JP2004072928A - Parallel operation current detecting device of uninterruptible power source and method for detecting its current - Google Patents

Parallel operation current detecting device of uninterruptible power source and method for detecting its current Download PDF

Info

Publication number
JP2004072928A
JP2004072928A JP2002230724A JP2002230724A JP2004072928A JP 2004072928 A JP2004072928 A JP 2004072928A JP 2002230724 A JP2002230724 A JP 2002230724A JP 2002230724 A JP2002230724 A JP 2002230724A JP 2004072928 A JP2004072928 A JP 2004072928A
Authority
JP
Japan
Prior art keywords
power supply
uninterruptible power
current
switch
current transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002230724A
Other languages
Japanese (ja)
Other versions
JP3956794B2 (en
Inventor
Kazuyoshi Umezawa
梅沢 一喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002230724A priority Critical patent/JP3956794B2/en
Publication of JP2004072928A publication Critical patent/JP2004072928A/en
Application granted granted Critical
Publication of JP3956794B2 publication Critical patent/JP3956794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a mean current as a current command value of an uninterruptible power source during a parallel operation to be double calculated and checked each other, and to enable the mean current of a direct power supply circuit and mean current when the uninterruptible power source of a stand-by state is operated in parallel to be calculated. <P>SOLUTION: A parallel operation current detecting device of the uninterruptible power source includes a signal converter in two output current transformers via separate auxiliary current transformers. The same circuit of the other uninterruptible power source is connected in parallel with the respective signal converters via a first switching unit. A second switching unit is inserted into one signal converter. The mean current per one uninterruptible power source during a parallel connection can be calculated by turning on the first switching units. Since there are these two mean current calculating circuits separately, the mean currents as the current command value can be checked from each other. Since the second switching unit is interlocked to the uninterruptible power source which is set to the stand-by state, the mean current of the uninterruptible power source can be known before it is switched to the uninterruptible power source which is set to the stand-by state during power supply by a plurality of the direct power supply circuit, thereby determining in advance whether it becomes overcurrent or not when switched. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、直送給電回路または無停電電源装置が並列運転する際に必要とする電流を検出する装置と、その電流検出方法に関する。
【0002】
【従来の技術】
複数の無停電電源装置を並列運転する場合に、各無停電電源装置がその出力電流を均等に分担する必要があることは周知である。そのために、並列運転中の各無停電電源装置の出力電流を別個に計測し、これらを合計し、この合計値を運転台数で割り算する手順の計算回路を設ける。また、並列運転中に故障などで無停電電源装置の運転台数が変化すれば、運転を継続している無停電電源装置の分担電流も変化するが、分担電流の計算がこのような状況の変化に速やかに対応できるようにしておく必要もある。更に、このようにして得られた平均電流値を目標値にして、各無停電電源装置はその出力電流を目標値に一致させるべく制御をするのであるから、この平均電流値は正しくなければならない。
【0003】
図4は直送切り換え回路バックアップ方式無停電電源装置の電流検出の従来例を示した回路図である。図示のように、無停電電源装置2と直送給電回路3とは無瞬断切り換え装置4を介して並列に接続されていて、保守用開閉器7を介して母線1に接続される。この母線1には、図示は省略しているが、同じ構成の無停電電源装置を複数接続することで、並列運転を行う。
【0004】
