JP2004071559A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2004071559A
JP2004071559A JP2003279745A JP2003279745A JP2004071559A JP 2004071559 A JP2004071559 A JP 2004071559A JP 2003279745 A JP2003279745 A JP 2003279745A JP 2003279745 A JP2003279745 A JP 2003279745A JP 2004071559 A JP2004071559 A JP 2004071559A
Authority
JP
Japan
Prior art keywords
fuel
enzyme
dehydrogenase
fuel cell
coenzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003279745A
Other languages
Japanese (ja)
Other versions
JP2004071559A5 (en
JP5207576B2 (en
Inventor
Hideki Sakai
酒井 秀樹
Takashi Tomita
富田 尚
Ryosuke Takagi
高木 良介
Yusuke Suzuki
鈴木 祐輔
Takenobu Hatasawa
畠沢 剛信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003279745A priority Critical patent/JP5207576B2/en
Publication of JP2004071559A publication Critical patent/JP2004071559A/en
Publication of JP2004071559A5 publication Critical patent/JP2004071559A5/ja
Application granted granted Critical
Publication of JP5207576B2 publication Critical patent/JP5207576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a large current density, while making use of biometabolism. <P>SOLUTION: A fuel cell achieves a large current density, while making use of biometabolism. While a fuel is decomposed stepwise by a plurality of enzymes, electrons generated with oxidation are transferred to an electrode. In the plurality of enzymes decomposing the fuel, the enzyme activity of decomposing enzymes in a former step is equal to or below that in a latter step. In the case of coenzyme being involved therein, the enzyme activity of oxidizing enzymes, which oxidize the coenzymes, is equal to or higher than the sum of the enzyme activities of an enzyme group taking part in yielding the reduced forms of the coenzymes among the plurality of enzymes stepwisely decomposing the fuel. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は生体代謝を利用した燃料電池に関する。 (4) The present invention relates to a fuel cell utilizing biological metabolism.

 燃料電池は、基本的に燃料極と酸化剤極(空気極)と電解質とを備えるものであり、その動作原理は水の電気分解の逆動作に基づく。すなわち、燃料電池は、水素及び酸素を送り込まれることによって、水(HO)を生成するとともに電気を取り出す、すなわち発電を行う。より具体的に説明すると、燃料極に供給された燃料(水素)が酸化されて電子とプロトン(H)とに分離し、このHが電解質を介して空気極まで移動し、空気極に供給された酸素と反応することによってHOを生成する。 A fuel cell basically includes a fuel electrode, an oxidizer electrode (air electrode), and an electrolyte, and its operating principle is based on a reverse operation of electrolysis of water. That is, the fuel cell generates water (H 2 O) and extracts electricity by feeding hydrogen and oxygen, that is, performs power generation. More specifically, the fuel (hydrogen) supplied to the fuel electrode is oxidized and separated into electrons and protons (H + ), and this H + moves to the air electrode via the electrolyte, and the H + moves to the air electrode. H 2 O is produced by reacting with the supplied oxygen.

 燃料電池は、燃料の持つエネルギーを直接電気エネルギーに変換する、高効率な発電装置として機能し、天然ガス、石油、石炭等の化石エネルギーがもつエネルギーを使用場所や使用時によらずに、しかも高い変換効率にて電気エネルギーとして取り出すことができる。 Fuel cells function as high-efficiency power generators that directly convert the energy of fuel into electric energy, and the energy of fossil energy, such as natural gas, oil, and coal, is high, regardless of where or when it is used. It can be extracted as electric energy at the conversion efficiency.

 従来から大規模発電用途等としての燃料電池の開発研究が活発に行われており、例えばスペースシャトルに燃料電池が搭載され、電力と同時に乗組員の水を供給できることや、クリーンな発電装置であることを証明した実績がある。 There has been active research and development of fuel cells for large-scale power generation applications.For example, a fuel cell is mounted on a space shuttle, which can supply crew water simultaneously with electric power, and a clean power generator. We have a proven track record.

 近年、高分子固体電解質燃料電池等、室温から90℃程度の比較的低温な作動温度域を示す燃料電池が開発され、注目を集めている。このため、大規模発電用途のみならず、自動車の駆動用電源、パーソナルコンピュータやモバイル機器等のポータブル電源等の小型システムへの応用が模索されつつある。 In recent years, fuel cells exhibiting a relatively low operating temperature range from room temperature to about 90 ° C., such as polymer solid electrolyte fuel cells, have been developed and are receiving attention. For this reason, applications are being sought not only for large-scale power generation, but also for small systems such as power supplies for driving automobiles and portable power supplies such as personal computers and mobile devices.

 しかしながら、固体高分子型燃料電池は先に述べたように低温な作動温度域を示すという利点があるものの、解決すべき多くの課題が残されている。具体的には、燃料としてメタノールを用い、且つ室温付近で動作させた場合のCOによる触媒被毒、Pt等の高価な貴金属を用いた触媒が必要であること、クロスオーバーによるエネルギーロスの発生、燃料に水素を用いる場合の取り扱いが困難であること等である。 However, although the polymer electrolyte fuel cell has the advantage of exhibiting a low operating temperature range as described above, there are still many problems to be solved. Specifically, catalyst poisoning by CO when methanol is used as the fuel and operated at around room temperature, the need for a catalyst using an expensive noble metal such as Pt, generation of energy loss due to crossover, This is because it is difficult to handle hydrogen using hydrogen.

 そこで、生物内で行われている生体代謝が高効率なエネルギー変換機構であることに着目し、これを燃料電池に適用する提案がなされている。ここでいう生体代謝には、微生物や細胞内で行われる呼吸、光合成等が含まれる。生体代謝は、発電効率が極めて高く、また、室温程度の穏やかな条件で反応が進行するという特長を兼ね備えている。 Therefore, attention has been paid to the fact that biological metabolism performed in living organisms is a highly efficient energy conversion mechanism, and proposals have been made to apply this to a fuel cell. The biological metabolism here includes respiration, photosynthesis, and the like performed in microorganisms and cells. Biological metabolism has the characteristics that the power generation efficiency is extremely high and the reaction proceeds under mild conditions at about room temperature.

 例えば呼吸は、糖類、脂肪、タンパク質等の栄養素を微生物又は細胞内に取り込み、これらの化学エネルギーを、数々の酵素反応ステップを有する解糖系及びトリカルボン酸(tricarboxylic acid:以下TCAと称する。)回路を介して二酸化炭素(CO)を生成する過程でニコチンアミドアデニンジヌクレオチド(nicotinamide adenine dinucleotide:以下NADと称する。)を還元して還元型ニコチンアミドアデニンジヌクレオチド(NADH)のような酸化還元エネルギー、すなわち電気エネルギーに変換し、さらに電子伝達系においてこれらのNADHの電気エネルギーをプロトン勾配の電気エネルギーに直接変換するとともに酸素を還元し、水を生成する機構である。ここで得られた電気エネルギーは、ATP合成酵素を介して、ADPからATPを生成し、このATPは微生物や細胞が生育するために必要な反応に利用される。このようなエネルギー変換は、細胞質ゾル及びミトコンドリアで行われている。 For example, respiration takes in nutrients such as sugars, fats and proteins into microorganisms or cells, and converts these chemical energies into glycolytic and tricarboxylic acid (hereinafter referred to as TCA) circuits having a number of enzymatic reaction steps. Reduces nicotinamide adenine dinucleotide (hereinafter referred to as NAD + ) in the process of producing carbon dioxide (CO 2 ) via redox, such as reduced nicotinamide adenine dinucleotide (NADH) It is a mechanism that converts water into energy, that is, electrical energy, and further converts the electrical energy of these NADHs directly into electrical energy of a proton gradient in an electron transfer system, reduces oxygen, and generates water. The electric energy obtained here generates ATP from ADP via the ATP synthase, and this ATP is used for reactions necessary for the growth of microorganisms and cells. Such energy conversion occurs in the cytosol and mitochondria.

 また、光合成は、光エネルギーを取り込み、電子伝達系を介してニコチンアミドアデニンジヌクレオチドリン酸(nicotinamide adenine dinucleotide phosphate:以下NADPと称する。)を還元して還元型ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)のような電気エネルギーに変換する過程で、水を酸化し酸素を生成する機構である。この電気エネルギーは、COを取り込み炭素固定化反応に利用され、炭水化物の合成に利用される。 In photosynthesis, reduced nicotinamide adenine dinucleotide phosphate (hereinafter referred to as NADP + ) is reduced by taking in light energy and reducing nicotinamide adenine dinucleotide phosphate (hereinafter referred to as NADP + ) through an electron transfer system. It is a mechanism that oxidizes water to generate oxygen in the process of converting it to electrical energy such as NADPH). This electric energy captures CO 2 and is used for a carbon fixation reaction, and is used for carbohydrate synthesis.

 これら生体代謝において重要な位置を占めるNADHの生成反応は、下記式(3)で表される。 生成 The formation reaction of NADH, which occupies an important position in biological metabolism, is represented by the following formula (3).

Figure 2004071559
Figure 2004071559

 脱水素酵素(デヒドロゲナーゼ)としては、これまでに数百種類が知られており、様々な基質から生成物への変換を高選択的に触媒する重要な役割を果たしている。酵素のこのような反応選択性は、酵素がタンパク質分子であるために独特の三次元構造を有することに起因する。このため、生体内においては取り込まれた燃料に対して数十種類のデヒドロゲナーゼ等が順序よく反応し、最終的にはCOになるまで酸化が進行することになる。 Several hundred types of dehydrogenases (dehydrogenases) have been known so far, and play an important role in catalyzing the conversion of various substrates to products with high selectivity. Such reaction selectivity of the enzyme is due to the enzyme having a unique three-dimensional structure because it is a protein molecule. For this reason, in the living body, several tens of types of dehydrogenases and the like react in order with the taken-in fuel, and oxidation proceeds until CO 2 is finally formed.

 上述したような生体代謝を燃料電池に利用する技術としては、微生物中で発生した電気エネルギーを電子メディエータを介して微生物外に取り出し、この電子を電極に渡すことで電流を得る微生物電池が報告されている(例えば、特許文献1等を参照)。 As a technique for utilizing the metabolism of a living body as described above in a fuel cell, a microbial cell in which electric energy generated in the microbe is extracted outside the microbe through an electron mediator and the electrons are passed to an electrode to obtain an electric current has been reported. (See, for example, Patent Document 1).

 しかしながら、微生物及び細胞には上述したような化学エネルギーから電気エネルギーへの変換といった目的の反応以外にも不要な機能が多く存在するため、上述した方法では望まない反応に電気エネルギーが消費されて充分なエネルギー変換効率が発揮されない。
特開2000−133297号公報
However, microorganisms and cells have many unnecessary functions other than the above-mentioned reaction such as conversion of chemical energy into electric energy, and thus the above-described method consumes enough electric energy for undesired reactions. Energy conversion efficiency is not exhibited.
JP-A-2000-133297

 そこで、微生物や細胞内から反応に関与する酵素や電子メディエータを取り出すとともに適切な環境を再現させることで所望の反応のみを行うような燃料電池の構成が提案されている。 Therefore, there has been proposed a fuel cell configuration in which enzymes and electron mediators involved in the reaction are taken out of microorganisms and cells and an appropriate environment is reproduced to perform only a desired reaction.

 しかしながら、このような構成の燃料電池では、酵素の反応速度が遅く、実際に得られる電流密度が極めて小さいという問題を有している。 However, the fuel cell having such a configuration has a problem that the reaction rate of the enzyme is slow, and the actually obtained current density is extremely small.

 そこで本発明はこのような従来の問題点を解決するために提案されたものであり、生体代謝を利用しながらも、大きな電流密度を実現することが可能な燃料電池を提供することを目的とする。 Therefore, the present invention has been proposed to solve such a conventional problem, and an object of the present invention is to provide a fuel cell capable of realizing a large current density while utilizing biological metabolism. I do.

 上述の目的を達成するために、本発明に係る燃料電池は、燃料を複数の酵素による段階的な反応により分解するとともに、酸化反応に伴って生成する電子を電極に受け渡す燃料電池であって、酵素1による分解反応により分解物1が生成する際の酵素1の酵素活性をU(E1)とし、分解物1を分解する酵素群2の酵素活性の総和をU(E2)とするとき、U(E1)≦U(E2)であることを特徴とする。 In order to achieve the above object, a fuel cell according to the present invention is a fuel cell that decomposes fuel by a stepwise reaction by a plurality of enzymes and transfers electrons generated by an oxidation reaction to an electrode. When the enzyme activity of the enzyme 1 when the decomposition product 1 is generated by the decomposition reaction by the enzyme 1 is U (E1), and the sum of the enzyme activities of the enzyme group 2 that decomposes the decomposition product 1 is U (E2), U (E1) ≦ U (E2).

 燃料を複数の酵素によって段階的に分解する複合酵素反応においては、酵素活性を損ねるような中間生成物は速やかに分解する必要がある。本発明においては、後段の分解反応を行う酵素群の酵素活性が前段の分解反応を行う酵素1の酵素活性よりも大となるように、各酵素の酵素活性を段階的に設定しているので、燃料が速やかに分解される。 複合 In a complex enzyme reaction in which fuel is decomposed stepwise by a plurality of enzymes, intermediate products that impair enzyme activity must be decomposed promptly. In the present invention, the enzyme activity of each enzyme is set stepwise so that the enzyme activity of the enzyme group that performs the subsequent decomposition reaction is greater than the enzyme activity of the enzyme 1 that performs the previous decomposition reaction. , The fuel is quickly decomposed.

