JP2004074608A - Resin printing plate and its manufacturing method - Google Patents

Resin printing plate and its manufacturing method Download PDF

Info

Publication number
JP2004074608A
JP2004074608A JP2002238827A JP2002238827A JP2004074608A JP 2004074608 A JP2004074608 A JP 2004074608A JP 2002238827 A JP2002238827 A JP 2002238827A JP 2002238827 A JP2002238827 A JP 2002238827A JP 2004074608 A JP2004074608 A JP 2004074608A
Authority
JP
Japan
Prior art keywords
resin plate
ink
layer
resist
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002238827A
Other languages
Japanese (ja)
Other versions
JP4048877B2 (en
Inventor
Teruhiko Kai
甲斐 輝彦
Norimasa Sekine
関根 徳政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002238827A priority Critical patent/JP4048877B2/en
Publication of JP2004074608A publication Critical patent/JP2004074608A/en
Application granted granted Critical
Publication of JP4048877B2 publication Critical patent/JP4048877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin printing plate which transfers a desired pattern shape and prints a highly fine-defined image with high resolving power, and a method for manufacturing the resin printing plate. <P>SOLUTION: The resin printing plate for intaglio or relief printing has at least an ink transfer part and the width of a recessed part or a projecting part of 0.1 to 500 μm and its interval of 0.1 to 500 μm. The method for manufacturing the resin printing plate of a recessed or projecting type comprises the process to coat a recessed part on the surface of the resin printing plate with a resist, the process to coat the projecting part or recessed part of the resin printing plate with a primary coat, the process to remove the resist and the process to coat the surface of the primary coat with a non-transfer layer having a contact angle of not less than 90° with ink. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子あるいは光素子およびその作製プロセス等に利用される微細パターンを形成する為の樹脂版およびその版の製造方法に関するものである。
【0002】
【従来の技術】
有機薄膜のデバイス応用を目指して、有機薄膜の微細パターン形成技術が研究されている。あるいは、有機薄膜を高精度にパターニングし、リソグラフィーの為のレジストとして利用する技術が研究されている。
有機薄膜の微細パターン形成技術として、「マイクロコンタクトプリンティング法(以下、μCP法と記述する)」と呼ばれる方法が知られている(例えば、U.S.Patent 6060121に記載)。μCP法とは、所望の凹凸パターンを形成した樹脂版に、インクを付着した後に、樹脂版と基板を接触させ、基板上にインクを転写し、有機薄膜パターンを形成する方法である。米国特許 第6060121号では、有機薄膜として、欠陥の少ない単分子膜が、再現性よく多様な基板(金属、半導体、酸化物など)上に形成できる自己組織化膜(以下、SAMsと記述する)を利用している。
【0003】
μCP法では、樹脂版上にインクをのせて、凹凸パターンの全面にインクを付着する。しかし、この方法では、樹脂版と基板を接触させたさいに、樹脂版が変形し、所望のパターン以外に付着したインクが基板に転写され、所望のパターン形状が転写できない、解像度が落ちるなどの問題があった。
【0004】
【発明が解決しようとする課題】
本発明はこれらの問題点を解決するためになされたものであり、所望のパターン形状が転写でき、解像度の高い、高精細な印刷ができる樹脂版およびその製造方法を提供するものである。
【0005】
【課題を解決するための手段】
請求項1の発明は、少なくともインク転写部を有し、凸部の幅、間隔がそれぞれ0.1〜500μm、0.1〜500μmである凸版印刷用の樹脂版であって、該樹脂版の凹部にインクとの接触角が90度以上である非転写層を被覆したことを特徴とする凸型の樹脂版である。
【0006】
請求項2の発明は、少なくともインク転写部を有し、凹部の幅、間隔がそれぞれ0.1〜500μm、0.1〜500μmである凹版印刷用の樹脂版であって、該樹脂版の凸部にインクとの接触角が90度以上である非転写層を被覆したことを特徴とする凹型の樹脂版である。
【0007】
請求項3の発明は、前記非転写層が、単分子層であることを特徴とする請求項1または2に記載の樹脂版である。
【0008】
請求項4の発明は、前記単分子層が、チオール化合物、ジスルフィド化合物、有機シラン化合物のいずれかからなることを特徴とする請求項3に記載の樹脂版である。
【0009】
請求項5の発明は、前記非転写層の下に下地層を設けてなることを特徴とする請求項1〜4のいずれかに記載の樹脂版である。
【0010】
請求項6の発明は、少なくとも、インク転写部を有し、凸部の幅、間隔がそれぞれ0.1〜500μm、0.1〜500μmである凸版印刷用の樹脂版において、該樹脂版上の凸部にレジストを被覆する工程、該樹脂版の凹部に下地層を被覆する工程、該レジストを除去する工程、該下地層上にインクとの接触角が90度以上である非転写層を被覆する工程、を有することを特徴とする凸型の樹脂版の製造方法である。
【0011】
請求項7の発明は、少なくとも、インク転写部を有し、凹部の幅、間隔がそれぞれ0.1〜500μm、0.1〜500μmである凹版印刷用の樹脂版において、該樹脂版上の凹部にレジストを被覆する工程、該樹脂版の凸部に下地層を被覆する工程、該レジストを除去する工程、該下地層上にインクとの接触角が90度以上である非転写層を被覆する工程、を有することを特徴とする凹型の樹脂版の製造方法である。
【0012】
請求項8の発明は、前記非転写層が、単分子層であることを特徴とする請求項6または7に記載の製造方法である。
【0013】
請求項9の発明は、前記単分子層が、チオール化合物、ジスルフィド化合物、有機シラン化合物のいずれかからなることを特徴とする請求項8に記載の製造方法である。
【0014】
【発明の実施の形態】
本発明は、インク転写部を有する凸版印刷用または凹版印刷用の樹脂版であって、インクの非転写部にインクとの接触角が90度以上である非転写層を設けてなることを特徴とする。
以下、図面を参照して本発明の樹脂版およびその製造方法の一例を説明する。
【0015】
本発明の樹脂版に用いる樹脂としては、公知のものを用いることができる。また、樹脂版は、樹脂版1にインクを付着させる為に、インクとの接触角は90度未満となるように樹脂を選択することが好ましい。例えば、けい素樹脂等、フェノール樹脂、不飽和ポリエステル等の熱硬化性樹脂、あるいは光硬化性樹脂、または電子線硬化性樹脂などを使用することができる。中でもポリジメチルシロキサン(以下PDMSとする)などを好適に用いることができる。
【0016】
本発明の非転写層は、インクとの接触角が90度以上である材料であれば、どのような材料、構成でもよい。特に単分子層であることが好ましく、欠陥が少なく緻密な膜を形成できるSAMs(自己組織化膜)であることが好ましい。SAMsを用いることにより、より解像度が高く、高精細なパターニングが可能となる。
【0017】
このような非転写層としては、チオール化合物、ジスルフィド化合物、有機シラン化合物などを用いることができる。
【0018】
チオール化合物としては、デカンチオール、ドデカンチオール、テトラデカンチオール、ヘキサデカンチオール、オクタデカンチオール、オレイルチオール、ジチオヘキサデカン酸、ジチオテトラデカン酸、ジチオオクタデカン酸、ジチオドデカン酸、ジチオデカン酸、メルカプトヘキサデカン酸、ジチオヘキサデカン酸メチルエステル、ジチオテトラデカン酸メチルエステル、ジチオオクタデカン酸メチルエステル、ジチオドデカン酸メチルエステル、ジチオデカン酸メチルエステルなど公知の化合物が使用できる。
【0019】
ジスルフィド化合物としては、ジデシルスルフィド、ジドデシルスルフィド、ジテトラデシルスルフィド、ジヘキサデシルスルフィド、ジオクタデシスルフィド、ジオレイルスルフィド、ジデシルジスルフィド、ジドデシルジスルフィド、ジテトラデシルジスルフィド、ジヘキサデシルジスルフィド、ジオクタデシジスルフィド、ジオレイルジスルフィドなど公知の化合物が使用できる。
【0020】
有機シラン化合物としては、アミノプロピルトリエトキシシラン、メルカプトプロピルトリエトキシシラン、ドデシルトリクロロシラン、ヘキサデシルトリクロロシラン、ヘプタデカフルオロテトラヒドロデシルオトリクロロシラン、ヘプタデカフルオロテトラヒドロデシルオトリエトキシシラン、ヘプタデカフルオロテトラオクチルトリクロロシラン、トリフルオロプロピルトリメトキシシラン、オクタデシルトリクロロシラン、[2−(パーフルオロオクチル)エチル]トリクロロシラン、[3−(1H、1H、2H、2Hパーフルオロドデシロキシ)プロピル]トリエトキシシランなど公知の化合物が使用できる。
【0021】
本発明では非転写層の下に1層以上の下地層を設けてもよい。下地層としては、非転写層に用いる材料によって選択し、非転写層と化学的に結合する金などの金属膜やSiO膜などの金属酸化物膜が好適に用いることができる。密着力が大きいからである。
【0022】
[樹脂版の作製方法]
以下に凸版印刷用の凸型樹脂版を例に説明する。なお、ここでは下地層5を設けた例で説明するが、設けなくても構わない。
先ず、UVあるいはEBを用いたリソグラフィーで形成された凹凸パターンを有する母型を作製する。母型は金属または半導体または酸化物または窒化物からなるものを使用する。あるいは金属または半導体または酸化物または窒化物からなる基板上にUVあるいはEBを用いたリソグラフィーでレジストにより凹凸パターンを形成しても良い。
【0023】
次いで、表面に凹凸パターンを有する母型上に樹脂を塗布する。樹脂を硬化した後に、樹脂を母型から剥離することにより、母型上の凹凸パターンを樹脂に転写し樹脂版1(図2(a))とする。
【0024】
次いで、樹脂版1上にレジスト層4を形成し、UVあるいはEBを用いたリソグラフィーでレジスト4をパターニングする。ここでは、樹脂版の凸部(インクを付着させたい部分)をレジスト4で被覆するようにパターニングする(図2(b))。
【0025】
次いで、真空蒸着あるいはスパッタ法により下地層5を形成する(図2(c))。その後、レジストパターン4を剥離し、樹脂版1の凹部(インクを付着させたくない部分)のみに下地層5を形成した状態とする(図2(d))。
【0026】
次いで、非転写層溶液に樹脂版1を浸漬し、下地層5上に非転写層2を形成する。非転写層2は、インクとの接触角が90度以上になるような分子を選択する(図2(e))。
【0027】
[パターン形成方法]
先ず、インク3を表面に凹凸パターンを有する樹脂版1に付着させる。この時、インク3を付着させたいところ以外では、インク3の接触角が90度以上である為にインク3は付着せずに、インク3は所定の位置だけに付着する(図3(a))。
次にインク3が付着した樹脂版1を基板6に接触させ(図3(b))、インク3を基板6に転写する(図3(c))。インク3は所定の位置だけに付着している為に、所望のパターンを精度よく基板に転写させることができる。
【0028】
また、本発明で用いるインク3は、目的に応じて公知の様々な材料を使用することができる。また、本発明では、光を使用せずにインクパターンを形成できるため、光で劣化する有機材料のパターン形成などに特に有効である。
【0029】
なお、ここでは、凸版印刷用の凸型樹脂版を例に説明したが、レジスト層凹部に、下地層を凸部に、非転写層該下地層上に形成すれば凹版印刷用の凹型樹脂版として用いることができる。
【0030】
また、転写するパターンは細かくなればなるほど、転写パターンからのインクのはみ出しの影響が大きくなる。特に、マイクロコンタクトプリンティングのような微細で凹凸を有する樹脂版を用いる場合、転写する際の版の歪みにより転写パターンの精度が落ちるため、非転写層を設けることでより効果を発揮する。
【0031】
具体的には線幅50μm以下程度のパターンを転写する時に特に有効である。
なお、この時の凸版印刷用の凸型樹脂版は、凸部の高さが0.1〜500μmの範囲内であることが好ましく、凸部の幅、間隔は、それぞれ0.1〜500μm、0.1〜500μmの範囲内であることが好ましく、さらにはそれぞれ0.1〜100μm、0.1〜100μmの範囲内である場合に、より効果を発揮する。また、凹版印刷用の凹型樹脂版の場合は、凹部の深さが0.1〜500μmの範囲内であることが好ましく、凹部の幅、間隔は、それぞれ0.1〜500μm、0.1〜500μmの範囲内であることが好ましく、さらにはそれぞれ0.1〜100μm、0.1〜100μmの範囲内である場合に、より効果を発揮する。
【0032】
【実施例】
以下、本発明を実施例に基いてより具体的に説明する。なお、ここでは凸版印刷用の凸型樹脂を例に説明するがこれに限るものではない。
【0033】
<実施例1>
[樹脂版の作製方法]
先ず、Si基板上にレジスト層形成し、UVを用いたリソグラフィーでレジストをパターニングし、レジストの凹凸パターンを有する母型を作製した。凹凸パターン幅を10μm/10μmとした。凹凸の高さを1μmとした。
次いで、表面に凹凸パターンを有する母型上にポリジメチルシロキサン(以下、PDMSと記述する)樹脂(DowCornig製Sylgrad184)を塗布した。PDMS樹脂を70℃、12時間加熱し、PDMS樹脂を硬化した。硬化したPDMS樹脂を母型から剥離し、凸部の高さが1μm、凸部の幅、間隔が、それぞれ10μm、10μmである凸型樹脂版を得た。
次いで、レジスト層を形成し、UVを用いたリソグラフィーでレジストをパターニングした。ここでは、樹脂版の凸部をレジストで被覆するようにパターニングした。
次いで、下地層としてEB蒸着法により膜厚100nmの金膜を形成した。その後、剥離液を用いてレジストパターンを剥離することにより、凹部に下地層を有する樹脂版を得た。
次いで、オクタデカンチオール(HS(CH15CH)エタノール溶液(10mM)中に樹脂版を5時間浸漬した。エタノールで洗浄した後、乾燥し、下地層上に非転写層を形成した。
【0034】
[パターン形成方法]
先ず、樹脂版上にインク3として、メルカプトヘキサデカン酸(HS(CH11COOH)エタノール溶液(10mM)をのせる。この時、インク3とPDMS樹脂版上の非転写層との接触角は90度であった。その為、インク3は非転写層上には付着せずに、それ以外の位置(凸部)だけに付着した。
次にインク3が付着した樹脂版を金基板に1分間接触して、インク3を金基板に転写した。なお、金基板はEB蒸着法によりガラス基板上にクロム、金を順次膜厚50nm、100nmになるよう成膜したものを使用した。転写後、エタノールで金基板を洗浄した後、乾燥した。
金基板上のインク3をAFMで観察したところ、パターンのライン幅、スペース幅がそれぞれ10μm、10μmのインクパターンが観察された。
【0035】
<実施例2>
[樹脂版の作製方法]
先ず、Si基板上にレジスト層形成し、EBを用いたリソグラフィーでレジストをパターニングし、レジストの凹凸パターンを有する母型を作製した。凹凸パターン幅を1μm/1μmとした。凹凸の高さを0.5μmとした。
次いで、表面に凹凸パターンを有する母型上にポリジメチルシロキサン(以下、PDMSと記述する)樹脂(DowCornig製Sylgrad184)を塗布した。PDMS樹脂を70℃、12時間加熱し、PDMS樹脂を硬化した。硬化したPDMS樹脂を母型から剥離し、凸部の高さが0.5μm、凸部の幅、間隔が、それぞれ1μm、1μmである凸型樹脂版を得た。
次いで、レジスト層形成し、EBを用いたリソグラフィーでレジストをパターニングした。ここでは、樹脂版の凸部をレジストで被覆するようにパターニングした。
次いで、下地層としてスパッタ法により膜厚100nmのSiO膜を形成した。その後、剥離液を用いてレジストパターンを剥離した。
次いで、オクタデシルトリメトキシシラン(CH(CH17Si(OCH)トルエン溶液中に樹脂版を30分間浸漬した。その後70℃30分間乾燥し、SiO膜上に非転写層を形成した。
【0036】
[パターン形成方法]
先ず、樹脂版上にインク3としてHS(CH15CHエタノール溶液(10mM)中をのせる。この時、インク3と樹脂版上の非転写層との接触角は90度であった。その為、非転写層の部分にはインク3は付着せずに、それ以外の位置(凸部)だけにインク3が付着する。
次にインク3が付着した樹脂版を金基板に1分間接触して、インク3を金基板に転写した。なお、金基板はEB蒸着法によりガラス基板上にクロム、金を順次膜厚50nm、100nmになるよう成膜したものを使用した。転写後、エタノールで金基板を洗浄した。
金基板上のインク3をAFMで観察したところ、パターンのライン幅とスペース幅がそれぞれ1μm、1μmのインクパターンが観察された。
【0037】
<比較例>
[樹脂版の作製方法]
下地層と非転写層を形成しない以外は実施例1と同様の方法でPDMS樹脂版を作製し、凸部の高さが1μm、凸部の幅、間隔が、それぞれ10μm、10μmである凸型樹脂版を得た。
【0038】
[パターン形成方法]
実施例1と同様に、先ず、樹脂版上にインク3として、メルカプトヘキサデカン酸(HS(CH11COOH)エタノール溶液(10mM)をのせる。この時、インク3とPDMS樹脂版との接触角は60度であった。
次にインク3が付着した樹脂版を金基板に1分間接触して、インク3を金基板に転写した。なお、金基板はEB蒸着法によりガラス基板上にクロム、金を順次膜厚50nm、100nmになるよう成膜したものを使用した。転写後、エタノールで金基板を洗浄した後、乾燥した。
金基板上のインク3をAFMで観察したところ、パターンのライン幅とスペース幅がそれぞれ12μm、8μmのインクパターンが観察された。比較例では、樹脂版の凹凸パターンと比較して、インクパターンのライン幅の増大し、所望のインクパターンを形成することができなかった。
【0039】
【発明の効果】
本発明の構成とすることで、凹型、凸型樹脂版のように凹凸を有する樹脂版を用いて転写する際の凹凸形状の歪みによる誤転写を防ぐことができる。すなわち、所望のパターン以外のところにインクが付着することを防止し、形成されたパターンの形状が再現よく形成でき、解像度の高い、高精細な印刷に用いることのできる樹脂版とすることができる。
【0040】
【図面の簡単な説明】
【図1】本発明の樹脂版の一例の断面の構造を示す説明図である。
【図2】本発明の樹脂版の製造方法の一例を示す説明図である。
【図3】本発明のパターン形成方法の一例のを示す説明図である。
【符号の説明】
1   樹脂版
2   非転写層
3   インク
4   レジスト
5   下地層
6   基板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin plate for forming a fine pattern used for an electronic or optical element and a manufacturing process thereof, and a method of manufacturing the plate.
[0002]
[Prior art]
Aiming at application of organic thin films to devices, research has been conducted on techniques for forming fine patterns of organic thin films. Alternatively, a technique of patterning an organic thin film with high precision and using it as a resist for lithography has been studied.
As a technique for forming a fine pattern of an organic thin film, a method called “microcontact printing method (hereinafter, referred to as μCP method)” is known (for example, described in US Patent 6060121). The μCP method is a method of forming an organic thin film pattern by attaching ink to a resin plate having a desired concavo-convex pattern, contacting the resin plate with a substrate, transferring the ink onto the substrate, and forming an organic thin film pattern. In U.S. Pat. No. 6,060,121, a self-assembled film (hereinafter referred to as SAMs) can be formed as an organic thin film on a variety of substrates (metals, semiconductors, oxides, etc.) with good reproducibility. I use.
[0003]
In the μCP method, ink is placed on a resin plate, and the ink is attached to the entire surface of the uneven pattern. However, in this method, when the resin plate and the substrate are brought into contact with each other, the resin plate is deformed, ink attached to a portion other than a desired pattern is transferred to the substrate, a desired pattern shape cannot be transferred, resolution is reduced, and the like. There was a problem.
[0004]
[Problems to be solved by the invention]
The present invention has been made to solve these problems, and it is an object of the present invention to provide a resin plate capable of transferring a desired pattern shape, performing high-resolution, high-definition printing, and a method for manufacturing the same.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 is a relief printing plate having at least an ink transfer portion, and the width and the interval of the projections are 0.1 to 500 μm and 0.1 to 500 μm, respectively. A convex resin plate, wherein the concave portion is coated with a non-transfer layer having a contact angle with ink of 90 degrees or more.
[0006]
The invention according to claim 2 is a resin plate for intaglio printing having at least an ink transfer portion, wherein the width and interval of the concave portions are 0.1 to 500 μm and 0.1 to 500 μm, respectively. The concave resin plate is characterized in that a non-transfer layer having a contact angle with ink of 90 ° or more is coated on the portion.
[0007]
The invention according to claim 3 is the resin plate according to claim 1 or 2, wherein the non-transfer layer is a monomolecular layer.
[0008]
The invention according to claim 4 is the resin plate according to claim 3, wherein the monomolecular layer is made of any one of a thiol compound, a disulfide compound, and an organic silane compound.
[0009]
The invention according to claim 5 is the resin plate according to any one of claims 1 to 4, wherein a base layer is provided below the non-transfer layer.
[0010]
The invention according to claim 6 is a resin plate for letterpress printing, which has at least an ink transfer portion, and the width and interval of the protrusions are 0.1 to 500 μm and 0.1 to 500 μm, respectively. A step of coating the convex portion with a resist, a step of coating the concave portion of the resin plate with a base layer, a step of removing the resist, and a step of coating the base layer with a non-transfer layer having a contact angle with ink of 90 ° or more. A method of manufacturing a convex resin plate.
[0011]
The invention according to claim 7 is a resin plate for intaglio printing having at least an ink transfer portion, wherein the width and interval of the concave portions are 0.1 to 500 μm and 0.1 to 500 μm, respectively. Applying a resist to the resin plate, covering the convex portion of the resin plate with a base layer, removing the resist, and coating the base layer with a non-transfer layer having a contact angle with ink of 90 ° or more. And a method of manufacturing a concave resin plate.
[0012]
The invention according to claim 8 is the manufacturing method according to claim 6 or 7, wherein the non-transfer layer is a monolayer.
[0013]
The invention according to claim 9 is the manufacturing method according to claim 8, wherein the monomolecular layer is made of any one of a thiol compound, a disulfide compound, and an organic silane compound.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is a letterpress printing or intaglio printing resin plate having an ink transfer portion, wherein a non-transfer layer having a contact angle with ink of 90 degrees or more is provided in a non-transfer portion of the ink. And
Hereinafter, an example of the resin plate of the present invention and a method for producing the same will be described with reference to the drawings.
[0015]
Known resins can be used as the resin used for the resin plate of the present invention. In addition, it is preferable that the resin plate is selected such that the contact angle with the ink is less than 90 degrees in order to make the ink adhere to the resin plate 1. For example, a thermosetting resin such as a silicon resin, a phenol resin, an unsaturated polyester, or the like, a photocurable resin, or an electron beam curable resin can be used. Among them, polydimethylsiloxane (hereinafter referred to as PDMS) and the like can be preferably used.
[0016]
The non-transfer layer of the present invention may be of any material and constitution as long as the material has a contact angle with ink of 90 degrees or more. In particular, a monolayer is preferable, and SAMs (self-assembled films) that can form a dense film with few defects are preferable. The use of SAMs enables higher resolution and higher definition patterning.
[0017]
For such a non-transfer layer, a thiol compound, a disulfide compound, an organic silane compound, or the like can be used.
[0018]
As the thiol compound, decanethiol, dodecanethiol, tetradecanethiol, hexadecanethiol, octadecanethiol, oleylthiol, dithiohexadecanoic acid, dithiotetradecanoic acid, dithiooctadecanoic acid, dithiododecanoic acid, dithiodecanoic acid, mercaptohexadecanoic acid, dithiohexadecanoic acid methyl ester Known compounds such as methyl dithiotetradecanoate, methyl dithiooctadecanoate, methyl dithiododecanoate, and methyl dithiodecanoate can be used.
[0019]
As disulfide compounds, didecyl sulfide, didodecyl sulfide, ditetradecyl sulfide, dihexadecyl sulfide, dioctadecyl sulfide, dioleyl sulfide, didecyl disulfide, didodecyl disulfide, ditetradecyl disulfide, dihexadecyl disulfide, Known compounds such as dioctadecidisulphide and dioleyldisulfide can be used.
[0020]
Examples of the organic silane compound include aminopropyltriethoxysilane, mercaptopropyltriethoxysilane, dodecyltrichlorosilane, hexadecyltrichlorosilane, heptadecafluorotetrahydrodecylotrichlorosilane, heptadecafluorotetrahydrodecylotriethoxysilane, heptadecafluorotetraoctyltrisilane. Known such as chlorosilane, trifluoropropyltrimethoxysilane, octadecyltrichlorosilane, [2- (perfluorooctyl) ethyl] trichlorosilane, [3- (1H, 1H, 2H, 2H perfluorododecyloxy) propyl] triethoxysilane Can be used.
[0021]
In the present invention, one or more underlayers may be provided below the non-transfer layer. The base layer is selected depending on the material used for the non-transfer layer, and a metal film such as gold chemically bonded to the non-transfer layer or a metal oxide film such as a SiO 2 film can be suitably used. This is because the adhesion is large.
[0022]
[Method of manufacturing resin plate]
Hereinafter, a convex resin plate for letterpress printing will be described as an example. Here, an example in which the base layer 5 is provided will be described, but the base layer 5 may not be provided.
First, a master having an uneven pattern formed by lithography using UV or EB is manufactured. The matrix is made of a metal, a semiconductor, an oxide or a nitride. Alternatively, a concavo-convex pattern may be formed on a substrate made of a metal, a semiconductor, an oxide, or a nitride by a resist by lithography using UV or EB.
[0023]
Next, a resin is applied on a matrix having an uneven pattern on the surface. After the resin is cured, the resin is peeled off from the matrix to transfer the concavo-convex pattern on the matrix to the resin to obtain a resin plate 1 (FIG. 2A).
[0024]
Next, a resist layer 4 is formed on the resin plate 1, and the resist 4 is patterned by lithography using UV or EB. Here, patterning is performed so that the convex portion (the portion where the ink is to be attached) of the resin plate is covered with the resist 4 (FIG. 2B).
[0025]
Next, the underlayer 5 is formed by vacuum evaporation or sputtering (FIG. 2C). After that, the resist pattern 4 is peeled off, and the underlayer 5 is formed only in the concave portion (the portion where the ink is not to be adhered) of the resin plate 1 (FIG. 2D).
[0026]
Next, the resin plate 1 is immersed in the non-transfer layer solution to form the non-transfer layer 2 on the base layer 5. For the non-transfer layer 2, a molecule is selected so that the contact angle with the ink becomes 90 degrees or more (FIG. 2E).
[0027]
[Pattern forming method]
First, the ink 3 is adhered to the resin plate 1 having a concave / convex pattern on the surface. At this time, except where the ink 3 is to be attached, the ink 3 does not adhere because the contact angle of the ink 3 is 90 degrees or more, and the ink 3 adheres only to a predetermined position (FIG. 3A). ).
Next, the resin plate 1 to which the ink 3 has adhered is brought into contact with the substrate 6 (FIG. 3B), and the ink 3 is transferred to the substrate 6 (FIG. 3C). Since the ink 3 adheres only to a predetermined position, a desired pattern can be transferred to the substrate with high accuracy.
[0028]
Further, as the ink 3 used in the present invention, various known materials can be used depending on the purpose. Further, in the present invention, since an ink pattern can be formed without using light, it is particularly effective for forming a pattern of an organic material which is deteriorated by light.
[0029]
Here, the convex resin plate for letterpress printing has been described as an example, but the concave resin plate for letterpress printing can be formed by forming the resist layer in the concave portion, the base layer in the convex portion, and the non-transfer layer on the base layer. Can be used as
[0030]
Further, as the pattern to be transferred becomes finer, the influence of the protrusion of the ink from the transfer pattern becomes greater. In particular, in the case of using a resin plate having fine irregularities such as microcontact printing, the accuracy of the transfer pattern is reduced due to distortion of the plate at the time of transfer. Therefore, providing a non-transfer layer is more effective.
[0031]
Specifically, it is particularly effective when transferring a pattern having a line width of about 50 μm or less.
In addition, the convex resin plate for relief printing at this time, the height of the convex portion is preferably in the range of 0.1 to 500 μm, the width of the convex portion, the interval is 0.1 to 500 μm, respectively. It is preferable that the thickness is in the range of 0.1 to 500 μm, and more effective when it is in the range of 0.1 to 100 μm and 0.1 to 100 μm, respectively. Further, in the case of a concave resin plate for intaglio printing, the depth of the concave portion is preferably in the range of 0.1 to 500 μm, and the width and interval of the concave portion are 0.1 to 500 μm and 0.1 to 500 μm, respectively. It is preferable that the thickness be in the range of 500 μm, and more effective when it is in the range of 0.1 to 100 μm and 0.1 to 100 μm, respectively.
[0032]
【Example】
Hereinafter, the present invention will be described more specifically based on examples. Here, a convex resin for letterpress printing will be described as an example, but the present invention is not limited to this.
[0033]
<Example 1>
[Method of manufacturing resin plate]
First, a resist layer was formed on a Si substrate, and the resist was patterned by lithography using UV to produce a matrix having an uneven pattern of the resist. The concavo-convex pattern width was 10 μm / 10 μm. The height of the irregularities was 1 μm.
Next, a polydimethylsiloxane (hereinafter, referred to as PDMS) resin (Sylgrad 184 manufactured by DowCornig) was applied onto a matrix having a concavo-convex pattern on the surface. The PDMS resin was heated at 70 ° C. for 12 hours to cure the PDMS resin. The cured PDMS resin was peeled off from the matrix to obtain a convex resin plate in which the height of the convex portions was 1 μm, the width and the interval of the convex portions were 10 μm and 10 μm, respectively.
Next, a resist layer was formed, and the resist was patterned by lithography using UV. Here, patterning was performed so that the convex portions of the resin plate were covered with a resist.
Next, a 100-nm-thick gold film was formed as an underlayer by EB evaporation. Thereafter, the resist pattern was peeled off using a peeling liquid to obtain a resin plate having a base layer in the concave portion.
Next, the resin plate was immersed in an octadecanethiol (HS (CH 2 ) 15 CH 3 ) ethanol solution (10 mM) for 5 hours. After washing with ethanol, it was dried to form a non-transfer layer on the underlayer.
[0034]
[Pattern forming method]
First, an ethanol solution (10 mM) of mercaptohexadecanoic acid (HS (CH 2 ) 11 COOH) is placed as an ink 3 on a resin plate. At this time, the contact angle between Ink 3 and the non-transfer layer on the PDMS resin plate was 90 degrees. Therefore, the ink 3 did not adhere to the non-transfer layer, but adhered only to other positions (projections).
Next, the resin plate to which the ink 3 was adhered was brought into contact with the gold substrate for 1 minute to transfer the ink 3 to the gold substrate. Note that a gold substrate was used in which chromium and gold were sequentially formed to a thickness of 50 nm and 100 nm on a glass substrate by an EB evaporation method. After the transfer, the gold substrate was washed with ethanol and then dried.
When the ink 3 on the gold substrate was observed by AFM, an ink pattern having a pattern line width and a space width of 10 μm and 10 μm, respectively, was observed.
[0035]
<Example 2>
[Method of manufacturing resin plate]
First, a resist layer was formed on a Si substrate, and the resist was patterned by lithography using EB, thereby producing a matrix having an uneven pattern of the resist. The concavo-convex pattern width was 1 μm / 1 μm. The height of the unevenness was 0.5 μm.
Next, a polydimethylsiloxane (hereinafter, referred to as PDMS) resin (Sylgrad 184 manufactured by DowCornig) was applied onto a matrix having a concavo-convex pattern on the surface. The PDMS resin was heated at 70 ° C. for 12 hours to cure the PDMS resin. The cured PDMS resin was peeled from the matrix to obtain a convex resin plate in which the height of the convex portions was 0.5 μm, and the width and the interval of the convex portions were 1 μm and 1 μm, respectively.
Next, a resist layer was formed, and the resist was patterned by lithography using EB. Here, patterning was performed so that the convex portions of the resin plate were covered with a resist.
Next, an SiO 2 film having a thickness of 100 nm was formed as a base layer by a sputtering method. Thereafter, the resist pattern was stripped using a stripper.
Next, the resin plate was immersed in a toluene solution of octadecyltrimethoxysilane (CH 3 (CH 2 ) 17 Si (OCH 3 ) 3 ) for 30 minutes. Thereafter, drying was performed at 70 ° C. for 30 minutes to form a non-transfer layer on the SiO 2 film.
[0036]
[Pattern forming method]
First, an HS (CH 2 ) 15 CH 3 ethanol solution (10 mM) is placed as an ink 3 on a resin plate. At this time, the contact angle between the ink 3 and the non-transfer layer on the resin plate was 90 degrees. Therefore, the ink 3 does not adhere to the non-transfer layer portion, but adheres only to other positions (projections).
Next, the resin plate to which the ink 3 was adhered was brought into contact with the gold substrate for 1 minute to transfer the ink 3 to the gold substrate. Note that a gold substrate was used in which chromium and gold were sequentially formed to a thickness of 50 nm and 100 nm on a glass substrate by an EB evaporation method. After the transfer, the gold substrate was washed with ethanol.
When the ink 3 on the gold substrate was observed by AFM, an ink pattern having a pattern line width and a space width of 1 μm and 1 μm, respectively, was observed.
[0037]
<Comparative example>
[Method of manufacturing resin plate]
A PDMS resin plate was prepared in the same manner as in Example 1 except that the underlayer and the non-transfer layer were not formed, and the height of the convex portions was 1 μm, and the width and interval of the convex portions were 10 μm and 10 μm, respectively. A resin plate was obtained.
[0038]
[Pattern forming method]
As in the first embodiment, first, an ethanol solution of mercaptohexadecanoic acid (HS (CH 2 ) 11 COOH) (10 mM) is placed on the resin plate as the ink 3. At this time, the contact angle between Ink 3 and the PDMS resin plate was 60 degrees.
Next, the resin plate to which the ink 3 was adhered was brought into contact with the gold substrate for 1 minute to transfer the ink 3 to the gold substrate. Note that a gold substrate was used in which chromium and gold were sequentially formed to a thickness of 50 nm and 100 nm on a glass substrate by an EB evaporation method. After the transfer, the gold substrate was washed with ethanol and then dried.
When the ink 3 on the gold substrate was observed by AFM, an ink pattern having a pattern line width and a space width of 12 μm and 8 μm, respectively, was observed. In the comparative example, the line width of the ink pattern was increased as compared with the uneven pattern of the resin plate, and a desired ink pattern could not be formed.
[0039]
【The invention's effect】
With the configuration of the present invention, it is possible to prevent erroneous transfer due to distortion of the uneven shape when transferring using a resin plate having irregularities such as a concave or convex resin plate. In other words, it is possible to prevent the ink from adhering to places other than the desired pattern, form the shape of the formed pattern with good reproducibility, and obtain a resin plate that can be used for high-resolution, high-definition printing. .
[0040]
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a cross-sectional structure of an example of a resin plate of the present invention.
FIG. 2 is an explanatory view showing one example of a method for producing a resin plate of the present invention.
FIG. 3 is an explanatory view showing an example of the pattern forming method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Resin plate 2 Non-transfer layer 3 Ink 4 Resist 5 Underlayer 6 Substrate

Claims (9)

少なくともインク転写部を有し、凸部の幅、間隔がそれぞれ0.1〜500μm、0.1〜500μmである凸版印刷用の樹脂版であって、該樹脂版の凹部にインクとの接触角が90度以上である非転写層を被覆したことを特徴とする凸型の樹脂版。A relief printing plate having at least an ink transfer portion and a width and a spacing of the protrusions of 0.1 to 500 μm and 0.1 to 500 μm, respectively. A convex resin plate, wherein the non-transfer layer has an angle of 90 ° or more. 少なくともインク転写部を有し、凹部の幅、間隔がそれぞれ0.1〜500μm、0.1〜500μmである凹版印刷用の樹脂版であって、該樹脂版の凸部にインクとの接触角が90度以上である非転写層を被覆したことを特徴とする凹型の樹脂版。A resin plate for intaglio printing having at least an ink transfer portion and a width and an interval of the concave portions of 0.1 to 500 μm and 0.1 to 500 μm, respectively, and a contact angle between the convex portion of the resin plate and the ink. Characterized by being coated with a non-transfer layer having an angle of 90 ° or more. 前記非転写層が、単分子層であることを特徴とする請求項1または2に記載の樹脂版。The resin plate according to claim 1, wherein the non-transfer layer is a monomolecular layer. 前記単分子層が、チオール化合物、ジスルフィド化合物、有機シラン化合物のいずれかからなることを特徴とする請求項3に記載の樹脂版。The resin plate according to claim 3, wherein the monomolecular layer is made of any one of a thiol compound, a disulfide compound, and an organic silane compound. 前記非転写層の下に下地層を設けてなることを特徴とする請求項1〜4のいずれかに記載の樹脂版。The resin plate according to any one of claims 1 to 4, wherein a base layer is provided below the non-transfer layer. 少なくとも、インク転写部を有し、凸部の幅、間隔がそれぞれ0.1〜500μm、0.1〜500μmである凸版印刷用の樹脂版において、該樹脂版上の凸部にレジストを被覆する工程、該樹脂版の凹部に下地層を被覆する工程、該レジストを除去する工程、該下地層上にインクとの接触角が90度以上である非転写層を被覆する工程、を有することを特徴とする凸型の樹脂版の製造方法。In a resin plate for letterpress printing having at least an ink transfer portion and the width and interval of the protrusions being 0.1 to 500 μm and 0.1 to 500 μm, respectively, the protrusions on the resin plate are coated with a resist. A step of coating a concave layer of the resin plate with a base layer, a step of removing the resist, and a step of coating a non-transfer layer having a contact angle with ink of 90 ° or more on the base layer. A method for producing a convex resin plate, which is a feature. 少なくとも、インク転写部を有し、凹部の幅、間隔がそれぞれ0.1〜500μm、0.1〜500μmである凹版印刷用の樹脂版において、該樹脂版上の凹部にレジストを被覆する工程、該樹脂版の凸部に下地層を被覆する工程、該レジストを除去する工程、該下地層上にインクとの接触角が90度以上である非転写層を被覆する工程、を有することを特徴とする凹型の樹脂版の製造方法。At least having an ink transfer portion, the width of the concave portion, the resin plate for intaglio printing having an interval of 0.1 to 500 μm and 0.1 to 500 μm, respectively, a step of coating a resist on the concave portion on the resin plate, A step of coating the convex portion of the resin plate with a base layer, a step of removing the resist, and a step of coating the base layer with a non-transfer layer having a contact angle with ink of 90 ° or more. A method for producing a concave resin plate. 前記非転写層が、単分子層であることを特徴とする請求項6または7に記載の製造方法。The method according to claim 6, wherein the non-transfer layer is a monomolecular layer. 前記単分子層が、チオール化合物、ジスルフィド化合物、有機シラン化合物のいずれかからなることを特徴とする請求項8に記載の製造方法。The method according to claim 8, wherein the monomolecular layer is made of any one of a thiol compound, a disulfide compound, and an organic silane compound.
JP2002238827A 2002-08-20 2002-08-20 Resin plate and manufacturing method thereof Expired - Fee Related JP4048877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002238827A JP4048877B2 (en) 2002-08-20 2002-08-20 Resin plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002238827A JP4048877B2 (en) 2002-08-20 2002-08-20 Resin plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004074608A true JP2004074608A (en) 2004-03-11
JP4048877B2 JP4048877B2 (en) 2008-02-20

Family

ID=32022098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238827A Expired - Fee Related JP4048877B2 (en) 2002-08-20 2002-08-20 Resin plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4048877B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253344A (en) * 2006-03-20 2007-10-04 Toppan Printing Co Ltd Letterpress for letterpress reversing offset printing and manufacturing method thereof, or manufacturing method of printed matter using the same
JP2007299568A (en) * 2006-04-28 2007-11-15 Toppan Printing Co Ltd Manufacturing method of letterpress for printing and precision printing manufactured object
JP2008087256A (en) * 2006-09-29 2008-04-17 Toppan Printing Co Ltd Letterpress, printer, and manufacturing method of organic electronic device, and manufacturing process of letterpress
JP2008087459A (en) * 2006-03-20 2008-04-17 Toppan Printing Co Ltd Relief plate for relief reversing offset printing and manufacturing method thereof, and manufacturing method of printed matter
JP2008100361A (en) * 2006-10-17 2008-05-01 Toppan Printing Co Ltd Printing letterpress and organic el display
JP2008100378A (en) * 2006-10-17 2008-05-01 Dainippon Printing Co Ltd Manufacturing method of pattern forming body
JP2008168478A (en) * 2007-01-10 2008-07-24 Toppan Printing Co Ltd Printing letterpress and manufacturing method of printing letterpress
JP2009056624A (en) * 2007-08-30 2009-03-19 Toppan Printing Co Ltd Printing plate, its forming method, and method of forming printed matter
JP2009061752A (en) * 2007-09-10 2009-03-26 Toppan Printing Co Ltd Printing plate, manufacturing method thereof and manufacturing method of printed matter
JP2009066963A (en) * 2007-09-14 2009-04-02 Toppan Printing Co Ltd Printing plate, its manufacturing method, and method for manufacturing printed matter
JP2009078426A (en) * 2007-09-26 2009-04-16 Toppan Printing Co Ltd Printing plate, method for producing the same, and method for producing printed matter
JP2009117692A (en) * 2007-11-08 2009-05-28 Seiko Epson Corp Manufacturing method of electronic device
JP2010231127A (en) * 2009-03-30 2010-10-14 Dainippon Printing Co Ltd Method for manufacturing master plate for making stamp for micro contact printing, master plate for making stamp for micro contact printing, and method for making stamp for micro contact printing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111845038A (en) * 2020-07-30 2020-10-30 仓和精密制造(苏州)有限公司 Printing screen plate for increasing hydrophobicity and oleophobicity and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253344A (en) * 2006-03-20 2007-10-04 Toppan Printing Co Ltd Letterpress for letterpress reversing offset printing and manufacturing method thereof, or manufacturing method of printed matter using the same
JP2008087459A (en) * 2006-03-20 2008-04-17 Toppan Printing Co Ltd Relief plate for relief reversing offset printing and manufacturing method thereof, and manufacturing method of printed matter
JP2007299568A (en) * 2006-04-28 2007-11-15 Toppan Printing Co Ltd Manufacturing method of letterpress for printing and precision printing manufactured object
JP2008087256A (en) * 2006-09-29 2008-04-17 Toppan Printing Co Ltd Letterpress, printer, and manufacturing method of organic electronic device, and manufacturing process of letterpress
JP2008100361A (en) * 2006-10-17 2008-05-01 Toppan Printing Co Ltd Printing letterpress and organic el display
JP2008100378A (en) * 2006-10-17 2008-05-01 Dainippon Printing Co Ltd Manufacturing method of pattern forming body
JP2008168478A (en) * 2007-01-10 2008-07-24 Toppan Printing Co Ltd Printing letterpress and manufacturing method of printing letterpress
JP2009056624A (en) * 2007-08-30 2009-03-19 Toppan Printing Co Ltd Printing plate, its forming method, and method of forming printed matter
JP2009061752A (en) * 2007-09-10 2009-03-26 Toppan Printing Co Ltd Printing plate, manufacturing method thereof and manufacturing method of printed matter
JP2009066963A (en) * 2007-09-14 2009-04-02 Toppan Printing Co Ltd Printing plate, its manufacturing method, and method for manufacturing printed matter
JP2009078426A (en) * 2007-09-26 2009-04-16 Toppan Printing Co Ltd Printing plate, method for producing the same, and method for producing printed matter
JP2009117692A (en) * 2007-11-08 2009-05-28 Seiko Epson Corp Manufacturing method of electronic device
JP2010231127A (en) * 2009-03-30 2010-10-14 Dainippon Printing Co Ltd Method for manufacturing master plate for making stamp for micro contact printing, master plate for making stamp for micro contact printing, and method for making stamp for micro contact printing

Also Published As

Publication number Publication date
JP4048877B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP3600546B2 (en) Method for forming patterned indium zinc oxide film and indium tin oxide film by microcontact printing
JP4048877B2 (en) Resin plate and manufacturing method thereof
EP1594002A2 (en) Method for manufacturing large area stamp for nanoimprint lithography
JP4842216B2 (en) Imprint lithography
US7695887B2 (en) Method for producing pattern-forming body
US8177991B2 (en) Method of applying a pattern of metal, metal oxide and/or semiconductor material on a substrate
JP5258635B2 (en) Nanoimprint method, mold used for nanoimprint, and method for producing structure
US20080233489A1 (en) Method to form a pattern of functional material on a substrate using a stamp having a surface modifying material
US20080233280A1 (en) Method to form a pattern of functional material on a substrate by treating a surface of a stamp
KR20050087011A (en) Microcontact printing methods using imprinted nanostructure and nanostructure thereof
KR101022506B1 (en) Pattern transfer method of nanoimprint lithography using shadow evaportation and nanotransfer printing
JP5761320B2 (en) Manufacturing method of stamp for micro contact printing
Schift et al. Chemical nano-patterning using hot embossing lithography
KR20100008619A (en) Fabrication mehtod of lithography mask and formation method of fine pattern using the same
EP1756669B1 (en) Imprinting lithography using the liquid/solid transition of metals and their alloys
KR100918850B1 (en) Method for forming nano-patterns using nano imprint lithography and lift-off process
KR101015065B1 (en) Patterning method of metal line on flexible substrate using nanoimprint lithography
US20100101713A1 (en) Printing mold and manufacturing method thereof, and method of forming thin film pattern using the same
JP5428449B2 (en) Method for producing master plate for producing stamp for micro contact printing, and master plate for producing stamp for micro contact printing
KR100533903B1 (en) Method for forming a micro-pattern by using a dewetting
KR20080103195A (en) Manufacturing method of resist pattern without residual layer using soft moldig patterned metal layer using the same method
KR20080023487A (en) Metal patterning method using transfer printing
JP3290745B2 (en) Method for forming monolayer pattern
KR102218676B1 (en) Imprint method via selectively forming a release film
KR100586175B1 (en) Stamper for nanoimprint and fabrication method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees