JP2004072009A - Semiconductor device, and manufacturing method thereof - Google Patents

Semiconductor device, and manufacturing method thereof Download PDF

Info

Publication number
JP2004072009A
JP2004072009A JP2002232452A JP2002232452A JP2004072009A JP 2004072009 A JP2004072009 A JP 2004072009A JP 2002232452 A JP2002232452 A JP 2002232452A JP 2002232452 A JP2002232452 A JP 2002232452A JP 2004072009 A JP2004072009 A JP 2004072009A
Authority
JP
Japan
Prior art keywords
semiconductor chip
adhesive layer
wire
insulating film
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002232452A
Other languages
Japanese (ja)
Other versions
JP3912223B2 (en
Inventor
Kinichi Kumagai
熊谷 欣一
Mitsuhisa Watabe
渡部 光久
Akira Takashima
高島 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002232452A priority Critical patent/JP3912223B2/en
Publication of JP2004072009A publication Critical patent/JP2004072009A/en
Application granted granted Critical
Publication of JP3912223B2 publication Critical patent/JP3912223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost semiconductor device and the manufacturing method thereof which relaxes the restrictions related to the shapes of its mounted semiconductor chips, etc., with respect to a stacked package wherein a plurality of semiconductor chips are mounted on a wiring board in a laminated manner and in a face-up state, and the wire-bonding electrode pattern portions of the insulating board and the wire-bonding electrode patterns of the semiconductor chips are connected respectively by wire bondings. <P>SOLUTION: In the stacked package, the thickness of an insulating bonding layer whereby semiconductor chips are bonded to each other is made not smaller than at least the height ranging from the surface of a lower-side semiconductor chip to the uppermost point of the wire loop of its bonding wire. That is, the region present above the surface of the lower-side semiconductor chip which is occupied by the insulating bonding layer is so formed as to overlap at least partially with the wire-bonding electrode region of the lower-side semiconductor chip and that its bonding wire is integrated into the insulating bonding layer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、複数個の半導体チップを積層させ搭載することにより実装密度を高めたパッケージ構造を有する半導体装置(以下「スタックドパッケージ」という)及び製造方法に関し、特に、半導体チップをフェイスアップ状態で、表面側配線層が中間絶縁層を貫通して形成された貫通孔を通して裏面側配線層と電気的に接続された実装用外部端子を有する配線基板上に搭載され、前記配線基板の表面側配線面に形成されたワイヤーボンディング電極パターンとをワイヤーボンディングにより接続することを特徴とする半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
近年、携帯機器及びパソコン等の小型化にともない、半導体装置の実装基板への実装に際して、高密度化が要求されている。しかし、上記機器では半導体装置の低コストも求められており、低コストのスタックドパッケージ技術が注目されている。
【0003】
図8に、低コストのスタックドパッケージ技術を適用した半導体装置の例を示す。ここで、図8の半導体装置は下側半導体チップ1と、上側半導体チップ2と、裏面に実装用外部端子(すなわち半田ボール5)を有する配線基板7と、ボンディングワイヤー4と、封止樹脂6と絶縁性フィルム状接着層3とから構成されており、上側半導体チップの裏面(非回路形成面)を、下側半導体チップ1の回路形成面上に、20〜50μm程度の厚さを有する上記絶縁性フィルム状接着層3を介して接着し、上記配線基板7の表面側配線形成面と下側半導体チップ1の裏面(非回路形成面)とを絶縁性フィルム状接着層3を介して接着し、下側半導体チップの回路形成面上のワイヤーボンディング電極パターン及び上側半導体チップのワイヤーボンディング電極パターンと、上記配線基板の表面側配線形成面上のワイヤーボンディング電極パターンとをボンディングワイヤー4で接続した後、封止樹脂6で封止することにより製造されている。
【0004】
しかし、図8に示すように、スタックドパッケージ内に搭載し、積層した各半導体チップの回路形成面上のワイヤーボンディング電極パターンと実装用外部端子を有する配線基板上のワイヤーボンディング電極パターンとを接続する手段として、ワイヤーボンディングを使用する場合には、積層する半導体チップはすべて配線基板に対してフェイスアップ状態で搭載する必要があり、下側半導体チップ面上のワイヤーボンディング電極パターンに対しワイヤーボンディング時に、上側の半導体チップが障害とならないようにするには、上側の半導体チップのサイズ及び形状に制限があった。
【0005】
そこで、上記制限を緩和する為、半導体チップの積層に係わる構造及びその製造方法には、様々なものが提案され、実現された。
例えば、図9に示す半導体装置もスタックドパッケージの例である。ここで、図9は半導体装置の断面構造を示しており、上記半導体装置は、下側半導体チップ1と、上側半導体チップ2と、裏面に実装用外部端子(すなわち半田ボール5)を有する配線基板7と、絶縁性フィルム状接着層3と、金属バンプ8と、ボンディングワイヤー4と、封止樹脂6から構成されており、上記上下の各半導体チップの裏面(非回路形成面)同士を絶縁性フィルム状接着層3を介して接着した半導体チップの組を、上記下側半導体チップの回路形成面と配線基板の上側配線面とを、金属バンプ8を介して積み重ね(以下「フリップチップ構造」という。)、下側半導体チップと配線基板の間にはアンダーフィル材を充填し、フェイスアップ状態である上側半導体チップ2のワイヤーボンディング電極パターンと配線基板7のワイヤーボンディング電極パターンはボンディングワイヤー4で接続した後、封止樹脂6で封止することにより、製造されている。
【0006】
ところで、上記の説明中、アンダーフィル材とは、エポキシ樹脂等にフィラー(材質がSiO2等である、粒径20〜100μ程度の粒状物質をいう)を含ませ、熱硬化性を有するものをいう。
また、図10に示す半導体装置も例としてあげられる。ここで、図10は半導体装置の断面構造を示しているが、上記半導体装置は、下側半導体チップ1と、上側半導体チップ2と、実装用外部端子(すなわち半田ボール5)を有する配線基板7と、スペーサー9と、ボンディングワイヤー4と、封止樹脂6と絶縁性フィルム状接着層3とから構成されており、ワイヤーボンディングができる程度の隙間をあくように、下側半導体チップ1の回路形成面上に200μm〜300μの高さのスペーサー9を搭載し、上側半導体チップ2の裏面(非回路形成面)を上記スペーサー9を介して、下側半導体チップの回路形成面上に搭載し、下側半導体チップ1裏面(非回路形成面)と配線基板7の上側配線面を絶縁性フィルム状接着層3を介して積み重ね(以下「スペーサー構造」という)、下側半導体チップの回路形成面上のワイヤーボンディング電極パターン及び上側半導体チップの回路形成面上のワイヤーボンディング電極パターンとを、配線基板の上側配線面のワイヤーボンディング電極パターンとをボンディングワイヤー4で接続した後、封止樹脂6で封止することにより製造されている。
【0007】
【発明が解決しようとする課題】
図9のフリップチップ構造をとる半導体装置の場合、上側半導体チップと下側半導体チップは裏面同士で接続していること、及び、下側半導体チップの回路形成面内のワイヤーボンディング電極パターンと配線基板の上側配線面のワイヤーボンディング電極パターンとは金属バンプで接続されるので、下側半導体チップのワイヤーボンディング電極パターンと配線基板のワイヤーボンディング電極パターンの接続において、上側半導体チップの形状及び大きさに係わる制限が緩和された。しかし、下側半導体チップ及び配線基板のワイヤーボンディング電極パターン上に金属バンプを形成する工程、上記金属バンプを接続する工程、アンダーフィル材の注入工程が増加し、コストアップは避けられない。また、金属バンプによる接合技術はワイヤーボンディングによる接合技術に比較し、成熟していない為、金属バンプによる接合点が増加すると歩留りの低下を招いていた。
【0008】
他方、図10のスペーサー構造をとる半導体装置の場合でも、上側半導体チップの回路形成面上のワイヤーボンディング電極パターンと配線基板の上側配線面上のワイヤーボンディング電極パターンをボンディングワイヤーによる接続を行う目的で、上側半導体チップと下側半導体チップの間にスペーサーを挟んだ為、その隙間を利用してボンディングが行えるから、上側半導体チップの形状及び大きさに係わる制限が緩和された。しかし、上記スペーサーを搭載する工程の追加、及び、スペーサーに使用する部材が追加となるので、コストアップは避けられない。
【0009】