 また、本発明においては、前記酵素1が酸化酵素であり、前記酵素1による分解反応が酸化反応であり、当該酸化反応により補酵素に電子の受け渡しをする燃料電池において、上記要件に加えて、さらに、前記補酵素の酸化体を生成する補酵素酸化酵素を有し、当該補酵素酸化酵素の酵素活性をU(Co)とし、前記複数の酵素のうち、当該補酵素の還元体の生成に関与する酵素群の酵素活性の総和をU(E)とするとき、U(Co)≧U(E)であることを特徴とする。 In the present invention, the enzyme 1 is an oxidase, the decomposition reaction by the enzyme 1 is an oxidation reaction, and the fuel cell transfers electrons to a coenzyme by the oxidation reaction. And a coenzyme oxidase that produces an oxidized form of the coenzyme. The enzyme activity of the coenzyme oxidase is defined as U (Co). Assuming that the sum of the enzyme activities of the involved enzyme groups is U (E), U (Co) ≧ U (E).

 酵素1による酸化反応により補酵素に電子の受け渡しをする燃料電池においては、補酵素の還元体の生成速度に対してこれを酸化する補酵素酸化酵素が不足すると、当該補酵素酸化酵素の酵素反応が律速となる。本発明では、補酵素の酸化を行う補酵素酸化酵素の酵素活性U(Co)を燃料の酸化(すなわち補酵素の還元体の生成)に関与する酵素群の酵素活性の総和U(E)以上としているので、前記補酵素酸化酵素の酵素反応が律速となることはなく、補酵素の還元体は速やかに酸化され、このとき生ずる電子が電子メディエータを介して電極に受け渡される。 In a fuel cell in which electrons are transferred to a coenzyme by an oxidation reaction of the enzyme 1, if the coenzyme oxidase that oxidizes the coenzyme is insufficient for the production rate of the reduced form of the coenzyme, the enzyme reaction of the coenzyme oxidase is insufficient. Becomes rate-limiting. In the present invention, the enzyme activity U (Co) of the coenzyme oxidase that oxidizes the coenzyme is equal to or more than the sum of the enzyme activities U (E) of the enzymes involved in the oxidation of the fuel (that is, the production of the reduced form of the coenzyme). Therefore, the enzyme reaction of the coenzyme oxidase is not limited, and the reduced form of the coenzyme is quickly oxidized, and the electrons generated at this time are transferred to the electrode via the electron mediator.

 燃料としてメタノールを使用する場合を例にしてより具体的に説明すると、メタノールを燃料とする燃料電池は、例えば、燃料極と、空気極と、上記燃料極及び上記空気極の間に介在するプロトン伝導膜と、上記燃料極と電子の受け渡し可能とされた酵素溶液とを有し、上記酵素溶液は、アルコールデヒドロゲナーゼと、ホルムアルデヒドデヒドロゲナーゼと、蟻酸デヒドロゲナーゼと、ジアホラーゼと、電子メディエータとを含有する。ここで、上記アルコールデヒドロゲナーゼ、上記ホルムアルデヒドデヒドロゲナーゼ、上記蟻酸デヒドロゲナーゼ、及び上記ジアホラーゼの酵素活性をそれぞれU(ADH)、U(FalDH)、U(FateDH)、U(DI)とする。 More specifically, the case where methanol is used as a fuel will be described in more detail. For example, a fuel cell using methanol as a fuel includes a fuel electrode, an air electrode, and a proton interposed between the fuel electrode and the air electrode. It has a conductive membrane, an enzyme solution capable of transferring electrons to and from the fuel electrode, and the enzyme solution contains alcohol dehydrogenase, formaldehyde dehydrogenase, formate dehydrogenase, diaphorase, and an electron mediator. Here, the enzyme activities of the alcohol dehydrogenase, the formaldehyde dehydrogenase, the formate dehydrogenase, and the diaphorase are referred to as U (ADH), U (FalDH), U (FateDH), and U (DI), respectively.

 先ず、アルコールデヒドロゲナーゼを酵素1とすると、酵素1の酵素活性U(E1)に相当するU(ADH)は、分解物(ホルムアルデヒド)を分解する酵素群(ホルムアルデヒドデヒドロゲナーゼ及び蟻酸デヒドロゲナーゼ)の酵素活性の総和U(E2)=U(FalDH)+U(FateDH)に対して、U(E1)=U(ADH)≦U(E2)=U(FalDH)+U(FateDH)であることが必要である。次に、ホルムアルデヒドデヒドロゲナーゼを酵素1とすると、酵素1の酵素活性U(E1)に相当するU(FalDH)は、分解物(蟻酸)を分解する酵素群(蟻酸デヒドロゲナーゼ)の酵素活性の総和U(E2)=U(FateDH)に対して、U(E1)=U(FalDH)≦U(E2)=U(FateDH)であることが必要である。これらを勘案すると、上記メタノールを燃料とする燃料電池は、以下の式(1)を満足することが好ましい。
 0<U(ADH)≦U(FalDH)≦U(FateDH)...式(1)
First, assuming that alcohol dehydrogenase is enzyme 1, U (ADH) corresponding to the enzyme activity U (E1) of enzyme 1 is the sum of the enzyme activities of a group of enzymes (formaldehyde dehydrogenase and formate dehydrogenase) that decompose a degradation product (formaldehyde). For U (E2) = U (FalDH) + U (FateDH), it is necessary that U (E1) = U (ADH) ≦ U (E2) = U (FalDH) + U (FateDH). Next, assuming that formaldehyde dehydrogenase is enzyme 1, U (FalDH) corresponding to the enzyme activity U (E1) of enzyme 1 is the sum of the enzyme activities U (formate dehydrogenase) of the enzyme group (formate dehydrogenase) which decomposes the degradation product (formate). For E2) = U (FateDH), it is necessary that U (E1) = U (FalDH) ≦ U (E2) = U (FateDH). In consideration of these, it is preferable that the fuel cell using methanol as a fuel satisfies the following expression (1).
0 <U (ADH) ≦ U (FalDH) ≦ U (FateDH) ... Equation (1)

 次に、上記燃料電池においては、補酵素酸化酵素がジアホラーゼであり、その酵素活性U(DI)がU(Co)に相当し、アルコールデヒドロゲナーゼ、ホルムアルデヒドデヒドロゲナーゼ、及び蟻酸デヒドロゲナーゼは、いずれも補酵素の還元体の生成に関与する。したがって、以下の式(2)の関係を満足する必要がある。
U(ADH)+U(FalDH)+U(FateDH)≦U(DI)...式(2)
Next, in the above fuel cell, the coenzyme oxidase is diaphorase, the enzyme activity U (DI) of which corresponds to U (Co), and alcohol dehydrogenase, formaldehyde dehydrogenase, and formate dehydrogenase are all coenzyme enzymes. Participates in the formation of reductants. Therefore, it is necessary to satisfy the following expression (2).
U (ADH) + U (FalDH) + U (FateDH) ≦ U (DI) ... Equation (2)

 以上のように構成された燃料電池では、アルコールデヒドロゲナーゼ、ホルムアルデヒドデヒドロゲナーゼ及び蟻酸デヒドロゲナーゼが、燃料であるメタノールからCOまでの酸化反応を触媒する過程で合計3分子のNADHを生成する。また、ジアホラーゼは、生成したNADHから電子メディエータを介して燃料極へ2つの電子を渡す。これらの過程で発生するHは、酵素溶液及びプロトン伝導膜を介して空気極に到達する。空気極においては、Hと酸素(O)と外部回路からの電子とから水が生成する。 In the fuel cell configured as described above, alcohol dehydrogenase, formaldehyde dehydrogenase, and formate dehydrogenase generate a total of three molecules of NADH in the process of catalyzing the oxidation reaction from methanol as fuel to CO 2 . The diaphorase transfers two electrons from the generated NADH to the fuel electrode via an electron mediator. H + generated in these processes reaches the air electrode via the enzyme solution and the proton conducting membrane. At the air electrode, water is generated from H + , oxygen (O 2 ), and electrons from an external circuit.

 そして、メタノールを酸化する順序、すなわちアルコールデヒドロゲナーゼ、ホルムアルデヒドデヒドロゲナーゼ及び蟻酸デヒドロゲナーゼの順序に従って各酵素の酵素活性が大となるように酵素溶液が調製されるので、メタノールの分解が滞ることなく、この結果NADHの生成速度が大となる。 Then, the enzyme solution is prepared so that the enzyme activity of each enzyme is increased according to the order of oxidizing methanol, that is, the order of alcohol dehydrogenase, formaldehyde dehydrogenase, and formate dehydrogenase. Generation speed becomes large.

 また、ジアホラーゼの酵素活性がアルコールデヒドロゲナーゼ、ホルムアルデヒドデヒドロゲナーゼ及び蟻酸デヒドロゲナーゼの酵素活性の和よりも高くなるように酵素溶液を調製するので、ジアホラーゼが飽和することなくNADHから燃料極への電子の受け渡し速度を向上させられる。 Also, since the enzyme solution is prepared so that the enzyme activity of diaphorase is higher than the sum of the enzyme activities of alcohol dehydrogenase, formaldehyde dehydrogenase and formate dehydrogenase, the transfer rate of electrons from NADH to the fuel electrode can be reduced without saturating diaphorase. Can be improved.

 本発明に係る燃料電池は、さらに、補酵素から、さらに電子メディエータに電子の受け渡しをする燃料電池において、上記電子メディエータはビタミンK3であることを特徴とする。 燃料 The fuel cell according to the present invention further transfers electrons from a coenzyme to an electron mediator, wherein the electron mediator is vitamin K3.

 例えば、メタノールを燃料とする燃料電池の場合、燃料極と、空気極と、上記燃料極及び上記空気極の間に介在するプロトン伝導膜と、上記燃料極と電子を受け渡し可能とされた酵素溶液とを有し、燃料としてメタノールを用いる燃料電池であって、上記酵素溶液は、アルコールデヒドロゲナーゼと、ホルムアルデヒドデヒドロゲナーゼと、蟻酸デヒドロゲナーゼと、ジアホラーゼと、電子メディエータとを含有し、上記電子メディエータはビタミンK3であることを特徴とする。 For example, in the case of a fuel cell using methanol as a fuel, a fuel electrode, an air electrode, a proton conductive membrane interposed between the fuel electrode and the air electrode, and an enzyme solution capable of transferring electrons to and from the fuel electrode A fuel cell using methanol as a fuel, wherein the enzyme solution contains alcohol dehydrogenase, formaldehyde dehydrogenase, formate dehydrogenase, diaphorase, and an electron mediator, and the electron mediator is vitamin K3. There is a feature.

 ビタミンK3は平衡酸化還元電位が補酵素を酸化する補酵素酸化酵素(例えばジアホラーゼ)と比較的近いため、ジアホラーゼと電子の受け渡しの相性が良く、電子メディエータとして用いることで電子の受け渡し速度が向上する。 Since vitamin K3 has an equilibrium redox potential relatively close to a coenzyme oxidase (eg, diaphorase) that oxidizes a coenzyme, it has good compatibility with diaphorase and electron transfer, and improves electron transfer speed when used as an electron mediator. .

 以上の説明からも明らかなように、本発明に係る燃料電池は、燃料を分解する反応、及び補酵素(例えばNADH)が燃料極へ電子を渡す反応の反応が滞らないように各酵素の酵素活性の大小が調節されている。または、本発明に係る燃料電池は、電子の移動速度を速めるために、電子メディエータとして脱水素酵素(例えばDI)との相性が良いビタミンK3を選択している。したがって本発明によれば、反応速度の向上が図られ、より大きな電流密度を実現する燃料電池を提供することが可能である。 As is clear from the above description, the fuel cell according to the present invention uses the enzyme of each enzyme so that the reaction of decomposing the fuel and the reaction of the coenzyme (for example, NADH) transferring electrons to the fuel electrode do not stop. The level of activity is regulated. Alternatively, in the fuel cell according to the present invention, vitamin K3 that is compatible with dehydrogenase (for example, DI) is selected as an electron mediator in order to increase the electron transfer speed. Therefore, according to the present invention, it is possible to provide a fuel cell in which the reaction speed is improved and a higher current density is realized.

 以下、本発明を適用した燃料電池について、図面を参照しながら詳細に説明する。
 本発明の燃料電池は、生体代謝を利用したものであり、図1に示すように、燃料極と、空気極と、燃料極と空気極とを隔離するプロトン伝導膜と、後述する酵素、補酵素、電子メディエータ等が溶解されてなる酵素溶液とを基本的な構成要素とする。酵素溶液は燃料極と接触するように燃料極室内に保持されている。そして燃料極室中の酵素溶液に、燃料が連続的に供給される。
Hereinafter, a fuel cell to which the present invention is applied will be described in detail with reference to the drawings.
The fuel cell of the present invention utilizes biological metabolism, and as shown in FIG. 1, a fuel electrode, an air electrode, a proton conductive membrane separating the fuel electrode and the air electrode, an enzyme described later, An enzyme solution in which an enzyme, an electron mediator or the like is dissolved is a basic component. The enzyme solution is held in the fuel electrode chamber so as to be in contact with the fuel electrode. Then, the fuel is continuously supplied to the enzyme solution in the fuel electrode chamber.

 この燃料電池では、酵素溶液中で、複合脱水素酵素として後述するような1種類以上のNAD依存型デヒドロゲナーゼが複数の段階を経て燃料(例えばメタノール)をCOまで酸化する際に、補酵素NADからNADHを生成させる。生成したNADHは、ジアホラーゼにより電子メディエータを介して燃料極へ2つの電子を受け渡す。そして、外部回路を通って空気極に電子が到達することで、電流が発生する。また、上述したような過程で発生するHは、プロトン伝導膜又は膜のない酵素溶液を介して空気極まで移動する。そして空気極では、到達したHと、外部回路から供給された2つの電子と、酸素とから水が生成される。 In this fuel cell, when one or more NAD + -dependent dehydrogenases described below as complex dehydrogenase oxidize a fuel (eg, methanol) to CO 2 through a plurality of steps in an enzyme solution, a coenzyme Generate NADH from NAD + . The generated NADH transfers two electrons to the fuel electrode via diaphorase via an electron mediator. Then, when the electrons reach the air electrode through an external circuit, a current is generated. Further, H + generated in the above-described process moves to the air electrode through the proton conductive membrane or the enzyme solution without the membrane. At the air electrode, water is generated from the reached H + , the two electrons supplied from the external circuit, and oxygen.

 本発明では、以下に述べるように、NAD依存型デヒドロゲナーゼ等の酵素の酵素活性を最適化すること、最適な電子メディエータを選択することのいずれか一方又はこれらを組み合わせることにより、燃料極への電子の移動速度を速め、電流密度の向上を実現している。そこで、図1に示す反応のうち酵素溶液から燃料極に電子を渡す反応について図2を用いてさらに詳細に説明する。 In the present invention, as described below, by optimizing the enzymatic activity of an enzyme such as NAD + -dependent dehydrogenase, selecting an optimal electron mediator, or combining them, The electron movement speed is increased, and the current density is improved. Therefore, the reaction of transferring electrons from the enzyme solution to the fuel electrode in the reaction shown in FIG. 1 will be described in more detail with reference to FIG.

 酵素溶液には、NAD依存型デヒドロゲナーゼとして、燃料であるメタノールからホルムアルデヒド及びNADHを生成するアルコールデヒドロゲナーゼ(alcohol dehydrogenase:以下ADHと称する。)と、ホルムアルデヒドから蟻酸及びNADHを生成するホルムアルデヒドデヒドロゲナーゼ(formaldehyde dehydrogenase:以下FalDHと称する。)と、蟻酸からCO及びNADHを生成する蟻酸デヒドロゲナーゼ(formate dehydrogenase:以下FateDHと称する。)の3種類が溶解されている。また、酵素溶液にはNADHを酸化してNADとHとに分解するNADHデヒドロゲナーゼ、すなわちジアホラーゼ(diaphorase:以下DIと称する。)が溶解されている。また、酵素溶液には、DIを介してNADHから2つの電子を受け取るとともに燃料極へ渡す電子メディエータが溶解されている。また、NAD依存型デヒドロゲナーゼが反応に必要とする補酵素NADも、酵素溶液中に溶解されている。 In the enzyme solution, alcohol dehydrogenase (hereinafter, referred to as ADH) for producing formaldehyde and NADH from methanol as a fuel and formaldehyde dehydrogenase for producing formic acid and NADH from formaldehyde are used as NAD + -dependent dehydrogenase. : less FalDH referred to as), formate dehydrogenase to produce CO 2 and NADH from formic acid (formate dehydrogenase:. is dissolved three following FateDH referred to as).. In addition, NADH dehydrogenase which oxidizes NADH to decompose it into NAD + and H + , that is, diaphorase (hereinafter referred to as DI) is dissolved in the enzyme solution. In the enzyme solution, an electron mediator that receives two electrons from NADH via DI and transfers it to the fuel electrode is dissolved. Also, the coenzyme NAD + required for the reaction by the NAD + -dependent dehydrogenase is dissolved in the enzyme solution.

 ここで、酵素溶液中に含まれる燃料を分解する複数の酵素の酵素活性は、次の条件を満たす必要がある。先ず、アルコールデヒドロゲナーゼを酵素1とすると、酵素1の酵素活性U(E1)に相当するU(ADH)は、分解物(ホルムアルデヒド)を分解する酵素群(ホルムアルデヒドデヒドロゲナーゼ及び蟻酸デヒドロゲナーゼ)の酵素活性の総和U(E2)=U(FalDH)+U(FateDH)に対して、U(E1)=U(ADH)≦U(E2)=U(FalDH)+U(FateDH)であることが必要である。次に、ホルムアルデヒドデヒドロゲナーゼを酵素1とすると、酵素1の酵素活性U(E1)に相当するU(FalDH)は、分解物(蟻酸)を分解する酵素群(蟻酸デヒドロゲナーゼ)の酵素活性の総和U(E2)=U(FateDH)に対して、U(E1)=U(FalDH)≦U(E2)=U(FateDH)であることが必要である。これらを勘案すると、上記メタノールを燃料とする燃料電池は、以下の式(1)を満足することが好ましい。
0<U(ADH)≦U(FalDH)≦U(FateDH)...式(1)
Here, the enzyme activities of a plurality of enzymes that decompose the fuel contained in the enzyme solution must satisfy the following conditions. First, assuming that alcohol dehydrogenase is enzyme 1, U (ADH) corresponding to the enzyme activity U (E1) of enzyme 1 is the sum of the enzyme activities of a group of enzymes (formaldehyde dehydrogenase and formate dehydrogenase) that decompose a degradation product (formaldehyde). For U (E2) = U (FalDH) + U (FateDH), it is necessary that U (E1) = U (ADH) ≦ U (E2) = U (FalDH) + U (FateDH). Next, assuming that formaldehyde dehydrogenase is enzyme 1, U (FalDH) corresponding to the enzyme activity U (E1) of enzyme 1 is the sum of the enzyme activities U (formate dehydrogenase) of the enzyme group (formate dehydrogenase) which decomposes the degradation product (formate). For E2) = U (FateDH), it is necessary that U (E1) = U (FalDH) ≦ U (E2) = U (FateDH). In consideration of these, it is preferable that the fuel cell using methanol as a fuel satisfies the following expression (1).
0 <U (ADH) ≦ U (FalDH) ≦ U (FateDH) ... Equation (1)

 上述した3種類の最適なNAD依存型デヒドロゲナーゼを選択するとともにその酵素活性の比をメタノールの分解の順序にしたがって増大させることで、ホルムアルデヒドや蟻酸といった中間生成物を蓄積させることなくメタノールをCOまで迅速に分解し、NADHの生成速度を充分に高くすることができる。 By selecting the three optimal NAD + -dependent dehydrogenases described above and increasing the ratio of their enzymatic activities in the order of decomposition of methanol, methanol can be converted to CO 2 without accumulating intermediate products such as formaldehyde and formic acid. , And the production rate of NADH can be sufficiently increased.

 また、NADHから燃料極への電子の授受に関与するDIの酵素活性を、NADHの生成に関与する3種類のNAD依存型デヒドロゲナーゼの酵素活性の和よりも大とする必要があり、これにより、生成したNADHから燃料極への電子の移動速度を速められる。このことは、DIの酵素活性をU(DI)としたとき、以下の式(2)で表される。
U(ADH)+U(FalDH)+U(FateDH)≦U(DI)...式(2)
Further, the enzyme activity of DI involved in transfer of electrons from NADH to the fuel electrode needs to be greater than the sum of the enzyme activities of three types of NAD + -dependent dehydrogenase involved in the production of NADH. In addition, the moving speed of electrons from the generated NADH to the fuel electrode can be increased. This is expressed by the following formula (2), where the enzyme activity of DI is U (DI).
U (ADH) + U (FalDH) + U (FateDH) ≦ U (DI) ... Equation (2)

 DIの酵素活性がNAD依存型デヒドロゲナーゼの酵素活性の和を下回る場合、DIの酵素反応が律速となり、電子の移動速度が遅くなるので電流密度が不足する。 When the enzymatic activity of DI is less than the sum of the enzymatic activities of NAD + -dependent dehydrogenase, the enzymatic reaction of DI becomes rate-determining, and the electron transfer rate becomes slow, resulting in insufficient current density.

 なお、ここで言うU(ユニット)とは、酵素活性を示す1つの指標であり、ある温度及びpHにおいて1分間あたり1μmolの基質が反応する度合いを示す。 U Here, U (unit) is one index indicating enzyme activity, and indicates the degree to which 1 μmol of a substrate reacts per minute at a certain temperature and pH.

 燃料電池の電圧は、それぞれの電極に用いる電子メディエータの酸化還元電位を制御することで設定される。つまり、より高い電圧を得るには、燃料極側ではよりネガティブな電位の電子メディエータを、空気極側ではよりポジティブな電位の電子メディエータを選ぶと良い。しかし、電子メディエータの、酵素に対する反応親和性、電極との電子交換速度、阻害因子(光、酸素等)に対する構造安定性等も考慮しなければならない。 電 圧 The voltage of the fuel cell is set by controlling the oxidation-reduction potential of the electron mediator used for each electrode. That is, in order to obtain a higher voltage, it is preferable to select an electron mediator having a more negative potential on the fuel electrode side and an electron mediator having a more positive potential on the air electrode side. However, consideration must also be given to the reaction affinity of the electron mediator for the enzyme, the rate of electron exchange with the electrode, and the structural stability against inhibitory factors (light, oxygen, etc.).

 このようなトータルな観点から、燃料極に作用する電子メディエータとして、ビタミンK3(2-methyl-1,4-naphthoquinone、Vitamin K3:以下VK3と称する)、を選択することが現状では好ましい。VK3は平衡酸化還元電位(pH7.0の溶液中)が−210mV(vsAg/AgCl)であり、活性点としてフラビンモノヌクレオチド(flavin mononucleotide:以下FMNと称する。)を有するDIの平衡酸化還元電位(pH7.0の溶液中)である約−380mV(vsAg/AgCl)と比較して、電位が若干ポジティブである。これにより、DIと電子メディエータとの間の電子の交換速度が適度に速くなり、大きな電流密度を得られるのと同時に、空気極と組み合わせて電池を構成した場合に比較的大きな電圧を得ることができる。 From such a total point of view, it is presently preferable to select vitamin K3 (2-methyl-1,4-naphthoquinone, hereinafter referred to as VK3) as an electron mediator acting on the fuel electrode. VK3 has an equilibrium redox potential (in a solution of pH 7.0) of −210 mV (vsAg / AgCl), and has an equilibrium redox potential of DI having an active site of flavin mononucleotide (hereinafter, referred to as FMN). The potential is slightly positive compared to about -380 mV (vsAg / AgCl), which is in a pH 7.0 solution. As a result, the exchange rate of electrons between the DI and the electron mediator becomes moderately high, and a large current density can be obtained. At the same time, a relatively large voltage can be obtained when a battery is configured in combination with the air electrode. it can.

 これに対して、VK3よりもさらに電位がポジティブである例えば1,4-benzoquinone(+93mV(vsAg/AgCl))を電子メディエータとして用いた場合、溶液中の電子メディエータ分子の拡散の影響が大きくなり、電流密度はVK3と比べて殆ど変化せず、期待される程の効果は得られない。そればかりか、電池電圧がより小さくなることになるという問題が生じる。また、VK3よりもさらに電位がネガティブであり、且つDIよりも電位が若干ポジティブである例えばanthraquinone-2-sulfonate(−549mV(vsAg/AgCl))を電子メディエータとして用いた場合、逆に電流密度が減少するが、電池電圧は向上する。この場合、電極構造を工夫して反応場を3次元的に高密度に構築することで反応電極面積を増大させれば、電池としての電流密度をある程度まで向上させることができる。このように、VK3の他に適当な酸化還元電位を有する電子メディエータを選択することも可能である。他に、例えばキノン骨格を有する化合物、Os、Ru、Fe、Co等の金属錯体、ベンジルビオローゲン等のビオローゲン化合物、ニコチンアミド構造を有する化合物、リボフラビン構造を有する化合物、ヌクレオチド−リン酸構造を有する化合物等を燃料極に作用する電子メディエータとして利用できる。 In contrast, when, for example, 1,4-benzoquinone (+93 mV (vsAg / AgCl)), which has a more positive potential than VK3, is used as an electron mediator, the effect of diffusion of the electron mediator molecule in the solution increases. The current density hardly changes compared to VK3, and the expected effect cannot be obtained. In addition, there is the problem that the battery voltage will be lower. Further, when an anthraquinone-2-sulfonate (−549 mV (vsAg / AgCl)), which has a further negative potential than VK3 and a slightly more positive potential than DI, is used as an electron mediator, the current density is inversely higher. At the same time, the battery voltage increases. In this case, the current density of the battery can be improved to some extent by increasing the reaction electrode area by devising the electrode structure and constructing the reaction field three-dimensionally at a high density. Thus, it is also possible to select an electron mediator having an appropriate oxidation-reduction potential in addition to VK3. In addition, for example, a compound having a quinone skeleton, a metal complex such as Os, Ru, Fe, and Co, a viologen compound such as benzyl viologen, a compound having a nicotinamide structure, a compound having a riboflavin structure, and a compound having a nucleotide-phosphate structure Can be used as an electron mediator acting on the fuel electrode.

 また、空気極に作用する電子メディエータとしては、主にABTS〔2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate)〕)、Os、Ru、Fe、Co等の金属錯体等を用いることができる。 As the electron mediator acting on the air electrode, ABTS [2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate)]), metal complexes such as Os, Ru, Fe, Co, etc. may be used. it can.

 そしてこの系においては、以下のようにして発電が行われる。先ず、酵素溶液に燃料であるメタノールが供給されると、酵素溶液中のADHがメタノールの酸化を触媒し、ホルムアルデヒドを生成する。このときメタノールから2Hと2電子とを除去し、NADの還元体であるNADHと、Hとを生じる。 In this system, power is generated as follows. First, when methanol as a fuel is supplied to the enzyme solution, ADH in the enzyme solution catalyzes the oxidation of methanol to formaldehyde. At this time, 2H + and two electrons are removed from methanol to produce NADH, which is a reduced form of NAD + , and H + .

 次に、FalDHがホルムアルデヒドにHOを付加するとともに2Hと2電子とを除去し、蟻酸を生成する。このとき、NADHとHとを生じる。 Next, FalDH adds H 2 O to formaldehyde and removes 2H + and two electrons to produce formic acid. At this time, NADH and H + are generated.

 次に、FateDHが蟻酸から2Hと2電子とを除去して、最終生成物であるCOを生成する。このとき、NADHとHとを生じる。最終生成物であるCOは、酵素溶液系から取り除かれれば(通常ガスとして)、酵素溶液のpHを大きく変化させることがない。このため、酵素活性の低下が抑制される。 Next, FateDH is to remove the 2H + and 2 electrons from formic acid, to produce a CO 2 as the final product. At this time, NADH and H + are generated. If the final product, CO 2, is removed from the enzyme solution system (usually as a gas), it does not significantly change the pH of the enzyme solution. For this reason, a decrease in enzyme activity is suppressed.

 そして次に、上述した過程で生成したNADHをDIが酸化して、電子メディエータの酸化体に電子を渡して電子メディエータの還元体とする。なお、電子メディエータがVK3である場合には、VK3の酸化体は2電子と2Hとを受け取り、VK3の酸化体となる。次いで電子メディエータの還元体が電子を燃料極に渡し、電子メディエータの酸化体に戻る。DIによって酸化されたNADHは、NADとHとになり、生成したNADは上述したNAD依存型デヒドロゲナーゼによるメタノールの分解過程で再度利用される。この結果、1分子のNADHから燃料極へ2つの電子を渡すことになり、直流電流を取り出すことができる。 Then, the DI is oxidized from the NADH generated in the above-described process, and electrons are transferred to the oxidized form of the electron mediator to be a reduced form of the electron mediator. When the electron mediator is VK3, the oxidized form of VK3 receives two electrons and 2H + and becomes an oxidized form of VK3. The reduced form of the electron mediator then passes the electrons to the fuel electrode and returns to the oxidized form of the electron mediator. The NADH oxidized by DI becomes NAD + and H + , and the generated NAD + is reused in the above-mentioned process of decomposing methanol by the NAD + -dependent dehydrogenase. As a result, two electrons are transferred from one molecule of NADH to the fuel electrode, and a direct current can be extracted.

 以上のように、3種類のNAD依存型デヒドロゲナーゼが1分子のメタノールをCOまで分解する過程で、合計3分子のNADHが作られる。この段階では、エネルギー状態の異なるHを有する燃料からそれぞれのHを引き抜く過程で、それらの化学エネルギーをNADHという同一物質に変換する。このNADHが有する化学エネルギーを利用すること、すなわちNADHが有する電子を燃料極に渡すことにより、高いエネルギー変換効率の燃料電池を実現することができる。 As described above, a total of three molecules of NADH are produced during the process in which three types of NAD + -dependent dehydrogenase decompose one molecule of methanol to CO 2 . At this stage, in the process of extracting each H + from the fuel having H + having a different energy state, the chemical energy is converted to the same substance called NADH. By utilizing the chemical energy of NADH, that is, by passing the electrons of NADH to the fuel electrode, a fuel cell with high energy conversion efficiency can be realized.

 NADHから燃料極への電子の移動を円滑に行うためには、DIの酵素活性に対して電子メディエータを酵素溶液中に充分に存在させることが好ましい。 In order to smoothly transfer electrons from NADH to the fuel electrode, it is preferable that the electron mediator be sufficiently present in the enzyme solution for the enzyme activity of DI.

 また、上記の酵素が効率よく定常的に反応するために、酵素溶液は、トリス緩衝液、リン酸緩衝液等の緩衝液によって、例えばpH7付近にpHが維持されていることが好ましい。また、酵素溶液の温度も、温度制御系によって例えば40℃付近に維持されていることが好ましい。さらに、酵素溶液のイオン強度(Ion Strength:以下I.S.と称する。)は、あまり大きすぎても小さすぎても酵素活性に悪影響を与えるが、電気化学応答性も考慮すると、適度なイオン強度であること、例えば0.3程度であることが好ましい。ただし、上記のpH、温度及びイオン強度は、用いる酵素それぞれに最適値が存在し、上述した値に限定されるものではない。 In order for the above enzyme to react efficiently and constantly, it is preferable that the pH of the enzyme solution is maintained at, for example, around pH 7 by a buffer such as Tris buffer or phosphate buffer. Further, the temperature of the enzyme solution is preferably maintained at, for example, around 40 ° C. by a temperature control system. Further, the ionic strength (Ion Strength: hereinafter referred to as IS) of the enzyme solution has an adverse effect on the enzyme activity if it is too high or too low. The strength is preferably, for example, about 0.3. However, the above-mentioned pH, temperature and ionic strength have optimum values for the respective enzymes to be used, and are not limited to the above-mentioned values.

 さらに、上述した各種の酵素、補酵素及び電子メディエータは、酵素溶液中に溶解されて用いられる他、バイオセンサ等の分野で提案されている一般的な方法でこれらのうち少なくとも一種が電極上又は電極近傍に固定化されて用いられてもかまわない。例えば、燃料極として、活性炭等の表面積の広い材料を3次元的に高密度に配列させた電極を用いることで、電子メディエータの有効な反応電極面積を拡大し、電流密度のさらなる向上を図ることができる。また、例えばグルタルアルデヒドによる架橋で酵素を電極表面に高密度に固定化させることで、酵素から電極表面近傍の電子メディエータへの電子の受け渡しがより効率的となり、電流密度を向上させることもできる。 Furthermore, the various enzymes described above, coenzymes and electron mediators are used by being dissolved in an enzyme solution, and at least one of these is placed on an electrode or by a general method proposed in the field of biosensors and the like. It may be used by being fixed near the electrode. For example, by using an electrode in which a material having a large surface area such as activated carbon is three-dimensionally arranged at a high density as a fuel electrode, the effective reaction electrode area of the electron mediator is expanded, and the current density is further improved. Can be. Further, by immobilizing the enzyme on the electrode surface at a high density by crosslinking with glutaraldehyde, for example, the transfer of electrons from the enzyme to the electron mediator near the electrode surface becomes more efficient, and the current density can be improved.

 なお、本発明に用いられる酵素は、上述した酵素に限定されず、その他の酵素でも構わない。また、上述したADH、FalDH、FateDH及びDIは、ミューテーションによりpHや阻害物質に対して比較的安定とされていてもよい。さらに、空気極用の酵素としては、ラッカーゼ、ビリルビンオキシダーゼ等の公知の酵素を用いてもよい。 The enzyme used in the present invention is not limited to the above-mentioned enzyme, and may be other enzymes. ADH, FalDH, FateDH, and DI described above may be relatively stable to pH or an inhibitor by mutation. Further, as the enzyme for the air electrode, a known enzyme such as laccase or bilirubin oxidase may be used.

 本発明の燃料電池の燃料としては、メタノールの他、エタノール等のアルコール、グルコース等の糖類、脂肪類、タンパク質、糖代謝の中間生成物等の有機酸(グルコース−6−リン酸、フルクトース−6−リン酸、フルクトース−1,6−ビスリン酸、トリオースリン酸イソメラーゼ、1,3−ビスホスホグリセリン酸、3−ホスホグリセリン酸、2−ホスホグリセリン酸、ホスホエノールピルビン酸、ピルビン酸、アセチル−CoA、クエン酸、cis−アコニット酸、イソクエン酸、オキサロコハク酸、2−オキソグルタル酸、スクシニル−CoA、コハク酸、フマル酸、L−リンゴ酸、オキサロ酢酸等)、これらの混合物等を用いてもよい。中でもグルコース、エタノール、糖代謝の中間生成物等は、上述した酵素を単独又は適当な複数種類用いて組み合わせるとともに、特にTCA回路に関与する複数の酵素を用い、環境条件を最適化することで、上述した燃料をメタノールとした系と同様に、燃料がCOまで酸化される系を実現できる。特にグルコースは取り扱いが極めて容易な材料であるため好ましい燃料である。 As fuels for the fuel cell of the present invention, in addition to methanol, alcohols such as ethanol, sugars such as glucose, fats, proteins, and organic acids such as intermediate products of sugar metabolism (glucose-6-phosphate, fructose-6). -Phosphate, fructose-1,6-bisphosphate, triosephosphate isomerase, 1,3-bisphosphoglycerate, 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, pyruvate, acetyl-CoA, Citric acid, cis-aconitic acid, isocitric acid, oxalosuccinic acid, 2-oxoglutaric acid, succinyl-CoA, succinic acid, fumaric acid, L-malic acid, oxaloacetic acid, and the like, and mixtures thereof may be used. Among them, glucose, ethanol, intermediate products of sugar metabolism and the like, together with the above-mentioned enzymes alone or in combination using a plurality of appropriate types, particularly by using a plurality of enzymes involved in the TCA cycle, by optimizing environmental conditions, A system in which the fuel is oxidized to CO 2 can be realized in the same manner as the above-described system in which the fuel is methanol. In particular, glucose is a preferable fuel because it is an extremely easy-to-handle material.

 この場合、用いる酵素は、燃料に応じて最適な酵素を選択して使用することが好ましい。例えば燃料極に用いる酵素としては、グルコースデヒドロゲナーゼ、電子伝達系の一連の酵素、ATP合成酵素、糖代謝に関与する酵素(例えばヘキソキナーゼ、グルコースリン酸イソメラーゼ、ホスホフルクトキナーゼ、フルクトース二リン酸アルドラーゼ、トリオースリン酸イソメラーゼ、グリセルアルデヒドリン酸デヒドロゲナーゼ、ホスホグリセロムターゼ、ホスホピルビン酸ヒドラターゼ、ピルビン酸キナーゼ、L−乳酸デヒドロゲナーゼ、D−乳酸デヒドロゲナーゼ、ピルビン酸デヒドロゲナーゼ、クエン酸シンターゼ、アコニターゼ、イソクエン酸デヒドロゲナーゼ、2−オキソグルタル酸デヒドロゲナーゼ、スクシニル−CoAシンテターゼ、コハク酸デヒドロゲナーゼ、フマラーゼ、マロン酸デヒドロゲナーゼ等)等の公知の酵素を挙げることができる。 In this case, it is preferable to select and use the most suitable enzyme according to the fuel. For example, enzymes used for the fuel electrode include glucose dehydrogenase, a series of enzymes in the electron transfer system, ATP synthase, enzymes involved in sugar metabolism (eg, hexokinase, glucose phosphate isomerase, phosphofructokinase, fructose diphosphate aldolase, Triose phosphate isomerase, glyceraldehyde phosphate dehydrogenase, phosphoglyceromutase, phosphopyruvate hydratase, pyruvate kinase, L-lactate dehydrogenase, D-lactate dehydrogenase, pyruvate dehydrogenase, citrate synthase, aconitase, isocitrate dehydrogenase, 2- Oxoglutarate dehydrogenase, succinyl-CoA synthetase, succinate dehydrogenase, fumarase, malonate dehydrogenase, etc.) Mention may be made of the enzyme.

 図3は、燃料にエタノールを用いた場合の複合酵素反応を示すものである。エタノールの場合、第1段階では、アルコールデヒドロゲナーゼ(ADH)の作用によりエタノールが酸化されてアセトアルデヒドになり、第2段階では、アルデヒドデヒドロゲナーゼ(AlDH)の作用によりアセトアルデヒドが酸化されて酢酸になる。各段階では、NAD(酸化体)が還元されて、NADH(還元体)が生成する。電子メディエータを介した電子の受け渡しは、先の図2に示すメタノールの場合と同様である。ここで、ADH及びAlDHの酵素活性をそれぞれU(ADH)、U(AlDH)とすると、U(E1)に相当するU(ADH)とU(E2)に相当するU(AlDH)は、0<U(ADH)≦U(AlDH)である。また、これらU(ADH)とU(AlDH)の総和はDIの酵素活性U(DI)以下であり、U(ADH)+U(AlDH)≦U(DI)である。 FIG. 3 shows a complex enzyme reaction when ethanol is used as a fuel. In the case of ethanol, in the first step, ethanol is oxidized to acetaldehyde by the action of alcohol dehydrogenase (ADH), and in the second step, acetaldehyde is oxidized to acetic acid by the action of aldehyde dehydrogenase (AlDH). In each step, NAD + (oxidized form) is reduced to produce NADH (reduced form). The transfer of electrons via the electron mediator is the same as in the case of methanol shown in FIG. Here, assuming that the enzyme activities of ADH and AlDH are U (ADH) and U (AlDH), respectively, U (ADH) corresponding to U (E1) and U (AlDH) corresponding to U (E2) are 0 < U (ADH) ≦ U (AlDH). The sum of these U (ADH) and U (AlDH) is less than or equal to the enzyme activity of DI U (DI), and U (ADH) + U (AlDH) ≦ U (DI).

 図4は、燃料にグルコースを用いた場合の複合酵素反応を示すものである。グルコースの場合、第1段階の酸化反応では、グルコースデヒドロゲナーゼ(GDH)の作用により、β−D−グルコースがD−グルコノ−δ−ラクトンに分解される。D−グルコノ−δ−ラクトンは、加水分解によりD−グルコネートになり、D−グルコネートは、グルコノキナーゼの存在下、アデノシン三リン酸(ATP)をアデノシン二リン酸(ADP)とリン酸に加水分解することでリン酸化され、6−フォスフォ−D−グルコネートになる。この6−フォスフォ−D−グルコネートは、第2段階の酸化反応において、フォスフォグルコネートデヒドロゲナーゼ(PhGDH)の作用により、2−ケト−6−フォスフォ−D−グルコネートに酸化される。各酸化反応では、NAD(酸化体)が還元されて、NADH(還元体)が生成する。電子メディエータを介した電子の受け渡しは、先の図2に示すメタノールの場合と同様である。ここで、GDH及びPhGDHの酵素活性をそれぞれU(GDH)、U(PhGDH)とすると、U(E1)に相当するU(GDH)とU(E2)に相当するU(PhGDH)は、0<U(GDH)≦U(PhGDH)である。また、これらU(GDH)とU(PhGDH)の総和はDIの酵素活性U(DI)以下であり、U(GDH)+U(PhGDH)≦U(DI)である。 FIG. 4 shows a complex enzyme reaction when glucose is used as a fuel. In the case of glucose, in the first stage oxidation reaction, β-D-glucose is decomposed into D-glucono-δ-lactone by the action of glucose dehydrogenase (GDH). D-glucono-δ-lactone is converted to D-gluconate by hydrolysis, and D-gluconate hydrolyzes adenosine triphosphate (ATP) to adenosine diphosphate (ADP) and phosphate in the presence of gluconokinase. Decomposition results in phosphorylation to 6-phospho-D-gluconate. This 6-phospho-D-gluconate is oxidized to 2-keto-6-phospho-D-gluconate by the action of phosphogluconate dehydrogenase (PhGDH) in the second stage oxidation reaction. In each oxidation reaction, NAD + (oxidized form) is reduced to produce NADH (reduced form). The transfer of electrons via the electron mediator is the same as in the case of methanol shown in FIG. Here, assuming that the enzyme activities of GDH and PhGDH are U (GDH) and U (PhGDH), respectively, U (GDH) corresponding to U (E1) and U (PhGDH) corresponding to U (E2) are 0 < U (GDH) ≦ U (PhGDH). The sum of these U (GDH) and U (PhGDH) is not more than the enzyme activity of DI U (DI), and U (GDH) + U (PhGDH) ≤ U (DI).

 上記、エタノールおよびグルコース一分子当たり、NADH2分子を取り出すことが可能であるが、さらに燃料のエネルギー密度を向上させる必要がある。そのためにグルコースをCOまで分解する方法としては、糖代謝を利用する必要がある。エタノールについては、アセトアルデヒドデヒドロゲナーゼ(AalDH)によりアセチルCo−Aとしたのち、TCA回路に渡す必要がある。
 その他、グルコースを燃料とする場合には、糖代謝を応用することも可能である。糖代謝を利用した複合酵素反応は、解糖系によるグルコースの分解及びピルビン酸の生成、及びクエン酸サイクルに大別されるが、解糖系及びクエン酸サイクルは、広く知られる反応系であるので、ここではその説明は省略する。
Although it is possible to extract two NADH molecules per one molecule of ethanol and glucose, it is necessary to further improve the energy density of the fuel. Therefore, as a method of decomposing glucose into CO 2, it is necessary to utilize sugar metabolism. Ethanol must be converted to acetyl-Co-A with acetaldehyde dehydrogenase (AalDH) and then passed to the TCA cycle.
In addition, when glucose is used as a fuel, sugar metabolism can be applied. Complex enzyme reactions utilizing glucose metabolism are roughly divided into glycolysis and pyruvate production by the glycolytic system, and the citric acid cycle. The glycolytic system and the citric acid cycle are widely known reaction systems. Therefore, the description is omitted here.

 本発明の燃料電池において、燃料極には、グラッシーカーボン等のカーボン、Pt、Au等を使用できる。空気極としては、例えばPt等の触媒を担持したカーボンをフッ素系樹脂等で接合したもの等を利用できる。また、空気極には、さらにラッカーゼ等の酸化還元酵素を含有させてもよい。プロトン伝導膜としては、例えば、米国デュポン社製、商品名Nafion117等のフッ素系樹脂等が好適である。 カ ー ボ ン In the fuel cell of the present invention, carbon such as glassy carbon, Pt, Au or the like can be used for the fuel electrode. As the air electrode, for example, a material in which carbon carrying a catalyst such as Pt or the like is bonded with a fluororesin or the like can be used. The air electrode may further contain an oxidoreductase such as laccase. As the proton conductive membrane, for example, a fluorine-based resin such as Nafion117 (trade name, manufactured by DuPont, USA) is suitable.

 以上説明したように、本発明の燃料電池では、各酵素の酵素活性の比を後段階となるにしたがって増大させ、例えば上述の式(1)及び式(2)のように規定することで、燃料(例えばメタノール)をCOまで分解するとともにNADH及びHを生成する反応、及び生成したNADHを分解する反応を迅速に進めることができる。また、電子メディエータとしてVK3を選択することで、NADHから燃料極への電子の移動速度を速めることができる。以上の手法を単独で、又は併用することで、生体代謝を利用した燃料電池において、これまでにない大きな電流密度を実現することが可能となる。特に2つの方法を併用することが好ましく、これによってさらなる反応速度の向上が図られ、より大きな電流密度が得られる。 As described above, in the fuel cell of the present invention, the ratio of the enzyme activity of each enzyme is increased in a later stage, and is defined, for example, as in the above formulas (1) and (2). The reaction for decomposing the fuel (for example, methanol) to CO 2 and producing NADH and H + , and the reaction for decomposing the produced NADH can be rapidly advanced. Also, by selecting VK3 as the electron mediator, the speed of electron transfer from NADH to the fuel electrode can be increased. By using the above methods alone or in combination, it is possible to realize an unprecedentedly large current density in a fuel cell utilizing biometabolism. In particular, it is preferable to use two methods in combination, whereby the reaction rate is further improved and a higher current density is obtained.

 また、本発明の燃料電池は、高効率なエネルギー変換機構である生体代謝を利用して発電を行うので、室温での安定動作性に優れ、小型化及び軽量化が可能であり、燃料の取り扱いも極めて容易である等の利点も兼ね備える。 In addition, the fuel cell of the present invention generates electric power by utilizing biological metabolism, which is a high-efficiency energy conversion mechanism, and therefore has excellent stable operation at room temperature, can be reduced in size and weight, and can handle fuel. Also has the advantage of being extremely easy.

 さらに、電池反応に寄与する酵素は、目的の酵素を産生する細胞や微生物等を培養し、常法により抽出、精製すること等により得られるため、燃料電池の低コスト化を図ることも可能となる。 Furthermore, the enzymes that contribute to the cell reaction can be obtained by culturing cells or microorganisms that produce the target enzyme, and extracting and purifying the cells by a conventional method, so that the cost of the fuel cell can be reduced. Become.

 なお、本発明は上述の記載に限定されることはなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。 The present invention is not limited to the above description, and can be appropriately modified without departing from the gist of the present invention.

 以下、本発明を適用した具体的な実施例について、実験結果に基づいて説明する。下記の比較例及び実施例では、溶液中に酵素、補酵素、電子メディエータ、燃料等を随時添加していくが、それぞれを先ず溶液に溶解させ、添加量を数μlオーダーと非常に少なく制御し、滴下以前の物質濃度減少、および溶液温度変化が無視できるように実験を行った。 Hereinafter, specific examples to which the present invention is applied will be described based on experimental results. In the following Comparative Examples and Examples, enzymes, coenzymes, electron mediators, fuels, etc. are added to the solution as needed.However, each of them is first dissolved in the solution, and the added amount is controlled to be very small, on the order of several μl. The experiment was conducted so that the decrease in the substance concentration before dropping and the change in solution temperature could be ignored.

<実験1>
 先ず、NADHの生成速度を調べることで、NAD依存型デヒドロゲナーゼの最適な酵素活性の比について検討した。
<Experiment 1>
First, the ratio of the optimal enzyme activity of NAD + -dependent dehydrogenase was examined by examining the production rate of NADH.

実施例1
 3mlの0.1Mトリス塩酸緩衝液(pH7.0、I.S.=0.3)にNADを5mM、メタノールを1M添加し、この溶液を撹拌するとともにアルゴンガスでパージを行った。さらにADHを25ユニット、FalDHを50ユニット、FateDHを75ユニット添加した。これらNAD依存型デヒドロゲナーゼを溶液に添加した時点から、紫外可視分光光度計を用いて吸光度を経時的に測定した。光路長は1cmである。測定波長はNADHに特徴的な340nmを選び、その吸光度変化から生成したNADH濃度を決定した。なお、酵素溶液の温度は、40±1℃の範囲に収まるように制御した。
Example 1
To 3 ml of 0.1 M Tris-HCl buffer (pH 7.0, IS = 0.3), 5 mM of NAD + and 1 M of methanol were added, and the solution was stirred and purged with argon gas. Further, 25 units of ADH, 50 units of FalDH and 75 units of FateDH were added. From the time when these NAD + -dependent dehydrogenases were added to the solution, the absorbance was measured over time using an ultraviolet-visible spectrophotometer. The optical path length is 1 cm. A measurement wavelength of 340 nm characteristic of NADH was selected, and the concentration of NADH generated from the change in absorbance was determined. The temperature of the enzyme solution was controlled so as to fall within a range of 40 ± 1 ° C.

実施例2
 NAD依存型デヒドロゲナーゼとして、ADHを25ユニット、FalDHを100ユニット、FateDHを200ユニット添加したこと以外は、実施例1と同様にしてNADH濃度を測定した。
Example 2
The NADH concentration was measured in the same manner as in Example 1, except that 25 units of ADH, 100 units of FalDH, and 200 units of FateDH were added as NAD + -dependent dehydrogenase.

比較例1
 NAD依存型デヒドロゲナーゼとして、ADHを25ユニット添加し、FalDH及びFateDHを添加しなかったこと以外は、実施例1と同様にしてNADH濃度を測定した。
Comparative Example 1
The NADH concentration was measured in the same manner as in Example 1 except that 25 units of ADH was added as the NAD + -dependent dehydrogenase, and FalDH and FateDH were not added.

比較例2
 NAD依存型デヒドロゲナーゼとして、ADHを25ユニット、FalDHを50ユニット添加し、FateDHを添加しなかったこと以外は、実施例1と同様にしてNADH濃度を測定した。
Comparative Example 2
The NADH concentration was measured in the same manner as in Example 1 except that 25 units of ADH, 50 units of FalDH were added, and FateDH was not added as the NAD + -dependent dehydrogenase.

比較例3
 NAD依存型デヒドロゲナーゼとして、ADHを25ユニット添加し、FalDH及びFateDHを添加せずに測定を開始し、測定開始後7.8時間後にFalDHを50ユニット添加し、さらに測定開始後9.0時間後にFateDHを75ユニット添加したこと以外は、実施例1と同様にしてNADH濃度を測定した。
Comparative Example 3
As an NAD + -dependent dehydrogenase, 25 units of ADH were added, measurement was started without adding FalDH and FateDH, 50 units of FalDH was added 7.8 hours after the start of the measurement, and further 9.0 hours after the start of the measurement The NADH concentration was measured in the same manner as in Example 1 except that 75 units of FatDH were added later.

比較例4
 NAD依存型デヒドロゲナーゼとして、ADHを25ユニット、FalDHを20ユニット、FateDHを15ユニット添加したこと以外は、実施例1と同様にしてNADH濃度を測定した。
Comparative Example 4
The NADH concentration was measured in the same manner as in Example 1 except that 25 units of ADH, 20 units of FalDH, and 15 units of FateDH were added as NAD + -dependent dehydrogenase.

 以上のように測定した実施例1、実施例2、及び比較例1〜比較例4の測定時間に対するNADH濃度の変化を、図5に示す。また、実施例1、実施例2、及び比較例1〜比較例4に用いたNAD依存型デヒドロゲナーゼの添加量を下記の表1に示す。なお、表1中、比較例3の(+)は、測定の最初から酵素を添加したのではなく、測定途中に酵素を添加したことを表す。 FIG. 5 shows the change of the NADH concentration with respect to the measurement time of Example 1, Example 2, and Comparative Examples 1 to 4 measured as described above. Table 1 below shows the amounts of NAD + -dependent dehydrogenase used in Example 1, Example 2, and Comparative Examples 1 to 4. In Table 1, (+) in Comparative Example 3 indicates that the enzyme was not added from the beginning of the measurement but was added during the measurement.

Figure 2004071559
Figure 2004071559

 図5から、実施例1は、時間の経過に伴ってNADHが順調に増加しており、NAD依存型デヒドロゲナーゼを1種類又は2種類しか含まない比較例1及び比較例2に比べてNADHの生成速度が著しく高いことがわかる。 From FIG. 5, it was found that in Example 1, NADH increased steadily with time, and that NADH was higher in Comparative Example 1 and Comparative Example 2, which contained only one or two types of NAD + -dependent dehydrogenase. It can be seen that the generation rate is extremely high.

 また、ADH、FalDH、FateDHの順に増大する酵素活性の比を、実施例1に比べてさらに増大させた実施例2では、実施例1よりもさらにNADHの生成速度の向上が観察された。 In addition, in Example 2, in which the ratio of enzyme activity increasing in the order of ADH, FalDH, and FateDH was further increased as compared with Example 1, an improvement in the NADH generation rate was observed as compared with Example 1.

 これに対して、NAD依存型デヒドロゲナーゼとしてADHのみが添加された比較例1では、NADHの生成は測定7時間後にほぼ頭打ちとなった。また、NAD依存型デヒドロゲナーゼとしてADH及びFalDHが添加された比較例2では、比較例1に比べてNADH生成速度は向上しているものの、やはりNADHの生成は頭打ちとなった。この原因は、メタノールがCOまで分解されずにホルムアルデヒド又は蟻酸として酵素溶液に蓄積し、これらがpHの変化等を招いて酵素活性を低下させたためと考えられる。なお、図5中には示していないが、比較例1では、測定開始後7.8時間以降もNADH濃度の顕著な増加は観察されなかった。 On the other hand, in Comparative Example 1 in which only ADH was added as the NAD + -dependent dehydrogenase, the production of NADH almost leveled off 7 hours after the measurement. Further, in Comparative Example 2 to which ADH and FalDH were added as NADH + -dependent dehydrogenases, although the NADH generation rate was improved as compared with Comparative Example 1, the production of NADH also leveled off. The cause is considered to be that methanol was not decomposed to CO 2 and was accumulated in the enzyme solution as formaldehyde or formic acid, which caused a change in pH or the like and reduced the enzyme activity. Although not shown in FIG. 5, in Comparative Example 1, no significant increase in the NADH concentration was observed even after 7.8 hours from the start of the measurement.

 また、比較例3では、FalDHの添加までは比較例1と同じく低いNADH生成速度であったが、FalDH及びFateDHの添加によって、それぞれの時点でNADHの生成速度が急激に上昇した。この理由は、測定開始後しばらくはホルムアルデヒドが蓄積していたが、FalDH及びFateDHの添加によって蟻酸、さらにCOへと分解が進行したためと考えられる。 Further, in Comparative Example 3, the NADH generation rate was as low as in Comparative Example 1 until the addition of FalDH, but the addition rate of FalDH and FateDH rapidly increased the NADH generation rate at each time point. This may be because formaldehyde had accumulated for a while after the start of the measurement, but the addition of FalDH and FateDH caused the decomposition to formic acid and further to CO 2 .

 また、比較例4は、3種類のNAD依存型デヒドロゲナーゼを含有するものの、ADH、FalDH、FateDHの酵素活性比を実施例1とは逆に順次減少させたものであり、NADH生成速度は頭打ちとなった。この比較例4では、ADHの酵素活性に比べてFalDH及びFateDHの酵素活性が不足しており、中間生成物であるホルムアルデヒド及び蟻酸の分解が停滞することによって、比較例1及び比較例2と同様の現象が引き起こされたと考えられる。 Comparative Example 4 contained three types of NAD + -dependent dehydrogenases, but the ADH, FalDH, and FatDH enzyme activity ratios were sequentially reduced in reverse to Example 1, and the NADH generation rate reached a peak. It became. In Comparative Example 4, the enzyme activities of FalDH and FateDH were insufficient compared with the enzyme activities of ADH, and the decomposition of formaldehyde and formic acid as intermediate products was stagnated. It is considered that this phenomenon was caused.

 以上の実験1の結果から、メタノールをCOに分解するに際して酵素活性を低下させるような中間生成物は速やかに分解する必要があり、このためにはNAD依存型デヒドロゲナーゼとしてADH、FalDH、FateDHの3種類の酵素を、これらの酵素活性の比がこの順に増大させるよう存在させなければならないことが判明した。 From the results of the above Experiment 1, it is necessary to rapidly decompose an intermediate product that reduces the enzyme activity when methanol is decomposed into CO 2. For this purpose, ADH, FalDH, and FateDH are used as NAD + -dependent dehydrogenases. It has been found that three enzymes must be present such that the ratio of their enzymatic activities increases in this order.

<実験2>
 次に、3極セルを用いてオープンサーキット(OCV)測定を行い、NAD依存型デヒドロゲナーゼ及びDIの最適な酵素活性の比を検討した。3極セルは、作用極としてグラッシーカーボン(直径3mm)、対極としてPt線、参照電極としてAg/AgClを用いたものである。また3極セルは、40±1℃の範囲内に収まるように温度制御される。
<Experiment 2>
Next, an open circuit (OCV) measurement was carried out using a three-electrode cell, and the optimal enzyme activity ratio of NAD + -dependent dehydrogenase and DI was examined. The three-electrode cell uses glassy carbon (diameter 3 mm) as a working electrode, a Pt line as a counter electrode, and Ag / AgCl as a reference electrode. The temperature of the three-electrode cell is controlled so as to fall within a range of 40 ± 1 ° C.

実施例3
 実施例3では、実験1における実施例1の酵素溶液にVK3を添加して調製した酵素溶液に、DIを200ユニット添加したときのOCVを測定した。
Example 3
In Example 3, OCV was measured when 200 units of DI were added to an enzyme solution prepared by adding VK3 to the enzyme solution of Example 1 in Experiment 1.

 そして、以下のようにしてOCV測定を行った。具体的には、1mlのトリス塩酸緩衝液(pH7.0)(I.S.=0.3)にVK3(酸化体)を5mM、NADを5mM、メタノールを1M添加し、この溶液を撹拌するとともにアルゴンガスでパージを行った。なお、ここでのVK3の濃度(5mM)は、DIの酵素活性に対して充分量である。次にADHを25ユニット、FalDHを50ユニット、FateDHを75ユニット添加し、OCV測定を行った。OCVが安定した時点でさらにDIを200ユニット添加し、この時点を測定開始時刻としてOCVを経時的に測定した。 And OCV measurement was performed as follows. Specifically, 5 mM of VK3 (oxidized form), 5 mM of NAD + , and 1 M of methanol were added to 1 ml of Tris-HCl buffer (pH 7.0) (IS = 0.3), and the solution was stirred. And purged with argon gas. Here, the concentration of VK3 (5 mM) is sufficient for the enzyme activity of DI. Next, 25 units of ADH, 50 units of FalDH and 75 units of FateDH were added, and OCV measurement was performed. When the OCV became stable, 200 units of DI were further added, and the OCV was measured over time using this time as a measurement start time.

実施例4
 DIを400ユニット添加したこと以外は、実施例3と同様にしてOCVを測定した。
Example 4
The OCV was measured in the same manner as in Example 3 except that 400 units of DI were added.

比較例5
 NAD依存型デヒドロゲナーゼとしてADHを25ユニット添加し、FalDH及びFateDHを添加しなかったこと以外は、実施例3と同様にしてOCVを測定した。
Comparative Example 5
OCV was measured in the same manner as in Example 3 except that 25 units of ADH was added as a NAD + -dependent dehydrogenase, and that FalDH and FateDH were not added.

比較例6
 NAD依存型デヒドロゲナーゼとして、ADHを25ユニット、FalDHを50ユニット添加し、FateDHを添加しなかったこと以外は、実施例3と同様にしてOCVを測定した。
Comparative Example 6
OCV was measured in the same manner as in Example 3 except that 25 units of ADH and 50 units of FalDH were added as NAD + -dependent dehydrogenase, and that FateDH was not added.

比較例7
 NAD依存型デヒドロゲナーゼとして、ADHを25ユニット添加し、FalDH及びFateDHを添加せずに測定を開始し、OCV測定開始後28.1分後にFalDHを50ユニット添加し、さらに測定開始後37.3分後にFateDHを75ユニット添加したこと以外は、実施例3と同様にしてOCVを測定した。
Comparative Example 7
As an NAD + -dependent dehydrogenase, 25 units of ADH were added, measurement was started without adding FalDH and FateDH, 50 units of FalDH was added 28.1 minutes after the OCV measurement was started, and 37.3 after the start of the measurement OCV was measured in the same manner as in Example 3 except that 75 units of FateDH were added after one minute.

比較例8
 DIを100ユニット添加したこと以外は、実施例3と同様にしてOCVを測定した。
Comparative Example 8
The OCV was measured in the same manner as in Example 3 except that 100 units of DI were added.

 以上のように測定した実施例3、実施例4、及び比較例5〜比較例8のOCVの変化を、図6に示す。また、実施例3、実施例4、及び比較例5〜比較例8に用いたNAD依存型デヒドロゲナーゼ及びDIの添加量(酵素活性)を下記の表2に示す。なお、表2中、比較例7の(+)は、測定の最初から酵素を添加したのではなく、測定途中に酵素を添加したことを表す。 FIG. 6 shows the change in the OCV of Example 3, Example 4, and Comparative Examples 5 to 8 measured as described above. Table 2 below shows the amounts (enzyme activities) of NAD + -dependent dehydrogenase and DI used in Example 3, Example 4, and Comparative Examples 5 to 8. In Table 2, (+) in Comparative Example 7 indicates that the enzyme was not added from the beginning of the measurement but was added during the measurement.

Figure 2004071559
Figure 2004071559

 図6から明らかなように、いずれの例においてもOCV測定開始後から酵素反応が進行してVK3の還元体が生成し、OCVの減少が観察された。しかしながら、添加した酵素活性の大小によってOCVの減少速度が異なるという結果が得られた。例えば実施例3では、NAD依存型デヒドロゲナーゼによって生成するNADHに対してDIが充分量存在し、後述する比較例5〜比較例8に比べてOCVの減少速度が大であった。また、DIの酵素活性をさらに増大させた実施例4では、NADHからVK3への電子の受け渡しが加速し、OCVの減少速度が増大し、VK3の平衡酸化還元電位である−0.21V(vsAg/AgCl)付近に迅速に到達した。これらのことから、実施例3及び実施例4のDIは、生成されるNADH量に対して充分であったといえる。 As is evident from FIG. 6, in all cases, the enzymatic reaction proceeded from the start of the OCV measurement to generate a reduced form of VK3, and a decrease in OCV was observed. However, the results showed that the rate of decrease in OCV was different depending on the amount of the added enzyme activity. For example, in Example 3, a sufficient amount of DI was present with respect to NADH generated by NAD + -dependent dehydrogenase, and the OCV reduction rate was higher than in Comparative Examples 5 to 8 described below. In Example 4 in which the enzyme activity of DI was further increased, the transfer of electrons from NADH to VK3 was accelerated, the rate of decrease in OCV was increased, and the equilibrium oxidation-reduction potential of VK3 was −0.21 V (vsAg / AgCl). From these facts, it can be said that DI in Example 3 and Example 4 was sufficient for the amount of NADH generated.

 これに対して、NADHの生成速度に比べてDIの酵素活性を不足させた比較例8では、測定開始初期のOCVの減少速度は充分であったが、時間の経過とともにOCVの減少速度が低下した。この理由は、DIの酵素反応が律速となり、NADH量が増加したためと考えられる。 On the other hand, in Comparative Example 8 in which the enzyme activity of DI was insufficient compared with the production rate of NADH, the decrease rate of OCV at the beginning of the measurement was sufficient, but the decrease rate of OCV decreased with time. did. The reason for this is considered to be that the enzyme reaction of DI became rate-limiting and the amount of NADH increased.

 また、比較例5〜比較例7では、DIの酵素活性は充分であるが、NAD依存型デヒドロゲナーゼの酵素活性が不足し、NADH生成速度が律速となり、OCVの減少速度が小さくなったと考えられる。なお、図6中には示していないが、比較例5では、測定開始後28.1分以降もOCVの顕著な低下は観察されなかった。 In Comparative Examples 5 to 7, it is considered that the enzyme activity of DI was sufficient, but the enzyme activity of NAD + -dependent dehydrogenase was insufficient, the rate of NADH generation was limited, and the rate of decrease in OCV was reduced. . Although not shown in FIG. 6, in Comparative Example 5, no remarkable decrease in OCV was observed even after 28.1 minutes after the start of the measurement.

 以上の実験2の結果から、NADHを生成するNAD依存型デヒドロゲナーゼの酵素活性の和よりも、NADHを酸化するDIの酵素活性が大きくなければならないことが判明した。 From the results of Experiment 2 above, it was found that the enzyme activity of DI that oxidizes NADH must be greater than the sum of the enzyme activities of NAD + -dependent dehydrogenase that produces NADH.

 なお、上述の実験2では、作用電極、すなわち燃料極としてグラッシーカーボンを用いて動作させた例を示したが、Pt及びAuを用いた場合にも同様に動作することが確認された。 実 験 In the above-mentioned Experiment 2, an example was shown in which glassy carbon was used as the working electrode, that is, the fuel electrode, but the same operation was confirmed when Pt and Au were used.

 また、上述の実験2では3極セルを用いた例を示したが、空気極としてPt触媒、プロトン伝導膜としてNafion膜を用いた燃料電池を動作させた場合にも、実験2と同様な結果が得られることを確認した。 In the above Experiment 2, an example using a three-electrode cell was shown. However, when a fuel cell using a Pt catalyst as an air electrode and a Nafion membrane as a proton conducting membrane was operated, the same results as in Experiment 2 were obtained. Was obtained.

本発明を適用した燃料電池の反応の概要を説明するための模式図である。FIG. 3 is a schematic diagram for explaining an outline of a reaction of the fuel cell to which the present invention is applied. 図1中、燃料極側の反応を詳細に説明するための模式図である。FIG. 2 is a schematic diagram for explaining in detail the reaction on the fuel electrode side in FIG. 1. エタノールを燃料とした場合の複合酵素反応を示す図である。It is a figure which shows the complex enzyme reaction when ethanol is used as a fuel. グルコースを燃料とした場合の複合酵素反応を示す図である。It is a figure which shows the complex enzyme reaction when glucose is used as fuel. 実験1におけるNADHの経時変化を示す特性図である。FIG. 4 is a characteristic diagram showing a change over time of NADH in Experiment 1. 実験2におけるOCVの経時変化を示す特性図である。FIG. 9 is a characteristic diagram showing a change with time of OCV in Experiment 2.

Claims (14)

 燃料を複数の酵素による段階的な反応により分解するとともに、酸化反応に伴って生成する電子を電極に受け渡す燃料電池であって、
 酵素1による分解反応により分解物1が生成する際の酵素1の酵素活性をU(E1)とし、分解物1を分解する酵素群2の酵素活性の総和をU(E2)とするとき、U(E1)≦U(E2)であることを特徴とする燃料電池。
A fuel cell that decomposes fuel by a stepwise reaction by a plurality of enzymes and transfers electrons generated by an oxidation reaction to an electrode,
When the enzyme activity of the enzyme 1 when the decomposition product 1 is produced by the decomposition reaction with the enzyme 1 is U (E1), and the total enzyme activity of the enzyme group 2 that decomposes the decomposition product 1 is U (E2), U (E1) ≦ U (E2).
 前記酵素1は酸化酵素であることを特徴とする請求項1記載の燃料電池。 燃料 The fuel cell according to claim 1, wherein the enzyme 1 is an oxidase.  前記酵素1による分解反応が酸化反応であり、当該酸化反応により補酵素に電子の受け渡しをすることを特徴とする請求項1記載の燃料電池。 2. The fuel cell according to claim 1, wherein the decomposition reaction by the enzyme 1 is an oxidation reaction, and electrons are transferred to the coenzyme by the oxidation reaction.  さらに、前記補酵素の酸化体を生成する補酵素酸化酵素を有し、
 当該補酵素酸化酵素の酵素活性をU(Co)とし、前記複数の酵素のうち、当該補酵素の還元体の生成に関与する酵素群の酵素活性の総和をU(E)とするとき、U(Co)≧U(E)であることを特徴とする請求項3記載の燃料電池。
Further, a coenzyme oxidase that produces an oxidized form of the coenzyme,
When the enzyme activity of the coenzyme oxidase is defined as U (Co), and among the plurality of enzymes, the sum of the enzyme activities of the enzymes involved in the generation of the reduced form of the coenzyme is defined as U (E), 4. The fuel cell according to claim 3, wherein (Co) ≧ U (E).
 前記補酵素の酸化体がNAD、還元体がNADHであることを特徴とする請求項3記載の燃料電池。 4. The fuel cell according to claim 3, wherein the oxidized form of the coenzyme is NAD + and the reduced form is NADH.  前記補酵素の酸化体を生成する補酵素酸化酵素が、ジアホラーゼであることを特徴とする請求項4記載の燃料電池。 The fuel cell according to claim 4, wherein the coenzyme oxidase that produces the oxidized form of the coenzyme is diaphorase.  前記補酵素から、さらに電子メディエータに電子の受け渡しをすることを特徴とする請求項3記載の燃料電池。 4. The fuel cell according to claim 3, wherein electrons are further transferred from the coenzyme to an electron mediator.  前記電子メディエータはビタミンK3であることを特徴とする請求項7記載の燃料電池。 8. The fuel cell according to claim 7, wherein the electronic mediator is vitamin K3.  前記燃料が、アルコール、糖類、脂肪類、タンパク質、有機酸類から選ばれる少なくとも1種であることを特徴とする請求項1記載の燃料電池。 The fuel cell according to claim 1, wherein the fuel is at least one selected from alcohols, sugars, fats, proteins, and organic acids.  前記燃料が、メタノール、エタノール、グルコースから選ばれる少なくとも1種であることを特徴とする請求項8記載の燃料電池。 The fuel cell according to claim 8, wherein the fuel is at least one selected from methanol, ethanol, and glucose.  上記燃料がメタノールであり、上記燃料を段階的に分解する複数の酵素が、アルコールデヒドロゲナーゼ(ADH)、ホルムアルデヒドデヒドロゲナーゼ、及び蟻酸デヒドロゲナーゼであることを特徴とする請求項1記載の燃料電池。 (4) The fuel cell according to (1), wherein the fuel is methanol, and the plurality of enzymes that decompose the fuel stepwise are alcohol dehydrogenase (ADH), formaldehyde dehydrogenase, and formate dehydrogenase.  上記燃料がエタノールであり、上記燃料を段階的に分解する複数の酵素が、アルコールデヒドロゲナーゼ(ADH)、及びアルデヒドデヒドロゲナーゼ(AlDH)であることを特徴とする請求項1記載の燃料電池。 (2) The fuel cell according to (1), wherein the fuel is ethanol, and the plurality of enzymes that decompose the fuel stepwise are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AlDH).  上記燃料がグルコースであり、上記燃料を段階的に分解する複数の酵素が、グルコースデヒドロゲナーゼ(GDH)、グルコノキナーゼ、及びフォスフォグルコネートデヒドロゲナーゼ(PhGDH)であることを特徴とする請求項1記載の燃料電池。 2. The fuel according to claim 1, wherein the fuel is glucose, and the plurality of enzymes that degrade the fuel in a stepwise manner are glucose dehydrogenase (GDH), gluconokinase, and phosphogluconate dehydrogenase (PhGDH). Fuel cell.  上記燃料がメタノールであり、上記燃料を段階的に分解する複数の酵素がアルコールデヒドロゲナーゼ、ホルムアルデヒドデヒドロゲナーゼ、及び蟻酸デヒドロゲナーゼであり、上記補酵素の酸化を行う脱水素酵素がジアホラーゼであり、
 上記アルコールデヒドロゲナーゼ、ホルムアルデヒドデヒドロゲナーゼ、蟻酸デヒドロゲナーゼ、及びジアホラーゼの酵素活性をそれぞれU(ADH)、U(FalDH)、U(FateDH)、U(DI)としたとき、以下の式(1)及び式(2)の関係を満足することを特徴とする請求項3記載の燃料電池。
0<U(ADH)≦U(FalDH)≦U(FateDH)     ・・・式(1)
U(ADH)+U(FalDH)+U(FateDH)≦U(DI) ・・・式(2)
The fuel is methanol, a plurality of enzymes that gradually decompose the fuel are alcohol dehydrogenase, formaldehyde dehydrogenase, and formate dehydrogenase, and the dehydrogenase that oxidizes the coenzyme is diaphorase,
When the enzyme activities of the alcohol dehydrogenase, formaldehyde dehydrogenase, formate dehydrogenase, and diaphorase are U (ADH), U (FalDH), U (FateDH), and U (DI), respectively, the following formulas (1) and (2) 4. The fuel cell according to claim 3, wherein the following condition is satisfied.
0 <U (ADH) ≦ U (FalDH) ≦ U (FateDH) Expression (1)
U (ADH) + U (FalDH) + U (FateDH) ≦ U (DI) Expression (2)
JP2003279745A 2002-07-26 2003-07-25 Fuel cells, portable power supplies and electronic equipment Expired - Lifetime JP5207576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279745A JP5207576B2 (en) 2002-07-26 2003-07-25 Fuel cells, portable power supplies and electronic equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002217802 2002-07-26
JP2002217802 2002-07-26
JP2003279745A JP5207576B2 (en) 2002-07-26 2003-07-25 Fuel cells, portable power supplies and electronic equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012110163A Division JP5601346B2 (en) 2002-07-26 2012-05-14 Fuel cell

Publications (3)

Publication Number Publication Date
JP2004071559A true JP2004071559A (en) 2004-03-04
JP2004071559A5 JP2004071559A5 (en) 2006-07-27
JP5207576B2 JP5207576B2 (en) 2013-06-12

Family

ID=32032726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279745A Expired - Lifetime JP5207576B2 (en) 2002-07-26 2003-07-25 Fuel cells, portable power supplies and electronic equipment

Country Status (1)

Country Link
JP (1) JP5207576B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122315A1 (en) * 2004-06-07 2005-12-22 Sony Corporation Fuel cell, electronic equipment, movable body, power generation system and cogeneration system
JP2006127957A (en) * 2004-10-29 2006-05-18 Sony Corp Fuel cell and its manufacturing method
WO2006057387A1 (en) * 2004-11-26 2006-06-01 The University Of Tokyo Biocell
JP2006156354A (en) * 2004-10-29 2006-06-15 Sony Corp Electronic mediator, enzyme immobilization electrode, fuel cell, electronic apparatus, vehicle, power generation system, co-generation system and electrode reaction utilization apparatus
JP2006302817A (en) * 2005-04-25 2006-11-02 Cy Tekku:Kk Photosynthetic fuel cell using water as material
WO2007037228A1 (en) * 2005-09-28 2007-04-05 Ebara Corporation Anode for biological power generation and power generation method and device utilizing it
JP2007103307A (en) * 2005-10-07 2007-04-19 Sony Corp Method of manufacturing fuel cell, fuel cell, method of manufacturing negative electrode for fuel cell, negative electrode for fuel cell, electronic equipment, vehicle, power generating system, co-generation system, method of manufacturing enzyme reaction utilizing device, enzyme reaction utilizing device, method of manufacturing electrode for enzyme reaction utilizing device, electrode for enzyme utilizing device, and immobilization method
EP1953221A2 (en) 2006-12-07 2008-08-06 Sony Corporation Bilirubin oxidase mutant having thermal stability
WO2008117630A1 (en) 2007-03-23 2008-10-02 Sony Corporation Enzyme immobilized electrode, fuel cell, electronic equipment, enzyme reaction utilization apparatus, and enzyme immobilized base
JP2008288134A (en) * 2007-05-21 2008-11-27 Toyota Motor Corp Fuel cell
WO2008152841A1 (en) 2007-06-13 2008-12-18 Sony Corporation Fuel cell and electronic equipment
EP2028712A2 (en) 2007-08-16 2009-02-25 Sony Corporation Biofuel cell, method for producing the same, electronic apparatus, enzyme-immobilized electrode, and method for producing the same
WO2009025158A1 (en) 2007-08-17 2009-02-26 Sony Corporation Fuel cell, method for operating the same, and electronic device
WO2009072396A1 (en) 2007-12-07 2009-06-11 Sony Corporation New fuel cell, and power supply device and electronic device using the fuel cell
WO2009072580A1 (en) 2007-12-07 2009-06-11 Sony Corporation Electrode, and enzyme sensor, fuel cell, electronic device and polyol degradation method using the electrode
WO2009072564A1 (en) 2007-12-07 2009-06-11 Sony Corporation Fuel cell, method of manufacturing same, electronic device, immobilized-enzyme electrode, method of manufacturing same, water repellent agent, and enzyme immobilization material
EP2093282A1 (en) 2006-12-07 2009-08-26 Sony Corporation Bilirubin oxidase mutant having thermal stability
WO2009113340A1 (en) 2008-03-11 2009-09-17 ソニー株式会社 Fuel cell and electronic device
WO2009139445A1 (en) 2008-05-15 2009-11-19 ソニー株式会社 Fuel cell, method for production of fuel cell, electronic device, enzyme-immobilized electrode, biosensor, bioreactor, energy conversion element, and enzymatic reaction-utilizing apparatus
WO2010007833A1 (en) 2008-07-14 2010-01-21 ソニー株式会社 Fuel cell, method for production of the fuel cell, electronic device, enzyme-immobilized electrode, method for production of the electrode, water-repellent agent, and enzyme-immobilized material
US7785851B2 (en) 2005-11-29 2010-08-31 Sony Corporation Mutant protein having diaphorase activity
WO2010143702A1 (en) 2009-06-08 2010-12-16 ソニー株式会社 Fuel cell, process for manufacture of fuel cell, electronic device, enzyme-immobilized electrode, biosensor, energy conversion element, cell, cell organelle, and bacterium
US7871739B2 (en) 2006-01-16 2011-01-18 Sony Corporation Fuel cell and electronic device
US8093029B2 (en) 2006-12-07 2012-01-10 Sony Corporation Bilirubin oxidase mutant having thermal stability
WO2012008376A1 (en) 2010-07-16 2012-01-19 ソニー株式会社 Device for immobilizing carbon dioxide
JP2012151130A (en) * 2002-07-26 2012-08-09 Sony Corp Fuel battery
WO2012105462A1 (en) 2011-01-31 2012-08-09 ソニー株式会社 Fuel cell, method for manufacturing fuel cell, electronic apparatus, nicotinamide adenine dinucleotide-immobilized electrode, nicotinamide adenine dinucleotide-immobilized carrier, device using enzyme reaction, protein-immobilized electrode, and protein-immobilized carrier
WO2012133761A1 (en) 2011-03-30 2012-10-04 ユニチカ株式会社 Modified glucose dehydrogenase
US8419913B2 (en) 2005-07-27 2013-04-16 Sony Corporation Porous electroconductive material and process for production thereof; electrode and process for production thereof; fuel cell and process for production thereof; and electronic instrument, mobile machine, electric power generating system, cogeneration system, and electrode reaction-based apparatus
US8603822B2 (en) 2010-01-28 2013-12-10 Sony Corporation Method for designing heat-resistant tyrosine-dependent short-chain dehydrogenase/reductase and heat-resistant tyrosine-dependent short-chain dehydrogenase/reductase
JP2017112893A (en) * 2015-12-24 2017-06-29 アイシン精機株式会社 Methods of oxidizing methanol, enzyme mixtures for oxidizing methanol, and bio-fuel cells
JP2020135975A (en) * 2019-02-14 2020-08-31 国立大学法人福井大学 Flow channel device, power generation device, sensor, power generation method, and sensing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796252A (en) * 1980-12-08 1982-06-15 Matsushita Electric Ind Co Ltd Enzyme electrode
US4490464A (en) * 1981-04-08 1984-12-25 Gorton Lo G Electrode for the electrochemical regeneration of coenzyme, a method of making said electrode, and the use thereof
JPH02253566A (en) * 1989-03-28 1990-10-12 Komatsu Ltd Glucose biological battery and glucose sensor
WO2000022688A2 (en) * 1998-08-19 2000-04-20 Sarnoff Corporation Enzymatic battery
JP2000133297A (en) * 1998-10-30 2000-05-12 Canon Inc Bio metabolism-utilizing power generating method and battery, and electronic mediator immobilizing electrode using them
JP2000133326A (en) * 1998-10-30 2000-05-12 Canon Inc Power generating method and battery using vital organism metabolism
JP2002520032A (en) * 1998-07-09 2002-07-09 ミシガン ステイト ユニバーシティー An electrochemical method for generating biological proton motive forces and regenerating pyridine nucleotide cofactors
JP2003132930A (en) * 2001-10-26 2003-05-09 Osaka Gas Co Ltd Methane fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796252A (en) * 1980-12-08 1982-06-15 Matsushita Electric Ind Co Ltd Enzyme electrode
US4490464A (en) * 1981-04-08 1984-12-25 Gorton Lo G Electrode for the electrochemical regeneration of coenzyme, a method of making said electrode, and the use thereof
JPH02253566A (en) * 1989-03-28 1990-10-12 Komatsu Ltd Glucose biological battery and glucose sensor
JP2002520032A (en) * 1998-07-09 2002-07-09 ミシガン ステイト ユニバーシティー An electrochemical method for generating biological proton motive forces and regenerating pyridine nucleotide cofactors
WO2000022688A2 (en) * 1998-08-19 2000-04-20 Sarnoff Corporation Enzymatic battery
JP2000133297A (en) * 1998-10-30 2000-05-12 Canon Inc Bio metabolism-utilizing power generating method and battery, and electronic mediator immobilizing electrode using them
JP2000133326A (en) * 1998-10-30 2000-05-12 Canon Inc Power generating method and battery using vital organism metabolism
JP2003132930A (en) * 2001-10-26 2003-05-09 Osaka Gas Co Ltd Methane fuel cell

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151130A (en) * 2002-07-26 2012-08-09 Sony Corp Fuel battery
WO2005122315A1 (en) * 2004-06-07 2005-12-22 Sony Corporation Fuel cell, electronic equipment, movable body, power generation system and cogeneration system
KR101167966B1 (en) * 2004-06-07 2012-07-24 소니 가부시키가이샤 Fuel cell, electronic equipment, movable body, power generation system and cogeneration system
US7955741B2 (en) 2004-06-07 2011-06-07 Sony Corporation Fuel cell, electronic device, movable body, power generation system, and congeneration system
JP2006127957A (en) * 2004-10-29 2006-05-18 Sony Corp Fuel cell and its manufacturing method
JP2006156354A (en) * 2004-10-29 2006-06-15 Sony Corp Electronic mediator, enzyme immobilization electrode, fuel cell, electronic apparatus, vehicle, power generation system, co-generation system and electrode reaction utilization apparatus
WO2006057387A1 (en) * 2004-11-26 2006-06-01 The University Of Tokyo Biocell
JP5059413B2 (en) * 2004-11-26 2012-10-24 国立大学法人東京工業大学 Bio battery
JP2006302817A (en) * 2005-04-25 2006-11-02 Cy Tekku:Kk Photosynthetic fuel cell using water as material
US8419913B2 (en) 2005-07-27 2013-04-16 Sony Corporation Porous electroconductive material and process for production thereof; electrode and process for production thereof; fuel cell and process for production thereof; and electronic instrument, mobile machine, electric power generating system, cogeneration system, and electrode reaction-based apparatus
WO2007037228A1 (en) * 2005-09-28 2007-04-05 Ebara Corporation Anode for biological power generation and power generation method and device utilizing it
JP2007103307A (en) * 2005-10-07 2007-04-19 Sony Corp Method of manufacturing fuel cell, fuel cell, method of manufacturing negative electrode for fuel cell, negative electrode for fuel cell, electronic equipment, vehicle, power generating system, co-generation system, method of manufacturing enzyme reaction utilizing device, enzyme reaction utilizing device, method of manufacturing electrode for enzyme reaction utilizing device, electrode for enzyme utilizing device, and immobilization method
US7785851B2 (en) 2005-11-29 2010-08-31 Sony Corporation Mutant protein having diaphorase activity
US7871739B2 (en) 2006-01-16 2011-01-18 Sony Corporation Fuel cell and electronic device
EP1953221A2 (en) 2006-12-07 2008-08-06 Sony Corporation Bilirubin oxidase mutant having thermal stability
EP2093282A1 (en) 2006-12-07 2009-08-26 Sony Corporation Bilirubin oxidase mutant having thermal stability
US8093029B2 (en) 2006-12-07 2012-01-10 Sony Corporation Bilirubin oxidase mutant having thermal stability
WO2008117630A1 (en) 2007-03-23 2008-10-02 Sony Corporation Enzyme immobilized electrode, fuel cell, electronic equipment, enzyme reaction utilization apparatus, and enzyme immobilized base
JP2008243380A (en) * 2007-03-23 2008-10-09 Sony Corp Enzyme immobilization electrode, fuel cell, electronic apparatus, enzyme reaction utilization device, and enzyme immobilization substrate
JP2008288134A (en) * 2007-05-21 2008-11-27 Toyota Motor Corp Fuel cell
US7858244B2 (en) 2007-05-21 2010-12-28 Toyota Jidosha Kabushiki Kaisha Fuel cell and method for manufacturing fuel cell
US8440333B2 (en) 2007-06-13 2013-05-14 Sony Corporation Fuel cell and electronic apparatus
WO2008152841A1 (en) 2007-06-13 2008-12-18 Sony Corporation Fuel cell and electronic equipment
EP2028712A2 (en) 2007-08-16 2009-02-25 Sony Corporation Biofuel cell, method for producing the same, electronic apparatus, enzyme-immobilized electrode, and method for producing the same
WO2009025158A1 (en) 2007-08-17 2009-02-26 Sony Corporation Fuel cell, method for operating the same, and electronic device
US8808928B2 (en) 2007-08-17 2014-08-19 Sony Corporation Fuel cell, method for operating the same, and electronic device
US9912000B2 (en) 2007-12-07 2018-03-06 Sony Corporation Fuel cell, manufacturing method thereof, electronic apparatus, enzyme-immobilized electrode, manufacturing method thereof, water-repellent agent, and enzyme immobilizing material
US9620804B2 (en) 2007-12-07 2017-04-11 Sony Corporation Fuel cell and method for manufacturing the same, electronic apparatus, enzyme-immobilized electrode and method for manufacturing the same, water-repellent agent, and enzyme-immobilizing material
JP2009139257A (en) * 2007-12-07 2009-06-25 Sony Corp Novel electrode, enzyme sensor or fuel cell using the electrode, and electrical apparatus and polyol degrading method using the enzyme sensor or fuel cell
US8956772B2 (en) 2007-12-07 2015-02-17 Sony Corporation Fuel cell, and power supply device and electronic apparatus using the same
WO2009072564A1 (en) 2007-12-07 2009-06-11 Sony Corporation Fuel cell, method of manufacturing same, electronic device, immobilized-enzyme electrode, method of manufacturing same, water repellent agent, and enzyme immobilization material
WO2009072580A1 (en) 2007-12-07 2009-06-11 Sony Corporation Electrode, and enzyme sensor, fuel cell, electronic device and polyol degradation method using the electrode
WO2009072396A1 (en) 2007-12-07 2009-06-11 Sony Corporation New fuel cell, and power supply device and electronic device using the fuel cell
WO2009113340A1 (en) 2008-03-11 2009-09-17 ソニー株式会社 Fuel cell and electronic device
WO2009139445A1 (en) 2008-05-15 2009-11-19 ソニー株式会社 Fuel cell, method for production of fuel cell, electronic device, enzyme-immobilized electrode, biosensor, bioreactor, energy conversion element, and enzymatic reaction-utilizing apparatus
WO2010007833A1 (en) 2008-07-14 2010-01-21 ソニー株式会社 Fuel cell, method for production of the fuel cell, electronic device, enzyme-immobilized electrode, method for production of the electrode, water-repellent agent, and enzyme-immobilized material
WO2010143702A1 (en) 2009-06-08 2010-12-16 ソニー株式会社 Fuel cell, process for manufacture of fuel cell, electronic device, enzyme-immobilized electrode, biosensor, energy conversion element, cell, cell organelle, and bacterium
US8603822B2 (en) 2010-01-28 2013-12-10 Sony Corporation Method for designing heat-resistant tyrosine-dependent short-chain dehydrogenase/reductase and heat-resistant tyrosine-dependent short-chain dehydrogenase/reductase
WO2012008376A1 (en) 2010-07-16 2012-01-19 ソニー株式会社 Device for immobilizing carbon dioxide
WO2012105462A1 (en) 2011-01-31 2012-08-09 ソニー株式会社 Fuel cell, method for manufacturing fuel cell, electronic apparatus, nicotinamide adenine dinucleotide-immobilized electrode, nicotinamide adenine dinucleotide-immobilized carrier, device using enzyme reaction, protein-immobilized electrode, and protein-immobilized carrier
KR20140032393A (en) 2011-03-30 2014-03-14 유니티카 가부시끼가이샤 Modified glucose dehydrogenase
WO2012133761A1 (en) 2011-03-30 2012-10-04 ユニチカ株式会社 Modified glucose dehydrogenase
JP2017112893A (en) * 2015-12-24 2017-06-29 アイシン精機株式会社 Methods of oxidizing methanol, enzyme mixtures for oxidizing methanol, and bio-fuel cells
JP2020135975A (en) * 2019-02-14 2020-08-31 国立大学法人福井大学 Flow channel device, power generation device, sensor, power generation method, and sensing method
JP7162303B2 (en) 2019-02-14 2022-10-28 国立大学法人福井大学 Channel device, power generation device, sensor, power generation method and sensing method

Also Published As

Publication number Publication date
JP5207576B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5601346B2 (en) Fuel cell
JP5207576B2 (en) Fuel cells, portable power supplies and electronic equipment
Sokic-Lazic et al. Citric acid cycle biomimic on a carbon electrode
JP5044900B2 (en) Fuel cells, electronic devices, mobile objects, power generation systems, and cogeneration systems
Arechederra et al. Development of glycerol/O2 biofuel cell
Tkac et al. Membrane-bound dehydrogenases from Gluconobacter sp.: Interfacial electrochemistry and direct bioelectrocatalysis
Lewis Symposium on bioelectrochemistry of microorganisms. IV. Biochemical fuel cells
JP2007012281A (en) Fuel cell, electronic equipment, moving body, power generation system, and enzyme reaction utilization device
JP4770153B2 (en) Fuel cell
US20080248374A1 (en) Fuel cell, method for producing same, and electronic device
JP2006156354A (en) Electronic mediator, enzyme immobilization electrode, fuel cell, electronic apparatus, vehicle, power generation system, co-generation system and electrode reaction utilization apparatus
JP2004071559A5 (en)
WO2012008376A1 (en) Device for immobilizing carbon dioxide
JP5011691B2 (en) Fuel cells, electronic devices, mobile objects, power generation systems, and cogeneration systems
JP2005310613A (en) Electronic apparatus
JP2006049215A (en) Fuel cell
JP5423580B2 (en) Enzyme electrode and biofuel cell having the same
US20050287399A1 (en) Bio-battery
Mukherjee et al. Enzymatic and microbial biofuel cells: Current developments and future directions
US20140342248A1 (en) Fuel cell
JP2008071722A (en) Enzyme fuel cell
EP2221612A1 (en) Electrode, and enzyme sensor, fuel cell, electronic device and polyol degradation method using the electrode
Kano et al. Applications to biofuel cells and bioreactors
Topcagic et al. Alcohol-based biofuel cells
JP2011108528A (en) Fuel cell

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120528

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term