無瞬断切り換え装置4は交流スイッチ4Aと直送用開閉器4Bと出力用開閉器4Cで構成されていて、通常は交流スイッチ4Aと直送用開閉器4Bはオフで出力用開閉器4Cをオンにすることで、無停電電源装置2が保守用開閉器7を介して母線1へ交流電力を供給するのであるが、このときの無停電電源装置2の出力と直送給電回路3の出力は同期状態を維持しているから、無停電電源装置2が故障したり過電流になれば、即座に交流スイッチ4Aをオンにして、母線1への交流電力の供給を、無瞬断で且つショックを生じることなしで、無停電電源装置2から直送給電回路3へ切り換えることができる。直送給電回路3の給電中は無停電電源装置2が直送給電回路3ど同期した電圧を発生してスタンバイしており、切り換え指令に従って直送給電回路3から無停電電源装置2への電力の切り換えが無瞬断でなされる。
【0005】
複数の無停電電源装置2が並列運転しているとき、各無停電電源装置2の出力電流を均等化する必要がある。そこで保守用開閉器7の回路に設けた主変流器6が検出する電流を、他の無停電電源装置の主変流器6が検出する電流と共に電流加算器41へ入力してこれらの合計電流を計算する。一方で出力用開閉器4Cのオン信号を他の無停電電源装置の出力用開閉器4Cのオン信号と共に運転台数カウンタ42へ入力することで、並列運転中の無停電電源装置の台数を求める。除算器43は合計電流値を運転台数で除算することで1台当たりの平均電流を計算する。制御装置8はこの平均電流を指令値にして、出力変流器5が検出する当該無停電電源装置2の出力電流をこの平均電流に一致させる制御を行う。並列運転中の各無停電電源装置は、すべてがこの平均電流を指令値にした制御を行うから、全無停電電源装置を同一出力電流で運転させることができる。
【0006】
また、図示は省略しているけれども、直送給電回路3で給電しているときの合計電流を電流加算器41で知ることができるし、直送用開閉器4Bがオンしている台数から、自動または手動で直送給電回路の1回路当たりの平均電流を知ることもできる。
【0007】
【発明が解決しようとする課題】
図4に図示の従来例回路において、無停電電源装置の並列運転中は除算器43が各無停電電源装置へ電流指令値を与えるのであるが、平均電流を算出する各回路が誤動作して正しい電流指令値が得られないと、すべての無停電電源装置が制御不能状態に陥る危険があるが、それにもかかわらず、算出した電流指令値が正しいか否かを確認できない不具合を生じる。
【0008】
また、例えば3回路並列で給電中の直送給電回路の1回路当たりの出力電流が100Aであって、スタンバイしている無停電電源装置の1台当たりの電流容量が120Aであるとすると、3回路並列の直送給電回路から3台並列の無停電電源装置へ切り換わるときは全く問題無いが、故障などのためにスタンバイしている無停電電源装置が2台しかない場合は、1台が150Aの電流を分担することになって過電流になるから、再び直送給電回路からの給電に戻ってしまう不具合を生じる。すなわち従来設備では、並列運転中の無停電電源装置の一台当たりの平均電流の算出はできても、直送給電回路の1回路あたりの平均電流の算出や、スタンバイ状態にある無停電電源装置が並列運転したならば分担することになるであろう1台当たりの平均電流を予測できない不具合があった。
【0009】
そこでこの発明の目的は、並列運転中の無停電電源装置の電流指令値となる平均電流を二重に算出して相互チェックを可能にすると共に、直送給電回路の平均電流と、スタンパイ状態にある無停電電源装置が並列運転する際の平均電流が算出できるようにすることにある。
【0010】
【課題を解決するための手段】
前記の目的を達成するために、この発明の無停電電源装置の並列運転電流検出装置とその電流検出方法は、
直送給電回路の出力側に備えた直送用開閉器と、無停電電源装置の出力側に備えた出力用開閉器とを結合し、この結合点と母線との間に保守用開閉器を設けて直送切り換え回路バックアップ方式無停電電源装置を構成し、これの複数組を母線に接続することで構成される無停電電源装置の並列運転装置において、
前記出力用開閉器の回路の電流を検出する出力変流器と、該出力変流器の二次巻線に直接または補助変流器を介して接続してその入力信号を所望のレベルの信号に変換する第1信号変換器と、前記保守用開閉器の回路の電流を検出する第1変流器と第2変流器と、該第1変流器の二次巻線に接続して、前記出力用開閉器と前記保守用開閉器の両者がオンで且つ前記無停電電源装置が運転状態のときにオンとなる第1スイッチと、該第1スイッチの出力側と、他の各無停電電源装置に属するそれぞれの第1スイッチの出力側とを接続する第1スイッチ接続線と、前記第1変流器の二次巻線に抵抗を介して接続する第1補助変流器と、該第1補助変流器の二次巻線に接続してその入力信号を所望のレベルの信号に変換する第2信号変換器と、前記第2変流器の二次巻線に接続して、前記直送用開閉器または前記出力用開閉器のいずれかがオンで且つ前記保守用開閉器がオンのときにオンとなる第2スイッチと、該第2スイッチの出力側と、他の各無停電電源装置に属するそれぞれの第2スイッチの出力側とを接続する第2スイッチ接続線と、この第2変流器の二次巻線に接続して、前記無停電電源装置が運転状態のときにオンとなる第3スイッチと、該第3スイッチの出力側に、抵抗を介して接続する第2補助変流器と、該第2補助変流器の二次巻線に接続してその入力信号を所望のレベルの信号に変換する第2信号変換器と、前記第2変流器の二次巻線に接続して、この二次巻線の電圧が所定値を越えると導通して当該二次巻線を短絡する半導体素子と、を備える。
【0011】
並列運転中の無停電電源装置1台当たりの電流目標値となる平均出力電流信号は、直送切り換え回路バックアップ方式無停電電源装置の直送給電回路と無停電電源装置の出力回路とを結合した回路に第1変流器を設置し、並列運転中の各無停電電源装置のそれぞれに属する各第1変流器の二次巻線同士を第1スイッチ接続線で接続すると共に、各第1変流器の二次巻線のそれぞれに抵抗を介して第1補助変流器を接続し、該第1補助変流器の二次巻線のそれぞれに別個に接続した第2信号変換器から検出する。
【0012】
前記第2信号変換器の出力信号と比較するべき並列運転中の無停電電源装置1台当たりの平均出力電流信号は、直送切り換え回路バックアップ方式無停電電源装置の直送給電回路と無停電電源装置の出力回路とを結合した回路に第2変流器を設置し、並列運転中の各無停電電源装置のそれぞれに属する各第2変流器の二次巻線同士を第2スイッチ接続線で接続すると共に、並列運転中の各無停電電源装置に属する前記第2変流器の二次巻線のそれぞれに抵抗を介して第2補助変流器を接続し、該第2補助変流器の二次巻線のそれぞれに別個に接続した第3信号変換器から検出する。
【0013】
直送給電回路から無停電電源装置へ切り換わったときに並列運転となるべき台数の無停電電源装置1台当たりの平均出力電流信号は、直送切り換え回路バックアップ方式無停電電源装置の直送給電回路と無停電電源装置の出力回路とを結合した回路に第2変流器を設置し、並列運転中の各直送給電回路のそれぞれに属する各第2変流器の二次巻線同士を第2スイッチ接続線で接続すると共に、動作中の各無停電電源装置に属する第2変流器の二次巻線のそれぞれに抵抗を介して第2補助変流器を接続し、該第2補助変流器の二次巻線のそれぞれに別個に接続した第3信号変換器から検出する。
【0014】
【発明の実施の形態】
図1は本発明の第1実施例を表した回路図であるが、この第1実施例回路に記載している主回路部分である母線1,無停電電源装置2,直送給電回路3,無瞬断切り換え装置4,出力変流器5,主変流器6および保守用開閉器7の名称・用途・機能は、図4で既述の従来例回路と同じであるから、同じ部分の説明は省略する。
【0015】