そこで、本発明は、上記課題に鑑み、それ程工程及び部材の追加がなく、低コスト、かつ、上側半導体チップの形状及び大きさに係わる制限が緩和されたスタックドパッケージを実現する半導体製造装置及びその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成する為に、請求項1に係わる本発明は、少なくとも、第1の半導体チップと、第2の半導体チップとが、表面側配線層が中間絶縁層を貫通して形成された貫通孔を通して裏面側配線層と電気的に接続された実装用外部端子を有する配線基板に搭載され、封止用樹脂にて封止されている半導体装置であって、
前記配線基板の表面と、前記第1の半導体チップの非回路形成面とが第1の絶縁性接着層を介して接着され、前記第1の半導体チップのワイヤーボンディング電極パターンを有する回路形成面と前記第2の半導体チップの非回路形成面とが前記第1の半導体チップのワイヤボンディング電極パターンの領域の少なくとも一部を含むように、第2の絶縁性接着層を介して接着され、前記配線基板の前記表面側配線層に形成されたワイヤーボンディング電極パターンと、前記第1の半導体チップ及び前記第2の半導体チップのワイヤーボンディング電極パターンを有する回路形成面のワイヤーボンディング電極パターンとが、ボンディングワイヤーで接続され、かつ、前記第2の絶縁性接着層は少なくとも前記第1の半導体チップに接続形成されたボンディングワイヤーのワイヤーループ最頂点高さより厚く形成されていることを特徴とする半導体装置を提供する。
【0011】
上記の発明によれば、上下の半導体チップの間の絶縁性フィルム状接着層の厚さを厚くして、下側半導体チップの表面に貼られたボンディングワイヤーを傷つけない程度に上下半導体チップ間の隙間を空けることができる。従って、下側半導体チップの形状及び大きさに対して、上側の半導体チップの形状及び大きさ制限を設けること必要がない。
【0012】
課題を解決する為、請求項2に係わる発明は、
前記第2の絶縁性フィルム状接着層の全部又は一部に、前記ボンディングワイヤーを内在させることができる程度の粘度を与える工程と、前記ボンディングワイヤーを前記第2の絶縁性フィルム状接着層に内在させると同時に前記第2の半導体チップを前記第1の半導体チップの回路形成面上に搭載する工程と、前記第2の絶縁性フィルム状接着層を固まらせる工程を少なくとも含むことを特徴とする半導体装置の製造方法を提供する。
【0013】
上記の発明によれば、まず、下側半導体チップの裏面(非回路形成面)と配線基板の上側配線面とを接着した後、下側半導体チップの回路形成面上のボンディングワイヤー電極パターンと配線基板の上側配線面上のボンディングワイヤー電極パターンとをボンディングワイヤーにて接続し、上下の半導体チップを第2の絶縁性フィルム状接着層を介して接着するとき、ボンディングワイヤーを内在することができる程度に上記第2の絶縁性フィルム上接着層の粘度をさげておき、下側半導体チップ上のワイヤーボンディングを上記第2の絶縁性フィルム状接着層に取り込みながら接着し、その後、上記第2の絶縁性フィルム状接着層を固化させて、上記半導体装置を完成させれば、下側半導体チップ面上のワイヤーボンディング電極パターンに対し貼られているワイヤーを、上側半導体チップが傷つけることなく、半導体装置を組み立てることができる。
【0014】
課題を解決する為、請求項3に係わる発明は、
前記第2の絶縁性フィルム状接着層は、低粘度熱可塑性の絶縁性フィルム状接着層と高粘度熱可塑性の絶縁性接着層とから構成されていることを特徴とする請求項1に記載の半導体装置を提供する。
上記の半導体装置によれば、上下の半導体チップを接着する際に、上記第2の絶縁性フィルム状接着層が、上側半導体チップの裏面(非回路形成面)に近い側は高粘度層、下側半導体チップの回路形成面に近い側が低粘度層に分かれているので、下側の半導体チップの回路形成面に貼られているボンディングワイヤーを絶縁性フィルム状接着層に内在させる場合に、高粘度層による上記ボンディングワイヤーの取り込み量を少なくでき、上記ボンディングワイヤーのワイヤーループの頂点が上側半導体チップの裏面(非回路形成面)に接触しないことを担保することができる。
【0015】
課題を解決する為、請求項4に係わる発明は、
前記第2の絶縁性フィルム状接着層は、さらに、前記ボンディングワイヤーを内在させることができない程度の高硬度層を含むことを特徴とする請求項4に記載の半導体装置を提供する。
上記の半導体装置によれば、上下の半導体チップを接着する際に、絶縁性フィルム状接着層が、粘度の高い層と、上記ボンディングワイヤーを内在させることができない程度の高硬度層と、粘度の低い層に分かれているので、下側の半導体チップに貼られているボンディングワイヤーを前記第2の絶縁性フィルム状接着層に内在させる場合に、一定の深さ以上には取り込まないようにすることができ、上記ボンディングワイヤーのワイヤーループの頂点が上側半導体チップの裏面(非回路形成面)に接触しないことを担保することができる。
【0016】
課題を解決する為、請求項5に係わる発明は、
前記第2の半導体チップの非回路形成面に請求項3及び請求項4に記載した第2の絶縁性接着層を形成する工程は、少なくとも表面に所定の回路が形成されたウエハーの裏面に前記低粘度可塑性を有する絶縁性フィルム状接着層を貼り付ける工程と、前記高硬度フィルム状絶縁層を貼り付ける工程と、前記高粘度可塑性を有する絶縁性フィルム状接着層を貼り付ける工程と、ダイシングすることにより前記第2の半導体チップに分離する工程とにより構成されていることを特徴とする請求項1に記載の半導体装置の製造方法を提供する。
【0017】
上記の半導体装置の製造方法によれば、
上記第2の半導体チップの裏面に、複数の性質が異なる絶縁性フィルム状接着層を容易に形成できる。
以上より、図8に示した、従来例の半導体装置を組み立て工程に比較し、それ程工程の追加はなく、また、使用する部材の増加もないので、基本的には、図8に示した従来例と同程度の低い組み立てコストにより、上側に積層される半導体チップの形状及び大きさの制限を緩和した半導体装置及び半導体装置の製造方法を提供できる。
【0018】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。
図1及び図2は請求項1の発明が提供する半導体装置の第1の実施例を示す。図1は断面図であり、上記半導体装置が、下側半導体チップ1と、上側半導体チップ2と、第1の絶縁性フィルム状接着層と、ボンディングワイヤー4と、半田ボール5と、封止樹脂6と、配線基板7と、第2の絶縁性フィルム状接着層10とで構成されているところを示している。また、下側半導体チップの裏面と絶縁性基板の表面は第1の絶縁性フィルム状接着層を介して接着され、上側半導体チップの裏面は下側半導体チップの表面と100μm〜200μm程度の厚さを有する第2の絶縁性フィルム状半導体層を介して接着され、上側半導体チップ及び下側半導体チップの表面側回路形成面上のワイヤーボンディング電極パターンと配線基板表面のワイヤーボンディング電極パターンとはボンディングワイヤーにて接続されている。
【0019】
図2は斜視図の例による立体構造図であり、半導体装置の構成要素は図1に示す要素と、完全に一致しており、各要素については、同一の番号を付している。次に図3は、請求項2の発明が提供する製造方法の実施例を示し、特に図1及び図2に示す請求項1に係わる半導体装置を請求項2に示す製造方法により製造する時の工程及び上側半導体チップに絶縁性フィルム状接着層を貼り付ける工程を示す。ここで、図3中の数字1〜10は半導体装置の構成要素を示し、図1及び図2において示した、数字と構成要素の対応がそのまま使用されている。また、図1及び図2にない、数字15はダイシングシートを示す。ダイシングシートとは、ウエハー状態の半導体をチップ状にダイシング装置により、個片化する際にウエハーの裏面に貼り付け、主に、ダイシング時の応力緩衝の為に使用されるものをいう。
【0020】
以下、まず、図面左側の流れに沿って、半導体装置の製造工程について各工程毎に説明をする。
工程1は下側の半導体チップの裏面に絶縁性フィルム状接着層を作成し、配線基板と接着する工程を示す。
工程2は、下側半導体チップの表面側回路形成面上のワイヤーボンディング電極パターンと配線基板の表面上のワイヤーボンディング電極パターンをボンディングワイヤーで接続する工程を示す。
【0021】
工程3は、上側半導体チップに絶縁性フィルム状接着層を、図面の右側に示す工程にて貼り付けし、そのまま、絶縁性フィルム接着層とともに150℃〜200℃で10秒程度熱処理を施し、絶縁性フィルム状接着層の粘度を 100Pa・s程度から30Pa・s程度へ軟化させるた後、徐々に上側半導体チップを下側半導体チップの表面に近づけ、下側半導体チップの表面にあるボンディングワイヤーを第2の絶縁性フィルム状接着層に内在させながら、上下の半導体チップを接着し、150℃〜200℃で1時間〜2時間程度熱処理をして、第2の絶縁性フィルム状接着層を硬化させる工程を示す。
【0022】
工程4は、上側半導体チップの表面に形成されているワイヤーボンディング電極パターンと配線基板状のワイヤーボンディング電極パターンをボンディングワイヤーで接続する工程を示す。
工程5は、全体を封止樹脂で覆い、硬化させて固める工程を示す。
上記の工程中、第2の絶縁性フィルム状接着層は、エポキシ樹脂とポリイミド樹脂を混合させて作成する。その粘度は、常温において、混合比率により変化し、エポキシ樹脂の混合比率が低い時は粘度は約100Pa・s程度であり、混合比率が数十%程度では10000Pa・s程度である。また、上記第2の絶縁性フィルム状接着層は、150℃〜200℃で1〜2S程度の加熱処理後には、粘度は30Pa・S程度に下がるが、さらに、150℃〜200℃で1時間から2時間の熱処理を行うと硬化する樹脂であることが望ましい。ここで、上記第2の絶縁性フィルム状接着層を構成するエポキシ樹脂は、例えば、化1及び化2に示す化学構造をもち、上記ポリイミド樹脂については、例えば、化3に示すような化学構造をもっており、表1に示すような諸元をもっているものが望ましい。
【0023】
【化1】

Figure 2004072009
【0024】
【化2】
Figure 2004072009
【0025】
【化3】
Figure 2004072009
【0026】
【表1】
Figure 2004072009
【0027】
次に、図3の右側の流れに沿って、上側半導体チップに絶縁性フィルム状接着層を貼り付ける工程を説明する。
工程1は、上側半導体チップが個片化される前のウエハー状態であるときに、絶縁性フィルム状接着層をウエハー裏面に貼り付ける工程を示す。
工程2は、上記、絶縁性フィルム状接着層を貼り付けたウエハーをダイシングシート上に貼り付ける工程を示す。
【0028】
工程3は、上側半導体チップをダイシング装置により、個片化する工程を示す。
以上、図8に示す従来の半導体装置を製造する工程に比較し、図3の左側の工程フロー中、工程2において、下側半導体チップの回路形成面上のボンディングワイヤー電極パターンと配線基板の表側配線面上のボンディングワイヤー電極パターンとをワイヤーボンディングにて接続した後、工程3で、ボンディングワイヤーを第2の絶縁性フィルム状接着層に内在させること及び図3の右側の工程フロー中、工程1で貼り付ける絶縁性フィルム状接着層の厚さが厚いことが相違点である。しかし、その相違点によるコストの上昇はそれ程でもなく、図8に示す半導体装置の製造コストとほぼ同程度のコストで、請求項2の発明が提供する製造方法によれば図3に示す半導体装置を製造することができる。
【0029】
次に図4において、請求項3の発明が提供する半導体装置に係わる第2の実施例を示す。ここで、図4は、すべての半導体装置を表しているわけではなく、上側半導体チップ2と、下側半導体チップ1が第2の絶縁性フィルム状接着層10を介して接着されているところを示している。また、ワイヤーが表示されているのは、第2の絶縁性フィルム状接着層10が粘度の高い50μm程度の厚さを有する第3の絶縁性フィルム状接着層12と粘度の低い100μm程度の第4の絶縁性フィルム状接着層11とで構成されており、ワイヤーは粘度の低い絶縁性フィルム状接着層内に内在させている状態を示す為である。
【0030】
第2の実施例によれば、ワイヤーは粘度の高い第3の絶縁性フィルム状接着層には、その粘度から考えて、それ程内在させることができず、上側半導体チップの裏面と接触しない利点がある。
さらに、図5において、請求項4の発明が提供する半導体装置に係わる第3の実施例を示す。ここで、図5は、すべての半導体装置を表しているわけではなく、上側半導体チップ2と、下側半導体チップ1が第2の絶縁性フィルム状接着層9を介して接着されているところを示している。また、ワイヤーが表示されているのは、第2の絶縁性フィルム状接着層が粘度の高い50μm程度の厚さを有する第3の絶縁性フィルム状接着層12と、一定の硬度を有する50μm程度の厚さの第5の層13と、粘度の低い100μm程度の厚さを有する第4の絶縁性フィルム状接着層11とで構成されており、ワイヤーは粘度の低い絶縁性フィルム状接着層内に内在させている状態を示す為である。
【0031】
第3の実施例によれば、ワイヤーは第2の絶縁性フィルム状接着層10が一定の硬度を有する第5の層13を間に含んでいるので、一定の硬度を有する第5の層13によって、上側半導体チップの裏面と接触しない利点がある。
さらに、図6において、請求項4の発明が提供する半導体装置に係わる第4の実施例を示す。ここで、図6は、すべての半導体装置を表しているわけではなく、上側半導体チップ2と、下側半導体チップ1が第2の絶縁性フィルム状接着層10を介して接着されているところを示している。また、ワイヤーが表示されているのは、第2の絶縁性フィルム状接着層が粘度の高い第3の絶縁性フィルム状接着層12であって層状態にフィラーを配置した部分14が存在する層と、粘度の低い第4の絶縁性フィルム状接着層11とで構成されており、ワイヤーは粘度の低い絶縁性フィルム状接着層内に内在させている状態を示す為である。
【0032】
ここで、フィラーとは、SiO2等の絶縁物を粒状にしたもので、その粒径はおよそ30μm〜100μm程度である粒状物質をいう。また、フィラーの層状態配置は、第3の絶縁性フィルム状接着層を製造する際に、予めフィラーを配置しておいた容器の中に第3の絶縁性フィルム状接着層の材料である接着剤を流しこむ方法または、上記容器の中に上記接着剤を流し入れた後、フィラーを加え沈殿するまで待つ方法により達成可能である。
【0033】
第4の実施例によれば、ワイヤーは第2の絶縁性フィルム状接着層10がフィラーを層状態に配置した部分を間に含んでいるので、フィラーを層状態に配置した部分がある程度の硬度を有する為、上側半導体チップの裏面と接触しない利点がある。
加えて、図7に、第2の実施例及び第3の実施例において必要な、上側半導体チップに第2の絶縁性フィルム状接着層を貼り付ける工程を示す。
【0034】
まず、左側の工程フローに沿って、第2の実施例において、上側半導体チップに絶縁性フィルム状接着層を貼り付ける工程を以下に説明する。
工程1は、上側半導体チップ2が形成されているウエハーの裏面に、接着層作成工程を経た、粘度の高い絶縁性フィルム状接着層と粘度の低い絶縁性フィルム状接着層を貼り合わせて作成された絶縁性フィルム状接着層を、貼り付けることにより一体化させる工程を示す。
【0035】
工程2は、工程1で一体化したものに、さらに、ダイシングシート15を貼り付ける工程を示す。
工程3は、上側半導体チップが形成されているウエハーをダイシングして、絶縁性フィルム状接着層が裏面に形成されている半導体チップとして個片化する工程を示す。
【0036】
次に、図7の右側に、第3の実施例において、上側半導体チップに絶縁性フィルム状接着層を貼り付ける工程を示す。以下、図7の右側に示す工程に沿って工程を説明する。
工程1は、上側半導体チップ2が形成されているウエハーの裏面に、接着層作成工程を経た、粘度の高い絶縁性フィルム状接着層と、一定の硬度を有する層と、粘度の低い絶縁性フィルム状接着層を、順次、貼り合わせて作成された絶縁性フィルム状接着層を、貼り付けることにより一体化させる工程を示す。
【0037】
工程2は、工程1で一体化したものに、さらに、ダイシングシート15を貼り付ける工程を示す。
工程3は、上側半導体チップが形成されているウエハーをダイシングして、絶縁性フィルム状接着層が裏面に形成されている半導体チップとして個片化する工程を示す。
【0038】
上記の図7に示す工程から構成される、製造方法によれば、容易に、上側半導体チップの裏面に絶縁性フィルム状接着層10を構成する層を貼り付けることができる。ここで、絶縁性フィルム状接着層11、12はエポキシ樹脂及びポリイミド樹脂を混合して制作し、上記混合比率を変えて粘度を調節することが望ましい。また、一定の硬度を有する層13はポリイミド樹脂のみで作成することが望ましく、それにより、一定の硬度だけでなく、熱耐性をもつことができる。
【0039】
以上、実施例1〜実施例4に示す半導体装置及びそれらを製造する方法によれば、複数の半導体チップを積層的に、1のスタックドパッケージに低コストで搭載でき、半導体装置を実装基板上に実装うえで、高密度化が達成できる。
(付記1)  少なくとも、第1の半導体チップと、第2の半導体チップとが、表面側配線層が中間絶縁層を貫通して形成された貫通孔を通して裏面側配線層と電気的に接続された実装用外部端子を有する配線基板に搭載され、封止用樹脂にて封止されている半導体装置であって、前記配線基板の表面と、前記第1の半導体チップの非回路形成面とが第1の絶縁性接着層を介して接着され、前記第1の半導体チップのワイヤーボンディング電極パターンを有する回路形成面と前記第2の半導体チップの非回路形成面とが前記第1の半導体チップのワイヤボンディング電極パターンの領域の少なくとも一部を含むように、第2の絶縁性接着層を介して接着され、前記配線基板の前記表面側配線層に形成されたワイヤーボンディング電極パターンと、前記第1の半導体チップ及び前記第2の半導体チップのワイヤーボンディング電極パターンを有する回路形成面のワイヤーボンディング電極パターンとが、ボンディングワイヤーで接続され、かつ、前記第2の絶縁性接着層は少なくとも前記第1の半導体チップに接続形成されたボンディングワイヤーのワイヤーループ最頂点高さより厚く形成されていることを特徴とする半導体装置。
【0040】
(付記2) 前記第2の絶縁性接着層の全部又は一部に、前記ボンディングワイヤーを内在させることができる程度の粘度を与える工程と、前記ボンディングワイヤーを前記第2の絶縁性接着層に内在させると同時に前記第2の半導体チップを前記第1の半導体チップの回路形成面上に搭載する工程と、前記第2の絶縁性フィルム状接着層を固まらせる工程を少なくとも含むことを特徴とする請求項1に記載の半導体装置の製造方法。
【0041】
(付記3) 前記第2の半導体チップの裏面に第2の絶縁性接着層形成する工程は、少なくとも、表面に所定の回路が形成されたウエハーの裏面に絶縁性フィルム状接着層を貼り付ける工程と、ダイシングすることにより前記第2の半導体チップに分離する工程とにより構成されていることを特徴とする付記1に記載の半導体装置の製造方法。
【0042】
(付記4) 前記第2の絶縁性接着層は、低粘度熱可塑性を有する絶縁性フィルム状接着層と高粘度熱可塑性を有する絶縁性フィルム上接着層とから構成されていることを特徴とする付記1に記載の半導体装置。
(付記5) 前記第2の絶縁性接着層は、さらに、前記ワイヤーを内在させることができない程度の高硬度層を含むことを特徴とする付記4に記載の半導体装置。
【0043】
(付記6) 前記高硬度層はポリイミド樹脂で構成されていることを特徴とする付記5に記載の半導体装置。
(付記7) 前記高硬度層は前記第2の絶縁性接着層内にフィラーを含有させ、層状態に配置させることにより形成したことを特徴とした付記5に記載の半導体装置。
【0044】
(付記8) 前記第2の半導体チップの裏面に付記4及び付記5に記載した第2の絶縁性フィルム状接着層を形成する工程は、少なくとも表面に所定の回路が形成されたウエハーの裏面に前記高粘度熱可塑性を有する絶縁性フィルム状接着層を貼り付ける工程と、前記高硬度層を貼り付ける工程と、前記低粘度熱可塑性を有する絶縁性フィルム状接着層を貼り付ける工程と、ダイシングすることにより前記第2の半導体チップに分離する工程とにより構成されていることを特徴とする付記1に記載の半導体装置の製造方法。
【0045】
【発明の効果】
以上の詳細説明したように、本発明の半導体装置及びその製造方法によれば、工程の増加なく、それ程部材費用の追加がない為、低コストなスタックドパッケージを実現でき、低コストな半導体製造装置及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】実施例1
【図2】実施例1の斜視図の例による立体構造図
【図3】実施例1に係わる半導体装置の製造工程
【図4】実施例2
【図5】実施例3
【図6】実施例4
【図7】実施例2及び実施例3に係わる半導体装置の製造工程
【図8】従来例1
【図9】従来例2
【図10】従来例3
【符号の説明】
1 下側半導体チップ
2 上側半導体チップ
3 第1の絶縁性フィルム状接着層
4 ワイヤー
5 半田ボール
6 封止樹脂
7 配線基板
8 金属バンプ
9 スペーサー
10 第2の絶縁性フィルム状接着層
11 粘度の低い第4の絶縁性フィルム状接着層
12 粘度の高い第3の絶縁性フィルム状接着層
13 一定の硬度を有する第5の層
14 フィラーを層状に配置した部分
15 ダイシングシート[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device (hereinafter, referred to as a “stacked package”) having a package structure in which a plurality of semiconductor chips are stacked and mounted to increase a mounting density, and a manufacturing method thereof. A front-side wiring layer mounted on a wiring board having mounting external terminals electrically connected to the back-side wiring layer through a through-hole formed through the intermediate insulating layer; The present invention relates to a semiconductor device wherein a wire bonding electrode pattern formed on a surface is connected by wire bonding and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, with the miniaturization of portable devices, personal computers, and the like, higher density is required when semiconductor devices are mounted on mounting substrates. However, low cost semiconductor devices are also required in the above-mentioned devices, and low-cost stacked package technology is attracting attention.
[0003]
FIG. 8 shows an example of a semiconductor device to which a low-cost stacked package technology is applied. Here, the semiconductor device of FIG. 8 includes a lower semiconductor chip 1, an upper semiconductor chip 2, a wiring substrate 7 having external terminals for mounting (ie, solder balls 5) on the back surface, bonding wires 4, and a sealing resin 6. And an insulating film-like adhesive layer 3. The back surface (non-circuit forming surface) of the upper semiconductor chip has a thickness of about 20 to 50 μm on the circuit forming surface of the lower semiconductor chip 1. The bonding is performed via the insulating film-like adhesive layer 3, and the surface-side wiring forming surface of the wiring board 7 and the back surface (non-circuit forming surface) of the lower semiconductor chip 1 are bonded via the insulating film-like bonding layer 3. A wire bonding electrode pattern on the circuit forming surface of the lower semiconductor chip, a wire bonding electrode pattern on the upper semiconductor chip, and a wire bonding electrode pattern on the surface wiring forming surface of the wiring substrate. After connecting the electrode pattern in the bonding wires 4 are produced by sealing with the sealing resin 6.
[0004]
However, as shown in FIG. 8, the wire bonding electrode pattern on the circuit forming surface of each semiconductor chip mounted and stacked in the stacked package is connected to the wire bonding electrode pattern on the wiring board having external terminals for mounting. When wire bonding is used as a means for mounting, all the semiconductor chips to be stacked must be mounted face-up on the wiring board, and the wire bonding electrode pattern on the lower semiconductor chip surface must be mounted at the time of wire bonding. In order to prevent the upper semiconductor chip from hindering, the size and shape of the upper semiconductor chip are limited.
[0005]
Therefore, in order to alleviate the above-mentioned limitation, various structures and methods for manufacturing semiconductor chips have been proposed and realized.
For example, the semiconductor device shown in FIG. 9 is also an example of a stacked package. Here, FIG. 9 shows a cross-sectional structure of the semiconductor device. The semiconductor device is a wiring board having a lower semiconductor chip 1, an upper semiconductor chip 2, and mounting external terminals (ie, solder balls 5) on the back surface. 7, an insulating film-like adhesive layer 3, metal bumps 8, bonding wires 4, and a sealing resin 6. The upper and lower semiconductor chips (non-circuit forming surfaces) are insulated from each other. A set of semiconductor chips adhered via the film-like adhesive layer 3 is stacked on the circuit forming surface of the lower semiconductor chip and the upper wiring surface of the wiring board via metal bumps 8 (hereinafter referred to as “flip chip structure”). ), The space between the lower semiconductor chip and the wiring board is filled with an underfill material, and the wire bonding electrode pattern of the upper semiconductor chip 2 and the wiring board 7 in the face-up state are filled. After ear bonding electrode patterns connected by the bonding wires 4, by sealing with the sealing resin 6, it is manufactured.
[0006]
By the way, in the above description, the underfill material refers to a material which has a thermosetting property by adding a filler (referred to as a particulate material having a particle size of about 20 to 100 μm made of SiO2 or the like) to an epoxy resin or the like. .
Further, the semiconductor device shown in FIG. 10 is also given as an example. Here, FIG. 10 shows a cross-sectional structure of the semiconductor device. The semiconductor device has a lower semiconductor chip 1, an upper semiconductor chip 2, and a wiring board 7 having external terminals for mounting (that is, solder balls 5). , A spacer 9, a bonding wire 4, a sealing resin 6 and an insulating film-like adhesive layer 3, and a circuit is formed on the lower semiconductor chip 1 so as to leave a gap for wire bonding. A spacer 9 having a height of 200 μm to 300 μm is mounted on the surface, and the back surface (non-circuit forming surface) of the upper semiconductor chip 2 is mounted on the circuit forming surface of the lower semiconductor chip via the spacer 9. The back surface (non-circuit formation surface) of the side semiconductor chip 1 and the upper wiring surface of the wiring board 7 are stacked via an insulating film-like adhesive layer 3 (hereinafter referred to as a “spacer structure”), and the lower semiconductor chip After connecting the wire bonding electrode pattern on the circuit forming surface of the chip and the wire bonding electrode pattern on the circuit forming surface of the upper semiconductor chip to the wire bonding electrode pattern on the upper wiring surface of the wiring board with bonding wires 4, It is manufactured by sealing with a sealing resin 6.
[0007]
[Problems to be solved by the invention]
In the case of the semiconductor device having the flip chip structure shown in FIG. 9, the upper semiconductor chip and the lower semiconductor chip are connected to each other on the back surface, and the wire bonding electrode pattern and the wiring board in the circuit formation surface of the lower semiconductor chip are provided. Is connected to the wire bonding electrode pattern on the upper wiring surface by metal bumps, so that the connection between the wire bonding electrode pattern on the lower semiconductor chip and the wire bonding electrode pattern on the wiring board depends on the shape and size of the upper semiconductor chip. Restrictions have been relaxed. However, a step of forming a metal bump on the wire bonding electrode pattern of the lower semiconductor chip and the wiring board, a step of connecting the metal bump, and a step of injecting an underfill material are increased, so that an increase in cost is inevitable. In addition, the bonding technique using metal bumps is less mature than the bonding technique using wire bonding, so that an increase in the number of bonding points using metal bumps causes a decrease in yield.
[0008]
On the other hand, even in the case of the semiconductor device having the spacer structure of FIG. 10, the wire bonding electrode pattern on the circuit forming surface of the upper semiconductor chip and the wire bonding electrode pattern on the upper wiring surface of the wiring board are connected by bonding wires. Since the spacer is interposed between the upper semiconductor chip and the lower semiconductor chip, bonding can be performed using the gap, so that restrictions on the shape and size of the upper semiconductor chip are relaxed. However, an additional step of mounting the spacer and a member used for the spacer are added, so that an increase in cost cannot be avoided.
[0009]
In view of the above problems, the present invention provides a semiconductor manufacturing apparatus and a semiconductor manufacturing apparatus that realizes a stacked package in which the number of steps and members is not so large, the cost is low, and the restrictions on the shape and size of the upper semiconductor chip are relaxed. It is an object of the present invention to provide a manufacturing method thereof.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention according to claim 1, wherein at least a first semiconductor chip and a second semiconductor chip have a through-hole in which a surface-side wiring layer is formed through an intermediate insulating layer. A semiconductor device mounted on a wiring board having mounting external terminals electrically connected to the backside wiring layer through the holes and sealed with a sealing resin,
A circuit forming surface having a wire bonding electrode pattern of the first semiconductor chip, wherein a surface of the wiring substrate and a non-circuit forming surface of the first semiconductor chip are bonded via a first insulating adhesive layer; The second semiconductor chip is bonded via a second insulating adhesive layer so as to include at least a part of a region of a wire bonding electrode pattern of the first semiconductor chip; A wire bonding electrode pattern formed on the front surface side wiring layer of the substrate and a wire bonding electrode pattern on a circuit forming surface having the wire bonding electrode patterns of the first semiconductor chip and the second semiconductor chip are formed by bonding wires. And the second insulating adhesive layer is formed to be connected to at least the first semiconductor chip. To provide a semiconductor device which is characterized in that it is thicker than the wire loop top apex height of the bonding wire.
[0011]
According to the above invention, the thickness of the insulating film-like adhesive layer between the upper and lower semiconductor chips is increased, so that the bonding wire attached to the surface of the lower semiconductor chip is not damaged. A gap can be made. Therefore, there is no need to limit the shape and size of the upper semiconductor chip with respect to the shape and size of the lower semiconductor chip.
[0012]
In order to solve the problem, the invention according to claim 2 is
Giving a viscosity to the whole or a part of the second insulating film-like adhesive layer to such an extent that the bonding wire can be included therein; and providing the bonding wire in the second insulating film-like adhesive layer. At the same time, mounting the second semiconductor chip on the circuit forming surface of the first semiconductor chip, and hardening the second insulating film-like adhesive layer. An apparatus manufacturing method is provided.
[0013]
According to the above invention, first, the back surface (non-circuit formation surface) of the lower semiconductor chip is bonded to the upper wiring surface of the wiring board, and then the bonding wire electrode pattern and the wiring on the circuit formation surface of the lower semiconductor chip are bonded. When the bonding wire electrode pattern on the upper wiring surface of the substrate is connected with the bonding wire and the upper and lower semiconductor chips are bonded via the second insulating film-like bonding layer, the bonding wire can be contained therein. The viscosity of the second adhesive layer on the insulating film is lowered in advance, and the wire bonding on the lower semiconductor chip is bonded to the second insulating film-like adhesive layer while being taken into the second insulating film-like adhesive layer. When the semiconductor device is completed by solidifying the adhesive film layer, the wire bonding electrode pattern on the lower semiconductor chip surface The wire is affixed against, without the upper semiconductor chip is hurt, it is possible to assemble the semiconductor device.
[0014]
In order to solve the problem, the invention according to claim 3 is:
The said 2nd insulating film adhesive layer is comprised from a low viscosity thermoplastic insulating film adhesive layer and a high viscosity thermoplastic insulating adhesive layer, The Claims characterized by the above-mentioned. Provided is a semiconductor device.
According to the above-described semiconductor device, when the upper and lower semiconductor chips are bonded, the second insulating film-like adhesive layer has a high-viscosity layer on the side close to the back surface (non-circuit formation surface) of the upper semiconductor chip, and Since the side near the circuit forming surface of the side semiconductor chip is divided into a low viscosity layer, when the bonding wire attached to the circuit forming surface of the lower semiconductor chip is embedded in the insulating film-like adhesive layer, high viscosity The amount of the bonding wire taken in by the layer can be reduced, and it can be ensured that the apex of the wire loop of the bonding wire does not contact the back surface (non-circuit formation surface) of the upper semiconductor chip.
[0015]
In order to solve the problem, the invention according to claim 4 is
5. The semiconductor device according to claim 4, wherein the second insulating film-like adhesive layer further includes a high-hardness layer that does not allow the bonding wire to be included therein.
According to the above-described semiconductor device, when bonding the upper and lower semiconductor chips, the insulating film-like adhesive layer has a high viscosity layer, a high hardness layer in which the bonding wire cannot be embedded, and a high viscosity layer. Since it is divided into lower layers, when the bonding wire attached to the lower semiconductor chip is included in the second insulating film-like adhesive layer, it should not be taken in beyond a certain depth. Thus, it can be ensured that the apex of the wire loop of the bonding wire does not contact the back surface (non-circuit formation surface) of the upper semiconductor chip.
[0016]
In order to solve the problem, the invention according to claim 5 is:
The step of forming the second insulating adhesive layer according to claim 3 or claim 4 on the non-circuit forming surface of the second semiconductor chip comprises the step of: A step of attaching an insulating film-like adhesive layer having low viscosity plasticity, a step of attaching the high-hardness film-like insulating layer, a step of attaching the insulating film-like adhesive layer having high viscosity plasticity, and dicing. 2. A method of manufacturing a semiconductor device according to claim 1, further comprising the step of: separating the semiconductor device into the second semiconductor chips.
[0017]
According to the method of manufacturing a semiconductor device described above,
An insulating film-like adhesive layer having a plurality of different properties can be easily formed on the back surface of the second semiconductor chip.
As described above, the conventional semiconductor device shown in FIG. 8 is compared with the assembling process, so that there is not much additional process and the number of members used is not increased. A semiconductor device and a method of manufacturing a semiconductor device in which the restrictions on the shape and size of the semiconductor chip stacked on the upper side are relaxed at the same low assembly cost as in the example.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show a first embodiment of a semiconductor device provided by the present invention. FIG. 1 is a cross-sectional view, in which the semiconductor device includes a lower semiconductor chip 1, an upper semiconductor chip 2, a first insulating film-like adhesive layer, a bonding wire 4, a solder ball 5, and a sealing resin. 6, a wiring board 7, and a second insulating film-like adhesive layer 10. Further, the back surface of the lower semiconductor chip and the front surface of the insulating substrate are bonded via a first insulating film-like adhesive layer, and the back surface of the upper semiconductor chip is approximately 100 μm to 200 μm thick with the front surface of the lower semiconductor chip. The wire bonding electrode pattern on the surface-side circuit forming surface of the upper semiconductor chip and the lower semiconductor chip and the wire bonding electrode pattern on the surface of the wiring board are bonded via a second insulating film-like semiconductor layer having a bonding wire. Connected at
[0019]
FIG. 2 is a three-dimensional structure diagram according to an example of a perspective view. The components of the semiconductor device completely correspond to the components shown in FIG. 1, and the same numbers are assigned to the components. Next, FIG. 3 shows an embodiment of the manufacturing method provided by the invention of claim 2, particularly when the semiconductor device according to claim 1 shown in FIGS. 1 and 2 is manufactured by the manufacturing method according to claim 2. 2 shows a process and a process of attaching an insulating film-like adhesive layer to the upper semiconductor chip. Here, numerals 1 to 10 in FIG. 3 indicate the components of the semiconductor device, and the correspondence between the numerals and the components shown in FIGS. 1 and 2 is used as it is. Numeral 15 not shown in FIGS. 1 and 2 indicates a dicing sheet. The dicing sheet refers to a sheet that is attached to the back surface of the wafer when the semiconductor in a wafer state is cut into individual chips by a dicing apparatus and is mainly used for buffering stress during dicing.
[0020]
Hereinafter, first, the manufacturing process of the semiconductor device will be described for each process along the flow on the left side of the drawing.
Step 1 shows a step of forming an insulating film-like adhesive layer on the back surface of the lower semiconductor chip and bonding the same to a wiring board.
Step 2 shows a step of connecting the wire bonding electrode pattern on the front-side circuit forming surface of the lower semiconductor chip and the wire bonding electrode pattern on the surface of the wiring board with bonding wires.
[0021]
In step 3, an insulating film-like adhesive layer is attached to the upper semiconductor chip in the step shown on the right side of the drawing, and is subjected to a heat treatment at 150 ° C. to 200 ° C. for about 10 seconds together with the insulating film adhesive layer. After softening the viscosity of the conductive film adhesive layer from about 100 Pa · s to about 30 Pa · s, the upper semiconductor chip is gradually brought closer to the surface of the lower semiconductor chip, and the bonding wire on the surface of the lower semiconductor chip is removed. The upper and lower semiconductor chips are adhered to each other while being included in the second insulating film-like adhesive layer, and heat-treated at 150 ° C. to 200 ° C. for about 1 to 2 hours to cure the second insulating film-like adhesive layer. The steps will be described.
[0022]
Step 4 shows a step of connecting the wire bonding electrode pattern formed on the surface of the upper semiconductor chip and the wiring board-shaped wire bonding electrode pattern with bonding wires.
Step 5 is a step of covering the whole with a sealing resin, curing and solidifying.
In the above process, the second insulating film-like adhesive layer is formed by mixing an epoxy resin and a polyimide resin. The viscosity changes at room temperature depending on the mixing ratio. When the mixing ratio of the epoxy resin is low, the viscosity is about 100 Pa · s, and when the mixing ratio is about several tens%, it is about 10,000 Pa · s. In addition, the second insulating film-like adhesive layer has a viscosity of about 30 Pa · S after a heat treatment of about 1 to 2 S at 150 ° C. to 200 ° C., and further has a viscosity of 1 hour at 150 ° C. to 200 ° C. It is preferable that the resin is a resin that cures when heat treatment is performed for 2 hours. Here, the epoxy resin constituting the second insulating film-like adhesive layer has, for example, the chemical structure shown in Chemical formula 1 and Chemical formula 2, and the polyimide resin has the chemical structure shown in Chemical formula 3, for example. It is desirable to have the specifications as shown in Table 1.
[0023]
Embedded image
Figure 2004072009
[0024]
Embedded image
Figure 2004072009
[0025]
Embedded image
Figure 2004072009
[0026]
[Table 1]
Figure 2004072009
[0027]
Next, the step of attaching the insulating film-like adhesive layer to the upper semiconductor chip will be described along the flow on the right side of FIG.
Step 1 shows a step of attaching an insulating film-like adhesive layer to the back surface of the wafer when the upper semiconductor chip is in a wafer state before being singulated.
Step 2 shows a step of attaching the wafer to which the insulating film-like adhesive layer has been attached, on a dicing sheet.
[0028]
Step 3 shows a step of singulating the upper semiconductor chip by using a dicing apparatus.
As compared with the process of manufacturing the conventional semiconductor device shown in FIG. 8, the bonding wire electrode pattern on the circuit formation surface of the lower semiconductor chip and the front side of the wiring substrate are found in Step 2 in the process flow on the left side of FIG. After connecting the bonding wire electrode pattern on the wiring surface to the bonding wire electrode pattern by wire bonding, in step 3, the bonding wire is made to be present in the second insulating film-like adhesive layer. The difference is that the thickness of the insulating film-like adhesive layer to be stuck is large. However, the increase in cost due to the difference is not so large, and is substantially the same as the manufacturing cost of the semiconductor device shown in FIG. 8, and according to the manufacturing method provided by the invention of claim 2, the semiconductor device shown in FIG. Can be manufactured.
[0029]
Next, FIG. 4 shows a second embodiment according to the semiconductor device provided by the third aspect of the present invention. Here, FIG. 4 does not show all the semiconductor devices, and shows a case where the upper semiconductor chip 2 and the lower semiconductor chip 1 are bonded via the second insulating film-like bonding layer 10. Is shown. Also, the wires are indicated by the fact that the second insulating film-like adhesive layer 10 has a high viscosity of about 50 μm and a third insulating film-like adhesive layer 12 of low viscosity of about 100 μm. This is for the purpose of showing a state in which the wire is included in the low-viscosity insulating film-like adhesive layer.
[0030]
According to the second embodiment, there is an advantage that the wire cannot be included in the third insulating film-like adhesive layer having a high viscosity because of its viscosity, and the wire does not contact the back surface of the upper semiconductor chip. is there.
FIG. 5 shows a third embodiment of the semiconductor device provided by the invention of claim 4. Here, FIG. 5 does not show all the semiconductor devices, and shows a case where the upper semiconductor chip 2 and the lower semiconductor chip 1 are bonded via the second insulating film-like bonding layer 9. Is shown. In addition, the wires are indicated by a third insulating film-like adhesive layer 12 having a high viscosity of about 50 μm and a second insulating film-like adhesive layer of about 50 μm having a certain hardness. And a fourth insulating film-like adhesive layer 11 having a low viscosity of about 100 μm, and the wire is formed in the low-viscosity insulating film-like adhesive layer. This is to show the state of being included in the subroutine.
[0031]
According to the third embodiment, the wire has a fifth layer 13 having a certain hardness because the second insulating film-like adhesive layer 10 includes a fifth layer 13 having a certain hardness therebetween. Therefore, there is an advantage that it does not come into contact with the back surface of the upper semiconductor chip.
FIG. 6 shows a fourth embodiment according to the semiconductor device provided by the invention of claim 4. Here, FIG. 6 does not show all the semiconductor devices, but shows a state where the upper semiconductor chip 2 and the lower semiconductor chip 1 are bonded via the second insulating film-like bonding layer 10. Is shown. Also, the wires are indicated by a layer in which the second insulating film-like adhesive layer is a third insulating film-like adhesive layer 12 having a high viscosity and a portion 14 in which a filler is arranged in a layer state is present. And a fourth insulating film-like adhesive layer 11 having a low viscosity, and this is for showing a state in which the wire is provided inside the insulating film-like adhesive layer having a low viscosity.
[0032]
Here, the filler refers to a granular material obtained by granulating an insulating material such as SiO2 and having a particle size of about 30 μm to 100 μm. When the third insulating film-like adhesive layer is manufactured, the filler is placed in a container in which the filler is arranged in advance in the third insulating film-like adhesive layer. It can be achieved by a method of pouring an agent or a method of pouring the adhesive into the container, adding a filler, and then waiting until precipitation occurs.
[0033]
According to the fourth embodiment, since the wire includes a portion where the second insulating film-like adhesive layer 10 has the filler arranged in a layer state, the wire having the filler arranged in the layer state has a certain hardness. Has the advantage of not contacting the back surface of the upper semiconductor chip.
In addition, FIG. 7 shows a step of attaching a second insulating film-like adhesive layer to the upper semiconductor chip, which is required in the second and third embodiments.
[0034]
First, the process of attaching an insulating film-like adhesive layer to an upper semiconductor chip in the second embodiment will be described below along the process flow on the left.
Step 1 is formed by laminating a high-viscosity insulating film-like adhesive layer and a low-viscosity insulating film-like adhesive layer, which have undergone an adhesive layer forming step, on the back surface of the wafer on which the upper semiconductor chip 2 is formed. The step of integrating the insulating film-like adhesive layer by bonding is shown.
[0035]
Step 2 shows a step of further attaching a dicing sheet 15 to the one integrated in step 1.
Step 3 is a step of dicing the wafer on which the upper semiconductor chip is formed to singulate the semiconductor chip having the insulating film adhesive layer formed on the back surface.
[0036]
Next, on the right side of FIG. 7, a step of attaching an insulating film-like adhesive layer to the upper semiconductor chip in the third embodiment is shown. Hereinafter, the steps will be described along the steps shown on the right side of FIG.
Step 1 includes a step of forming an adhesive layer having a high viscosity, an insulating film-like adhesive layer having a high viscosity, a layer having a certain hardness, and a low-viscosity insulating film on the back surface of the wafer on which the upper semiconductor chip 2 is formed. A step of integrating an insulating film-like adhesive layer formed by sequentially bonding the adhesive layers in a manner of bonding is shown.
[0037]
Step 2 shows a step of further attaching a dicing sheet 15 to the one integrated in step 1.
Step 3 is a step of dicing the wafer on which the upper semiconductor chip is formed to singulate the semiconductor chip having the insulating film adhesive layer formed on the back surface.
[0038]
According to the manufacturing method including the steps shown in FIG. 7, the layer constituting the insulating film-like adhesive layer 10 can be easily attached to the back surface of the upper semiconductor chip. Here, it is desirable that the insulating film-like adhesive layers 11 and 12 are produced by mixing epoxy resin and polyimide resin, and that the viscosity is adjusted by changing the mixing ratio. Further, it is desirable that the layer 13 having a certain hardness is made of only a polyimide resin, whereby not only a certain hardness but also heat resistance can be obtained.
[0039]
As described above, according to the semiconductor devices according to the first to fourth embodiments and the method of manufacturing the same, a plurality of semiconductor chips can be stacked and mounted on one stacked package at low cost, and the semiconductor device can be mounted on a mounting substrate. In mounting, high density can be achieved.
(Supplementary Note 1) At least the first semiconductor chip and the second semiconductor chip are electrically connected to the backside wiring layer through through holes formed by the frontside wiring layer penetrating the intermediate insulating layer. A semiconductor device mounted on a wiring board having external terminals for mounting and sealed with a sealing resin, wherein a surface of the wiring board and a non-circuit forming surface of the first semiconductor chip are second A circuit forming surface of the first semiconductor chip having a wire bonding electrode pattern and a non-circuit forming surface of the second semiconductor chip are bonded to each other through the insulating adhesive layer of the first semiconductor chip; A wire bonding electrode pattern formed on the front-side wiring layer of the wiring board, the bonding being performed via a second insulating adhesive layer so as to include at least a part of a region of the bonding electrode pattern; The first semiconductor chip and the wire bonding electrode pattern on the circuit forming surface having the wire bonding electrode pattern of the second semiconductor chip are connected by bonding wires, and the second insulating adhesive layer is at least A semiconductor device characterized in that the bonding wire is formed thicker than the height of the apex of the wire loop of the bonding wire connected to the first semiconductor chip.
[0040]
(Supplementary Note 2) A step of giving a viscosity to the whole or a part of the second insulating adhesive layer such that the bonding wire can be included therein, and a step of providing the bonding wire in the second insulating adhesive layer. And simultaneously mounting the second semiconductor chip on the circuit forming surface of the first semiconductor chip and hardening the second insulating film-like adhesive layer. Item 2. A method for manufacturing a semiconductor device according to item 1.
[0041]
(Supplementary Note 3) The step of forming the second insulating adhesive layer on the back surface of the second semiconductor chip includes the step of attaching the insulating film adhesive layer to at least the back surface of a wafer having a predetermined circuit formed on the front surface. 2. The method of manufacturing a semiconductor device according to claim 1, further comprising: dicing the semiconductor chip into the second semiconductor chips by dicing.
[0042]
(Supplementary Note 4) The second insulating adhesive layer includes an insulating film-like adhesive layer having low-viscosity thermoplastic and an adhesive-on-insulating-film adhesive layer having high-viscosity thermoplastic. The semiconductor device according to supplementary note 1.
(Supplementary Note 5) The semiconductor device according to Supplementary Note 4, wherein the second insulating adhesive layer further includes a high-hardness layer that does not allow the wires to be included therein.
[0043]
(Supplementary Note 6) The semiconductor device according to Supplementary Note 5, wherein the high hardness layer is made of a polyimide resin.
(Supplementary Note 7) The semiconductor device according to Supplementary Note 5, wherein the high hardness layer is formed by including a filler in the second insulating adhesive layer and arranging the filler in a layer state.
[0044]
(Supplementary Note 8) The step of forming the second insulating film-like adhesive layer described in Supplementary Notes 4 and 5 on the back surface of the second semiconductor chip includes the step of forming the second insulating film-like adhesive layer on at least the back surface of the wafer on which a predetermined circuit is formed. A step of attaching the insulating film-like adhesive layer having high viscosity thermoplasticity, a step of attaching the high hardness layer, a step of attaching the insulating film-like adhesive layer having low viscosity thermoplasticity, and dicing. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of: separating the semiconductor device into the second semiconductor chip.
[0045]
【The invention's effect】
As described above in detail, according to the semiconductor device and the method of manufacturing the same of the present invention, a low-cost stacked package can be realized because the number of steps is not increased and the member cost is not significantly added. An apparatus and a method for manufacturing the same can be provided.
[Brief description of the drawings]
FIG. 1 Example 1
FIG. 2 is a three-dimensional structure diagram according to an example of a perspective view of the first embodiment.
FIG. 3 is a manufacturing process of the semiconductor device according to the first embodiment;
FIG. 4 is a second embodiment.
FIG. 5 is a third embodiment.
FIG. 6 is a fourth embodiment.
FIG. 7 is a manufacturing process of the semiconductor device according to the second and third embodiments.
FIG. 8: Conventional example 1
FIG. 9 is a conventional example 2.
FIG. 10 is a conventional example 3.
[Explanation of symbols]
1 Lower semiconductor chip
2 Upper semiconductor chip
3 First insulating film adhesive layer
4 wires
5 Solder balls
6 sealing resin
7 Wiring board
8 Metal bump
9 Spacer
10 Second insulating film-like adhesive layer
11. Low-viscosity fourth insulating film-like adhesive layer
12. High viscosity third insulating film adhesive layer
13 Fifth layer having constant hardness
14 Part where fillers are arranged in layers
15 Dicing sheet

Claims (5)

少なくとも、第1の半導体チップと、第2の半導体チップとが、表面側配線層が中間絶縁層を貫通して形成された貫通孔を通して裏面側配線層と電気的に接続された実装用外部端子を有する配線基板に搭載され、封止用樹脂にて封止されている半導体装置であって、
前記配線基板の表面と、前記第1の半導体チップの非回路形成面とが第1の絶縁性接着層を介して接着され、
前記第1の半導体チップのワイヤーボンディング電極パターンを有する回路形成面と前記第2の半導体チップの非回路形成面とが前記第1の半導体チップのワイヤボンディング電極パターンの領域の少なくとも一部を含むように、第2の絶縁性接着層を介して接着され、
前記配線基板の前記表面側配線層に形成されたワイヤーボンディング電極パターンと、前記第1の半導体チップ及び前記第2の半導体チップのワイヤーボンディング電極パターンを有する回路形成面のワイヤーボンディング電極パターンとが、ボンディングワイヤーで接続され、
かつ、前記第2の絶縁性接着層は少なくとも前記第1の半導体チップに接続形成されたボンディングワイヤーのワイヤーループ最頂点高さより厚く形成されていることを特徴とする半導体装置。
At least a mounting external terminal in which the first semiconductor chip and the second semiconductor chip are electrically connected to the backside wiring layer through a through hole formed by penetrating the intermediate insulating layer through the frontside wiring layer. A semiconductor device mounted on a wiring board having
A surface of the wiring substrate and a non-circuit-forming surface of the first semiconductor chip are bonded via a first insulating adhesive layer;
A circuit forming surface of the first semiconductor chip having a wire bonding electrode pattern and a non-circuit forming surface of the second semiconductor chip include at least a part of a region of the wire bonding electrode pattern of the first semiconductor chip. Is bonded through a second insulating adhesive layer,
A wire bonding electrode pattern formed on the front-side wiring layer of the wiring substrate, and a wire bonding electrode pattern on a circuit forming surface having the wire bonding electrode patterns of the first semiconductor chip and the second semiconductor chip, Connected by bonding wires,
Further, the semiconductor device is characterized in that the second insulating adhesive layer is formed to be thicker than at least the maximum height of a wire loop of a bonding wire connected to the first semiconductor chip.
前記第2の絶縁性接着層の全部又は一部に、前記ボンディングワイヤーを内在させることができる程度の粘度を与える工程と、
前記ボンディングワイヤーを前記第2の絶縁性接着層に内在させるとともに前記第2の半導体チップを前記第1の半導体チップの回路形成面上に搭載する工程と、
前記第2の絶縁性接着層を固化する工程を少なくとも含むことを特徴とする請求項1に記載の半導体装置の製造方法。
A step of giving the whole or a part of the second insulating adhesive layer a viscosity that allows the bonding wire to be contained therein;
Placing the bonding wire inside the second insulating adhesive layer and mounting the second semiconductor chip on a circuit forming surface of the first semiconductor chip;
2. The method according to claim 1, further comprising a step of solidifying the second insulating adhesive layer.
前記第2の絶縁性接着層は、低粘度熱可塑性を有する絶縁性フィルム状接着層と高粘度可塑性を有する絶縁性フィルム状接着層とから構成されていることを特徴とする請求項1に記載の半導体装置。The said 2nd insulating adhesive layer is comprised from the insulating film-like adhesive layer which has low viscosity thermoplasticity, and the insulating film-like adhesive layer which has high viscosity plasticity, The Claim 1 characterized by the above-mentioned. Semiconductor device. 前記第2の絶縁性接着層は、さらに、前記ボンディングワイヤーを内在させることができない程度の高硬度絶縁層を含むことを特徴とする請求項3に記載の半導体装置。4. The semiconductor device according to claim 3, wherein the second insulating adhesive layer further includes a high-hardness insulating layer to such an extent that the bonding wire cannot be contained therein. 5. 前記第2の半導体チップの非回路形成面に請求項3及び請求項4に記載した第2の絶縁性接着層を形成する工程は、
少なくとも表面に所定の回路が形成されたウエハーの裏面に前記低粘度可塑性を有する絶縁性フィルム状接着層を貼り付ける工程と、前記高硬度フィルム状絶縁層を貼り付ける工程と、前記高粘度可塑性を有する絶縁性フィルム状接着層を貼り付ける工程と、ダイシングすることにより前記第2の半導体チップに分離する工程とにより構成されていることを特徴とする請求項1に記載の半導体装置の製造方法。
The step of forming the second insulating adhesive layer according to claim 3 or 4 on the non-circuit formation surface of the second semiconductor chip,
A step of attaching the insulating film-like adhesive layer having low-viscosity plasticity to the back surface of the wafer on which at least a predetermined circuit is formed, and a step of attaching the high-hardness film-like insulating layer to the high-viscosity plasticity. 2. The method of manufacturing a semiconductor device according to claim 1, comprising: a step of attaching an insulating film-like adhesive layer having the same; and a step of separating the second semiconductor chip by dicing.
JP2002232452A 2002-08-09 2002-08-09 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3912223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232452A JP3912223B2 (en) 2002-08-09 2002-08-09 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232452A JP3912223B2 (en) 2002-08-09 2002-08-09 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004072009A true JP2004072009A (en) 2004-03-04
JP3912223B2 JP3912223B2 (en) 2007-05-09

Family

ID=32017849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232452A Expired - Fee Related JP3912223B2 (en) 2002-08-09 2002-08-09 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3912223B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109479A1 (en) * 2004-05-12 2005-11-17 Sharp Kabushiki Kaisha Adhesive sheet for both dicing and die bonding and semiconductor device manufacturing method using the adhesive sheet
JP2006183020A (en) * 2004-04-20 2006-07-13 Hitachi Chem Co Ltd Adhesive sheet, semiconductor device, and method for producing the semiconductor device
JP2006278519A (en) * 2005-03-28 2006-10-12 Toshiba Corp Method of manufacturing laminated semiconductor device
JP2006278520A (en) * 2005-03-28 2006-10-12 Toshiba Corp Method of manufacturing laminated electronic component
WO2006109506A1 (en) * 2005-03-30 2006-10-19 Nippon Steel Chemical Co., Ltd. Process for producing semiconductor device, and semiconductor device
JP2007053240A (en) * 2005-08-18 2007-03-01 Lintec Corp Sheet shared by dicing and die bonding, and manufacturing method of semiconductor device using the same
WO2007055010A1 (en) * 2005-11-10 2007-05-18 Renesas Technology Corp. Semiconductor device manufacturing method and semiconductor device
JP2007126622A (en) * 2005-10-06 2007-05-24 Hitachi Chem Co Ltd Adhesive sheet, semiconductor device and manufacturing method of semiconductor device
JP2007242684A (en) * 2006-03-06 2007-09-20 Disco Abrasive Syst Ltd Laminated semiconductor device and laminating method of device
JP2008078367A (en) * 2006-09-21 2008-04-03 Renesas Technology Corp Semiconductor device
KR100837000B1 (en) 2007-05-22 2008-06-10 엘에스전선 주식회사 Die adhesive film permeated wire
JP2009099922A (en) * 2007-10-16 2009-05-07 Hynix Semiconductor Inc Laminated semiconductor package, and manufacturing method thereof
US7615413B2 (en) 2005-03-28 2009-11-10 Kabushiki Kaisha Toshiba Method of manufacturing stack-type semiconductor device and method of manufacturing stack-type electronic component
US7629695B2 (en) 2004-05-20 2009-12-08 Kabushiki Kaisha Toshiba Stacked electronic component and manufacturing method thereof
US7675180B1 (en) 2006-02-17 2010-03-09 Amkor Technology, Inc. Stacked electronic component package having film-on-wire spacer
US7736999B2 (en) 2006-03-16 2010-06-15 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device
US7863723B2 (en) 2001-03-09 2011-01-04 Amkor Technology, Inc. Adhesive on wire stacked semiconductor package
JP2011018797A (en) * 2009-07-09 2011-01-27 Elpida Memory Inc Semiconductor device, and method of manufacturing semiconductor device
US7994620B2 (en) 2006-03-16 2011-08-09 Kabushiki Kaisha Toshiba Stacked semiconductor device
US8017444B2 (en) 2004-04-20 2011-09-13 Hitachi Chemical Company, Ltd. Adhesive sheet, semiconductor device, and process for producing semiconductor device
US8129849B1 (en) 2006-05-24 2012-03-06 Amkor Technology, Inc. Method of making semiconductor package with adhering portion
CN103094220A (en) * 2011-10-28 2013-05-08 株式会社东芝 Storage device, semiconductor device and manufacturing method thereof
KR101345175B1 (en) 2007-04-16 2013-12-26 신닛테츠 수미킨 가가쿠 가부시키가이샤 Method of manufacturing semiconductor device
US8841776B2 (en) 2005-08-24 2014-09-23 Fujitsu Semiconductor Limited Stacked semiconductor chips having double adhesive insulating layer interposed therebetween
KR20160139043A (en) 2012-03-08 2016-12-06 히타치가세이가부시끼가이샤 Adhesive sheet and method for manufacturing semiconductor device
JP2019186552A (en) * 2018-04-12 2019-10-24 アナログ・ディヴァイシス・グローバル・アンリミテッド・カンパニー Mounting structures for integrated device packages

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8143727B2 (en) 2001-03-09 2012-03-27 Amkor Technology, Inc. Adhesive on wire stacked semiconductor package
US7863723B2 (en) 2001-03-09 2011-01-04 Amkor Technology, Inc. Adhesive on wire stacked semiconductor package
JP2006183020A (en) * 2004-04-20 2006-07-13 Hitachi Chem Co Ltd Adhesive sheet, semiconductor device, and method for producing the semiconductor device
US8017444B2 (en) 2004-04-20 2011-09-13 Hitachi Chemical Company, Ltd. Adhesive sheet, semiconductor device, and process for producing semiconductor device
WO2005109479A1 (en) * 2004-05-12 2005-11-17 Sharp Kabushiki Kaisha Adhesive sheet for both dicing and die bonding and semiconductor device manufacturing method using the adhesive sheet
US9024424B2 (en) 2004-05-20 2015-05-05 Kabushiki Kaisha Toshiba Stacked electronic component and manufacturing method thereof
US8008763B2 (en) 2004-05-20 2011-08-30 Kabushiki Kaisha Toshiba Stacked electronic component and manufacturing method thereof
US8268673B2 (en) 2004-05-20 2012-09-18 Kabushiki Kaisha Toshiba Stacked electronic component and manufacturing method thereof
US7629695B2 (en) 2004-05-20 2009-12-08 Kabushiki Kaisha Toshiba Stacked electronic component and manufacturing method thereof
US7615413B2 (en) 2005-03-28 2009-11-10 Kabushiki Kaisha Toshiba Method of manufacturing stack-type semiconductor device and method of manufacturing stack-type electronic component
JP4594777B2 (en) * 2005-03-28 2010-12-08 株式会社東芝 Manufacturing method of multilayer electronic component
CN100440464C (en) * 2005-03-28 2008-12-03 株式会社东芝 Method of manufacturing stack-type semiconductor device and method of manufacturing stack-type electronic component
JP2006278520A (en) * 2005-03-28 2006-10-12 Toshiba Corp Method of manufacturing laminated electronic component
JP4612450B2 (en) * 2005-03-28 2011-01-12 株式会社東芝 Manufacturing method of stacked semiconductor device
JP2006278519A (en) * 2005-03-28 2006-10-12 Toshiba Corp Method of manufacturing laminated semiconductor device
US7785926B2 (en) 2005-03-28 2010-08-31 Kabushiki Kaisha Toshiba Method of manufacturing stack-type semiconductor device and method of manufacturing stack-type electronic component
WO2006109506A1 (en) * 2005-03-30 2006-10-19 Nippon Steel Chemical Co., Ltd. Process for producing semiconductor device, and semiconductor device
JPWO2006109506A1 (en) * 2005-03-30 2008-10-23 新日鐵化学株式会社 Semiconductor device manufacturing method and semiconductor device
TWI382521B (en) * 2005-03-30 2013-01-11 Nippon Steel Chemical Co Semiconductor device manufacturing method and semiconductor device
JP4976284B2 (en) * 2005-03-30 2012-07-18 新日鐵化学株式会社 Semiconductor device manufacturing method and semiconductor device
JP4668001B2 (en) * 2005-08-18 2011-04-13 リンテック株式会社 Dicing / die-bonding sheet and method for manufacturing semiconductor device using the same
JP2007053240A (en) * 2005-08-18 2007-03-01 Lintec Corp Sheet shared by dicing and die bonding, and manufacturing method of semiconductor device using the same
US8841776B2 (en) 2005-08-24 2014-09-23 Fujitsu Semiconductor Limited Stacked semiconductor chips having double adhesive insulating layer interposed therebetween
JP2007126622A (en) * 2005-10-06 2007-05-24 Hitachi Chem Co Ltd Adhesive sheet, semiconductor device and manufacturing method of semiconductor device
US9070560B2 (en) 2005-11-10 2015-06-30 Renesas Electronics Corporation Semiconductor chip with modified regions for dividing the chip
US7892949B2 (en) 2005-11-10 2011-02-22 Renesas Electronics Corporation Semiconductor device manufacturing method comprising a metal pattern and laser modified regions in a cutting region
US10002808B2 (en) 2005-11-10 2018-06-19 Renesas Electronics Corporation Semiconductor device manufacturing method and semiconductor device
WO2007055010A1 (en) * 2005-11-10 2007-05-18 Renesas Technology Corp. Semiconductor device manufacturing method and semiconductor device
WO2007055270A1 (en) * 2005-11-10 2007-05-18 Renesas Technology Corp. Semiconductor device manufacturing method and semiconductor device
US8772135B2 (en) 2005-11-10 2014-07-08 Renesas Electronics Corporation Semiconductor device manufacturing method using laser irradiation and dicing saw and semiconductor device thereof
JP4796588B2 (en) * 2005-11-10 2011-10-19 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
US8084334B2 (en) 2005-11-10 2011-12-27 Renesas Electronics Corporation Semiconductor device manufacturing method comprising a metal pattern and laser modified regions in a cutting region
US7675180B1 (en) 2006-02-17 2010-03-09 Amkor Technology, Inc. Stacked electronic component package having film-on-wire spacer
JP2007242684A (en) * 2006-03-06 2007-09-20 Disco Abrasive Syst Ltd Laminated semiconductor device and laminating method of device
US8227296B2 (en) 2006-03-16 2012-07-24 Kabushiki Kaisha Toshiba Stacked semiconductor device
US8039364B2 (en) 2006-03-16 2011-10-18 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device
US7736999B2 (en) 2006-03-16 2010-06-15 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device
US7994620B2 (en) 2006-03-16 2011-08-09 Kabushiki Kaisha Toshiba Stacked semiconductor device
US8129849B1 (en) 2006-05-24 2012-03-06 Amkor Technology, Inc. Method of making semiconductor package with adhering portion
JP2008078367A (en) * 2006-09-21 2008-04-03 Renesas Technology Corp Semiconductor device
KR101397203B1 (en) 2006-09-21 2014-05-20 르네사스 일렉트로닉스 가부시키가이샤 Semiconductor device
US8518744B2 (en) 2006-09-21 2013-08-27 Renesas Electronics Corporation Method of manufacturing semiconductor device
KR101345175B1 (en) 2007-04-16 2013-12-26 신닛테츠 수미킨 가가쿠 가부시키가이샤 Method of manufacturing semiconductor device
KR100837000B1 (en) 2007-05-22 2008-06-10 엘에스전선 주식회사 Die adhesive film permeated wire
JP2009099922A (en) * 2007-10-16 2009-05-07 Hynix Semiconductor Inc Laminated semiconductor package, and manufacturing method thereof
JP2011018797A (en) * 2009-07-09 2011-01-27 Elpida Memory Inc Semiconductor device, and method of manufacturing semiconductor device
CN103094220A (en) * 2011-10-28 2013-05-08 株式会社东芝 Storage device, semiconductor device and manufacturing method thereof
KR20160139043A (en) 2012-03-08 2016-12-06 히타치가세이가부시끼가이샤 Adhesive sheet and method for manufacturing semiconductor device
KR20170105640A (en) 2012-03-08 2017-09-19 히타치가세이가부시끼가이샤 Adhesive sheet and method for manufacturing semiconductor device
KR20190020191A (en) 2012-03-08 2019-02-27 히타치가세이가부시끼가이샤 Adhesive sheet and method for manufacturing semiconductor device
KR20200006197A (en) 2012-03-08 2020-01-17 히타치가세이가부시끼가이샤 Adhesive sheet and method for manufacturing semiconductor device
JP2019186552A (en) * 2018-04-12 2019-10-24 アナログ・ディヴァイシス・グローバル・アンリミテッド・カンパニー Mounting structures for integrated device packages
US11127716B2 (en) 2018-04-12 2021-09-21 Analog Devices International Unlimited Company Mounting structures for integrated device packages

Also Published As

Publication number Publication date
JP3912223B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
JP2004072009A (en) Semiconductor device, and manufacturing method thereof
US8786102B2 (en) Semiconductor device and method of manufacturing the same
US8729690B2 (en) Assembly having stacked die mounted on substrate
US7915080B2 (en) Bonding IC die to TSV wafers
JP5579402B2 (en) Semiconductor device, method for manufacturing the same, and electronic device
US7871865B2 (en) Stress free package and laminate-based isolator package
JP4705748B2 (en) Manufacturing method of semiconductor device
US9312240B2 (en) Semiconductor packages and methods of packaging semiconductor devices
US7378297B2 (en) Methods of bonding two semiconductor devices
JP4575205B2 (en) LAMINATED STRUCTURE FORMATION METHOD AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD USING THE METHOD
TWI704660B (en) Substrates, assemblies, and techniques to enable multi-chip flip chip packages
US10121736B2 (en) Method of fabricating packaging layer of fan-out chip package
JP2008277570A (en) Semiconductor device and manufacturing method therefor
US7700414B1 (en) Method of making flip-chip package with underfill
JP2010219477A (en) Method of wiring substrate with electronic component incorporated therein
US20090017582A1 (en) Method for manufacturing semiconductor device
TW201618267A (en) Stacked semiconductor package and manufacturing method thereof
JP4175138B2 (en) Semiconductor device
US20130070437A1 (en) Hybrid interposer
US7122407B2 (en) Method for fabricating window ball grid array semiconductor package
JP2007242684A (en) Laminated semiconductor device and laminating method of device
JP2006222470A (en) Semiconductor device and manufacturing method thereof
JP3729266B2 (en) Manufacturing method of semiconductor device
JP2004039667A (en) Method of manufacturing semiconductor device formed with through-hole and method of manufacturing semiconductor package
JP2011035283A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040610

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3912223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees