JP2006278520A - Method of manufacturing laminated electronic component - Google Patents

Method of manufacturing laminated electronic component Download PDF

Info

Publication number
JP2006278520A
JP2006278520A JP2005092596A JP2005092596A JP2006278520A JP 2006278520 A JP2006278520 A JP 2006278520A JP 2005092596 A JP2005092596 A JP 2005092596A JP 2005092596 A JP2005092596 A JP 2005092596A JP 2006278520 A JP2006278520 A JP 2006278520A
Authority
JP
Japan
Prior art keywords
electronic component
semiconductor element
adhesive layer
bonding wire
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005092596A
Other languages
Japanese (ja)
Other versions
JP2006278520A5 (en
JP4594777B2 (en
Inventor
Atsushi Yoshimura
淳 芳村
Tadanori Okubo
忠宣 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005092596A priority Critical patent/JP4594777B2/en
Priority to TW095107613A priority patent/TW200727446A/en
Priority to KR1020060027518A priority patent/KR100796884B1/en
Priority to US11/390,285 priority patent/US7615413B2/en
Publication of JP2006278520A publication Critical patent/JP2006278520A/en
Publication of JP2006278520A5 publication Critical patent/JP2006278520A5/ja
Priority to US12/585,547 priority patent/US7785926B2/en
Application granted granted Critical
Publication of JP4594777B2 publication Critical patent/JP4594777B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19106Disposition of discrete passive components in a mirrored arrangement on two different side of a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a laminated electronic component which can prevent failure due to a bonding process between electronic components, in manufacturing a laminate type electronic component by laminating a plurality of electronic components such as semiconductor elements. <P>SOLUTION: A first electronic component 5 bonded on a substrate is placed on a heating stage 21 and heated. A second electronic component 8 having an adhesive layer 9 formed on its rear surface is held with a normal temperature suction tool 22, and gradually moved down from the upper part of the first electronic component 5. The adhesive layer 9 is caused to contact the first electrode component 5 while softening or melting the layer 9 by radiation heat from the first electronic component 5 and thermal transmission with a first bonding wire 7. The second electronic component 8 is pressurized while continuing heating to thermally cure the adhesive layer 9, thereby bonding the first and second electronic components 5 and 8. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は複数の電子部品を積層した積層型電子部品の製造方法に関する。   The present invention relates to a method for manufacturing a multilayer electronic component in which a plurality of electronic components are stacked.

近年、半導体装置の小型化や高密度実装化等を実現するために、1つのパッケージ内に複数の半導体素子等を積層して封止したスタック型マルチチップパッケージが実用化されている。スタック型マルチチップパッケージにおいては、複数の半導体素子が回路基板上にダイアタッチフィルム等の接着剤フィルムを介して順に積層されている。各半導体素子の電極パッドは、回路基板の電極部とボンディングワイヤを介して電気的に接続されている。そして、このような積層体を封止樹脂でパッケージングすることによって、スタック型マルチチップパッケージが構成される。   In recent years, in order to achieve miniaturization and high-density mounting of semiconductor devices, a stacked multichip package in which a plurality of semiconductor elements and the like are stacked and sealed in one package has been put into practical use. In the stacked multichip package, a plurality of semiconductor elements are sequentially stacked on a circuit board via an adhesive film such as a die attach film. The electrode pad of each semiconductor element is electrically connected to the electrode portion of the circuit board via a bonding wire. A stacked multichip package is configured by packaging such a laminate with a sealing resin.

このようなスタック型マルチチップパッケージにおいて、上段側の半導体素子が下段側の半導体素子より小さい場合には、下段側の半導体素子のボンディングワイヤに上段側の半導体素子が干渉することはない。しかし、このような構成では適用可能な半導体素子が大幅に制限されることから、同形状の半導体素子同士や上段側が下段側より大きい半導体素子まで適用範囲を広げることが進められている。ここで、同形状の半導体素子同士や上段側に下段側より大形状の半導体素子を積層する場合には、下段側の半導体素子のボンディングワイヤと上段側の半導体素子とが接触するおそれがある。このため、ボンディングワイヤの接触による絶縁不良やショート等の発生を防止することが重要となる。   In such a stacked multi-chip package, when the upper semiconductor element is smaller than the lower semiconductor element, the upper semiconductor element does not interfere with the bonding wire of the lower semiconductor element. However, since applicable semiconductor elements are greatly limited in such a configuration, the application range is being extended to semiconductor elements having the same shape or to semiconductor elements whose upper side is larger than the lower side. Here, when semiconductor elements having a larger shape than the lower stage side are stacked on the upper side or the semiconductor elements having the same shape, there is a possibility that the bonding wire of the lower side semiconductor element and the upper side semiconductor element come into contact with each other. For this reason, it is important to prevent the occurrence of insulation failure or short circuit due to the contact of the bonding wire.

そこで、半導体素子間を接着する接着剤層の厚さを、下段側の半導体素子のボンディングワイヤと上段側の半導体素子とが接触しないように設定することが行われている(例えば特許文献1,2参照)。例えば特許文献2には、裏面側にボンディングワイヤの接触を防止し得る厚さを有する接着剤層を形成した上段側の半導体素子を、下段側の半導体素子上に配置した後に加熱し、溶融させた接着剤層内に下段側のボンディングワイヤを取り込み、さらに接着剤層を熱硬化させて半導体素子間を接着することが記載されている。   Therefore, the thickness of the adhesive layer that bonds the semiconductor elements is set so that the bonding wires of the lower semiconductor elements do not contact the upper semiconductor elements (for example, Patent Document 1, Patent Document 1). 2). For example, in Patent Document 2, an upper semiconductor element in which an adhesive layer having a thickness that can prevent contact of a bonding wire is formed on the back surface is placed on the lower semiconductor element and then heated and melted. Further, it is described that a bonding wire on the lower side is taken into the adhesive layer, and the adhesive layer is further thermally cured to bond the semiconductor elements.

また、上段側の半導体素子の下面側に絶縁層を形成することによって、下段側の半導体素子のボンディングワイヤと上段側の半導体素子との接触による絶縁不良やショート等を抑制することも提案されている。例えば特許文献3には、上段側の半導体素子の裏面に絶縁層と接着層とを積層した複合シートを貼り付けた後、上段側半導体素子を下段側半導体素子上に配置して加熱し、接着層(接着剤層)を溶融、熱硬化させることにより半導体素子間を接着することが記載されている。この場合にも、下段側のボンディングワイヤは接着剤層内に取り込まれることになる。
特開2001-308262号公報 特開2004-072009号公報 特開2002-222913号公報
It has also been proposed that an insulating layer is formed on the lower surface side of the upper semiconductor element to suppress insulation failure or short circuit due to contact between the bonding wire of the lower semiconductor element and the upper semiconductor element. Yes. For example, in Patent Document 3, after a composite sheet in which an insulating layer and an adhesive layer are laminated is attached to the back surface of an upper semiconductor element, the upper semiconductor element is placed on the lower semiconductor element, heated, and bonded. It describes that the semiconductor elements are bonded together by melting and thermosetting the layer (adhesive layer). Also in this case, the lower bonding wire is taken into the adhesive layer.
JP 2001-308262 A Japanese Unexamined Patent Publication No. 2004-072009 JP 2002-222913 A

半導体素子間の接着剤層の厚さ等に基づいてボンディングワイヤの接触不良を防止する場合には、上述したように下段側のボンディングワイヤの一部(半導体素子との接続部近傍)が接着剤層内に取り込まれることになるため、接着剤層は接着時にボンディングワイヤの変形や接続不良等を生じさせないような粘度を有する必要がある。しかしながら、接着剤層の接着時粘度が低すぎると接着剤が素子端面からはみ出したり、また層形状を維持することができなくなることで、下段側のボンディングワイヤが上段側半導体素子と接触しやすくなるというような問題が生じる。   When preventing contact failure of the bonding wire based on the thickness of the adhesive layer between the semiconductor elements, as described above, a part of the lower bonding wire (near the connection part with the semiconductor element) is the adhesive. Since the adhesive layer is taken into the layer, the adhesive layer needs to have a viscosity that does not cause deformation of the bonding wire or poor connection during bonding. However, if the viscosity of the adhesive layer is too low, the adhesive protrudes from the end face of the element, and the layer shape cannot be maintained, so that the lower bonding wire can easily come into contact with the upper semiconductor element. Such a problem arises.

一方、接着剤層の接着時粘度が高すぎるとボンディングワイヤに変形や接続不良等が生じやすくなるだけでなく、ボンディングワイヤの下部に接着剤樹脂の未充填部が発生しやすくなる。ワイヤ下部の樹脂未充填部には、その後の樹脂モールド工程においても樹脂を充填することが困難であることから、樹脂未充填部に起因する気泡が残存することになる。半導体装置内に気泡が発生すると、吸湿や半田リフロー等に対する信頼性試験で気泡を起点とした剥離やリーク等が生じやすくなり、半導体装置の信頼性が損なわれる。これらの問題は複数の半導体素子を積層した半導体装置に限らず、各種の電子部品を積層してパッケージングした積層型電子部品においても同様に生じている。   On the other hand, if the viscosity of the adhesive layer is too high, the bonding wire is likely to be deformed or poorly connected, and an unfilled portion of the adhesive resin is likely to occur below the bonding wire. Since it is difficult to fill the resin in the resin unfilled portion below the wire even in the subsequent resin molding process, bubbles resulting from the resin unfilled portion remain. If bubbles are generated in the semiconductor device, peeling or leaking from the bubbles is likely to occur in a reliability test for moisture absorption, solder reflow, etc., and the reliability of the semiconductor device is impaired. These problems occur not only in a semiconductor device in which a plurality of semiconductor elements are stacked, but also in a stacked electronic component in which various electronic components are stacked and packaged.

本発明はこのような課題に対処するためになされたもので、下段側のボンディングワイヤの一部を接着剤層内に取り込むにあたって、接着剤の素子端面からのはみ出しや層形状の劣化等による不良発生を抑制すると共に、ボンディングワイヤの変形や接続不良、さらにはワイヤ下部の樹脂未充填部に起因する気泡発生等を抑制することを可能にした積層型電子部品の製造方法を提供することを目的としている。   The present invention has been made in order to cope with such problems, and in taking a part of the bonding wire on the lower side into the adhesive layer, a defect due to the protrusion of the adhesive from the element end face or deterioration of the layer shape, etc. An object of the present invention is to provide a method for manufacturing a multilayer electronic component that suppresses generation and suppresses deformation of a bonding wire, poor connection, and generation of bubbles due to a resin unfilled portion below the wire. It is said.

本発明の一態様に係る積層型電子部品の製造方法は、基板上に第1の電子部品を搭載して接着すると共に、前記基板の電極部と前記第1の電子部品の電極パッドとを第1のボンディングワイヤを介して接続する工程と、前記基板上に接着された前記第1の電子部品を加熱機構を有するステージ上に載置し、前記第1の電子部品を加熱する工程と、裏面側に接着剤層が形成された第2の電子部品を、常温の吸着ツールで保持して前記第1の電子部品の上方に配置する工程と、前記第2の電子部品を徐々に下降させ、加熱された前記第1の電子部品からの輻射熱および前記第1のボンディングワイヤとの伝熱により前記接着剤層を軟化または溶融させつつ、前記接着剤層を前記第1の電子部品と接触させる工程と、前記加熱機構による加熱を継続しつつ前記第2の電子部品を加圧し、前記接着剤層を熱硬化させて前記第1の電子部品と前記第2の電子部品とを接着する工程と、前記基板の電極部と前記第2の電子部品の電極パッドとを第2のボンディングワイヤを介して接続する工程とを具備することを特徴としている。   A method for manufacturing a multilayer electronic component according to an aspect of the present invention includes mounting and bonding a first electronic component on a substrate, and connecting an electrode portion of the substrate and an electrode pad of the first electronic component. A step of connecting via a bonding wire, a step of placing the first electronic component bonded on the substrate on a stage having a heating mechanism, and heating the first electronic component; Holding the second electronic component having the adhesive layer formed on the side with a suction tool at room temperature and placing it above the first electronic component; and gradually lowering the second electronic component; The step of bringing the adhesive layer into contact with the first electronic component while softening or melting the adhesive layer by radiant heat from the heated first electronic component and heat transfer with the first bonding wire And continue heating by the heating mechanism While pressing the second electronic component and thermally curing the adhesive layer to bond the first electronic component and the second electronic component; and the electrode portion of the substrate and the second electronic component And a step of connecting an electrode pad of an electronic component via a second bonding wire.

本発明の一態様に係る積層型電子部品の製造方法においては、第1の電子部品側のみからの加熱を適用し、第1の電子部品からの輻射熱や第1のボンディングワイヤとの伝熱により第2の接着剤層を加熱しているため、第1のボンディングワイヤの変形や接続不良、さらにワイヤ下部の樹脂未充填部の発生等を抑制した上で、第2の接着剤層の層形状を良好に維持することができる。これによって、第1のボンディングワイヤと第2の半導体素子との接触による絶縁不良やショート等の発生をより確実に抑制することができる。すなわち、信頼性等に優れた積層型半導体装置を歩留りよく製造することが可能となる。   In the method for manufacturing a multilayer electronic component according to one aspect of the present invention, heating from only the first electronic component is applied, and heat is transferred from the first electronic component or heat transferred to the first bonding wire. Since the second adhesive layer is heated, the deformation and connection failure of the first bonding wire and the generation of the resin unfilled portion below the wire are suppressed, and the layer shape of the second adhesive layer Can be maintained well. As a result, it is possible to more reliably suppress the occurrence of an insulation failure or a short circuit due to the contact between the first bonding wire and the second semiconductor element. That is, it is possible to manufacture a stacked semiconductor device having excellent reliability and the like with a high yield.

以下、本発明を実施するための形態について、図面を参照して説明する。なお、以下では本発明の実施形態を図面に基づいて述べるが、それらの図面は図解のために提供されるものであり、本発明はそれらの図面に限定されるものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In addition, although embodiment of this invention is described below based on drawing, those drawings are provided for illustration and this invention is not limited to those drawings.

図1は本発明の第1の実施形態による積層型電子部品の製造方法を適用したスタック型マルチチップ構造の半導体装置の構成を模式的に示す断面図である。同図に示す積層型半導体装置1は、素子搭載用の基板2を有している。素子搭載用基板2は電子部品を搭載することが可能で、かつ回路を有するものであればよい。このような基板2としては、絶縁基板や半導体基板等の表面や内部に回路を形成した回路基板、あるいはリードフレームのような素子搭載部と回路部とを一体化した基板等を用いることができる。   FIG. 1 is a cross-sectional view schematically showing the configuration of a stacked multi-chip semiconductor device to which the method for manufacturing a multilayer electronic component according to the first embodiment of the present invention is applied. A stacked semiconductor device 1 shown in FIG. 1 has a substrate 2 for mounting elements. The element mounting board 2 only needs to be capable of mounting electronic components and have a circuit. As such a substrate 2, a circuit substrate in which a circuit is formed on or inside an insulating substrate or a semiconductor substrate, or a substrate in which an element mounting portion and a circuit portion such as a lead frame are integrated can be used. .

図1に示す積層型半導体装置1は、素子搭載用基板として回路基板2を有している。回路基板2を構成する基板には、樹脂基板、セラミックス基板、ガラス基板等の絶縁基板、あるいは半導体基板等、各種の材料からなる基板を適用することができる。樹脂基板を適用した回路基板としては、一般的な多層銅張積層板(多層プリント配線板)等が挙げられる。回路基板2の下面側には、半田バンプ等の外部接続端子3が設けられている。   A stacked semiconductor device 1 shown in FIG. 1 has a circuit board 2 as an element mounting board. As the substrate constituting the circuit board 2, substrates made of various materials such as a resin substrate, a ceramic substrate, an insulating substrate such as a glass substrate, or a semiconductor substrate can be applied. Examples of the circuit board to which the resin substrate is applied include a general multilayer copper-clad laminate (multilayer printed wiring board). External connection terminals 3 such as solder bumps are provided on the lower surface side of the circuit board 2.

回路基板2の素子搭載面となる上面側には、外部接続端子3と例えば内層配線(図示せず)を介して電気的に接続された電極部4が設けられている。電極部4はワイヤボンディング部となるものである。このような回路基板2の素子搭載面(上面)には、第1の電子部品として第1の半導体素子5が第1の接着剤層6を介して接着されている。第1の接着剤層6には一般的なダイアタッチ材(ダイアタッチフィルム等)が用いられる。第1の半導体素子5の上面側に設けられた第1の電極パッド(図示せず)は、第1のボンディングワイヤ7を介して回路基板2の電極部4と電気的に接続されている。   An electrode portion 4 electrically connected to the external connection terminal 3 via, for example, an inner layer wiring (not shown) is provided on the upper surface side which is an element mounting surface of the circuit board 2. The electrode part 4 becomes a wire bonding part. A first semiconductor element 5 as a first electronic component is bonded to the element mounting surface (upper surface) of the circuit board 2 through a first adhesive layer 6. For the first adhesive layer 6, a general die attach material (die attach film or the like) is used. A first electrode pad (not shown) provided on the upper surface side of the first semiconductor element 5 is electrically connected to the electrode portion 4 of the circuit board 2 through a first bonding wire 7.

第1の半導体素子5上には、第2の電子部品として第2の半導体素子8が第2の接着剤層9を介して接着されている。第2の半導体素子8は、例えば第1の半導体素子5と同形またはそれより大形の形状を有している。第2の接着剤層9は第2の半導体素子8の接着時温度で軟化または溶融し、その内部に第1のボンディングワイヤ7の一部(電極パッドとの接続部近傍)を取り込みつつ、第1の半導体素子5と第2の半導体素子8とを接着するものである。この際、第1のボンディングワイヤ7の電極パッド側端部は、第2の接着剤層9内に取り込まれることで、第2の半導体素子8との接触が防止される。   On the first semiconductor element 5, a second semiconductor element 8 as a second electronic component is bonded via a second adhesive layer 9. The second semiconductor element 8 has, for example, a shape that is the same as or larger than that of the first semiconductor element 5. The second adhesive layer 9 is softened or melted at the bonding temperature of the second semiconductor element 8, and a part of the first bonding wire 7 (near the connection portion with the electrode pad) is taken into the second adhesive layer 9, The first semiconductor element 5 and the second semiconductor element 8 are bonded together. At this time, the electrode pad side end portion of the first bonding wire 7 is taken into the second adhesive layer 9, thereby preventing contact with the second semiconductor element 8.

上述した第1のボンディングワイヤ7と第2の半導体素子8との接触防止機能を得る上で、第2の接着剤層9には厚さが30μm以上の絶縁性樹脂層を適用することが好ましい。第2の接着剤層9の厚さが30μm未満であると、第1のボンディングワイヤ7が第2の半導体素子8に接触しやすくなり、絶縁不良やショート等の発生率が高くなる。ワイヤ径等にもよるが、第2の接着剤層9の厚さは60μm以上とすることがより好ましい。なお、第2の接着剤層9を厚くしすぎると積層型半導体装置1の薄型化が阻害されるため、第2の接着剤層9の厚さは150μm以下とすることが好ましい。   In order to obtain the function of preventing contact between the first bonding wire 7 and the second semiconductor element 8 described above, it is preferable to apply an insulating resin layer having a thickness of 30 μm or more to the second adhesive layer 9. . When the thickness of the second adhesive layer 9 is less than 30 μm, the first bonding wire 7 is likely to come into contact with the second semiconductor element 8, and the occurrence rate of insulation failure, short circuit, etc. is increased. Although it depends on the wire diameter and the like, the thickness of the second adhesive layer 9 is more preferably 60 μm or more. Note that if the thickness of the second adhesive layer 9 is too thick, the thickness reduction of the stacked semiconductor device 1 is hindered. Therefore, the thickness of the second adhesive layer 9 is preferably 150 μm or less.

また、接着時に第1のボンディングワイヤ7の一部を良好に取り込む上で、第2の接着剤層9は接着時の加熱温度における粘度(接着時粘度)が1kPa・s以上100kPa・s未満であることが好ましい。第2の接着剤層9の接着時粘度が1kPa・s未満であると軟らかすぎて、接着剤が素子端面からはみ出すおそれがある。一方、第2の接着剤層9の接着時粘度が100kPa・s以上であると、第1のボンディングワイヤ7に変形や接続不良等を生じさせるおそれがある。第2の接着剤層9の接着時粘度は1〜50kPa・sの範囲であることがより好ましく、さらには1〜20kPa・sの範囲であることが望ましい。   In addition, the second adhesive layer 9 has a viscosity at the heating temperature during bonding (viscosity during bonding) of 1 kPa · s or more and less than 100 kPa · s in order to satisfactorily capture a part of the first bonding wire 7 during bonding. Preferably there is. If the adhesive viscosity of the second adhesive layer 9 is less than 1 kPa · s, the second adhesive layer 9 is too soft and the adhesive may protrude from the end face of the element. On the other hand, if the viscosity at the time of adhesion of the second adhesive layer 9 is 100 kPa · s or more, the first bonding wire 7 may be deformed or poorly connected. The adhesion viscosity of the second adhesive layer 9 is more preferably in the range of 1 to 50 kPa · s, and further preferably in the range of 1 to 20 kPa · s.

第2の接着剤層9を構成する絶縁性樹脂には、例えばエポキシ樹脂のような熱硬化型樹脂が用いられる。熱硬化型樹脂の接着時粘度は、熱硬化型樹脂組成物の組成等で調整してもよいし、また接着工程における加熱温度で調整することも可能である。図2はエポキシ樹脂からなるダイアタッチ材の硬化前の粘度特性の一例を示している。図2に示す粘度特性を有するダイアタッチ材は、接着時温度を約70〜160℃の範囲とすることで接着時粘度を100kPa・sより小さくすることができる。また、接着時温度を約80〜140℃の範囲とすることで接着時粘度を50kPa・s以下とすることができる。   For the insulating resin constituting the second adhesive layer 9, for example, a thermosetting resin such as an epoxy resin is used. The adhesion viscosity of the thermosetting resin may be adjusted by the composition of the thermosetting resin composition or the like, or may be adjusted by the heating temperature in the bonding step. FIG. 2 shows an example of viscosity characteristics before curing of a die attach material made of an epoxy resin. The die attach material having the viscosity characteristics shown in FIG. 2 can be made to have a viscosity at the time of bonding of less than 100 kPa · s by setting the temperature at the time of bonding to a range of about 70 to 160 ° C. Moreover, the viscosity at the time of adhesion can be 50 kPa * s or less by making the temperature at the time of adhesion into the range of about 80-140 degreeC.

上述したような第2の接着剤層9を介して第1の半導体素子5上に接着された第2の半導体素子8は、その上面側に設けられた第2の電極パッド(図示せず)が第2のボンディングワイヤ10を介して回路基板2の電極部4と電気的に接続されている。そして、回路基板2上に積層、配置された第1および第2の半導体素子5、8を、例えばエポキシ樹脂のような封止樹脂11を用いて封止することによって、スタック型マルチチップパッケージ構造の積層型半導体装置1が構成される。なお、図1では2個の半導体素子5、8を積層した構造について説明したが、半導体素子の積層数はこれに限られるものではなく、3個もしくはそれ以上であってもよいことは言うまでもない。   The second semiconductor element 8 bonded onto the first semiconductor element 5 through the second adhesive layer 9 as described above is a second electrode pad (not shown) provided on the upper surface side thereof. Is electrically connected to the electrode portion 4 of the circuit board 2 through the second bonding wire 10. The first and second semiconductor elements 5 and 8 stacked and arranged on the circuit board 2 are sealed with a sealing resin 11 such as an epoxy resin, for example, so that a stacked multichip package structure is obtained. The stacked semiconductor device 1 is configured. Although the structure in which two semiconductor elements 5 and 8 are stacked is described in FIG. 1, the number of stacked semiconductor elements is not limited to this, and it goes without saying that the number may be three or more. .

この実施形態の積層型半導体装置1は、例えば以下のようにして作製される。まず、図3(a)に示すように、回路基板2上に第1の接着剤層6を用いて第1の半導体素子5を接着する。続いて、ワイヤボンディング工程を実施して、第1のボンディングワイヤ7で回路基板2の電極部4と第1の半導体素子5の電極パッドとを電気的に接続する。第1の半導体素子5の接着工程やワイヤボンディング工程は従来と同様にして実施される。   The stacked semiconductor device 1 of this embodiment is manufactured as follows, for example. First, as shown in FIG. 3A, the first semiconductor element 5 is bonded onto the circuit board 2 using the first adhesive layer 6. Subsequently, a wire bonding step is performed to electrically connect the electrode portion 4 of the circuit board 2 and the electrode pad of the first semiconductor element 5 with the first bonding wire 7. The bonding process and the wire bonding process of the first semiconductor element 5 are performed in the same manner as in the past.

次に、第1の半導体素子5上に第2の接着剤層9を介して第2の半導体素子8を接着する。第1の半導体素子5上への第2の半導体素子8の接着工程を実施するにあたって、まず第1の半導体素子5を接着した回路基板2を、図3(b)に示すように加熱機構を有するステージ(加熱ステージ)21上に載置する。第1の半導体素子5は加熱ステージ21により直接的に加熱される。第1の半導体素子5の加熱温度は、例えば第2の接着剤層9の軟化または溶融温度により適宜に設定される。   Next, the second semiconductor element 8 is bonded onto the first semiconductor element 5 via the second adhesive layer 9. In carrying out the bonding process of the second semiconductor element 8 on the first semiconductor element 5, first, the circuit board 2 to which the first semiconductor element 5 is bonded is heated by a heating mechanism as shown in FIG. It is placed on a stage (heating stage) 21 that it has. The first semiconductor element 5 is directly heated by the heating stage 21. The heating temperature of the first semiconductor element 5 is appropriately set depending on, for example, the softening or melting temperature of the second adhesive layer 9.

一方、第2の半導体素子8はその裏面に第2の接着剤層9を形成する。第2の接着剤層9は第2の半導体素子8の裏面に半硬化させた接着剤フィルムを貼り付けたり、あるいは接着剤樹脂組成物を第2の半導体素子8の裏面に塗布することにより形成される。このような第2の接着剤層9を有する第2の半導体素子8を、図3(b)に示すように、常温の吸着ツール22で吸着保持して第1の半導体素子5の上方に配置する。吸着ツール22は加熱機構を有しておらず、常温状態で第2の半導体素子8を吸着保持するものである。   On the other hand, the second semiconductor element 8 forms a second adhesive layer 9 on the back surface thereof. The second adhesive layer 9 is formed by attaching a semi-cured adhesive film to the back surface of the second semiconductor element 8 or applying an adhesive resin composition to the back surface of the second semiconductor element 8. Is done. As shown in FIG. 3B, the second semiconductor element 8 having the second adhesive layer 9 is adsorbed and held by a normal-temperature adsorbing tool 22 and arranged above the first semiconductor element 5. To do. The suction tool 22 does not have a heating mechanism, and holds the second semiconductor element 8 by suction at room temperature.

次いで、図3(b)および図4(a)に示すように、第1の半導体素子5の上方に配置された第2の半導体素子8を徐々に下降させる。なお、図4は第1の半導体素子5と第2の半導体素子8との接着工程を素子側面方向(第1のボンディングワイヤ7が断面となる方向)から見た断面図である。この際、第2の半導体素子8は吸着ツール22から直接加熱されてはいないものの、第1の半導体素子5が所定の接着温度まで加熱されているため、第2の接着剤層9は第1の半導体素子5からの輻射熱で加熱されることで軟化する。第2の半導体素子8の下降が進行すると、第2の接着剤層9はまず第1のボンディングワイヤ7と接触する(図4(b))。   Next, as shown in FIGS. 3B and 4A, the second semiconductor element 8 disposed above the first semiconductor element 5 is gradually lowered. FIG. 4 is a cross-sectional view of the bonding process between the first semiconductor element 5 and the second semiconductor element 8 as seen from the element side surface direction (direction in which the first bonding wire 7 becomes a cross section). At this time, although the second semiconductor element 8 is not directly heated from the suction tool 22, the first adhesive layer 9 is heated to a predetermined bonding temperature. It is softened by being heated by radiant heat from the semiconductor element 5. When the lowering of the second semiconductor element 8 proceeds, the second adhesive layer 9 first comes into contact with the first bonding wire 7 (FIG. 4B).

第2の接着剤層9は第1のボンディングワイヤ7と接触することによって、第1のボンディングワイヤ7との間で伝熱が起こるため、第2の接着剤層9の第1のボンディングワイヤ7との接触部の周囲がさらに軟化する。従って、加熱ステージ21のみによる加熱によっても、第2の半導体素子8を下降させた際に、第1のボンディングワイヤ7に変形や接続不良等を生じさせることがない。また、第2の接着剤層9の層形状を良好に維持することができる。第2の半導体素子8の下降がさらに進行すると、図4(c)に示すように第2の接着剤層9が第1の半導体素子5と接触し、この第1の半導体素子5からの熱で第2の接着剤層9全体が軟化もしくは溶融する。   Since the second adhesive layer 9 comes into contact with the first bonding wire 7, heat transfer occurs between the second bonding layer 9 and the first bonding wire 7 of the second adhesive layer 9. The area around the contact portion is further softened. Therefore, even when the heating by only the heating stage 21 is performed, the first bonding wire 7 is not deformed or poorly connected when the second semiconductor element 8 is lowered. In addition, the layer shape of the second adhesive layer 9 can be favorably maintained. When the lowering of the second semiconductor element 8 further proceeds, the second adhesive layer 9 comes into contact with the first semiconductor element 5 as shown in FIG. 4C, and the heat from the first semiconductor element 5 Thus, the entire second adhesive layer 9 is softened or melted.

第2の半導体素子8の下降時において、第1のボンディングワイヤ7はそれ自体の温度で第2の接着剤層9との接触部を加熱することによって、第2の接着剤層9の内部に取り込まれる。この第2の半導体素子8の下降段階においては、第1のボンディングワイヤ7の下部に若干の空間が生じるものの、第2の接着剤層9が第1の半導体素子5と接触して加熱されることで、第1のボンディングワイヤ7の下部空間には軟化もしくは溶融した接着剤樹脂(第2の接着剤層9を構成する熱硬化型樹脂)が流入する。これによって、ワイヤ下部の樹脂未充填部の発生を抑制することができる。   When the second semiconductor element 8 is lowered, the first bonding wire 7 is heated inside the second adhesive layer 9 by heating the contact portion with the second adhesive layer 9 at its own temperature. It is captured. In the descending stage of the second semiconductor element 8, the second adhesive layer 9 is heated in contact with the first semiconductor element 5, although a slight space is generated below the first bonding wire 7. As a result, the softened or melted adhesive resin (thermosetting resin constituting the second adhesive layer 9) flows into the lower space of the first bonding wire 7. Thereby, generation | occurrence | production of the resin unfilling part of the wire lower part can be suppressed.

上述したように、第2の接着剤層9を第1の半導体素子5からの輻射熱および第1のボンディングワイヤ7との伝熱により軟化させる場合、第2の半導体素子8の下降速度が重要となる。すなわち、第2の半導体素子8の下降速度が速すぎると、第1の半導体素子5からの輻射熱等で第2の接着剤層9を十分に軟化させることができないおそれがある。このため、第2の半導体素子8の下降速度は0.1mm/s以上20mm/s以下の範囲とすることが好ましい。第2の半導体素子8の下降速度が20mm/sを超えると、第1の半導体素子5からの輻射熱等で第2の接着剤層9を十分に加熱することができない。一方、第2の半導体素子8の下降速度を0.1mm/sより遅くしてもそれ以上の効果が得られないだけでなく、積層型半導体装置1の製造効率の低下等を招くことになる。   As described above, when the second adhesive layer 9 is softened by radiant heat from the first semiconductor element 5 and heat transfer with the first bonding wire 7, the descending speed of the second semiconductor element 8 is important. Become. That is, if the descending speed of the second semiconductor element 8 is too high, the second adhesive layer 9 may not be sufficiently softened by radiant heat from the first semiconductor element 5 or the like. For this reason, the lowering speed of the second semiconductor element 8 is preferably in the range of 0.1 mm / s to 20 mm / s. If the descending speed of the second semiconductor element 8 exceeds 20 mm / s, the second adhesive layer 9 cannot be sufficiently heated by radiant heat from the first semiconductor element 5 or the like. On the other hand, even if the lowering speed of the second semiconductor element 8 is made slower than 0.1 mm / s, not only a further effect cannot be obtained, but also the manufacturing efficiency of the stacked semiconductor device 1 is reduced.

さらに、上述したような第2の半導体素子8の下降速度を適用しても、第2の半導体素子8の下降開始位置が第1の半導体素子5に近すぎると、第1の半導体素子5からの輻射熱等で第2の接着剤層9を十分に加熱することができない。そこで、第2の半導体素子8の下降開始位置は第1の半導体素子5から少なくとも0.5mm上方の位置とすることが好ましい。このように、第2の半導体素子8は第1の半導体素子5の少なくとも0.5mm上方の位置から0.1mm/s以上20mm/s以下の範囲の速度で下降させることが好ましい。第2の半導体素子8の下降速度は1〜5mm/sの範囲とすることがより好ましい。   Furthermore, even if the lowering speed of the second semiconductor element 8 as described above is applied, if the lowering start position of the second semiconductor element 8 is too close to the first semiconductor element 5, the first semiconductor element 5 The second adhesive layer 9 cannot be sufficiently heated by radiant heat or the like. Therefore, the lowering start position of the second semiconductor element 8 is preferably at least 0.5 mm above the first semiconductor element 5. Thus, the second semiconductor element 8 is preferably lowered at a speed in the range of 0.1 mm / s to 20 mm / s from a position at least 0.5 mm above the first semiconductor element 5. The lowering speed of the second semiconductor element 8 is more preferably in the range of 1 to 5 mm / s.

図5は第2の半導体素子8の下降速度と表面温度との関係の一例を示している。ここでは、第1の半導体素子(Siチップ)5の上方0.96mmの位置(下降開始位置)から上方0.46mmの位置(下降停止位置)まで、第2の半導体素子8(Siチップ)を種々の速度で下降させ、その際の第1および第2の半導体素子5、8の表面温度を測定した。加熱は加熱ステージ21のみとし、第1の半導体素子(Siチップ)5の温度が140℃となるように調整した。図5から明らかなように、第2の半導体素子8の温度は下降速度により変化する。そして、第2の半導体素子8の下降速度を調整することで、第1の半導体素子5からの輻射熱のみによっても第2の接着剤層9を十分に加熱することができる。   FIG. 5 shows an example of the relationship between the descending speed of the second semiconductor element 8 and the surface temperature. Here, the second semiconductor element 8 (Si chip) is moved in various ways from the position 0.96 mm above the first semiconductor element (Si chip) 5 (downward start position) to the position 0.46 mm above (downward stop position). The surface temperature of the first and second semiconductor elements 5 and 8 at that time was measured. Only the heating stage 21 was heated, and the temperature of the first semiconductor element (Si chip) 5 was adjusted to 140 ° C. As is apparent from FIG. 5, the temperature of the second semiconductor element 8 changes with the decreasing speed. The second adhesive layer 9 can be sufficiently heated only by radiant heat from the first semiconductor element 5 by adjusting the descending speed of the second semiconductor element 8.

続いて、図4(d)に示すように、加熱ステージ21による第1の半導体素子5および第2の接着剤層9の加熱を継続しつつ、第2の半導体素子8に適度な圧力を加える。第2の半導体素子8への加圧で第2の接着剤層9の流動性が高まるため、第1のボンディングワイヤ7の下部空間に接着剤樹脂を確実かつ良好に充填することができる。従って、ワイヤ下部空間に樹脂未充填部が生じることはない。また、第2の接着剤層9はその内部に第1のボンディングワイヤ7の一部を取り込むことが可能な厚さを有し、かつその接着時粘度と加熱形態に基づいて素子間隔を保持するため、第1のボンディングワイヤ7と第2の半導体素子8との接触を防止することができる。   Subsequently, as shown in FIG. 4D, an appropriate pressure is applied to the second semiconductor element 8 while continuing to heat the first semiconductor element 5 and the second adhesive layer 9 by the heating stage 21. . Since the fluidity of the second adhesive layer 9 is increased by applying pressure to the second semiconductor element 8, the adhesive resin can be reliably and satisfactorily filled into the lower space of the first bonding wire 7. Therefore, the resin unfilled portion does not occur in the wire lower space. The second adhesive layer 9 has a thickness that allows a part of the first bonding wire 7 to be taken into the second adhesive layer 9, and maintains the element spacing based on the viscosity at the time of bonding and the heating mode. Therefore, contact between the first bonding wire 7 and the second semiconductor element 8 can be prevented.

このような状態で第2の接着剤層9をさらに加熱して熱硬化させることによって、第1の半導体素子5上にそれと同形もしくは大形の第2の半導体素子8を良好に積層することができる(図3(c))。すなわち、第1のボンディングワイヤ7の変形、接続不良やワイヤ下部の樹脂未充填部の発生等の抑制と、第1のボンディングワイヤ7と第2の半導体素子8との接触による絶縁不良やショート等の抑制を両立させることができ、これによって第1の半導体素子5と第2の半導体素子8との接着工程に起因する積層型半導体装置1の製造歩留りや信頼性の低下を大幅に抑制することが可能となる。   In this state, the second adhesive layer 9 is further heated and thermally cured, whereby the same or larger second semiconductor element 8 can be satisfactorily stacked on the first semiconductor element 5. (FIG. 3C). That is, deformation of the first bonding wire 7, connection failure, generation of a resin unfilled portion below the wire, etc., insulation failure due to contact between the first bonding wire 7 and the second semiconductor element 8, short circuit, etc. Can be achieved at the same time, thereby significantly reducing the manufacturing yield and reliability of the stacked semiconductor device 1 due to the bonding process between the first semiconductor element 5 and the second semiconductor element 8. Is possible.

この後、第1の半導体素子5上に接着された第2の半導体素子8にワイヤボンディング工程を実施して、第2のボンディングワイヤ10で回路基板2の電極部4と第2の半導体素子8の電極パッドとを電気的に接続し、さらに必要に応じて第1および第2の半導体素子5、8を封止樹脂11で封止することによって、図1に示したような積層型半導体装置1が得られる。なお、3個もしくはそれ以上の半導体素子を積層する場合には、上述した第2の半導体素子8と同様な接着工程を繰り返し実施すればよい。   Thereafter, a wire bonding process is performed on the second semiconductor element 8 bonded onto the first semiconductor element 5, and the electrode portion 4 of the circuit board 2 and the second semiconductor element 8 are connected by the second bonding wire 10. 1 are electrically connected to each other, and the first and second semiconductor elements 5 and 8 are sealed with a sealing resin 11 as necessary, whereby the stacked semiconductor device as shown in FIG. 1 is obtained. When three or more semiconductor elements are stacked, the same bonding process as that of the second semiconductor element 8 described above may be repeatedly performed.

この実施形態の製造方法においては、第1の半導体素子5側のみからの加熱を適用し、第1の半導体素子5からの輻射熱や第1のボンディングワイヤ7との伝熱により第2の接着剤層9を加熱しているため、第1のボンディングワイヤ7の変形や接続不良、さらにワイヤ下部の樹脂未充填部の発生等を抑制した上で、第1のボンディングワイヤ7を層形状が維持された第2の接着剤層9の内部に良好に取り込むことができる。これによって、第1のボンディングワイヤ7と第2の半導体素子8との接触による絶縁不良やショート等の発生をより確実に抑制することができる。すなわち、信頼性等を向上させた積層型半導体装置1を高歩留りで製造することが可能となる。さらに、加熱ステージ21のみからの加熱を適用することで、第2の半導体素子8の変形等を防ぐことができる。   In the manufacturing method of this embodiment, heating from only the first semiconductor element 5 side is applied, and the second adhesive is applied by radiant heat from the first semiconductor element 5 or heat transfer with the first bonding wire 7. Since the layer 9 is heated, the layer shape of the first bonding wire 7 is maintained after the deformation and connection failure of the first bonding wire 7 and the occurrence of the resin unfilled portion below the wire are suppressed. Furthermore, it can be satisfactorily taken into the second adhesive layer 9. As a result, it is possible to more reliably suppress the occurrence of insulation failure or short-circuit due to contact between the first bonding wire 7 and the second semiconductor element 8. That is, the stacked semiconductor device 1 with improved reliability and the like can be manufactured with a high yield. Furthermore, by applying the heating only from the heating stage 21, deformation of the second semiconductor element 8 can be prevented.

上述した実施形態の積層型半導体装置1は、接着時粘度が1kPa・s以上100kPa・s未満の第2の接着剤層9で第1のボンディングワイヤ7と第2の半導体素子8との接触を抑制している。これに加えて、例えば図6に示すように、第2の半導体素子8の下面に絶縁層12を形成するようにしてもよい。第2の半導体素子8の下面側に絶縁層12を設けることによって、第1のボンディングワイヤ7と第2の半導体素子8との接触に伴う絶縁不良やショート等の発生をより確実に防止することができる。   In the stacked semiconductor device 1 according to the above-described embodiment, the first bonding wire 7 and the second semiconductor element 8 are brought into contact with each other with the second adhesive layer 9 having a viscosity at the time of bonding of 1 kPa · s to less than 100 kPa · s. Suppressed. In addition to this, for example, as shown in FIG. 6, an insulating layer 12 may be formed on the lower surface of the second semiconductor element 8. By providing the insulating layer 12 on the lower surface side of the second semiconductor element 8, it is possible to more reliably prevent the occurrence of insulation failure or short circuit due to the contact between the first bonding wire 7 and the second semiconductor element 8. Can do.

絶縁層12には、例えば接着時粘度が100kPa・s以上の絶縁性樹脂層が用いられる。絶縁層12の接着時粘度は130kPa・s以上、さらには200kPa・s以上であることがより好ましい。ただし、粘度があまり高すぎると接合層としての機能が損なわれるため、絶縁層12の接着時温度における粘度は1000kPa・s未満であることが好ましい。このような半導体素子5、8間の接合層が絶縁層12と接着剤層9との2層構造を有する積層型半導体装置1においても、上述した第1の半導体素子5と第2の半導体素子8との接着工程を適用することによって、同様に製造歩留りの向上効果を得ることができる。   For the insulating layer 12, for example, an insulating resin layer having an adhesion viscosity of 100 kPa · s or more is used. The adhesion viscosity of the insulating layer 12 is preferably 130 kPa · s or more, and more preferably 200 kPa · s or more. However, if the viscosity is too high, the function as the bonding layer is impaired. Therefore, the viscosity at the bonding temperature of the insulating layer 12 is preferably less than 1000 kPa · s. Also in the stacked semiconductor device 1 in which the bonding layer between the semiconductor elements 5 and 8 has a two-layer structure of the insulating layer 12 and the adhesive layer 9, the first semiconductor element 5 and the second semiconductor element described above are used. By applying the bonding step with 8, it is possible to obtain the effect of improving the production yield.

上述した絶縁層12の具体的な構成材料としては、ポリイミド樹脂、シリコーン樹脂、エポキシ樹脂、アクリル樹脂等の熱硬化型樹脂が挙げられ、接着剤層9より接着時粘度が高い絶縁性樹脂が用いられる。また、樹脂フィルムを適用して絶縁層12を形成する場合、例えば接着剤フィルムと同一の絶縁性樹脂を用い、これら各樹脂フィルムの乾燥温度や乾燥時間(例えばエポキシ樹脂ワニスを塗布した後の乾燥温度や乾燥時間等)を異ならせることによって、接着剤フィルムと2層化したフィルムを得るようにしてもよい。   Specific examples of the constituent material of the insulating layer 12 include thermosetting resins such as a polyimide resin, a silicone resin, an epoxy resin, and an acrylic resin, and an insulating resin having a viscosity higher than that of the adhesive layer 9 is used. It is done. Moreover, when forming the insulating layer 12 by applying a resin film, for example, using the same insulating resin as the adhesive film, the drying temperature and drying time of each of these resin films (for example, drying after applying an epoxy resin varnish) By changing the temperature, drying time, etc.), an adhesive film and a two-layered film may be obtained.

また、第2の半導体素子8の下面に絶縁層12を設ける場合には、第1のボンディングワイヤ7を積極的に絶縁層12と当接させ、これによって第1のボンディングワイヤ7を回路基板2側に変形させるようにしてもよい。すなわち、絶縁層12は単に第1のボンディングワイヤ7と第2の半導体素子8との接触に伴うショート等を抑制するだけでなく、第1のボンディングワイヤ7を積極的に回路基板2側に変形させる層として利用することができる。このように、絶縁層12を利用して第1のボンディングワイヤ7を回路基板2側に変形させることによって、積層型半導体装置1のより一層の薄型化を実現することが可能となる。   Further, when the insulating layer 12 is provided on the lower surface of the second semiconductor element 8, the first bonding wire 7 is positively brought into contact with the insulating layer 12, whereby the first bonding wire 7 is connected to the circuit board 2. You may make it deform | transform to the side. In other words, the insulating layer 12 not only suppresses a short circuit or the like associated with the contact between the first bonding wire 7 and the second semiconductor element 8, but also positively deforms the first bonding wire 7 to the circuit board 2 side. It can be used as a layer to be made. As described above, by using the insulating layer 12 to deform the first bonding wire 7 toward the circuit board 2, it is possible to further reduce the thickness of the stacked semiconductor device 1.

すなわち、第2の接着剤層9を第1の半導体素子5に押し付ける過程で、第1のボンディングワイヤ7の少なくとも一部を絶縁層12に当接させて回路基板2側に変形させることによって、第1のボンディングワイヤ7の高さをいずれもワイヤ高さの標準値以下に揃えることができる。言い換えると、第1のボンディングワイヤ7の高さはいずれも第2の接着剤層9の厚さ以下となるため、第2の接着剤層9の厚さに基づいて半導体装置1全体をより一層薄型化することが可能となる。また、第1のボンディングワイヤ7と第2の半導体素子8との絶縁は絶縁層12により維持されるため、絶縁不良やショート等が生じることもない。これらによって、より一層の薄型化と信頼性の向上を両立させたスタック型マルチチップパッケージ構造の半導体装置1を実現することが可能となる。   That is, in the process of pressing the second adhesive layer 9 against the first semiconductor element 5, at least a part of the first bonding wire 7 is brought into contact with the insulating layer 12 and deformed to the circuit board 2 side, The heights of the first bonding wires 7 can be all equal to or less than the standard value of the wire height. In other words, since the height of the first bonding wire 7 is equal to or less than the thickness of the second adhesive layer 9, the entire semiconductor device 1 is further increased based on the thickness of the second adhesive layer 9. It is possible to reduce the thickness. Further, since the insulation between the first bonding wire 7 and the second semiconductor element 8 is maintained by the insulating layer 12, no insulation failure or short circuit occurs. As a result, it is possible to realize a semiconductor device 1 having a stacked multichip package structure in which further reduction in thickness and improvement in reliability are achieved.

また、第1の半導体素子5と第2の半導体素子8との間の距離は、例えば図7に示すように、第1の半導体素子5の接続に使用されていない電極パッド、すなわち非接続パッド(ノンコネクションパッド)上に、金属材料や樹脂材料等からなるスタッドパンプ13を形成して維持するようにしてもよい。スタッドパンプ13は第1のボンディングワイヤ7と第2の半導体素子8との接触に伴う絶縁不良やショート等の抑制に対して有効に機能する。また、スタッドパンプ13で非接続パッドやヒューズ部を埋めることで、これらに起因する気泡の発生を抑制することができる。スタッドパンプ13の設置箇所は1箇所でもよいが、第1の半導体素子5の重心を通る3箇所以上に設置することが好ましい。   Further, the distance between the first semiconductor element 5 and the second semiconductor element 8 is, for example, as shown in FIG. 7, an electrode pad that is not used for connection of the first semiconductor element 5, that is, a non-connected pad. On the (non-connection pad), a stud pump 13 made of a metal material, a resin material or the like may be formed and maintained. The stud pump 13 functions effectively for suppressing insulation failure and short-circuit caused by contact between the first bonding wire 7 and the second semiconductor element 8. Further, by filling the non-connected pad and the fuse portion with the stud pump 13, it is possible to suppress the generation of bubbles due to these. The stud pump 13 may be installed at one location, but is preferably installed at three or more locations that pass through the center of gravity of the first semiconductor element 5.

次に、本発明の第2の実施形態について、図8を参照して説明する。図8は本発明の製造方法を適用した第2の実施形態による積層型半導体装置の構成を模式的に示す断面図である。なお、前述した第1の実施形態と同一部分には同一符号を付し、その説明を一部省略する。同図に示す積層型半導体装置30は、第1の電子部品としての半導体素子31と第2の電子部品としてのパッケージ部品32とを積層したものであり、これらによりスタック型パッケージ構造が構成されている。このように、積層型電子部品を構成する電子部品は半導体素子単体(ベアチップ)に限らず、予め半導体素子をパッケージングした部品であってもよい。さらに、半導体素子31やパッケージ部品32等の半導体部品に限らす、一般的な回路部品等の電子部品であってもよい。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 8 is a cross-sectional view schematically showing the configuration of the stacked semiconductor device according to the second embodiment to which the manufacturing method of the present invention is applied. The same parts as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is partially omitted. The stacked semiconductor device 30 shown in FIG. 1 is formed by stacking a semiconductor element 31 as a first electronic component and a package component 32 as a second electronic component, thereby forming a stacked package structure. Yes. As described above, the electronic component constituting the multilayer electronic component is not limited to a single semiconductor element (bare chip), but may be a component in which a semiconductor element is packaged in advance. Furthermore, it may be an electronic component such as a general circuit component, not limited to a semiconductor component such as the semiconductor element 31 or the package component 32.

図8に示す積層型半導体装置30は、前述した実施形態と同様に、回路基板2上に第1の電子部品としての半導体素子31が第1の接着剤層6を介して接着されている。半導体素子31の電極パッドは、第1のボンディングワイヤ7を介して回路基板2の電極部4と電気的に接続されている。半導体素子31上には第2の電子部品としてのパッケージ部品32が第2の接着剤層9を介して接着されている。パッケージ部品32の接着工程は第1の実施形態と同様に、半導体素子31を載置したステージのみから加熱しながら実施する。接着剤層9の構成や接着工程の詳細は第1の実施形態と同様とする。   In the stacked semiconductor device 30 shown in FIG. 8, the semiconductor element 31 as the first electronic component is bonded to the circuit board 2 via the first adhesive layer 6, as in the above-described embodiment. The electrode pad of the semiconductor element 31 is electrically connected to the electrode portion 4 of the circuit board 2 through the first bonding wire 7. A package component 32 as a second electronic component is bonded onto the semiconductor element 31 via the second adhesive layer 9. Similar to the first embodiment, the bonding process of the package component 32 is performed while heating only from the stage on which the semiconductor element 31 is placed. The configuration of the adhesive layer 9 and the details of the bonding process are the same as those in the first embodiment.

パッケージ部品32は、回路基板33上に第1の半導体素子34と第2の半導体素子35とを順に積層した構造を有し、かつ予め封止樹脂36でパッケージングしたものである。第1の半導体素子34は回路基板33上に接着剤層37を介して接着されており、同様に第2の半導体素子35は第1の半導体素子34上に接着剤層38を介して接着されている。なお、符号39は受動部品である。このようなパッケージ部品32は、回路基板33が上方となるように半導体素子31上に積層されている。さらに、回路基板33の裏面側に設けられた電極パッド40は、第2のボンディングワイヤ10を介して回路基板2の電極部4と電気的に接続されている。   The package component 32 has a structure in which a first semiconductor element 34 and a second semiconductor element 35 are sequentially stacked on a circuit board 33 and is previously packaged with a sealing resin 36. The first semiconductor element 34 is bonded to the circuit board 33 via an adhesive layer 37, and similarly, the second semiconductor element 35 is bonded to the first semiconductor element 34 via an adhesive layer 38. ing. Reference numeral 39 denotes a passive component. Such a package component 32 is laminated on the semiconductor element 31 so that the circuit board 33 is on the upper side. Furthermore, the electrode pad 40 provided on the back surface side of the circuit board 33 is electrically connected to the electrode portion 4 of the circuit board 2 through the second bonding wire 10.

なお、半導体素子31とパッケージ部品32との積層構造は、図8に示した構造に限られるものではなく、種々の積層構造を適用することができる。例えば、回路基板上に2個もしくはそれ以上の半導体素子を配置し、これら複数の半導体素子上にパッケージ部品を積層するようにしてもよい。このような積層構造は半導体素子のサイズがパッケージ部品と大きく異なる場合に有効である。また、パッケージ部品は回路基板を下方にして積層することも可能である。この場合、第2のボンディングワイヤは回路基板の上面側に設けられた電極パッドに接続される。   Note that the stacked structure of the semiconductor element 31 and the package component 32 is not limited to the structure shown in FIG. 8, and various stacked structures can be applied. For example, two or more semiconductor elements may be arranged on a circuit board, and a package component may be stacked on the plurality of semiconductor elements. Such a laminated structure is effective when the size of the semiconductor element is significantly different from that of the package component. The package parts can also be stacked with the circuit board facing down. In this case, the second bonding wire is connected to an electrode pad provided on the upper surface side of the circuit board.

そして、回路基板2上に積層、配置された半導体素子31およびパッケージ部品32を、例えばエポキシ樹脂のような封止樹脂11を用いて封止することによって、スタック型パッケージ構造を有する積層型半導体装置30が構成されている。このような積層型半導体装置30においても、半導体素子31を載置したステージのみから加熱した接着工程を適用することによって、接着工程に起因する不良発生を抑制することができる。すなわち、信頼性等に優れる積層型半導体装置30を歩留りよく作製することが可能となる。半導体部品と他の電子部品とを積層したパッケージ、あるいは半導体部品以外の電子部品を積層したパッケージにおいても同様である。   Then, the semiconductor element 31 and the package component 32 stacked and arranged on the circuit board 2 are sealed using a sealing resin 11 such as an epoxy resin, for example, so that a stacked semiconductor device having a stacked package structure is provided. 30 is configured. Also in such a stacked semiconductor device 30, the occurrence of defects due to the bonding process can be suppressed by applying the bonding process heated only from the stage on which the semiconductor element 31 is placed. That is, the stacked semiconductor device 30 having excellent reliability and the like can be manufactured with a high yield. The same applies to a package in which semiconductor components and other electronic components are stacked, or a package in which electronic components other than semiconductor components are stacked.

なお、本発明の製造方法は上記した各実施形態に限定されるものではなく、複数の電子部品を積層して搭載した各種の積層型電子部品に適用することができる。そのような積層型電子部品の製造方法についても、本発明に含まれるものである。また、本発明の実施形態は本発明の技術的思想の範囲内で拡張もしくは変更することができ、この拡張、変更した実施形態も本発明の技術的範囲に含まれるものである。   The manufacturing method of the present invention is not limited to the above-described embodiments, and can be applied to various laminated electronic components in which a plurality of electronic components are stacked and mounted. Such a method of manufacturing a multilayer electronic component is also included in the present invention. The embodiments of the present invention can be expanded or modified within the scope of the technical idea of the present invention, and the expanded and modified embodiments are also included in the technical scope of the present invention.

本発明の第1の実施形態による製造方法を適用して作製した積層型半導体装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the laminated semiconductor device produced by applying the manufacturing method by the 1st Embodiment of this invention. 本発明の実施形態に適用した接着剤樹脂の粘度特性の一例を示す図である。It is a figure which shows an example of the viscosity characteristic of adhesive resin applied to embodiment of this invention. 本発明の第1の実施形態による積層型半導体装置の要部製造工程を示す断面図である。It is sectional drawing which shows the principal part manufacturing process of the laminated semiconductor device by the 1st Embodiment of this invention. 図3に示す積層型半導体装置の製造工程の要部を拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing a main part of a manufacturing process of the stacked semiconductor device shown in FIG. 3. 接着工程における半導体素子の下降速度と表面温度との関係の一例を示す図である。It is a figure which shows an example of the relationship between the descent | fall speed | rate of the semiconductor element and surface temperature in an adhesion process. 図1に示す積層型半導体装置の一変形例を示す断面図である。FIG. 10 is a cross-sectional view showing a modification of the stacked semiconductor device shown in FIG. 1. 図1に示す積層型半導体装置の他の変形例を示す断面図である。FIG. 10 is a cross-sectional view showing another modification of the stacked semiconductor device shown in FIG. 1. 本発明の第2の実施形態による製造方法を適用して作製した積層型半導体装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the laminated semiconductor device produced by applying the manufacturing method by the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1,30…積層型半導体装置、2…回路基板、4…電極部、5…第1の半導体素子、6…第1の接着剤層、7…第1のボンディングワイヤ、8…第2の半導体素子、9…第2の接着剤層、10…第2のボンディングワイヤ、11……封止樹脂、12…絶縁層、13…スタッドバンプ、31…半導体素子、32…パッケージ部品。   DESCRIPTION OF SYMBOLS 1,30 ... Multilayer type semiconductor device, 2 ... Circuit board, 4 ... Electrode part, 5 ... 1st semiconductor element, 6 ... 1st adhesive layer, 7 ... 1st bonding wire, 8 ... 2nd semiconductor Elements: 9 ... second adhesive layer, 10 ... second bonding wire, 11 ... sealing resin, 12 ... insulating layer, 13 ... stud bump, 31 ... semiconductor element, 32 ... package component.

Claims (5)

基板上に第1の電子部品を搭載して接着すると共に、前記基板の電極部と前記第1の電子部品の電極パッドとを第1のボンディングワイヤを介して接続する工程と、
前記基板上に接着された前記第1の電子部品を加熱機構を有するステージ上に載置し、前記第1の電子部品を加熱する工程と、
裏面側に接着剤層が形成された第2の電子部品を、常温の吸着ツールで保持して前記第1の電子部品の上方に配置する工程と、
前記第2の電子部品を徐々に下降させ、加熱された前記第1の電子部品からの輻射熱および前記第1のボンディングワイヤとの伝熱により前記接着剤層を軟化または溶融させつつ、前記接着剤層を前記第1の電子部品と接触させる工程と、
前記加熱機構による加熱を継続しつつ前記第2の電子部品を加圧し、前記接着剤層を熱硬化させて前記第1の電子部品と前記第2の電子部品とを接着する工程と、
前記基板の電極部と前記第2の電子部品の電極パッドとを第2のボンディングワイヤを介して接続する工程と
を具備することを特徴とする積層型電子部品の製造方法。
Mounting and bonding a first electronic component on a substrate, and connecting an electrode portion of the substrate and an electrode pad of the first electronic component via a first bonding wire;
Placing the first electronic component bonded on the substrate on a stage having a heating mechanism, and heating the first electronic component;
A step of holding the second electronic component having the adhesive layer formed on the back surface side with a normal temperature suction tool and placing the second electronic component above the first electronic component;
While gradually lowering the second electronic component and softening or melting the adhesive layer by radiant heat from the heated first electronic component and heat transfer with the first bonding wire, the adhesive Contacting a layer with the first electronic component;
Pressurizing the second electronic component while continuing heating by the heating mechanism, thermally curing the adhesive layer, and bonding the first electronic component and the second electronic component;
Connecting the electrode portion of the substrate and the electrode pad of the second electronic component via a second bonding wire.
請求項1記載の積層型電子部品の製造方法において、
前記第1の電子部品から少なくとも0.5mm上方の位置から、前記第2の電子部品を0.1mm/s以上20mm/s以下の範囲の速度で下降させることを特徴とする積層型電子部品の製造方法。
In the manufacturing method of the multilayer electronic component according to claim 1,
A method of manufacturing a multilayer electronic component, wherein the second electronic component is lowered at a speed in the range of 0.1 mm / s to 20 mm / s from a position at least 0.5 mm above the first electronic component .
請求項1または請求項2記載の積層型電子部品の製造方法において、
前記接着剤層は前記加熱時の粘度が1kPa・s以上100kPa・s未満の範囲の熱硬化型樹脂層を有することを特徴とする積層型電子部品の製造方法。
In the manufacturing method of the multilayer electronic component according to claim 1 or 2,
The method for producing a multilayer electronic component, wherein the adhesive layer has a thermosetting resin layer having a viscosity during heating of 1 kPa · s or more and less than 100 kPa · s.
請求項1または請求項2記載の積層型電子部品の製造方法において、
前記接着剤層は、前記第1の電子部品側に配置され、前記加熱時の粘度が1kPa・s以上100kPa・s未満の範囲の第1の熱硬化型樹脂層と、前記第2の電子部品側に配置され、前記加熱時の粘度が100kPa・s以上の第2の熱硬化型樹脂層とを有することを特徴とする積層型電子部品の製造方法。
In the manufacturing method of the multilayer electronic component according to claim 1 or 2,
The adhesive layer is disposed on the first electronic component side, the first thermosetting resin layer having a viscosity during heating of 1 kPa · s or more and less than 100 kPa · s, and the second electronic component And a second thermosetting resin layer having a viscosity at the time of heating of 100 kPa · s or more.
請求項1ないし請求項4のいずれか1項記載の積層型電子部品の製造方法において、
前記第1および第2の電子部品は半導体素子および半導体素子を含むパッケージ部品から選ばれる少なくとも1種からなることを特徴とする積層型電子部品の製造方法。
In the manufacturing method of the multilayer electronic component according to any one of claims 1 to 4,
The method of manufacturing a multilayer electronic component, wherein the first and second electronic components comprise at least one selected from a semiconductor device and a package component including the semiconductor device.
JP2005092596A 2005-03-28 2005-03-28 Manufacturing method of multilayer electronic component Expired - Fee Related JP4594777B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005092596A JP4594777B2 (en) 2005-03-28 2005-03-28 Manufacturing method of multilayer electronic component
TW095107613A TW200727446A (en) 2005-03-28 2006-03-07 Stack type semiconductor device manufacturing method and stack type electronic component manufacturing method
KR1020060027518A KR100796884B1 (en) 2005-03-28 2006-03-27 Stack type semiconductor device manufacturing method and stack type electronic component manufacturing method
US11/390,285 US7615413B2 (en) 2005-03-28 2006-03-28 Method of manufacturing stack-type semiconductor device and method of manufacturing stack-type electronic component
US12/585,547 US7785926B2 (en) 2005-03-28 2009-09-17 Method of manufacturing stack-type semiconductor device and method of manufacturing stack-type electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092596A JP4594777B2 (en) 2005-03-28 2005-03-28 Manufacturing method of multilayer electronic component

Publications (3)

Publication Number Publication Date
JP2006278520A true JP2006278520A (en) 2006-10-12
JP2006278520A5 JP2006278520A5 (en) 2007-06-14
JP4594777B2 JP4594777B2 (en) 2010-12-08

Family

ID=37212996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092596A Expired - Fee Related JP4594777B2 (en) 2005-03-28 2005-03-28 Manufacturing method of multilayer electronic component

Country Status (1)

Country Link
JP (1) JP4594777B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004433A (en) * 2007-06-19 2009-01-08 Sekisui Chem Co Ltd Method of manufacturing semiconductor chip laminate, adhesive tape, and dicing die bonding tape
JP2009124115A (en) * 2007-10-22 2009-06-04 Hitachi Chem Co Ltd Adhesive sheet
JP2010062316A (en) * 2008-09-03 2010-03-18 Toshiba Corp Semiconductor device and method for manufacturing the semiconductor device
KR101105470B1 (en) * 2008-11-28 2012-01-13 린텍 가부시키가이샤 Semiconductor chip laminate and adhesive composition for semiconductor chip lamination
KR101345175B1 (en) 2007-04-16 2013-12-26 신닛테츠 수미킨 가가쿠 가부시키가이샤 Method of manufacturing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5921297B2 (en) 2012-04-09 2016-05-24 キヤノン株式会社 Multilayer semiconductor device, printed circuit board, and method of manufacturing multilayer semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222913A (en) * 2001-01-24 2002-08-09 Sharp Corp Semiconductor device and manufacturing method therefor
JP2003086758A (en) * 2001-09-10 2003-03-20 Mitsubishi Electric Corp Semiconductor device, and method and device for manufacturing same
JP2004072009A (en) * 2002-08-09 2004-03-04 Fujitsu Ltd Semiconductor device, and manufacturing method thereof
JP2004158716A (en) * 2002-11-07 2004-06-03 Sharp Corp Semiconductor device and its manufacturing method
JP2004282056A (en) * 2003-02-27 2004-10-07 Sumitomo Bakelite Co Ltd Semiconductor device, method of manufacturing semiconductor element, and method of manufacturing semiconductor device
JP2005327789A (en) * 2004-05-12 2005-11-24 Sharp Corp Pressure-sensitive adhesive sheet for both dicing and die-bonding, and method of manufacturing semiconductor device using the same
JP2006128169A (en) * 2004-10-26 2006-05-18 Fujitsu Ltd Semiconductor device and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222913A (en) * 2001-01-24 2002-08-09 Sharp Corp Semiconductor device and manufacturing method therefor
JP2003086758A (en) * 2001-09-10 2003-03-20 Mitsubishi Electric Corp Semiconductor device, and method and device for manufacturing same
JP2004072009A (en) * 2002-08-09 2004-03-04 Fujitsu Ltd Semiconductor device, and manufacturing method thereof
JP2004158716A (en) * 2002-11-07 2004-06-03 Sharp Corp Semiconductor device and its manufacturing method
JP2004282056A (en) * 2003-02-27 2004-10-07 Sumitomo Bakelite Co Ltd Semiconductor device, method of manufacturing semiconductor element, and method of manufacturing semiconductor device
JP2005327789A (en) * 2004-05-12 2005-11-24 Sharp Corp Pressure-sensitive adhesive sheet for both dicing and die-bonding, and method of manufacturing semiconductor device using the same
JP2006128169A (en) * 2004-10-26 2006-05-18 Fujitsu Ltd Semiconductor device and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101345175B1 (en) 2007-04-16 2013-12-26 신닛테츠 수미킨 가가쿠 가부시키가이샤 Method of manufacturing semiconductor device
JP2009004433A (en) * 2007-06-19 2009-01-08 Sekisui Chem Co Ltd Method of manufacturing semiconductor chip laminate, adhesive tape, and dicing die bonding tape
JP2009124115A (en) * 2007-10-22 2009-06-04 Hitachi Chem Co Ltd Adhesive sheet
JP2010062316A (en) * 2008-09-03 2010-03-18 Toshiba Corp Semiconductor device and method for manufacturing the semiconductor device
KR101105470B1 (en) * 2008-11-28 2012-01-13 린텍 가부시키가이샤 Semiconductor chip laminate and adhesive composition for semiconductor chip lamination
US8716401B2 (en) 2008-11-28 2014-05-06 Lintec Corporation Semiconductor chip laminate and adhesive composition for semiconductor chip lamination

Also Published As

Publication number Publication date
JP4594777B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4188337B2 (en) Manufacturing method of multilayer electronic component
JP4746646B2 (en) Multilayer electronic components
KR100796884B1 (en) Stack type semiconductor device manufacturing method and stack type electronic component manufacturing method
JP4881044B2 (en) Manufacturing method of stacked semiconductor device
JP2013008963A (en) Semiconductor device and method of manufacturing the same
JP4203031B2 (en) Manufacturing method of multilayer electronic component
JP2011222553A (en) Wiring board with built-in semiconductor chip and manufacturing method of the same
JP4864810B2 (en) Manufacturing method of chip embedded substrate
US10026679B2 (en) Process for manufacturing a package for a surface-mount semiconductor device and semiconductor device
JP4594777B2 (en) Manufacturing method of multilayer electronic component
JP2012074497A (en) Circuit board
JP4621595B2 (en) Manufacturing method of semiconductor device
JP2007035865A (en) Semiconductor package and manufacturing method thereof
CN100440464C (en) Method of manufacturing stack-type semiconductor device and method of manufacturing stack-type electronic component
JP2007035864A (en) Semiconductor package
JP2007324443A (en) Multilayer semiconductor device and production method thereof
JP2002064162A (en) Semiconductor chip
JP5571045B2 (en) Multilayer semiconductor device
JP2013157363A (en) Lamination type semiconductor device
JP2007081127A (en) Semiconductor device and method of manufacturing same
JP2010124005A (en) Semiconductor chip module and method for manufacturing semiconductor chip module
JP2008282941A (en) Semiconductor device
JP2001185672A (en) Electronic circuit device and its manufacturing method
JP2010004079A (en) Semiconductor chip

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4594777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees