JP2004071678A - Manufacturing method of distributed feedback semiconductor laser - Google Patents

Manufacturing method of distributed feedback semiconductor laser Download PDF

Info

Publication number
JP2004071678A
JP2004071678A JP2002225788A JP2002225788A JP2004071678A JP 2004071678 A JP2004071678 A JP 2004071678A JP 2002225788 A JP2002225788 A JP 2002225788A JP 2002225788 A JP2002225788 A JP 2002225788A JP 2004071678 A JP2004071678 A JP 2004071678A
Authority
JP
Japan
Prior art keywords
diffraction grating
inasp
active layer
mixed crystal
distributed feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002225788A
Other languages
Japanese (ja)
Inventor
Hisashi Nakayama
中山 久志
Masahiro Kito
鬼頭 雅弘
Haruki Ogawa
小河 晴樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002225788A priority Critical patent/JP2004071678A/en
Publication of JP2004071678A publication Critical patent/JP2004071678A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make wider a temperature range for single wavelength oscillation as compared with before. <P>SOLUTION: When a diffraction grating 103 made of the semiconductor mixed crystal of InAsP and an active layer 105 made of that of InGaAsP are sequentially formed on an InP substrate 101 where a plurality of grooves 102 are formed while temperature rises in a mixed gas containing AsH<SB>3</SB>and PH<SB>3</SB>, a PH<SB>3</SB>partial pressure in the formation of the InAsP semiconductor mixed crystal becomes larger than that in the formation of the InGaAsP semiconductor mixed crystal, thus making large the size of the InAsP diffraction grating. As a result, the active layer can approach the diffraction grating for setting without losing planarity in the active layer, thus making large the coupling coefficient of light in the active layer and diffraction grating, and hence widening the temperature range for signal wavelength oscillation as compared with before. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体レーザ装置、特に分布帰還型半導体レーザの製造方法に関するものである。
【0002】
【従来の技術】
光ファイバー通信システムは、超高速でかつ広帯域で使用可能な通信システムとして実用化されている。この光ファイバー通信システムに用いられる光源としてInPを基板とし、InP基板に格子整合するInGaAsP混晶を材料系とした半導体レーザ装置の開発が、活発に行われている。分布帰還型レーザは、レーザ光を回折させるための回折構造の作製が難しいため歩留まりが低く、また作製後の単一波長で発振する温度範囲が狭いため温度制御にペルチェなどを用いており、これが半導体レーザモジュールのコスト増大の原因である。そこで、広い温度範囲動作が得られる構造及び、容易な作製方法が必要となる。
【0003】
ここで、従来の分布帰還型レーザ装置の特徴および特性について簡単に説明する。分布帰還型レーザの単一波長性を決定する要因として挙げられるのが、活性層の近傍に形成された回折格子(一般には、InAsP)による光の回折である。単一波長発振する温度範囲を向上させるためには、活性層と回折格子の光の結合係数を大きくする必要がある。結合係数を大きくする方法として、a)InAsP回折格子のサイズを大きくする方法、b)InAsPのAs組成を高くし基板InPとの屈折差を大きくする方法、c)活性層に回折格子を近接して作製する方法等がある。a)の方法は、一般に、InP基板上に、PHとAsHの混合ガスを流してInAsPを形成するため、マストランスポートするInの量に依存することから、制御することが困難であった。また、b)の方法は、As組成を高くすると、InPとの格子不整合が大きくなるためにInAsP層に欠陥が発生し特性が悪化してしまう問題があった。また、c)の方法は、InAsP回折格子が、InPとの格子定数差による歪の影響を受けて活性層の平坦性が悪化し、レーザ特性が悪化してしまうという問題があった。
【0004】
上述した問題点について、以下、図を用いて詳しく説明する。図7は、従来の分布帰還型半導体レーザ装置の断面図である。図7において、n型InP基板401上に、深さ100nm、周期244nmの溝402を埋め込むように形成されたInAsP回折格子403と、溝402およびInAsP回折格子403を埋め込むように形成された厚さ150nmのn型InPクラッド層404と、厚さ200nmでInGaAsPの多重量子井戸層からなる活性層405と、厚さ3μmのp型InPクラッド層406とが順次形成されている。n型InP基板401の下面にはn型電極407が形成され、p型InPクラッド層406の上面には、p型電極408が形成されている。
【0005】
活性層405は、0.7%の圧縮歪を有し、組成波長1.55μmであり、厚さ6nmのInGaAsP量子井戸層が5層、InPに格子整合し、組成波長1.15μmで厚さ10nmのInGaAsP障壁層4層をそれぞれ交互に形成した構造を、組成波長1.15μmで厚さ60nmのInGaAsP光閉じ込め層で上下を挟んだ構造をしている。また、InAsP回折格子403の大きさは40nmであり、溝402を埋め込むように形成されている。InAsP回折格子403の組成は、InAsP回折格子からのフォトルミネッセンススペクトルのピーク波長が、1.30μmとなるように設定されている。
【0006】
次に、上記構造の分布帰還型半導体レーザ装置の製造方法について、図8を用いて説明する。図8(a)に示すように、n型InP基板401上に、深さ100nm、周期244nmの溝402をフォトリソグラフィーとエッチングを用いて形成する。次に、図8(b)に示すように、MOVPE装置中で、フォスフィン、アルシンを含む混合気体中で、昇温、加熱処理を行い、溝402の底部にInAsP回折格子403を作製する。続けて、図8(c)に示すように、厚さ200nmのn型InPクラッド層404を、200nm成長し、表面を平坦化した後、続けて、InGaAsPの多重量子井戸層からなる活性層405と、厚さ400nmのp型InPクラッド層406を成長する。最後に、図8(d)に示すように、n型InP基板401の上面にn型電極407を形成し、p型InPクラッド層406の上面に、p型電極408を形成して、レーザ構造となる。
【0007】
図9は、InAsP回折格子作製時における温度プロファイルと、AsH,PHの流量の関係を示す図である。昇温中にAsHとPHを共に供給し、InAsP回折格子を形成する。昇温時のPH、AsHの分圧は、一定である。その後、AsHを停止し、温度を安定させた後に、InPクラッド層404および活性層405を成長し、降温する。
【0008】
図10は、上記従来方法で作製したInAsP回折格子の断面と、InAsP回折格子中のAs組成分布を示した図である。図10(a)において、InP基板401の溝からInPの主面に対して垂直方向に5点の観測位置を示している。図10(b)は、5点の観測点におけるAs組成を示した図である。InAsP回折格子の溝部である位置2においてAs組成が高く、表面側に向かうにつれてAs組成が減少している。最もAs組成の高い位置2におけるAs組成は、70%以上であり、2%以上の大きな格子歪を生じている。
【0009】
図11は、活性層のフォトルミネッセンススペクトル半値幅と活性層−InAsP回折格子間の距離の関係を示した図である。nクラッド層404の厚さが150nmの場合、活性層のPLスペクトルの半値幅は、30meVである。これは、平坦基板上に活性層を成長した場合の半値幅と同程度であり、平坦な活性層が形成されていることを示している。一方、InAsP回折格子を活性層に近接させるため、nクラッド層404の厚さを薄くすると、半値幅が、40meV以上に増大してしまう。回折格子の凹凸と、InAsP層の歪の影響をnクラッド層404で十分緩和せず、活性層の平坦性が悪化してしまうためである。
【0010】
【発明が解決しようとする課題】
本発明は、上記従来の製造方法による問題点を解決し、結晶性を損なうことなく、高い結合係数を持つ回折格子と活性層を形成し、広い動作温度範囲で単一波長発振する分布帰還型半導体レーザの製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明における分布帰還型半導体レーザの製造方法は、複数の溝が形成されたInP基板上に、AsHとPHを含む混合気体中で昇温しながら、InAsPの半導体混晶からなる回折格子、及びInGaAsPの半導体混晶からなる活性層を順次形成する際、InAsP半導体混晶の形成時のPH分圧を、InGaAsP半導体混晶の形成時のPH分圧より大きくしたことを特徴とする。
【0012】
これにより、マストランスポートするIn量を制御することができ、InAsP回折格子のサイズを大きくすることができる。その結果、活性層の平坦性を損なうことなく活性層と回折格子を近接して設定できるので、活性層と回折格子の光の結合係数を大きくすることができ、単一波長発振する温度範囲を従来よりも広範囲にすることができる。
【0013】
また、回折格子を溝にほぼ埋め込むことによりInP基板を実質的に平坦にできるので、回折格子が埋め込まれたInP基板上に、直接活性層を形成することができ、より活性層と回折格子の光の結合係数を大きくすることができる。
【0014】
さらに、InAsPの形成時のAsH分圧を、昇温しながら徐々に大きくすることによって、InAsPの回折格子内のAsの分布を一定にすることができるので、InAsP回折格子の格子歪を小さくすることができ、活性層を回折格子に近接して形成しても、活性用の結晶性を損なうことがなく、より活性層と回折格子の光の結合係数を大きくすることができる。
【0015】
【発明の実施の形態】
図1に、本発明の製造方法の工程断面図を示す。図1(a)に示すように、n型InP基板101上に、深さ100nm、周期244nmの溝102をフォトリソグラフィーとエッチングを用いて形成する。次に、図1(b)に示すように、MOVPE装置中で、フォスフィン、アルシンを含む混合気体を流しながら、昇温、加熱処理を行い、溝102の底部にInAsP回折格子103を作製する。次に、図1(c)に示すように、アルシンの供給を一旦停止し、n型InPクラッド層104を形成した後、再び、アルシンの供給を行ない、InGaAsPの多重量子井戸層からなる活性層105を形成する。最後に、図1(d)に示すように、n型InP基板101の下面にn型電極107を形成し、p型InPクラッド層106の上面にp型電極108を形成して、分布帰還型半導体レーザを完成させる。
【0016】
図2は、本発明の製造方法におけるInAsP回折格子の形成時の温度プロファイルと、AsH,PHの流量の関係を示す図である。昇温中にAsHとPHを共に供給し、InAsP回折格子を形成する。このときのPHの流量を活性層成長時より多く設定しPHの分圧を2torr以上に設定する。AsHの流量は、波長が1.3μmとなるように設定する。その後、AsHを停止し、温度を安定させた後に、活性層を成長するのに適するPH圧になるように流量を減少し、n型InPクラッド層104、活性層105、p型InPクラッド106を成長し、降温する。
【0017】
図3は、InAsP回折格子形成時のPH分圧と、形成されるInAsP回折格子103のInP基板101の主面に対する高さの関係を示している。PH圧が低い場合、InP基板101から脱離してマイグレーションするInのマイグレーション長が長いため、V溝上部から溝部へマストランスポートするInの一部は、溝部に堆積せずに基板外部に逃げてしまう。このため、堆積するInAsP回折格子103の高さは低い。一方、PH圧が高い場合、Inマイグレーション長が小さくなるため、Inが基板外部に逃げることなく効率よく溝部に堆積される。このため、形成するInAsP回折格子103の高さを高くすることができる。PH圧2torr以上においては、高さは60nm以上となる。InAsP回折格子形成時のPH圧を、設定することにより、マストランスポートするIn量を制御することができ、InAsP回折格子103を必要な高さに作製することができる。
【0018】
図4は、上記方法により形成したInAsP回折格子を有する分布帰還型半導体レーザにおいて、活性層のフォトルミネッセンススペクトル半値幅と活性層−InAsP回折格子間の距離の関係を示した図である。回折格子を活性層に近接させるため、nクラッド層104の厚さを薄くしても、半値幅は、増大しない。また、nクラッド層104の厚さを0nmとし、InAsP回折格子103の直上に活性層を形成した場合においても、半値幅は増大しない。
【0019】
このように、InAsP回折格子のサイズを大きく形成することによって、活性層の平坦性を損なうことなく活性層と回折格子を近接して設定できるので、活性層と回折格子の光の結合係数を大きくすることができる。本方法により得られる活性層とInAsP回折格子の結合係数は、40cm−3であり、単一波長発振する広温度範囲を実現できる。
【0020】
また、InAsP回折格子形成時のAsH,PHの分圧を、図5に示すように、PH圧は、2torr以上で一定とし、AsHの分圧を、昇温開始時の低温時においては、AsH分圧を小さく設定し、昇温によって温度が上昇するにつれてAsH分圧を増加するように設定すると、図6に示すように、InAsP回折格子のAs組成分布を一定にすることができる。その結果、InAsP回折格子の格子歪を小さくすることができるので、活性層を回折格子に近接して形成しても、活性用の結晶性を損なうことがない。
【0021】
【発明の効果】
本発明の方法により、InAsP回折格子のサイズを大きくすることができるので、活性層の平坦性を損なうことなく活性層と回折格子を近接して設定でき、活性層と回折格子の光の結合係数を大きくすることができるので、単一波長発振する温度範囲を従来よりも広範囲にすることができる。
【図面の簡単な説明】
【図1】本発明における分布帰還型半導体レーザの製造方法を示す工程断面図
【図2】本発明におけるInAsP回折格子の形成方法を示す図
【図3】本発明における昇温時のPH分圧と回折格子の高さの関係を示す図
【図4】本発明におけるフォトルミネッセンススペクトル半値幅を示す図
【図5】本発明におけるInAsP回折格子の形成方法を示す図
【図6】本発明における回折格子のAs分布を示す図
【図7】従来の分布帰還型半導体レーザの構造を示す図
【図8】従来の分布帰還型半導体レーザの製造方法を示す工程断面図
【図9】従来のInAsP回折格子の形成方法を示す図
【図10】従来の回折格子のAs分布を示す図
【図11】従来のフォトルミネッセンススペクトル半値幅を示す図
【符号の説明】
101、401 n型InP基板
102、402 溝
103、403 InAsP回折格子
104、404 n型InPクラッド層
105、405 活性層
106、406 p型InPクラッド層
107、407 n型電極
108、408 p型電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor laser device, and more particularly to a method for manufacturing a distributed feedback semiconductor laser.
[0002]
[Prior art]
2. Description of the Related Art An optical fiber communication system has been put into practical use as a communication system that can be used at a very high speed and in a wide band. Semiconductor laser devices using InP as a substrate and a material based on InGaAsP mixed crystal lattice-matched to the InP substrate as a light source used in the optical fiber communication system are being actively developed. Distributed feedback lasers have a low yield because it is difficult to fabricate a diffractive structure to diffract laser light, and use a Peltier device for temperature control because the temperature range of oscillation at a single wavelength after fabrication is narrow. This is a cause of an increase in the cost of the semiconductor laser module. Therefore, a structure that can operate in a wide temperature range and an easy manufacturing method are required.
[0003]
Here, the features and characteristics of the conventional distributed feedback laser device will be briefly described. One factor that determines the single-wavelength property of the distributed feedback laser is light diffraction by a diffraction grating (generally, InAsP) formed near the active layer. In order to improve the temperature range in which single wavelength oscillation occurs, it is necessary to increase the light coupling coefficient between the active layer and the diffraction grating. As methods for increasing the coupling coefficient, a) a method for increasing the size of the InAsP diffraction grating, b) a method for increasing the As composition of InAsP to increase the refractive index difference from the substrate InP, c) disposing the diffraction grating close to the active layer. And the like. The method a) is generally difficult to control because it depends on the amount of In to be mass-transported, since InAsP is formed by flowing a mixed gas of PH 3 and AsH 3 onto the InP substrate. Was. In the method b), when the As composition is increased, the lattice mismatch with InP becomes large, so that a defect is generated in the InAsP layer and the characteristics are deteriorated. Further, the method c) has a problem that the flatness of the active layer is deteriorated due to the influence of the strain due to the lattice constant difference between InAsP diffraction grating and InP, and the laser characteristics are deteriorated.
[0004]
The above problem will be described in detail below with reference to the drawings. FIG. 7 is a sectional view of a conventional distributed feedback semiconductor laser device. In FIG. 7, an InAsP diffraction grating 403 formed on an n-type InP substrate 401 so as to embed a groove 402 having a depth of 100 nm and a period of 244 nm, and a thickness formed so as to embed the groove 402 and the InAsP diffraction grating 403. An n-type InP cladding layer 404 having a thickness of 150 nm, an active layer 405 having a thickness of 200 nm and comprising an InGaAsP multiple quantum well layer, and a p-type InP cladding layer 406 having a thickness of 3 μm are sequentially formed. An n-type electrode 407 is formed on the lower surface of the n-type InP substrate 401, and a p-type electrode 408 is formed on the upper surface of the p-type InP cladding layer 406.
[0005]
The active layer 405 has a compressive strain of 0.7%, a composition wavelength of 1.55 μm, five InGaAsP quantum well layers having a thickness of 6 nm, lattice-matched to InP, and a composition wavelength of 1.15 μm. A structure in which four 10-nm InGaAsP barrier layers are alternately formed is sandwiched between an InGaAsP light confinement layer having a composition wavelength of 1.15 μm and a thickness of 60 nm. The size of the InAsP diffraction grating 403 is 40 nm, and is formed so as to fill the groove 402. The composition of the InAsP diffraction grating 403 is set such that the peak wavelength of the photoluminescence spectrum from the InAsP diffraction grating is 1.30 μm.
[0006]
Next, a method of manufacturing the distributed feedback semiconductor laser device having the above structure will be described with reference to FIG. As shown in FIG. 8A, a groove 402 having a depth of 100 nm and a period of 244 nm is formed on an n-type InP substrate 401 by using photolithography and etching. Next, as shown in FIG. 8B, in an MOVPE apparatus, a temperature rise and a heat treatment are performed in a mixed gas containing phosphine and arsine, and an InAsP diffraction grating 403 is formed at the bottom of the groove 402. Subsequently, as shown in FIG. 8C, an n-type InP cladding layer 404 having a thickness of 200 nm is grown to a thickness of 200 nm, the surface is flattened, and then the active layer 405 is formed of an InGaAsP multiple quantum well layer. Then, a 400 nm-thick p-type InP cladding layer 406 is grown. Finally, as shown in FIG. 8D, an n-type electrode 407 is formed on the upper surface of the n-type InP substrate 401, and a p-type electrode 408 is formed on the upper surface of the p-type InP cladding layer 406. It becomes.
[0007]
FIG. 9 is a diagram showing a relationship between a temperature profile at the time of manufacturing an InAsP diffraction grating and flow rates of AsH 3 and PH 3 . During the heating, AsH 3 and PH 3 are supplied together to form an InAsP diffraction grating. The partial pressure of PH 3 and AsH 3 during the temperature rise is constant. After stopping AsH 3 and stabilizing the temperature, the InP cladding layer 404 and the active layer 405 are grown and the temperature is lowered.
[0008]
FIG. 10 is a diagram showing a cross section of an InAsP diffraction grating manufactured by the above-described conventional method and an As composition distribution in the InAsP diffraction grating. FIG. 10A shows five observation positions from the groove of the InP substrate 401 in a direction perpendicular to the main surface of InP. FIG. 10B is a diagram showing As compositions at five observation points. The As composition is high at the position 2 which is the groove of the InAsP diffraction grating, and the As composition decreases toward the surface. The As composition at the position 2 where the As composition is highest is 70% or more, and a large lattice strain of 2% or more is generated.
[0009]
FIG. 11 is a diagram showing the relationship between the half width of the photoluminescence spectrum of the active layer and the distance between the active layer and the InAsP diffraction grating. When the thickness of the n-cladding layer 404 is 150 nm, the half width of the PL spectrum of the active layer is 30 meV. This is about the same as the half width when the active layer is grown on the flat substrate, indicating that a flat active layer is formed. On the other hand, when the thickness of the n-cladding layer 404 is reduced in order to bring the InAsP diffraction grating close to the active layer, the half width increases to 40 meV or more. This is because the influence of the unevenness of the diffraction grating and the strain of the InAsP layer is not sufficiently reduced by the n-cladding layer 404, and the flatness of the active layer is deteriorated.
[0010]
[Problems to be solved by the invention]
The present invention solves the problems caused by the above-mentioned conventional manufacturing method, forms a diffraction grating having a high coupling coefficient and an active layer without impairing crystallinity, and provides a distributed feedback type that oscillates at a single wavelength over a wide operating temperature range. An object of the present invention is to provide a method for manufacturing a semiconductor laser.
[0011]
[Means for Solving the Problems]
According to the method of manufacturing a distributed feedback semiconductor laser of the present invention, a diffraction grating made of a semiconductor mixed crystal of InAsP is heated on a mixed gas containing AsH 3 and PH 3 on an InP substrate having a plurality of grooves formed therein. And when sequentially forming an active layer made of an InGaAsP semiconductor mixed crystal, the PH 3 partial pressure at the time of forming the InAsP semiconductor mixed crystal is made larger than the PH 3 partial pressure at the time of forming the InGaAsP semiconductor mixed crystal. I do.
[0012]
Thereby, the amount of In for mass transport can be controlled, and the size of the InAsP diffraction grating can be increased. As a result, since the active layer and the diffraction grating can be set close to each other without impairing the flatness of the active layer, the coupling coefficient of light between the active layer and the diffraction grating can be increased, and the temperature range in which single wavelength oscillation occurs can be reduced. It can be wider than before.
[0013]
Further, since the InP substrate can be substantially flattened by substantially embedding the diffraction grating in the groove, the active layer can be formed directly on the InP substrate in which the diffraction grating is embedded, and the active layer and the diffraction grating can be more easily formed. The light coupling coefficient can be increased.
[0014]
Further, by gradually increasing the AsH 3 partial pressure during the formation of InAsP while increasing the temperature, the distribution of As in the InAsP diffraction grating can be kept constant, so that the lattice strain of the InAsP diffraction grating can be reduced. Even if the active layer is formed close to the diffraction grating, the light coupling coefficient between the active layer and the diffraction grating can be increased without impairing the crystallinity for activation.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a process sectional view of the manufacturing method of the present invention. As shown in FIG. 1A, a groove 102 having a depth of 100 nm and a period of 244 nm is formed on an n-type InP substrate 101 by using photolithography and etching. Next, as shown in FIG. 1B, in a MOVPE apparatus, while a mixed gas containing phosphine and arsine is flowing, a temperature rise and a heat treatment are performed to form an InAsP diffraction grating 103 at the bottom of the groove 102. Next, as shown in FIG. 1C, the supply of arsine is temporarily stopped, and after the formation of the n-type InP cladding layer 104, the supply of arsine is again performed to form an active layer composed of a multiple quantum well layer of InGaAsP. 105 is formed. Finally, as shown in FIG. 1D, an n-type electrode 107 is formed on the lower surface of the n-type InP substrate 101, and a p-type electrode 108 is formed on the upper surface of the p-type InP cladding layer 106. Complete the semiconductor laser.
[0016]
FIG. 2 is a diagram showing the relationship between the temperature profile at the time of forming the InAsP diffraction grating and the flow rates of AsH 3 and PH 3 in the manufacturing method of the present invention. During the heating, AsH 3 and PH 3 are supplied together to form an InAsP diffraction grating. At this time, the flow rate of PH 3 is set to be larger than that during the active layer growth, and the partial pressure of PH 3 is set to 2 torr or more. The flow rate of AsH 3 is set so that the wavelength is 1.3 μm. Then, after stopping AsH 3 and stabilizing the temperature, the flow rate is reduced to a PH 3 pressure suitable for growing the active layer, and the n-type InP cladding layer 104, the active layer 105, and the p-type InP cladding are reduced. 106 grows and cools.
[0017]
Figure 3 illustrates a PH 3 partial pressure at the time of InAsP diffraction grating formed, a height relationship with respect to the main surface of the InP substrate 101 of InAsP diffraction grating 103 formed. When the PH 3 pressure is low, the migration length of In that desorbs and migrates from the InP substrate 101 is long, so that part of In that mass transports from the upper portion of the V groove to the groove escapes to the outside of the substrate without being deposited in the groove. Would. For this reason, the height of the deposited InAsP diffraction grating 103 is low. On the other hand, if the PH 3 pressure is high, the In migration length is reduced, In is deposited efficiently groove without escaping to the outside of the substrate. Therefore, the height of the formed InAsP diffraction grating 103 can be increased. At a PH 3 pressure of 2 torr or more, the height is 60 nm or more. The PH 3 pressure at InAsP diffraction grating formed by setting, it is possible to control the amount of In that mass transport can be made to the height required for InAsP diffraction grating 103.
[0018]
FIG. 4 is a diagram showing the relationship between the half-width of the photoluminescence spectrum of the active layer and the distance between the active layer and the InAsP diffraction grating in the distributed feedback semiconductor laser having the InAsP diffraction grating formed by the above method. In order to make the diffraction grating close to the active layer, the half width does not increase even if the thickness of the n-cladding layer 104 is reduced. Also, when the thickness of the n-cladding layer 104 is 0 nm and the active layer is formed directly on the InAsP diffraction grating 103, the half-width does not increase.
[0019]
As described above, by forming the InAsP diffraction grating with a large size, the active layer and the diffraction grating can be set close to each other without impairing the flatness of the active layer. Therefore, the light coupling coefficient between the active layer and the diffraction grating can be increased. can do. The coupling coefficient between the active layer and the InAsP diffraction grating obtained by this method is 40 cm −3 , and a wide temperature range in which a single wavelength oscillates can be realized.
[0020]
Also, the partial pressure of AsH 3, PH 3 during InAsP diffraction grating formed, as shown in FIG. 5, PH 3 pressure is constant at least 2 torr, the partial pressure of AsH 3, the low temperature at the start heating in sets small AsH 3 partial pressure, when set to increase the AsH 3 partial pressure as the temperature is increased by raising the temperature, as shown in FIG. 6, is a constant as composition distribution of InAsP diffraction grating be able to. As a result, the lattice strain of the InAsP diffraction grating can be reduced, so that the active crystallinity is not impaired even if the active layer is formed close to the diffraction grating.
[0021]
【The invention's effect】
According to the method of the present invention, since the size of the InAsP diffraction grating can be increased, the active layer and the diffraction grating can be set close to each other without impairing the flatness of the active layer, and the light coupling coefficient between the active layer and the diffraction grating can be increased. Can be increased, so that the temperature range in which single-wavelength oscillation occurs can be made wider than before.
[Brief description of the drawings]
[1] cross-sectional views showing a method of manufacturing a distributed feedback semiconductor laser according to the present invention the present invention; FIG PH 3 minutes during the temperature increase in Fig. 3 shows the present invention showing a method of forming InAsP diffraction grating in FIG. 4 is a diagram showing the relationship between the pressure and the height of the diffraction grating. FIG. 4 is a diagram showing the half-width of the photoluminescence spectrum in the present invention. FIG. 5 is a diagram showing the method for forming an InAsP diffraction grating in the present invention. FIG. 7 is a diagram showing an As distribution of a diffraction grating. FIG. 7 is a diagram showing a structure of a conventional distributed feedback semiconductor laser. FIG. 8 is a process sectional view showing a method for manufacturing a conventional distributed feedback semiconductor laser. FIG. 10 shows a method of forming a diffraction grating. FIG. 10 shows As distribution of a conventional diffraction grating. FIG. 11 shows half-width of a conventional photoluminescence spectrum.
101, 401 n-type InP substrate 102, 402 groove 103, 403 InAsP diffraction grating 104, 404 n-type InP cladding layer 105, 405 active layer 106, 406 p-type InP cladding layer 107, 407 n-type electrode 108, 408 p-type electrode

Claims (5)

周期的に配列された複数の溝が形成されたInP基板上に、少なくともAsHとPHを含む混合気体中で昇温しながら、前記溝に埋め込まれたInAsPの半導体混晶からなる回折格子、及びInGaAsPの半導体混晶からなる活性層が形成された構造を有する分布帰還型半導体レーザの製造方法において、前記InAsP半導体混晶の形成時のPH分圧を、前記InGaAsP半導体混晶の形成時のPH分圧より大きくすることを特徴とする分布帰還型半導体レーザの製造方法。A diffraction grating made of a semiconductor mixed crystal of InAsP embedded in the grooves while raising the temperature in a mixed gas containing at least AsH 3 and PH 3 on an InP substrate having a plurality of grooves arranged periodically. , and method of manufacturing a distributed feedback semiconductor laser having an active layer formed structure made of a semiconductor mixed crystal of InGaAsP, a PH 3 partial pressure during the formation of the InAsP semiconductor mixed crystal, formed of the InGaAsP semiconductor mixed crystal method for producing a distributed feedback semiconductor laser, characterized by greater than PH 3 partial pressure at the time. InAsPの半導体混晶からなる回折格子が、InP基板が実質的に平坦になるように複数の溝に埋め込まれていることを特徴とする請求項1記載の分布帰還型半導体レーザの製造方法。2. The method according to claim 1, wherein a diffraction grating made of a mixed crystal of InAsP is embedded in the plurality of grooves so that the InP substrate becomes substantially flat. InGaAsPの半導体混晶からなる活性層が、実質的に平坦になったInP基板上に直接形成されていることを特徴とする請求項2記載の分布帰還型半導体レーザの製造方法。3. The method according to claim 2, wherein the active layer made of a semiconductor mixed crystal of InGaAsP is directly formed on a substantially flat InP substrate. InAsPからなる半導体混晶形成時のAsH分圧を徐々に大きくしながら昇温して形成することを特徴とする請求項1記載の分布帰還型半導体レーザの製造方法。Claim 1 distributed feedback semiconductor laser manufacturing method, wherein the forming temperature was raised while gradually increasing the AsH 3 partial pressure at the time of the semiconductor mixed crystal formed consisting of InAsP. InAsPからなる半導体混晶の回折格子内におけるAsの濃度が均一であることを特徴とする請求項4記載の分布帰還型半導体レーザの製造方法。5. The method of manufacturing a distributed feedback semiconductor laser according to claim 4, wherein the concentration of As in the diffraction grating of the semiconductor mixed crystal of InAsP is uniform.
JP2002225788A 2002-08-02 2002-08-02 Manufacturing method of distributed feedback semiconductor laser Pending JP2004071678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002225788A JP2004071678A (en) 2002-08-02 2002-08-02 Manufacturing method of distributed feedback semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225788A JP2004071678A (en) 2002-08-02 2002-08-02 Manufacturing method of distributed feedback semiconductor laser

Publications (1)

Publication Number Publication Date
JP2004071678A true JP2004071678A (en) 2004-03-04

Family

ID=32013322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225788A Pending JP2004071678A (en) 2002-08-02 2002-08-02 Manufacturing method of distributed feedback semiconductor laser

Country Status (1)

Country Link
JP (1) JP2004071678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120058581A1 (en) * 2010-09-07 2012-03-08 Sumitomo Electric Industries, Ltd. Method of manufacturing laser diode
WO2019096025A1 (en) * 2017-11-15 2019-05-23 苏州大学张家港工业技术研究院 Polymer laser for continuous optical pumping and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120058581A1 (en) * 2010-09-07 2012-03-08 Sumitomo Electric Industries, Ltd. Method of manufacturing laser diode
US8501511B2 (en) * 2010-09-07 2013-08-06 Sumitomo Electric Industries Ltd. Method of manufacturing laser diode
WO2019096025A1 (en) * 2017-11-15 2019-05-23 苏州大学张家港工业技术研究院 Polymer laser for continuous optical pumping and manufacturing method therefor
US10879670B2 (en) 2017-11-15 2020-12-29 Soochow University Continuous-wave pumped polymer laser and preparation method thereof

Similar Documents

Publication Publication Date Title
CN101931164B (en) Nitride semiconductor device and fabrication method thereof
CN1755957B (en) Method for fabricating a nitride semiconductor light-emitting device
JP2005136106A (en) Single crystal sapphire substrate and its manufacturing method, and semiconductor light emitting device
JP2003069145A (en) Method of manufacturing distributed feedback semiconductor laser element group
JPH11330615A (en) Manufacture of semiconductor device
JP3045115B2 (en) Method for manufacturing optical semiconductor device
JP2004071678A (en) Manufacturing method of distributed feedback semiconductor laser
JP4886634B2 (en) Quantum well structure, optical confinement quantum well structure, semiconductor laser, distributed feedback semiconductor laser, and method of manufacturing quantum well structure
JPH10289996A (en) Semiconductor quantum dot and its manufacture
JP2501969B2 (en) Semiconductor laser device and method of manufacturing the same
WO2000021169A1 (en) Semiconductor laser
JP3246444B2 (en) Semiconductor quantum dot device and method of manufacturing the same
EP0813252A1 (en) Method of manufacturing a multiple layer semiconductor structure
JP2000031596A (en) Semiconductor laser and its manufacture
JP3019174B2 (en) Manufacturing method of multi-wavelength laser
JP3401715B2 (en) Method for manufacturing compound semiconductor device
JP3303844B2 (en) Manufacturing method of semiconductor laser
JP5278080B2 (en) Manufacturing method of semiconductor device
JPH11112075A (en) Semiconductor laser device and its manufacture
JP2007214595A (en) Method of manufacturing semiconductor device
JP4862749B2 (en) Method for fabricating III-V compound semiconductor optical device
JPS61104687A (en) Manufacture of buried semiconductor laser
JP3298572B2 (en) Method for manufacturing optical semiconductor device
JP2000124553A (en) Semiconductor laser device and manufacture thereof
JP5573819B2 (en) Method for fabricating III-V compound semiconductor optical device