この第1実施例回路では、主変流器6の二次巻線に第1変流器11と第2変流器21を設置しているが、これら第1変流器11と第2変流器21の代わりに主変流器6と同種の変流器を保守用開閉器7の回路に挿入しても同じである。この第1変流器11の二次巻線には抵抗15を介して第1補助変流器16を設置するが、この第1補助変流器16の二次巻線には信号変換器としての第1電流電圧変換器17を接続する。さらに第1変流器11の二次巻線には第1スイッチ12を設け、この第1スイッチ12の出力側に接続した第1スイッチ接続線13が、他の無停電電源装置に設けている第1スイッチ12の出力側に接続されている。ここで第1スイッチ12は、出力用開閉器4Cと保守用開閉器7とがオンで且つ無停電電源装置2が動作中のときにオンとなる。第1スイッチ12がオンすると、第1電流電圧変換器17には並列運転中の無停電電源装置の出力電流の1台当たりの平均値が現れる。また出力用開閉器4Cの二次巻線に設けた出力補助変流器31の二次巻線に第3電流電圧変換器32を接続すると無停電電源装置2の出力電流を検出できる。よって制御装置8において、第1補助変流器16の出力(無停電電源装置の平均電流)を指令値にして、第3電流電圧変換器32の出力だある無停電電源装置2の出力電流を指令値に一致させる制御が行える。
【0016】
なお第1スイッチ12をオフにすれば、保守用開閉器7の回路の電流を検出できる。
主変流器6の二次巻線に設けた第2変流器21の二次巻線には、第3スイッチ24と抵抗25を介して第2補助変流器26が設置されており、この第2補助変流器26の二次巻線には信号変換器としての第2電圧電流変換器27を接続している。更に第2変流器21の二次巻線には第2スイッチ22を設け、この第2スイッチ22の出力側に接続した第2スイッチ接続線23が、他の無停電電源装置に設けている第2スイッチ22の出力側に接続されている。よって第2スイッチ22と第3スイッチ24をオンにすれば、前述と同様に第2電圧電流変換器27は並列運転中の無停電電源装置の1台当たりの平均電流を検出するから、第2電圧電流変換器27の出力と第1電流電圧変換器17の出力とを比較し、両者に差異があれば、いずれかの回路に異常ありと判定できる。すなわち電流指令値が正しいか否かを知ることができる。
【0017】
第2スイッチ22は、直送用開閉器4Bまたは出力用開閉器4Cの何れかがオンで、且つ保守用開閉器7がオンのときにオンする。また第3スイッチ24は、無停電電源装置2が動作中(動作中とは出力用開閉器4Cをオンにすれば電力を供給できる状態)のときにオンとなる。従って、例えば各直送給電回路が電力供給中ならば、第2電圧電流変換器27が検出する電流は、動作中の無停電電源装置の台数に対応した1台当たりの平均電流である。すなわち直送給電回路の3回路が運転中で、これを無停電電源装置へ切り換えたときに、運転できるのが2台の無停電電源装置であるならば、直送給電回路の3回路分の電流を2台の無停電電源装置で受け持つときの1台当たりの電流を検出する。よって無停電電源装置に故障機があるときに、過電流になるか否かを判断できる。
【0018】
図2は本発明の第2実施例を表した回路図であって、平均電流を検出する回路であるが、この図2は2台の無停電電源装置の平均電流を検出する場合である。この図2において、中央より左側が1号機で、右側が2号機であるとする。1号機のみが単独で運転しているときは、スイッチ34はオンするがスイッチ39はオフであるから、接続線30には電流は流れない。このとき定電流源31(図1の第1変流器11に対応)の出力は、補助変変流器32を介して信号変換器33で表示される。
【0019】
ここで2号機も運転するとスイッチ39もオンするから、定電流源31の出力と定電流源36の出力に差異があっても、接続線30にはこの差を解消する方向の電流が流れ、信号変換器33と38は、定電流源31と定電流源36の出力を平均した値を表示する。
図3は図1の電流検出部を複線で示して本発明の第3実施例を表した回路図であるが、各符号とその名称・用途・機能は、図1と同じであるから、これらの説明は省略しその動作の説明を行う。
【0020】
無停電電源装置が運転中は第1スイッチ12はオンであるが、他機と並列運転流していなければ、第1スイッチ接続線13は他機とつながらないから、第1電流電圧変換器17は自機の出力電流が表示される。また他機と並列運転していれば、図2で既述の動作で平均電流が得られるから、この平均電流を自機の出力電流の目標値にして、自機の出力電流を制御する。更に直送給電回路で運転中ならば第1スイッチ12はオフとなるから、自己の直送給電回路の電流が第1電流電圧変換器17から得られる。
【0021】
更に、無停電電源装置が運転中で他機と並列運転中ならば第2スイッチ22と第3スイッチ24が共にオンであるから、第2電圧電流変換器27は並列運転中の無停電電源装置の平均電流を計測する。これのとき第1電流電圧変換器17も平均電流を計測するから両者は同じ値であるが、もしも値が異なるときはなんらかの以上が発生して、電流指令値が正しくない恐れがあると判断できる。
【0022】
また複数の直送給電回路が電力を送出中にスタンバイして、いつでも電力を送出できる状態にある無停電電源装置のみが第3スイッチ24をオンにするから、例えば直送給電回路が3回路でそれぞれが100Aを出力している場合でも、スタンバイしている無停電電源装置が2台ならば、100A×3÷2=150Aなる計算を行って、3回路の直送給電回路から2台の無停電電源装置に切り換わったときに、無停電電源装置の1台分の電流値を第2電圧電流変換器27が表示する。よって直送給電回路から無停電電源装置へ切り換わったときに、無停電電源装置が過電流になる恐れの有無を、予め知ることができる。
【0023】
【発明の効果】
直送切り換え回路バックアップ方式無停電電源装置の複数組を並列運転する場合に、本発明では無停電電源装置の電流目標値となる1台当たりの平均電流を別個の回路で算出するから、両者を比較することで電流指令値に異常があるか否かを判断できる多幸かが得られる。また、直送給電回路の運転回路数よりもスタンバイしている無停電電源装置の台数が少ない場合は、直送給電回路から無停電電源装置へ切り換えた場合に無停電電源装置が過電流になる恐れがあるが、本発明では無停電電源装置の1台分画分担すべき電流を予め知ることができるように回路を構成しているので、無停電電源装置側へ切り換えた途端に無停電電源装置が過電流になって、再び直送給電回路へ切り換わってしまうような不具合を未然に防止できる効果も得られる。
【図面の簡単な説明】
【図1】本発明の第1実施例を表した回路図
【図2】本発明の第2実施例を表した回路図
【図3】図1の電流検出部を複線で示して本発明の第3実施例を表した回路図
【図4】直送切り換え回路バックアップ方式無停電電源装置の電流検出の従来例を示した回路図
【符号の説明】
1    母線
2    無停電電源装置
3    直送給電回路
4    無瞬断切り換え装置
4A   交流スイッチ
4B   直送用開閉器
4C   出力用開閉器
5    出力変流器
6    主変流器
7    保守用開閉器
8    制御装置
11    第1変流器
12    第1スイッチ
13    第1スイッチ接続線
16    第1補助変流器
17    第1電流電圧変換器
21    第2変流器
22    第2スイッチ
23    第2スイッチ接続線
24    第3スイッチ
26    第2補助変流器
27    第2電圧電流変換器
28    短絡ダイオード
31    出力補助変流器
32    第3電流電圧変換器
41    電流加算器
42    運転台数カウンタ
43    除算器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for detecting a current required when a direct-feed power supply circuit or an uninterruptible power supply operates in parallel, and a method for detecting the current.
[0002]
[Prior art]
It is well known that when a plurality of uninterruptible power supplies are operated in parallel, it is necessary for each uninterruptible power supply to equally share its output current. For this purpose, a calculation circuit is provided for the procedure of separately measuring the output currents of the respective uninterruptible power supplies during the parallel operation, summing them, and dividing the total value by the number of operating units. In addition, if the number of uninterruptible power supply units operating due to a failure during parallel operation changes, the shared current of the uninterruptible power supply unit that continues to operate also changes. Need to be able to respond quickly to Furthermore, since the average current value obtained in this way is used as a target value and each uninterruptible power supply controls the output current to match the target value, the average current value must be correct. .
[0003]
FIG. 4 is a circuit diagram showing a conventional example of current detection of a direct transmission switching circuit backup type uninterruptible power supply. As shown in the figure, the uninterruptible power supply 2 and the direct feed power supply circuit 3 are connected in parallel via an uninterruptible switching device 4 and are connected to the bus 1 via a maintenance switch 7. Although illustration is omitted, parallel operation is performed by connecting a plurality of uninterruptible power supplies having the same configuration to the bus 1.
[0004]
The instantaneous interruption switching device 4 is composed of an AC switch 4A, a direct switch 4B, and an output switch 4C. Normally, the AC switch 4A and the direct switch 4B are turned off and the output switch 4C is turned on. By doing so, the uninterruptible power supply 2 supplies AC power to the bus 1 via the maintenance switch 7, and the output of the uninterruptible power supply 2 and the output of the direct transmission power supply circuit 3 at this time are synchronized. Therefore, if the uninterruptible power supply 2 breaks down or becomes overcurrent, the AC switch 4A is immediately turned on, and the supply of AC power to the bus 1 is instantaneously interrupted and a shock occurs. Without switching, it is possible to switch from the uninterruptible power supply 2 to the direct power supply circuit 3. During power supply of the direct power supply circuit 3, the uninterruptible power supply 2 generates a voltage synchronized with the direct power supply circuit 3 and is on standby. Switching of power from the direct power supply circuit 3 to the uninterruptible power supply 2 according to a switching command is performed. It is done without interruption.
[0005]
When a plurality of uninterruptible power supplies 2 are operating in parallel, it is necessary to equalize the output current of each uninterruptible power supply 2. Therefore, the current detected by the main current transformer 6 provided in the circuit of the maintenance switch 7 is input to the current adder 41 together with the current detected by the main current transformer 6 of the other uninterruptible power supply, and the sum thereof is calculated. Calculate the current. On the other hand, by inputting the ON signal of the output switch 4C and the ON signals of the output switches 4C of the other uninterruptible power supplies to the operating number counter 42, the number of uninterruptible power supplies in parallel operation is obtained. The divider 43 calculates the average current per vehicle by dividing the total current value by the number of operating vehicles. The control device 8 controls the output current of the uninterruptible power supply 2 detected by the output current transformer 5 to be equal to the average current, using the average current as a command value. Since all the uninterruptible power supplies in parallel operation control the average current as a command value, all uninterruptible power supplies can be operated at the same output current.
[0006]
Although not shown, the total current when the power is supplied by the direct feed power supply circuit 3 can be known by the current adder 41. It is also possible to manually know the average current per circuit of the direct feed power supply circuit.
[0007]
[Problems to be solved by the invention]
In the conventional circuit shown in FIG. 4, the divider 43 gives a current command value to each uninterruptible power supply during parallel operation of the uninterruptible power supply, but each circuit for calculating the average current malfunctions and is correct. If the current command value cannot be obtained, there is a risk that all uninterruptible power supplies will be in an uncontrollable state, but nevertheless, a problem arises in which it is not possible to confirm whether the calculated current command value is correct.
[0008]
For example, assuming that the output current per circuit of the direct-feeding power supply circuit that is supplying power in parallel with three circuits is 100 A and the current capacity per unit of the uninterruptible power supply in standby is 120 A, There is no problem when switching from a parallel direct-feed power supply circuit to three parallel uninterruptible power supply units. However, if there are only two uninterruptible power supply units that are on standby due to a failure or the like, one unit is 150A. Since the current is shared and an overcurrent occurs, a problem occurs in which the power is returned to the power supply from the direct power supply circuit again. That is, in the conventional equipment, even if the average current per one uninterruptible power supply unit in parallel operation can be calculated, the average current per one circuit of the direct-feeding power supply circuit and the uninterruptible power supply unit in the standby state can be calculated. There was a problem that it was not possible to predict the average current per vehicle that would be shared if the devices were operated in parallel.
[0009]
Accordingly, an object of the present invention is to double calculate the average current that is the current command value of the uninterruptible power supply during parallel operation, enable mutual checking, and be in a stamped state with the average current of the direct feed power supply circuit. An object of the present invention is to make it possible to calculate an average current when the uninterruptible power supplies operate in parallel.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a parallel operation current detection device and a current detection method for an uninterruptible power supply according to the present invention include:
A direct-feed switch provided on the output side of the direct-feeding power supply circuit and an output switch provided on the output side of the uninterruptible power supply are connected, and a maintenance switch is provided between the connection point and the bus. In the parallel operation device of the uninterruptible power supply configured by constituting a direct transmission switching circuit backup system uninterruptible power supply, and connecting a plurality of sets of these to the bus,
An output current transformer for detecting a current of the circuit of the output switch; and a signal of a desired level connected to a secondary winding of the output current transformer directly or via an auxiliary current transformer. A first signal converter for converting the current into a current, a first current transformer and a second current transformer for detecting a current of the circuit for the maintenance switch, and a secondary winding of the first current transformer. A first switch that is turned on when both the output switch and the maintenance switch are on and the uninterruptible power supply is in an operating state; an output side of the first switch; A first switch connection line connecting the output side of each first switch belonging to the power failure power supply device, a first auxiliary current transformer connected to a secondary winding of the first current transformer via a resistor, A second signal converter connected to a secondary winding of the first auxiliary current transformer to convert an input signal thereof into a signal of a desired level; A second switch that is connected to the secondary winding of the two-current transformer and that is turned on when either the direct-feed switch or the output switch is on and the maintenance switch is on; A second switch connecting line connecting the output side of the second switch to the output side of each of the second switches belonging to each of the other uninterruptible power supplies, and connecting to the secondary winding of the second current transformer A third switch that is turned on when the uninterruptible power supply is in an operating state; a second auxiliary current transformer connected to an output side of the third switch via a resistor; A second signal converter connected to the secondary winding of the current transformer and converting the input signal into a signal of a desired level; and a secondary winding connected to the secondary winding of the second current transformer. A semiconductor element that conducts when the voltage of the line exceeds a predetermined value and short-circuits the secondary winding.
[0011]
The average output current signal, which is the current target value for one uninterruptible power supply during parallel operation, is converted to a circuit that combines the direct-feed power supply circuit of the direct-feed switching circuit backup system uninterruptible power supply and the output circuit of the uninterruptible power supply. A first current transformer is installed, and the secondary windings of each first current transformer belonging to each of the uninterruptible power supplies in parallel operation are connected to each other by a first switch connection line. A first auxiliary current transformer is connected to each of the secondary windings of the transformer via a resistor, and detection is performed from a second signal converter separately connected to each of the secondary windings of the first auxiliary current transformer. .
[0012]
The average output current signal per uninterruptible power supply in parallel operation to be compared with the output signal of the second signal converter is determined by the direct-feeding power supply circuit of the direct-feed switching circuit backup type uninterruptible power supply and the uninterruptible power supply. A second current transformer is installed in a circuit coupled to the output circuit, and the secondary windings of the respective second current transformers belonging to the respective uninterruptible power supplies in parallel operation are connected to each other by a second switch connection line. And connecting a second auxiliary current transformer via a resistor to each of the secondary windings of the second current transformer belonging to each of the uninterruptible power supplies in parallel operation, Detected from a third signal converter separately connected to each of the secondary windings.
[0013]
The average output current signal per unit of uninterruptible power supply that should be operated in parallel when switching from the direct-supply power supply circuit to the uninterruptible power supply is calculated by using the direct-feeding switching circuit backup method A second current transformer is installed in a circuit coupled to the output circuit of the power failure power supply device, and the secondary windings of the respective second current transformers belonging to the respective direct-feeding power supply circuits in parallel operation are connected to each other by a second switch. And a second auxiliary current transformer connected via a resistor to each of the secondary windings of the second current transformer belonging to each of the uninterruptible power supplies in operation. From the third signal converter separately connected to each of the secondary windings.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. A bus 1, which is a main circuit portion described in the circuit of the first embodiment, an uninterruptible power supply 2, a direct feed power supply circuit 3, and a The names, applications, and functions of the instantaneous interruption switching device 4, the output current transformer 5, the main current transformer 6, and the maintenance switch 7 are the same as those of the conventional circuit described above with reference to FIG. Is omitted.
[0015]
In the circuit of the first embodiment, the first current transformer 11 and the second current transformer 21 are provided on the secondary winding of the main current transformer 6, but the first current transformer 11 and the second The same applies if a current transformer of the same type as the main current transformer 6 is inserted into the circuit of the maintenance switch 7 instead of the current transformer 21. A first auxiliary current transformer 16 is provided on a secondary winding of the first current transformer 11 via a resistor 15, and a secondary converter of the first auxiliary current transformer 16 has a signal converter as a signal converter. Is connected. Further, a first switch 12 is provided on a secondary winding of the first current transformer 11, and a first switch connection line 13 connected to an output side of the first switch 12 is provided on another uninterruptible power supply. It is connected to the output side of the first switch 12. Here, the first switch 12 is turned on when the output switch 4C and the maintenance switch 7 are on and the uninterruptible power supply 2 is operating. When the first switch 12 is turned on, an average value of one output current of the uninterruptible power supply in parallel operation appears in the first current-voltage converter 17. When the third current-voltage converter 32 is connected to the secondary winding of the output auxiliary current transformer 31 provided on the secondary winding of the output switch 4C, the output current of the uninterruptible power supply 2 can be detected. Therefore, in the control device 8, the output of the first auxiliary current transformer 16 (the average current of the uninterruptible power supply) is set as a command value, and the output current of the uninterruptible power supply 2, which is the output of the third current-voltage converter 32, is used. Control to match the command value can be performed.
[0016]
When the first switch 12 is turned off, the current of the circuit of the maintenance switch 7 can be detected.
The secondary winding of the second current transformer 21 provided on the secondary winding of the main current transformer 6 is provided with a second auxiliary current transformer 26 via a third switch 24 and a resistor 25, A second voltage-current converter 27 as a signal converter is connected to the secondary winding of the second auxiliary current transformer 26. Further, a second switch 22 is provided on the secondary winding of the second current transformer 21, and a second switch connection line 23 connected to the output side of the second switch 22 is provided on another uninterruptible power supply. It is connected to the output side of the second switch 22. Therefore, when the second switch 22 and the third switch 24 are turned on, the second voltage-current converter 27 detects the average current per uninterruptible power supply unit in parallel operation as described above. The output of the voltage-current converter 27 and the output of the first current-voltage converter 17 are compared, and if there is a difference between them, it can be determined that any of the circuits has an abnormality. That is, it is possible to know whether or not the current command value is correct.
[0017]
The second switch 22 is turned on when either the direct delivery switch 4B or the output switch 4C is on and the maintenance switch 7 is on. The third switch 24 is turned on when the uninterruptible power supply 2 is operating (operating means that power can be supplied by turning on the output switch 4C). Therefore, for example, if each direct power supply circuit is supplying power, the current detected by the second voltage-current converter 27 is the average current per unit corresponding to the number of uninterruptible power supplies in operation. In other words, if three direct-current power supply circuits are in operation and are switched to the uninterruptible power supply and only two uninterruptible power supplies can operate, the current of the three direct-feed power supply circuits is reduced. Detects current per unit when two uninterruptible power supplies take over. Therefore, when there is a malfunction in the uninterruptible power supply, it can be determined whether or not an overcurrent occurs.
[0018]
FIG. 2 is a circuit diagram showing a second embodiment of the present invention, which is a circuit for detecting an average current. FIG. 2 shows a case where the average current of two uninterruptible power supplies is detected. In FIG. 2, it is assumed that the left side from the center is the first car and the right side is the second car. When only the first machine is operating alone, the switch 34 is turned on but the switch 39 is turned off, so that no current flows through the connection line 30. At this time, the output of the constant current source 31 (corresponding to the first current transformer 11 in FIG. 1) is displayed by the signal converter 33 via the auxiliary current transformer 32.
[0019]
Here, when the second unit also operates, the switch 39 is also turned on. Therefore, even if there is a difference between the output of the constant current source 31 and the output of the constant current source 36, a current flows in the connection line 30 to eliminate the difference, The signal converters 33 and 38 display a value obtained by averaging the outputs of the constant current sources 31 and 36.
FIG. 3 is a circuit diagram showing a third embodiment of the present invention by showing the current detecting unit of FIG. 1 by a double line. The reference numerals and their names, applications, and functions are the same as those in FIG. Will be omitted, and the operation will be described.
[0020]
While the uninterruptible power supply is operating, the first switch 12 is turned on, but if the operation is not performed in parallel with the other machine, the first switch connection line 13 does not connect to the other machine. The output current of the machine is displayed. If the operation is performed in parallel with another device, the average current is obtained by the operation described above with reference to FIG. Further, the first switch 12 is turned off during operation with the direct-feeding power supply circuit, so that the current of the own direct-feeding power supply circuit is obtained from the first current-voltage converter 17.
[0021]
Further, if the uninterruptible power supply is in operation and in parallel operation with another machine, both the second switch 22 and the third switch 24 are on, so the second voltage-current converter 27 is connected to the uninterruptible power supply in parallel operation. And measure the average current. At this time, the first current-to-voltage converter 17 also measures the average current, so that both have the same value. However, if the values are different, it is determined that there is a possibility that something more occurs and the current command value may be incorrect. .
[0022]
Also, since the plurality of direct power supply circuits stand by while transmitting power and only the uninterruptible power supply in a state where power can be transmitted at any time turns on the third switch 24, for example, each of the three direct power supply circuits has three circuits. Even when outputting 100 A, if there are two uninterruptible power supply units in standby, a calculation of 100 A × 3 ÷ 2 = 150 A is performed, and two uninterruptible power supply units are used from three direct feed power supply circuits. , The second voltage-current converter 27 displays the current value of one uninterruptible power supply. Therefore, it is possible to know in advance whether or not there is a risk that the uninterruptible power supply will be overcurrent when the direct-supply circuit is switched to the uninterruptible power supply.
[0023]
【The invention's effect】
In a case where a plurality of sets of the direct transmission switching circuit backup type uninterruptible power supply are operated in parallel, in the present invention, the average current per unit which is the current target value of the uninterruptible power supply is calculated by a separate circuit. This makes it possible to determine whether the current command value is abnormal. Also, if the number of uninterruptible power supplies that are on standby is smaller than the number of operating circuits of the direct power supply circuit, there is a risk that the uninterruptible power supply will overcurrent when switching from the direct power supply circuit to the uninterruptible power supply. However, in the present invention, since the circuit is configured so that the current to be shared by one uninterruptible power supply can be known in advance, the uninterruptible power supply is immediately switched to the uninterruptible power supply. Can be prevented from becoming an overcurrent and switching to the direct-feeding power supply circuit again.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. FIG. 2 is a circuit diagram showing a second embodiment of the present invention. FIG. 3 is a circuit diagram showing the current detecting section of FIG. FIG. 4 is a circuit diagram showing a conventional example of current detection of a direct feed switching circuit backup type uninterruptible power supply device.
Reference Signs List 1 bus 2 uninterruptible power supply 3 direct feed power supply circuit 4 uninterrupted power switching device 4A AC switch 4B direct feed switch 4C output switch 5 output current transformer 6 main current transformer 7 maintenance switch 8 controller 11 1 current transformer 12 1st switch 13 1st switch connection line 16 1st auxiliary current transformer 17 1st current-voltage converter 21 2nd current transformer 22 2nd switch 23 2nd switch connection line 24 3rd switch 26th 2 auxiliary current transformer 27 second voltage-current converter 28 short-circuit diode 31 output auxiliary current transformer 32 third current-voltage converter 41 current adder 42 operating number counter 43 divider

Claims (5)

直送給電回路の出力側に備えた直送用開閉器と、無停電電源装置の出力側に備えた出力用開閉器とを結合し、この結合点と母線との間に保守用開閉器を設けて直送切り換え回路バックアップ方式無停電電源装置を構成し、これの複数組を母線に接続することで構成される無停電電源装置の並列運転装置において、
前記出力用開閉器の回路の電流を検出する出力変流器と、
該出力変流器の二次巻線に直接または補助変流器を介して接続してその入力信号を所望のレベルの信号に変換する第1信号変換器と、
前記保守用開閉器の回路の電流を検出する第1変流器と第2変流器と、
該第1変流器の二次巻線に接続して、前記出力用開閉器と前記保守用開閉器の両者がオンで且つ前記無停電電源装置が運転状態のときにオンとなる第1スイッチと、
該第1スイッチの出力側と、他の各無停電電源装置に属するそれぞれの第1スイッチの出力側とを接続する第1スイッチ接続線と、
前記第1変流器の二次巻線に抵抗を介して接続する第1補助変流器と、
該第1補助変流器の二次巻線に接続してその入力信号を所望のレベルの信号に変換する第2信号変換器と、
前記第2変流器の二次巻線に接続して、前記直送用開閉器または前記出力用開閉器のいずれかがオンで且つ前記保守用開閉器がオンのときにオンとなる第2スイッチと、
該第2スイッチの出力側と、他の各無停電電源装置に属するそれぞれの第2スイッチの出力側とを接続する第2スイッチ接続線と、
この第2変流器の二次巻線に接続して、前記無停電電源装置が運転状態のときにオンとなる第3スイッチと、
該第3スイッチの出力側に、抵抗を介して接続する第2補助変流器と、
該第2補助変流器の二次巻線に接続してその入力信号を所望のレベルの信号に変換する第2信号変換器と、
前記第2変流器の二次巻線に接続して、この二次巻線の電圧が所定値を越えると導通して当該二次巻線を短絡する半導体素子と、
を備えることを特徴とする無停電電源装置の並列運転電流検出装置。
A direct-feed switch provided on the output side of the direct-feeding power supply circuit and an output switch provided on the output side of the uninterruptible power supply are connected, and a maintenance switch is provided between the connection point and the bus. In the parallel operation device of the uninterruptible power supply configured by constituting a direct transmission switching circuit backup system uninterruptible power supply, and connecting a plurality of sets of these to the bus,
An output current transformer for detecting a current of the circuit of the output switch;
A first signal converter connected directly or via an auxiliary current transformer to a secondary winding of the output current transformer to convert the input signal into a signal of a desired level;
A first current transformer and a second current transformer for detecting a current of a circuit of the maintenance switch;
A first switch connected to a secondary winding of the first current transformer and turned on when both the output switch and the maintenance switch are on and the uninterruptible power supply is in an operating state; When,
A first switch connection line that connects an output side of the first switch and an output side of each first switch belonging to each of the other uninterruptible power supplies;
A first auxiliary current transformer connected to a secondary winding of the first current transformer via a resistor,
A second signal converter connected to the secondary winding of the first auxiliary current transformer to convert the input signal to a signal of a desired level;
A second switch connected to a secondary winding of the second current transformer and turned on when either the direct-feed switch or the output switch is on and the maintenance switch is on; When,
A second switch connection line connecting the output side of the second switch and the output side of each second switch belonging to each of the other uninterruptible power supply devices;
A third switch connected to a secondary winding of the second current transformer and turned on when the uninterruptible power supply is in an operating state;
A second auxiliary current transformer connected to an output side of the third switch via a resistor;
A second signal converter connected to the secondary winding of the second auxiliary current transformer to convert the input signal to a signal of a desired level;
A semiconductor element connected to the secondary winding of the second current transformer and conducting when the voltage of the secondary winding exceeds a predetermined value to short-circuit the secondary winding;
A parallel operation current detection device for an uninterruptible power supply, comprising:
請求項1に記載の無停電電源装置の並列運転電流検出装置において、
前記保守用開閉器の回路の電流を検出する第1変流器と第2変流器は、当該保守用開閉器の回路に設けた主変流器の二次巻線に接続することを特徴とする無停電電源装置の並列運転電流検出装置。
The parallel operation current detection device for an uninterruptible power supply according to claim 1,
A first current transformer and a second current transformer for detecting a current of the circuit of the maintenance switch are connected to a secondary winding of a main current transformer provided in the circuit of the maintenance switch. The parallel operation current detection device of the uninterruptible power supply.
直送切り換え回路バックアップ方式無停電電源装置の直送給電回路と無停電電源装置の出力回路とを結合した回路に第1変流器を設置し、
並列運転中の各無停電電源装置のそれぞれに属する各第1変流器の二次巻線同士を第1スイッチ接続線で接続すると共に、各第1変流器の二次巻線のそれぞれに抵抗を介して第1補助変流器を接続し、
該第1補助変流器の二次巻線のそれぞれに別個に接続した第2信号変換器から、並列運転中の無停電電源装置1台当たりの電流目標値となる平均出力電流信号を検出することを特徴とする無停電電源装置の並列運転電流検出方法。
A first current transformer is installed in a circuit in which a direct-feeding power supply circuit of a direct-feed switching circuit backup type uninterruptible power supply and an output circuit of the uninterruptible power supply are coupled,
The secondary windings of the respective first current transformers belonging to the respective uninterruptible power supplies operating in parallel are connected to each other by the first switch connection line, and are connected to the respective secondary windings of the respective first current transformers. Connecting a first auxiliary current transformer via a resistor,
From the second signal converters separately connected to the respective secondary windings of the first auxiliary current transformer, an average output current signal serving as a current target value per one uninterruptible power supply in parallel operation is detected. A parallel operation current detection method for an uninterruptible power supply.
直送切り換え回路バックアップ方式無停電電源装置の直送給電回路と無停電電源装置の出力回路とを結合した回路に第2変流器を設置し、
並列運転中の各無停電電源装置のそれぞれに属する各第2変流器の二次巻線同士を第2スイッチ接続線で接続すると共に、並列運転中の各無停電電源装置に属する前記第2変流器の二次巻線のそれぞれに抵抗を介して第2補助変流器を接続し、
該第2補助変流器の二次巻線のそれぞれに別個に接続した第3信号変換器から、前記第2信号変換器の出力信号と比較するべき並列運転中の無停電電源装置1台当たりの平均出力電流信号を検出することを特徴とする無停電電源装置の並列運転電流検出方法。
A second current transformer is installed in a circuit in which a direct-feeding power supply circuit of a direct-feed switching circuit backup type uninterruptible power supply and an output circuit of the uninterruptible power supply are coupled,
The secondary windings of the respective second current transformers belonging to the respective uninterruptible power supplies operating in parallel are connected to each other by the second switch connection line, and the second windings belonging to the respective uninterruptible power supplies operating in parallel are connected to each other. Connecting a second auxiliary current transformer to each of the secondary windings of the current transformer via a resistor,
From a third signal converter separately connected to each of the secondary windings of the second auxiliary current transformer, one uninterruptible power supply in parallel operation to be compared with the output signal of the second signal converter. A method for detecting a parallel operation current of an uninterruptible power supply, characterized by detecting an average output current signal of the power supply.
直送切り換え回路バックアップ方式無停電電源装置の直送給電回路と無停電電源装置の出力回路とを結合した回路に第2変流器を設置し、
並列運転中の各直送給電回路のそれぞれに属する各第2変流器の二次巻線同士を第2スイッチ接続線で接続すると共に、動作中の各無停電電源装置に属する第2変流器の二次巻線のそれぞれに抵抗を介して第2補助変流器を接続し、
該第2補助変流器の二次巻線のそれぞれに別個に接続した第3信号変換器から、直送給電回路から無停電電源装置へ切り換わったときに並列運転となるべき台数の無停電電源装置1台当たりの平均出力電流信号を検出することを特徴とする無停電電源装置の並列運転電流検出方法。
A second current transformer is installed in a circuit in which a direct-feeding power supply circuit of a direct-feed switching circuit backup type uninterruptible power supply and an output circuit of the uninterruptible power supply are coupled,
The secondary windings of the respective second current transformers belonging to the respective direct-feeding power supply circuits operating in parallel are connected to each other by the second switch connection line, and the second current transformers belonging to the respective uninterruptible power supply devices in operation A second auxiliary current transformer via a resistor to each of the secondary windings of
The number of uninterruptible power supplies that should be in parallel operation when switching from the direct-feed power supply circuit to the uninterruptible power supply from the third signal converter separately connected to each of the secondary windings of the second auxiliary current transformer A method of detecting a parallel operation current of an uninterruptible power supply, comprising detecting an average output current signal per device.
JP2002230724A 2002-08-08 2002-08-08 Parallel operation current detector for uninterruptible power supply and current detection method Expired - Lifetime JP3956794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230724A JP3956794B2 (en) 2002-08-08 2002-08-08 Parallel operation current detector for uninterruptible power supply and current detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230724A JP3956794B2 (en) 2002-08-08 2002-08-08 Parallel operation current detector for uninterruptible power supply and current detection method

Publications (2)

Publication Number Publication Date
JP2004072928A true JP2004072928A (en) 2004-03-04
JP3956794B2 JP3956794B2 (en) 2007-08-08

Family

ID=32016690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230724A Expired - Lifetime JP3956794B2 (en) 2002-08-08 2002-08-08 Parallel operation current detector for uninterruptible power supply and current detection method

Country Status (1)

Country Link
JP (1) JP3956794B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189861A (en) * 2006-01-16 2007-07-26 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply system
CN103701199A (en) * 2013-12-25 2014-04-02 施耐德万高(天津)电气设备有限公司 Parallel changeover control system with closed-loop switch-off protection
CN112099438A (en) * 2020-09-14 2020-12-18 南京简睿捷软件开发有限公司 Machine tool energy-saving control method and device based on current signals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189861A (en) * 2006-01-16 2007-07-26 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply system
JP4527064B2 (en) * 2006-01-16 2010-08-18 東芝三菱電機産業システム株式会社 Uninterruptible power supply system
CN103701199A (en) * 2013-12-25 2014-04-02 施耐德万高(天津)电气设备有限公司 Parallel changeover control system with closed-loop switch-off protection
CN112099438A (en) * 2020-09-14 2020-12-18 南京简睿捷软件开发有限公司 Machine tool energy-saving control method and device based on current signals

Also Published As

Publication number Publication date
JP3956794B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
KR20150024432A (en) Power supply system
JP6136481B2 (en) Power measuring apparatus and power measuring system
JP2006246616A (en) Uninterruptible power supply
US9667097B2 (en) System and method for maintaining proper phase neutral wiring in a power system
US9509139B1 (en) Transfer switch for automatically switching neutrals for one or more loads between two electrical sources of power
KR101050202B1 (en) Emergency lighting control circuit and its control method
US8819470B2 (en) Switching device, a switching device control method and a switching device control program
JP2004072928A (en) Parallel operation current detecting device of uninterruptible power source and method for detecting its current
US11283286B2 (en) Uninterruptible power supply
JP3804592B2 (en) Parallel redundant operation method of uninterruptible power supply
KR102018235B1 (en) DC power automatic switcher
JP2010273405A (en) Uninterruptible power supply system
JP7088702B2 (en) Power supply circuit and power supply method
KR20180096090A (en) Uninterruptible power supply system
JP2003061248A (en) Power supply system change-over mechanism
KR101821091B1 (en) Automatic load transfer switch system and automatic load transfer switching method using the same
JPH01222635A (en) Uninterruptible power supply equipment
JP6396239B2 (en) Uninterruptible power supply system
JP4170939B2 (en) Power supply system
KR20190096633A (en) Motor protection relay and motor protection system comprising the same
US9124128B2 (en) Arrangement for an uninterruptible power supply
US9130399B2 (en) Arrangement for an uninterruptible power supply
JP7259742B2 (en) Storage battery system and power display device
JPH08205426A (en) Uninterruptible stabilized power supply
JP3539261B2 (en) Distributed power system

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3956794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term