は、大径(外径〜500mmφ)かつ高回転(〜8000rpm)、さらに高熱容量、高熱伝導率が要求されている。
【0004】
例えば、外径500mmφ、内径120mmφ、嵩密度1.8kg/cmで回転数8000rpmの条件下に使用する時に必要とされる引張強度は、円周方向の応力(σMAXとして次式で求めることができる。
【0005】
【数1】

Figure 2004075527
【0006】
ここで、γ:嵩密度(1.8×10−3kg/cm
2 :外半径(25cm)
1 :内半径(6cm)
ω:角速度(8000/60)×2π=838rad/s
ν:ポアソン比(0.2)
∴ (σMAX=654kg/cm=6.5kg/mm
(σMAX=806kg/cm=8.1kg/mm(r=r時のMAX値)
【0007】
従って、少なくとも8.5kg/mm以上、好ましくは9kg/mm以上、更に好ましくは10kg/mm以上の引張強度が必要となる。しかし、従来の短繊維強化型C/C複合材では強度不足のため、織布を用いたり摩擦特性を維持するために、中央部は織布を用い、表面のみ短繊維強化型としたC/C複合材等が大型車両用のブレーキ材として提案されている。しかしながら、織布を用いたC/C複合材は高価である上に、摩擦特性に劣り、ブレーキ材としての要求特性を満足したものではなかった。
【0008】
【発明が解決しようとする課題】
そこで、本発明者らは、短繊維強化型C/C複合材に着目して、上記のような問題がなく、高速車両摺動材として有用なC/Cを提供すべく鋭意検討した。
【0009】
【課題を解決するための手段】
本発明者等は、かかる課題を解決するため、短繊維を用いたC/C複合材について鋭意検討し、特に、炭素繊維としてピッチ系炭素繊維を使用し、緻密化のためにピッチで含浸することにより、更に緻密化の前に2200℃以上で黒鉛化し、緻密化焼成温度を2100℃以下にすることによって、高強度、高熱容量、高熱伝導率、かつ摩擦特性に優れるC/C複合材を製造することができることを見い出し、本発明に到達した。
【0010】
即ち本発明の要旨は、短繊維強化型C/C複合材であって、引張強度8.5kg/mm以上、嵩密度1.8g/cm以上、熱伝導率100W/m・K以上、且つ気孔率10%以下の特性を有するC/C複合材及びそれを用いた摺動材に存する。
以下、本発明を詳細に説明するが、本発明で用いる炭素繊維としてはPAN系、レーヨン系等の公知のものが使用できるが、高熱容量かつ高熱伝導であるピッチ系炭素繊維を使用するのが好ましい。更に必要に応じてSiC、Al、カーボンブラックなどの無機繊維、無機物などを添加してもよい。
【0011】
用いられる炭素繊維の形態としては、複数の単繊維からなるトウ、ストランド、ロービング、ヤーンなどの形態であり、これらをカッティングすることにより得られる短繊維を用いるのが好ましい。そして、これらの短繊維は複数の単繊維の束、1000〜8000本、好ましくは2000〜6000本から形成されており、本発明においては、通常0.3〜100mm、好ましくは5〜50mm程度の短繊維束を使用する。炭素繊維自体の径や弾性率は、一般に複合材として用いられる範囲で特に限定はない。C/C複合材とする際には、該短繊維束を解繊、分散し、二次元ランダムのシートを作製し、マトリックス物質をその間に充填させることが特性向上のために重要である。
【0012】
このため、本発明においては、上記短繊維束を乾式又は湿式解繊し、二次元ランダムのシートを作製する。ここで乾式解繊し、二次元ランダムに配向したシートの製造方法としては、例えば紡績において一般的な機械的に炭素繊維をモノフィラメント化し、シートを作製するランダムウェバーを使用して製造したり、またはエアーにより解繊し、シートを製造する方法等がある。
【0013】
また湿式解繊し、二次元ランダムに配向したシートを製造する方法としては、例えばパルプ等の叩解処理に通常使用されているビーターや解繊処理に用いられるパルパーを使用し、溶媒中で短繊維状炭素繊維を解繊後、例えば底部にスクリーンを有する型枠等に少量ずつ供給したり、解繊後攪拌等の手段で均一に分散させ、金網等で抄紙後、乾燥させて作製する方法がある。短繊維状の炭素繊維を均一に分散させる溶媒としては、好ましくは水、或いはアセトン、炭素1〜5のアルコール、アントラセン油等を用いるが、その他の有機溶剤を用いてもよい。又該溶媒中にフェノール樹脂、フラン樹脂或いはピッチ等を分散もしくは溶解させておくと、炭素繊維同士が接着された状態となり、次工程での取り扱いをより容易とするので好ましい。更に、繊維素グリコール酸ナトリウム、ポリビニルアルコール、ヒドロキシセルロース等の増粘剤を溶媒中に加えておくと、その効果が更に増大となるので好ましい。
【0014】
シートの目付(1m当りの重量)としては、種々のものが取り得るが、取り扱い性、含浸性、均一性を考えると、10〜500g/mが最適である。この様にして得られた二次元ランダムに配向したシートに、フェノール樹脂、フラン樹脂、或いは石油系、石炭系ピッチ等のマトリックスを含浸させた後乾燥する。その際、マトリックスはアルコール、アセトン、アントラセン油等の溶媒に溶解して適正な粘度に調整したものを使用する。
【0015】
次いで、この乾燥したシートを積層して金型へ充填し、100〜500℃の温度で加圧成形してVf(繊維体積含有量)=5〜65%、好ましくは10〜55%程度の成形体を得る。その後、Nガス等の不活性ガス雰囲気中で1〜200℃/hの昇温速度で2200℃、好ましくは2400℃以上2800℃以下の温度まで焼成し、熱伝導率100W/m・K以上、好ましくは110W/m・K以上とし、更に引張強度を8.5kg/mm以上、好ましくは9kg/mm以上、更に好ましくは10kg/mm以上とする。
【0016】
更に上記焼成したC/C複合材を緻密化する。その方法としては、CVD及び/又は樹脂等を用いる方法が挙げられるが、高熱容量且つ高熱伝導性が得られるピッチを含浸することが好ましい。その後更に、2100℃以下で焼成する緻密化処理を複数回繰り返し気孔率10%以下とすることにより、嵩密度1.8g/cm以上、好ましくは1.9g/cm以上となり、高熱容量かつ摩擦特性及び耐酸化性に優れたC/C複合材となる。このとき使用するピッチとしては、種々のピッチを用いることができるが、好ましくは、軟化点70〜150℃、さらに好ましくは80〜90℃、トルエン不溶分10〜30%、さらに好ましくは13〜20%、実質上キノリン不溶分は含まず、固定炭素40%以上、さらに好ましくは50%以上のものを用いる。緻密化処理工程以降での最高温度は摩擦特性を向上させるため、2100℃以下であることが必要であるが、耐酸化性向上のためには1600℃以上であることが好ましく、かかる緻密化処理工程以降での最高温度は、最終熱処理時の温度であることが必要である。尚、最終熱処理は、緻密化工程であってもよいし、あるいは緻密化工程後に別に設けてもよい。
【0017】
このようにして得られた短繊維強化型C/C複合材は、引張強度8.5kg/mm以上、嵩密度1.8g/cm以上、熱伝導率100W/m・K以上、気孔率10%以下となり、航空機や高速車両用ブレーキとしての要求特性を十分に兼ね備えたものとなる。尚、物性値の測定に当たっては、気孔率については水銀ポロシメーターを使用し、熱伝導率の測定は、レーザーフラッシュ法を用い、引張強度の測定は、JIS K−6911に準拠して測定した。
【0018】
以下、本発明を実施例により具体的に説明するが、本発明はその要旨を越えない限り、下記実施例に限定されるものではない。
【0019】
【実施例】
以下、実施例により本発明をさらに詳細に説明する。
実施例1
フィラメント数4000のピッチ系炭素繊維を30mm長に切断したものをランダムウェバーにて解繊し、二次元ランダムに配向した目付200g/mのシートを得た。このシートへエタノールで希釈したフェノール樹脂を含浸させた後乾燥し、200g/mの炭素繊維に対し130g/mのフェノール樹脂を含浸したシートを作製した。このシートを金型内へ積層し、250℃にて加圧成形し、Vf≒50%の成形体を得た。この成形体を2400℃迄焼成した後、ピッチを含浸し1000℃迄焼成した。さらに同様の含浸−焼成の操作を複数回繰り返し、その後最終処理として、2000℃の熱処理を行って、気孔率8%のC/C複合材を得た。このC/C複合材の特性を表1に示す。
【0020】
比較例1
実施例1と同様な方法で成形し、2000℃で焼成した後に、実施例1と同様の緻密化処理を行い、気孔率8%のC/C複合材を得た。このC/C複合材の特性を表1に示す。
比較例2
フィラメント数4000のピッチ系炭素繊維100重量部にフェノール樹脂65重量部含浸し、乾燥したのち30mm長に切断した所謂トウプレプリグを作製した。このものを金型内へ充填し、250℃にて加圧成形し、Vf≒50%の成形体を得た。この成形体を実施例1と同様な方法にて緻密化処理を行い、気孔率8%のC/C複合材を得た。このC/C複合材の特性を表1に示す。
【0021】
【表1】
Figure 2004075527
【0022】
【発明の効果】
本発明により、航空機や高速車両用の摩擦特性、機械特性、熱特性、耐酸化性に優れた短繊維強化型C/C複合材ブレーキを容易に得ることができる。[0001]
[Industrial applications]
The present invention relates to a carbon fiber reinforced carbon composite material having excellent strength, friction, and sliding characteristics, and particularly suitable for a sliding material of a high-speed, high-energy vehicle.
[0002]
[Prior art]
Generally, carbon fiber reinforced carbon composite material (hereinafter referred to as “C / C composite material”) is a PAN-based, pitch-based or rayon-based long-short carbon fiber and a phenol resin, a thermosetting resin such as a furan resin, or a pitch. It is manufactured by impregnating or mixing a thermoplastic resin or the like, or the like, followed by heat molding, firing in a non-oxidizing atmosphere, and further densifying and graphitizing.
[0003]
C / C composite materials are used as brakes for aircraft and vehicles because of their excellent frictional properties, mechanical properties, heat resistance, and light weight. As a method for reinforcing carbon fibers used in the C / C composite material, there are a method using a two-dimensional woven fabric, a so-called woven fabric, and a method using short fibers as in the present invention. However, a uniform friction surface can be easily obtained. In general, short fiber reinforced C / C composites have been used as friction materials because of their low cost. However, with the recent increase in the size and speed of aircraft and vehicles, higher heat capacity, higher thermal conductivity, and higher strength have been required for C / C composite materials. In particular, C / C composite materials for aircraft and high-speed vehicles are required to have a large diameter (outer diameter of up to 500 mmφ), a high rotation speed (up to 8000 rpm), a high heat capacity, and a high thermal conductivity.
[0004]
For example, the tensile strength required when used under the conditions of an outer diameter of 500 mmφ, an inner diameter of 120 mmφ, a bulk density of 1.8 kg / cm 3 , and a rotation speed of 8000 rpm is defined as a circumferential stress (σ t ) MAX by the following formula. You can ask.
[0005]
(Equation 1)
Figure 2004075527
[0006]
Here, γ: bulk density (1.8 × 10 −3 kg / cm 3 )
r 2 : outer radius (25 cm)
r 1 : inner radius (6 cm)
ω: angular velocity (8000/60) × 2π = 838 rad / s
ν: Poisson's ratio (0.2)
∴ (σ t ) MAX = 654 kg / cm 2 = 6.5 kg / mm 2
t ) MAX = 806 kg / cm 2 = 8.1 kg / mm 2 (MAX value when r 1 = r 2 )
[0007]
Therefore, a tensile strength of at least 8.5 kg / mm 2 or more, preferably 9 kg / mm 2 or more, more preferably 10 kg / mm 2 or more is required. However, since the conventional short fiber reinforced C / C composite material is insufficient in strength, in order to use a woven fabric or maintain friction characteristics, a woven fabric is used at the center and only the surface is made of a short fiber reinforced C / C composite. C composite materials and the like have been proposed as brake materials for large vehicles. However, a C / C composite material using a woven fabric is expensive, has poor friction characteristics, and does not satisfy the characteristics required as a brake material.
[0008]
[Problems to be solved by the invention]
Therefore, the present inventors have focused on a short fiber reinforced C / C composite material and have intensively studied to provide a C / C which is free from the above-mentioned problems and is useful as a sliding material for high-speed vehicles.
[0009]
[Means for Solving the Problems]
The present inventors have intensively studied a C / C composite material using short fibers in order to solve such a problem, and in particular, use pitch-based carbon fibers as carbon fibers and impregnate them with pitch for densification. Thereby, the C / C composite material having high strength, high heat capacity, high thermal conductivity, and excellent friction characteristics can be obtained by further graphitizing at 2200 ° C. or higher before densification and setting the densification firing temperature to 2100 ° C. or lower. They found that they could be manufactured and arrived at the present invention.
[0010]
That is, the gist of the present invention is a short fiber reinforced C / C composite material having a tensile strength of 8.5 kg / mm 2 or more, a bulk density of 1.8 g / cm 3 or more, and a thermal conductivity of 100 W / m · K or more. And a C / C composite material having a porosity of 10% or less and a sliding material using the same.
Hereinafter, the present invention will be described in detail. As the carbon fibers used in the present invention, known materials such as PAN-based and rayon-based can be used, but pitch-based carbon fibers having high heat capacity and high heat conductivity are preferably used. preferable. Further, if necessary, inorganic fibers such as SiC, Al 2 O 3 and carbon black, and inorganic substances may be added.
[0011]
The form of the carbon fiber used is a form of a tow, a strand, a roving, a yarn or the like composed of a plurality of single fibers, and it is preferable to use a short fiber obtained by cutting these. And these short fibers are formed from a bundle of a plurality of single fibers, 1000 to 8000, preferably 2000 to 6000, and in the present invention, usually 0.3 to 100 mm, preferably about 5 to 50 mm. Use short fiber bundles. The diameter and elastic modulus of the carbon fiber itself are not particularly limited as long as they are generally used as a composite material. When forming a C / C composite material, it is important to defibrate and disperse the short fiber bundle, produce a two-dimensional random sheet, and fill a matrix material therebetween to improve the properties.
[0012]
Therefore, in the present invention, the short fiber bundle is dry- or wet-defibrated to produce a two-dimensional random sheet. Here, dry defibration, as a method of manufacturing a two-dimensionally randomly oriented sheet, for example, a common mechanically monofilament carbon fiber in spinning, or using a random webber to produce a sheet, or There is a method of defibrating with air to produce a sheet.
[0013]
In addition, as a method of producing a two-dimensionally randomly oriented sheet by wet defibration, for example, a beater usually used for beating pulp or the like or a pulper used for defibration is used, and short fibers are used in a solvent. After fibrillation of the fibrous carbon fiber, for example, it is supplied little by little to a mold having a screen at the bottom or the like, or is uniformly dispersed by means of stirring or the like after fibrillation, paper-made with a wire mesh or the like, and dried to produce. is there. As a solvent for uniformly dispersing the short fibrous carbon fibers, water, acetone, an alcohol having 1 to 5 carbon atoms, anthracene oil, or the like is preferably used, but other organic solvents may be used. Also, it is preferable to disperse or dissolve phenol resin, furan resin, pitch, or the like in the solvent, since the carbon fibers will be in a bonded state and handling in the next step will be easier. Further, it is preferable to add a thickener such as sodium cellulose glycolate, polyvinyl alcohol, or hydroxycellulose to the solvent, since the effect is further increased.
[0014]
As the basis weight (weight per 1 m 2 ) of the sheet, various ones can be used. However, considering the handleability, impregnation property and uniformity, 10 to 500 g / m 2 is optimal. The thus obtained two-dimensionally randomly oriented sheet is impregnated with a phenol resin, a furan resin, or a matrix such as a petroleum-based or coal-based pitch and then dried. At this time, the matrix used is one dissolved in a solvent such as alcohol, acetone, anthracene oil or the like and adjusted to an appropriate viscosity.
[0015]
Next, the dried sheets are laminated, filled in a mold, and pressed at a temperature of 100 to 500 ° C. to form Vf (fiber volume content) = 5 to 65%, preferably about 10 to 55%. Get the body. Then, it is fired in an inert gas atmosphere such as N 2 gas at a temperature rising rate of 1 to 200 ° C./h to 2200 ° C., preferably 2400 ° C. to 2800 ° C., and has a thermal conductivity of 100 W / m · K or more. Preferably, the tensile strength is 110 W / m · K or more, and the tensile strength is 8.5 kg / mm 2 or more, preferably 9 kg / mm 2 or more, more preferably 10 kg / mm 2 or more.
[0016]
Further, the fired C / C composite is densified. Examples of the method include a method using CVD and / or a resin, and it is preferable to impregnate a pitch that provides high heat capacity and high thermal conductivity. After that, the densification treatment of firing at 2100 ° C. or less is repeated a plurality of times to make the porosity 10% or less, so that the bulk density becomes 1.8 g / cm 3 or more, preferably 1.9 g / cm 3 or more, and the high heat capacity and It becomes a C / C composite material having excellent friction characteristics and oxidation resistance. As the pitch used at this time, various pitches can be used, but preferably the softening point is 70 to 150 ° C, more preferably 80 to 90 ° C, the toluene insoluble content is 10 to 30%, and further preferably 13 to 20%. %, Containing substantially no quinoline-insoluble matter and having a fixed carbon of 40% or more, more preferably 50% or more. The maximum temperature after the densification step is required to be 2100 ° C. or lower in order to improve the friction characteristics, but is preferably 1600 ° C. or higher in order to improve the oxidation resistance. The maximum temperature after the process needs to be the temperature at the time of the final heat treatment. The final heat treatment may be performed in the densification step or may be separately provided after the densification step.
[0017]
The short fiber reinforced C / C composite thus obtained has a tensile strength of 8.5 kg / mm 2 or more, a bulk density of 1.8 g / cm 3 or more, a thermal conductivity of 100 W / m · K or more, and a porosity. This is 10% or less, which sufficiently satisfies the characteristics required for brakes for aircraft and high-speed vehicles. In the measurement of the physical properties, the porosity was measured using a mercury porosimeter, the thermal conductivity was measured using a laser flash method, and the tensile strength was measured according to JIS K-6911.
[0018]
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the following examples unless departing from the gist of the present invention.
[0019]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
A pitch-based carbon fiber having 4000 filaments cut into a length of 30 mm was defibrated by random webber to obtain a two-dimensionally randomly oriented sheet having a basis weight of 200 g / m 2 . This sheet was impregnated with a phenol resin diluted with ethanol and then dried to prepare a sheet in which 200 g / m 2 of carbon fiber was impregnated with 130 g / m 2 of a phenol resin. The sheet was laminated in a mold and pressed at 250 ° C. to obtain a molded product having a Vf of about 50%. After firing this molded body to 2400 ° C, pitch was impregnated and fired to 1000 ° C. Further, the same operation of impregnation and firing was repeated a plurality of times, and thereafter, as a final treatment, a heat treatment at 2000 ° C. was performed to obtain a C / C composite material having a porosity of 8%. Table 1 shows the characteristics of the C / C composite material.
[0020]
Comparative Example 1
After molding by the same method as in Example 1 and firing at 2000 ° C., the same densification treatment as in Example 1 was performed to obtain a C / C composite material having a porosity of 8%. Table 1 shows the characteristics of the C / C composite material.
Comparative Example 2
A so-called toe prepreg was prepared by impregnating 65 parts by weight of a phenol resin into 100 parts by weight of pitch-based carbon fiber having 4000 filaments, drying and cutting the same to a length of 30 mm. This was filled in a mold and pressed at 250 ° C. to obtain a molded product having a Vf of about 50%. This compact was subjected to a densification treatment in the same manner as in Example 1 to obtain a C / C composite material having a porosity of 8%. Table 1 shows the characteristics of the C / C composite material.
[0021]
[Table 1]
Figure 2004075527
[0022]
【The invention's effect】
According to the present invention, a short fiber reinforced C / C composite brake excellent in friction characteristics, mechanical characteristics, thermal characteristics, and oxidation resistance for aircraft and high-speed vehicles can be easily obtained.

Claims (5)

短繊維強化型炭素繊維強化炭素複合材料であって、引張強度8.5kg/mm以上、嵩密度1.8g/cm以上、熱伝導率100W/m・K以上、且つ気孔率10%以下の特性を有する炭素繊維強化炭素複合材。A short fiber reinforced carbon fiber reinforced carbon composite material having a tensile strength of 8.5 kg / mm 2 or more, a bulk density of 1.8 g / cm 3 or more, a thermal conductivity of 100 W / m · K or more, and a porosity of 10% or less. A carbon fiber reinforced carbon composite material having the following characteristics. 内部にピッチ系の炭素短繊維が二次元ランダムに配向していることを特徴とする、請求項1記載の炭素繊維強化炭素複合材。2. The carbon fiber reinforced carbon composite material according to claim 1, wherein the pitch-based short carbon fibers are two-dimensionally randomly oriented therein. 引張強度が9kg/mm以上、嵩密度が1.9g/cm以上、且つ熱伝導率が110W/m・K以上の特性を有することを特徴とする、請求項1又は2に記載の炭素繊維強化炭素複合材。The carbon according to claim 1, wherein the carbon has a tensile strength of 9 kg / mm 2 or more, a bulk density of 1.9 g / cm 3 or more, and a thermal conductivity of 110 W / m · K or more. Fiber reinforced carbon composite. マトリックスの炭素の少なくとも一部がピッチに由来するものであることを特徴とする、請求項1〜3のいずれか1項に記載の炭素繊維強化炭素複合材。The carbon fiber-reinforced carbon composite material according to any one of claims 1 to 3, wherein at least a part of carbon of the matrix is derived from pitch. 請求項1〜4のいずれか1項に記載の炭素繊維強化炭素複合材を用いたことを特徴とする摺動材。A sliding material using the carbon fiber reinforced carbon composite material according to claim 1.
JP2003183424A 2003-06-26 2003-06-26 Carbon fiber reinforced carbon composite material and sliding material using the same Expired - Lifetime JP4066896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183424A JP4066896B2 (en) 2003-06-26 2003-06-26 Carbon fiber reinforced carbon composite material and sliding material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183424A JP4066896B2 (en) 2003-06-26 2003-06-26 Carbon fiber reinforced carbon composite material and sliding material using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27050492A Division JP3484711B2 (en) 1992-10-08 1992-10-08 Method for producing carbon fiber reinforced carbon composite

Publications (2)

Publication Number Publication Date
JP2004075527A true JP2004075527A (en) 2004-03-11
JP4066896B2 JP4066896B2 (en) 2008-03-26

Family

ID=32025682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183424A Expired - Lifetime JP4066896B2 (en) 2003-06-26 2003-06-26 Carbon fiber reinforced carbon composite material and sliding material using the same

Country Status (1)

Country Link
JP (1) JP4066896B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217256A (en) * 2006-02-20 2007-08-30 Ihi Aerospace Co Ltd Aluminum-impregnated three-dimensional c/c composite and method for producing the same
KR101205145B1 (en) 2010-08-04 2012-11-26 이비덴 가부시키가이샤 Carbon fiber reinforced carbon composite and method for manufacturing the same
KR101261728B1 (en) 2010-08-04 2013-05-07 이비덴 가부시키가이샤 C/c composite molded body and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217256A (en) * 2006-02-20 2007-08-30 Ihi Aerospace Co Ltd Aluminum-impregnated three-dimensional c/c composite and method for producing the same
KR101205145B1 (en) 2010-08-04 2012-11-26 이비덴 가부시키가이샤 Carbon fiber reinforced carbon composite and method for manufacturing the same
KR101261728B1 (en) 2010-08-04 2013-05-07 이비덴 가부시키가이샤 C/c composite molded body and method for manufacturing the same

Also Published As

Publication number Publication date
JP4066896B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP4297138B2 (en) Carbon fiber reinforced SiC composite and sliding material
US5578255A (en) Method of making carbon fiber reinforced carbon composites
JP4066896B2 (en) Carbon fiber reinforced carbon composite material and sliding material using the same
JP3484711B2 (en) Method for producing carbon fiber reinforced carbon composite
JP3433473B2 (en) Carbon fiber reinforced carbon composite, method for producing the same and sliding material using the same
JP3625486B2 (en) Molded insulation
JP3383992B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JP3218829B2 (en) Brake sliding part
JP3395261B2 (en) Method for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced composite material, and sliding material using the same
JP2906484B2 (en) Carbon fiber reinforced carbon composite and method for producing the same
JP3339075B2 (en) Carbon fiber reinforced carbon composite, method for producing the same, and sliding material using the same
JPS6296364A (en) Manufacture of carbon fiber reinforced carbon composite material
JP3383990B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JP3859748B2 (en) Aircraft brake materials
JP3560065B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JP3383991B2 (en) Carbon fiber reinforced carbon composite and sliding material using it
JP3383989B2 (en) Method for producing carbon fiber reinforced carbon composite
JP2594952B2 (en) Molded heat insulating material and its manufacturing method
JPH09278553A (en) Production of carbon composite material reinforced with carbon fiber
JP4014237B2 (en) Brake sliding part
JPH08120600A (en) Sheet and its production
JP2017008272A (en) High functional carbon/carbon composite having high carbon fiber contribution ratio
JP2969957B2 (en) Brake sliding part
JPH10167848A (en) Sliding member of brake
JP2001039777A (en) Heat radiating plate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5