WO2006057387A1 - Biocell - Google Patents

Biocell Download PDF

Info

Publication number
WO2006057387A1
WO2006057387A1 PCT/JP2005/021801 JP2005021801W WO2006057387A1 WO 2006057387 A1 WO2006057387 A1 WO 2006057387A1 JP 2005021801 W JP2005021801 W JP 2005021801W WO 2006057387 A1 WO2006057387 A1 WO 2006057387A1
Authority
WO
WIPO (PCT)
Prior art keywords
biocatalyst
redox
battery
dehydrogenase
positive electrode
Prior art date
Application number
PCT/JP2005/021801
Other languages
French (fr)
Japanese (ja)
Inventor
Takeo Yamaguchi
Takanori Tamaki
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Priority to JP2006547901A priority Critical patent/JP5059413B2/en
Publication of WO2006057387A1 publication Critical patent/WO2006057387A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a material involved in electron transfer.
  • the present invention also relates to a bio battery using the material as an electrode, particularly a bio fuel cell, and a method for producing the same.
  • the fuel cell here uses hydrogen itself or methanol as a hydrogen source.
  • biofuel cell that uses a biocatalyst as a catalyst.
  • This biofuel cell is composed of a reduced coenzyme generated when a fuel is oxidized by a biocatalyst (for example, an enzyme and a biological substance containing the enzyme), and a mediator that easily performs an oxidation / reduction reaction. It is a device that converts chemical energy of fuel into electrical energy by extracting electrons to an external circuit.
  • the catalyst is a biocatalyst (for example, an enzyme), various substrates can be used as fuel by selecting the biocatalyst.
  • biomass-derived materials such as glucose or ethanol
  • ethanol which have not been fully studied in conventional fuel cells, are used as devices for extracting electrical energy, and are operated by glucose or lactic acid present in the living body.
  • Development of a nano fuel cell as a power source for medical devices is expected.
  • Non-patent literature l A. Heller, Phys. Chem. Chem. Phys., 6, 209 (2004).
  • Patent Document 1 US Pat. No. 6,531,239.
  • an object of the present invention is to provide a biofuel cell with improved power density, an electrode material used therefor, and a method for producing them.
  • an object of the present invention is to provide a material involved in electron transfer, not limited to the above-described fuel cell material.
  • the inventors have decided to increase the apparent area of the electrode by using an electron conductor having a large external specific surface area and forming a three-dimensional network structure with the electron conductor.
  • the amount of the fixed catalyst was increased by fixing a biocatalyst or an analog thereof (hereinafter sometimes simply abbreviated as “biocatalyst, etc.”) in the three-dimensional network.
  • biocatalyst or an analog thereof (hereinafter sometimes simply abbreviated as “biocatalyst, etc.”) in the three-dimensional network.
  • biocatalyst an analog thereof
  • a material having an electron conductor, a redox polymer, and a biocatalyst or an analog thereof for example, a biocatalyst having an external specific surface area of 0.5 m 2 Zg or more, which is a specific surface area acting on pores of 7 nm or more.
  • the redox polymer has a redox site exhibiting redox behavior, and io — 16 s
  • ⁇ 2> having an electron conductor, a redox polymer, and a biocatalyst or an analog thereof, for example, a biocatalyst having an external specific surface area of 0.5 m 2 Zg or more, which is a specific surface area that works on pores of 7 nm or more Material,
  • the redox polymer has a redox sites displaying a redox behavior, and shows electron conductivity than 10_ 16 SZcm,
  • the material that transfers electrons generated when the first substance in contact with the material is oxidized by the biocatalyst or an analog thereof to the electron conductor via the redox polymer.
  • An electron conductor, a redox polymer, and a biocatalyst or an analog thereof for example, a material having a biocatalyst having an external specific surface area of 0.5 m 2 Zg or more, which is a specific surface area that works on pores of 7 nm or more.
  • the redox polymer has a redox site exhibiting redox behavior, and io_lb
  • an electron conductor force carbon, a conductive polymer, and a group force including a metal force may be selected.
  • the molecular weight is 50 to 100 million, preferably 1000 to 100,000.
  • the shape of the electron conductor may be granular or rod-shaped.
  • the particle diameter should be 10 ⁇ m or less, preferably 1 ⁇ m or less, and more preferably lOOnm or less in the case of a granular shape.
  • the carbon is selected from the group force consisting of carbon black, carbon nanotube, and carbon nanohorn.
  • the external specific surface area of the electron conductor is lm 2 Zg or more, preferably 6 to 5000 m 2 Zg, more preferably 10 to 800 m 2 Zg. There should be.
  • the redox polymer may have a redox polymer having a phencene derivative (e.g., phenoxycene group, carboxyphenocene, dicarboxyphenocene, methylphenocene, dimethylphenol).
  • a phencene derivative e.g., phenoxycene group, carboxyphenocene, dicarboxyphenocene, methylphenocene, dimethylphenol.
  • quinone compounds eg, benzoquinone, hydroquinone, naphthoquinone, pyroquinoline quinone
  • osmubiviridine complexes [Os (4,4, -dimethyl-2,2, -biviridine) CI ] + / 2 + , [Os (4,4,-
  • one end of the redox polymer may be chemically bonded to the electron conductor.
  • the biocatalyst is preferably oxidase or dehydrogenase.
  • glucose oxidase glucose dehydrogenase
  • darconate 2-dehydrogenase ketogluconate 2-
  • dehydrogenase alcohol oxidase, alcohol dehydrogenase, aldehyde dehydrogenase, formate dehydrogenase, lactate dehydrogenase, aldose dehydrogenase, oligosaccharide dehydrogenase, bilirubin oxidase, laccase, and cytochrome oxidase zecta
  • dehydrogenase alcohol oxidase
  • aldehyde dehydrogenase formate dehydrogenase
  • lactate dehydrogenase lactate dehydrogenase
  • aldose dehydrogenase aldose dehydrogenase
  • oligosaccharide dehydrogenase oligosaccharide dehydrogenase
  • bilirubin oxidase laccase
  • the material may be used as a negative electrode for a battery or a positive electrode for a battery.
  • a positive electrode with proton conductivity A positive electrode with proton conductivity
  • the battery wherein the first redox polymer has a first redox site exhibiting redox behavior, and exhibits an electronic conductivity of 10 _16 SZcm or more.
  • the negative electrode preferably has proton conductivity.
  • a material exhibiting proton conductivity such as Nafion, a hydrocarbon-based proton conductive polymer.
  • the first biocatalyst is glucose oxidase, glucose dehydrogenase, darconate 2-dehydrogenase, ketogluconate 2-dehydrogenase, alcohol oxidase, alcohol dehydrogenase, aldehyde dehydrogenase. , Selected from the group consisting of formate dehydrogenase, lactate dehydrogenase, aldo-dehydrogenase, and oligosaccharide dehydrogenase.
  • the first redox site force ferrocene derivative (hue mouth sen group, carboxy phe mouth cene, dicarboxy phe mouth cene, methyl phe Cene, dimethylphenol, buluene, etc.), quinone compounds (benzoquinone, hydroquinone, naphthoquinone, pyroquinoline quinone, etc.), sumi-bibipyridine complexes ( [Os (4,4, -Dimethinole-2,2, -biviridine) CI] + / 2 + , [Os (4,4, -Diamino-2,2, -biviridine)
  • Dazole complexes such as [Os (4,4, -dialkyl 2-2,2, -biimidazole)] 2 + / 3 + ), and
  • a group power consisting of viologen should be selected.
  • the positive electrode preferably has the second electronic conductor.
  • the positive electrode has a second redox polymer, the redox polymer has a second redox site exhibiting redox behavior, and 10 It should show electronic conductivity of _16 S / cm or more.
  • the positive electrode may have a proton conductive polymer.
  • the positive electrode preferably has a catalyst.
  • the catalyst may be the second biocatalyst or an analogue thereof.
  • the second biocatalyst should also be selected as a group force that also has pyrilbinoxidase, laccase, and cytochrome oxidase power! /.
  • the first, seventh, or second electronic conductor is selected from a group force consisting of carbon, a conductive polymer, and a metal force. It is good.
  • a conductive polymer the molecular weight is 50 to: L00000, preferably 1,000 to 100,000.
  • the first and / or second electronic conductors may independently have a granular shape or a rod shape.
  • the particle diameter is 10 / zm or less, preferably 1 m or less, more preferably lOOnm or less.
  • carbon is selected as a group force consisting of carbon black, carbon nanotube, and carbon nanohorn force.
  • the external specific surface area of the first and / or second electronic conductor is lm 2 Zg or more, preferably 6 to 5000 m 2 Zg. It is preferably 10 to 800 m 2 Zg.
  • the battery may be a fuel cell.
  • Step a) A step of mixing and Z or bonding an electron conductor and a redox polymer or redox polymer precursor (however, when a redox polymer precursor having no redox site is used, the acid-reduction site is redoxed). Steps a) to c) that are introduced into a polymer precursor to form a redox polymer. B) forming the electron conductor precursor into a three-dimensional electron conductor;
  • an electron conductor force carbon, a conductive polymer, and a group force composed of a metal be selected.
  • the molecular weight is 50 to: LOO 10,000, preferably 1,000 to 100,000.
  • the electron conductor precursor may have a granular shape or a rod shape.
  • the particle diameter thereof, and in the case of a rod shape, the diameter of the cross section thereof is 10 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 1 OOnm or less! /.
  • carbon is preferably selected from a group force consisting of carbon black, carbon nanotube, and carbon nanohorn force.
  • the external specific surface of the electron conductor should be lm 2 / g or more, preferably 6 to 5000 m 2 Zg, more preferably 10 to 800 m 2 / g.
  • the oxidation reduction site of the redox polymer may be a phenoxycene derivative (for example, phenoxycene group, carboxyphenoxycene, dicarboxyphenoxycene, methylphenoxycene). , Dimethylphenol, buluene, etc.), quinone compounds (eg, benzoquinone, hydroquinone, naphthoquinone, pyroquinolinequinone), osmium biviridine complexes ([Os (4,4, -dimethyl-2,2,- Biviridine) CI] + / 2 + , [Os (4,
  • the electron conductor and the redox polymer or the redox polymer precursor are: an end of the redox polymer or its precursor is an electron conductor or an electron It may be chemically bonded to the conductor precursor.
  • the biocatalyst is glucose oxidase, glucose dehydrogenase, darconate 2-dehydrogenase, ketogluconate 2-dehydrogenase, alcohol oxidase, alcohol dehydrogenase, aldehyde dehydrogenase.
  • a group force consisting of formate dehydrogenase, lactate dehydrogenase, aldose dehydrogenase, oligosaccharide dehydrogenase, pyrilbinoxidase, laccase, and cytochrome oxidase may also be selected.
  • the material may be used as a negative electrode for a battery or a positive electrode for a battery.
  • Battery areas are the 1st to nth battery areas, and the 1st to nth battery areas are wired in series and Z or in parallel,
  • the first battery region includes a first negative electrode, a first positive electrode, and the first positive electrode and the first negative electrode A first electrolyte sandwiched between and
  • the first negative electrode has a specific surface area that acts on pores of 7 nm or more, and the external specific surface area is 0.5 m 2 / g or more, preferably 6 to 5000 m 2 Zg, more preferably 10 to 800 m 2 / g.
  • the first positive electrode has electronic conductivity
  • the m-th battery region (m is an integer from 2 to n) is the m-th negative electrode, the m-th positive electrode, and the m-th positive electrode and the m-th negative electrode.
  • Anode electron conductor of the m is external specific surface area 0. 5 m 2 Zg least a force mowing specific surface area than the pores 7 nm (electron conductor of the m of the m-th, first to (m — The same as or different from the electron conductor of 1), m-th redox polymer (the m-th redox polymer may be the same as the first to (m-1) redox polymers) And the m-th biocatalyst or its analog (the m-th biocatalyst or its analog is different from the first to (m-1) biocatalyst or its analog, respectively).
  • the m-th redox polymer has an m-th redox site exhibiting redox behavior (the m-th redox site is the same as the 1st to (m-1) acid-oxidized sites. I also different from each other! /,) have, and shows an electron conductivity of more than 10_ 16 SZcm,
  • the mth positive electrode has electronic conductivity
  • the fuel is decomposed into the first decomposition product by the first biocatalyst or an analog thereof and generates one or more electrons,
  • the (m-1) decomposition product is decomposed into the m-th decomposition product by the m-th biocatalyst or an analog thereof and generates one or more electrons.
  • the first to n-th electrolytes are formed on a substantially flat surface
  • the first to n-th negative electrodes are on one surface of the substantially flat surface
  • the first to n-th positive electrodes are substantially the same.
  • the first to nth fuels are formed on the other surface of one plane and the first to nth decomposed products are in contact with each other on the substantially one plane on which the first to nth negative electrodes are formed.
  • An nth negative electrode is preferably formed.
  • the (m ⁇ l) positive electrode and the mth negative electrode are The first to nth battery regions are preferably connected in series by being energized.
  • Battery areas are the 1st to nth battery areas, and the 1st to nth battery areas are wired in series and Z or in parallel,
  • the first battery region has a first negative electrode, a first positive electrode and a first electrolyte sandwiched between the first positive electrode and the first negative electrode;
  • the first negative electrode has a first electronic conductor, a first redox polymer, and a first biocatalyst or an analog thereof, and the first redox polymer exhibits a redox behavior. has a site, and shows the 10 _ 16 SZcm more electron conductivity,
  • the first positive electrode has electronic conductivity
  • the m-th battery region (m is an integer from 2 to n) is the m-th negative electrode, the m-th positive electrode, and the m-th positive electrode and the m-th negative electrode.
  • the mth negative electrode is the mth electronic conductor (the mth electronic conductor may be the same as or different from the first to (m-1) th electronic conductors), the mth redox polymer ( The m-th redox polymer may be the same as or different from the first to (m-1) redox polymers), and the m-th biocatalyst or an analog thereof (the m-th biocatalyst or the like).
  • Each body has a first to (m-1) biocatalyst or an analogue thereof, and the m-th redox polymer has an acid-reduction behavior.
  • the m-th acid-reduction site may be the same as or different from the 1st to (m-1) -th acid reduction sites! /)
  • the mth positive electrode has electronic conductivity
  • the fuel is decomposed into the first decomposition product by the first biocatalyst or an analog thereof and generates one or more electrons,
  • the (m-1) decomposition product is decomposed into the m-th decomposition product by the m-th biocatalyst or an analog thereof and generates one or more electrons.
  • the first to nth electrolytes are formed on substantially one plane, the first to nth negative electrodes are formed on one surface of the substantially one plane, and the first to nth positive electrodes are formed on the other surface of the substantially one plane. And the first to nth negative electrodes are The battery, wherein the first to nth negative electrodes are formed so that the fuel and the first to nth decomposition products are in contact with each other on a substantially flat surface formed.
  • the first to n-th electron conductors of the first to n-th negative electrodes have an external specific surface area that is a specific surface area acting on pores of 7 nm or more. Is 0.5m 2 Zg or more.
  • the fuel is methanol
  • n force S3 the first biocatalyst is alcohol dehydrogenase
  • the first decomposition product is hole.
  • the second biocatalyst is an aldehyde dehydrogenase
  • the second degradation product is formic acid
  • the third biocatalyst is formate dehydrogenase
  • the third degradation product is diacid-carbon. It is good.
  • the fuel is ethanol
  • n 2
  • the first biocatalyst is alcohol dehydrogenase
  • the first degradation product is It is acetoaldehyde
  • the second biocatalyst is aldehyde dehydrogenase
  • the second degradation product is acetic acid.
  • the fuel is glucose, n force S3 or more, the first biocatalyst is glucose oxidase, and the first degradation product is Gluconorataton, the second biocatalyst is dalconate 2-dehydrogenase, the second degradation product is 2-ketogluconic acid, the third biocatalyst is ketogluconate dehydrogenase, and the third degradation product Should be 2,5-diketogluconic acid.
  • the first to nth negative electrodes preferably have proton conductivity.
  • the first to nth electron conductors may be selected from a group force composed of carbon, a conductive polymer, and a metal.
  • Conductive In the case of a conductive polymer, the molecular weight is 50 to: LOO million, preferably 1,000 to 100,000.
  • the first to nth electron conductors may have a granular shape or a rod shape.
  • the particle diameter thereof, and in the case of a rod shape, the diameter of the cross section thereof is 10 m or less, preferably 1 ⁇ m or less, more preferably 1 OOnm or less.
  • carbon is selected as a group force consisting of carbon black, carbon nanotube, and carbon nanohorn force.
  • the first to nth electron conductors each have an external specific surface area of lm 2 / g or more, preferably 6 to 5000 m 2. / g, more preferably 10 to 800 m 2 Zg.
  • each of the 1S to nth acid reduction sites of each of the 1st to 11th redox polymers 1S Mouthcene derivatives for example, pheophene group, carboxy phen cene, dicarboxy phen cene, methyl phen cene, dimethyl phen cene, bul ue cene sen), quinone compounds (eg benzoquinone, hydroquinone, naphthoquinone, pyroquinoline) quinones, etc.), old Sumi ⁇ beam bipyridine complexes ([Os (4,4 '- dimethylol Le - 2, 2, - Bibirijin) Cl] + / 2 +, [Os (4, 4, - Jiamino - 2, 2 , -Biviridine) Cl] + / 2 + , [Os
  • the first to n-th positive electrodes each have the first to p-th electron conductors (p is an integer of 2 to n). No ...!
  • the first to p-th electron conductors may be selected from carbon, a conductive polymer, and a group force including a metal force.
  • conductive polymers Has a molecular weight of 50 to 100 million, preferably 1,000 to 100,000.
  • the first to p-th electron conductors may have a granular shape or a rod shape.
  • the particle diameter thereof, and in the case of a rod shape, the diameter of the cross section thereof is 10 ⁇ m or less, preferably 1 ⁇ m or less, more preferably ⁇ m or less.
  • carbon is selected as a group force consisting of carbon black, carbon nanotube, and carbon nanohorn force.
  • the external specific surface area of each is lm 2 / g or more, preferably 6 to 5000 m 2 / g, more preferably 10 to 800 m 2 Zg.
  • each of the first to nth positive electrodes is
  • each of the first to n-th positive electrodes has a first to ⁇ -th redox polymer (p is an integer from 2 to n).
  • the first to ⁇ redox polymers preferably have first to p-th redox sites exhibiting strong redox behavior, and exhibit an electronic conductivity of 10 _16 S / cm or more.
  • each force of the first to p-th acid-reduction sites of each of the first to p-th redox polymers is osmium biviridine complex ([Os (terpyridine) (4 , 4, -Dimethyl-2,2, -biviridine) Cl] 2 + / 3 + , [Os (4,4, -Dichloro-2,2, -biviridine) Cl] + / 2 +
  • each of the first to n-th positive electrodes preferably has a proton-conductive polymer.
  • each of the first to nth positive electrodes preferably has a catalyst.
  • the catalyst may be a biocatalyst for a positive electrode or an analogue thereof.
  • the biocatalyst for the positive electrode is pyrilvinoxydase, Choose a group power that also has laccase and cytochrome oxidase power! /.
  • the first to nth positive electrodes may be an oxidizing gas or an oxidizing liquid (e.g., oxygen gas, oxygen-dissolved liquid, oxygen carrier-containing liquid (with oxygen carrier and Is a generic term for compounds with oxygen carrying function, such as hemoglobin and hemoglobin mimics !, u))).
  • an oxidizing gas e.g., oxygen gas, oxygen-dissolved liquid, oxygen carrier-containing liquid (with oxygen carrier and Is a generic term for compounds with oxygen carrying function, such as hemoglobin and hemoglobin mimics !, u)
  • the present invention provides materials, particularly materials involved in electron transfer.
  • the material of the present invention provides, for example, a battery material, for example, a biofuel cell material.
  • the materials of the present invention also provide materials that are counter-reactive with fuel cells, i.e., provide hydraulic hydrogen and Z or oxygen.
  • the present invention provides a material that is not limited to the above-described action but can participate in electron transfer.
  • the material of the present invention includes an electron conductor, a redox polymer, and a biocatalyst or an analog thereof.
  • biocatalyst (Hereinafter, sometimes simply abbreviated as “biocatalyst” or “biocatalyst”).
  • the material of the present invention operates as follows. That is, electrons generated when the first substance in contact with the material of the present invention is oxidized by a biocatalyst or the like are transferred to the electron conductor via the redox polymer, or contacted with the material of the present invention. The electrons when the second substance is reduced by a biocatalyst or the like are transferred to the redox polymer via the electron conductor.
  • Electron conductor used with the present invention an external specific surface area of 0. 5 m 2 Zg or more, preferably 1 m 2 Zg more, preferably 6 ⁇ 5000m 2 Zg, more preferably good is 10 ⁇ 800m 2 Zg .
  • the external specific surface area means a specific surface area applied to pores of 7 nm or more.
  • “external specific surface area” has the above meaning unless otherwise specified.
  • the external specific surface area can be estimated as follows. That is, as will be described later, the electron conductor can be formed by three-dimensionally accumulating particulate materials or rod-like materials having electron conductivity. The specific surface area of one particle or rod-like substance of these granular substances or rod-like substances can be estimated as the “external specific surface area” as it is.
  • the “external specific surface area” is estimated as follows. That is, if the particle radius r [m] and the particle density: d [gZm 3 ], the external specific surface
  • the radius r of the granular material is
  • the diameter force of the granular material in the electron microscopic image of the obtained electron conductor can be obtained.
  • the density of the particles can be determined from the mass and the particle size distribution.
  • the "external specific surface area" can be estimated in the same manner as described above. That is, the radius r [m] of the cross-section of the rod-shaped material, the length L [m] of the rod-shaped material, rod
  • the external specific surface area can be estimated from the radius r rod of the cross-section of the rod-shaped material and the density d of the rod-shaped material.
  • the electron conductor may be formed by three-dimensionally collecting particulate materials or rod-like materials having electron conductivity, or may have the above external specific surface area from the beginning. .
  • the particles When particles are three-dimensionally accumulated, the particles have a particle size of 10 m or less, preferably 1 ⁇ m or less, more preferably lOOnm or less.
  • the cross-sectional diameter is preferably 10 m or less. 1 ⁇ m or less, more preferably lOOnm or less.
  • the external specific surface area of the granular material or the rod-shaped substance itself may have the above-mentioned numerical value, or the whole aggregate such as the granular material or the rod-shaped substance may have the above-mentioned numerical value.
  • Examples of the electronic conductor include, but are not limited to, carbon, a conductive polymer, and a metal.
  • the electronic conductor may include two or more types of materials.
  • the molecular weight is 50 to: LOO 10,000, preferably 1,000 to 100,000.
  • the force that can include carbon black, carbon nanotube, carbon nanohorn, and the like is not limited to these.
  • the redox polymer used in the present invention preferably has a redox site exhibiting redox behavior.
  • the redox polymer may have electronic conductivity.
  • the electronic conductivity of the redox polymer depends on the polymer chain length, but it should be 10 _16 SZcm or more. That is, when the chain length of the redox polymer is long, it may have higher electron conductivity, but when the chain length is short, it may have low electron conductivity (however, 10_16 SZcm or more).
  • Redox polymers have redox sites.
  • the redox polymer having the site may be a block copolymer of a monomer having the site and another monomer, or may be prepared by a reaction that gives a redox site to a homopolymer or a copolymer! /. In the case of a copolymer, it may have a monomer power of 2 or 3 or more.
  • the oxidation-reduction site of the redox polymer is not particularly limited as long as it exhibits redox behavior as described above.
  • phenecene derivatives eg, phenecene group, carboxyphenecene, dicarboxyphenecene, methylpheocene, dimethylphenolate, bulueguchicene
  • quinone compounds benzoquinone
  • Hydroquinone naphthoquinone
  • pyroquinoline quinone etc.
  • sumumbipyridine complexes [Os (4,4, -Dimethinole-2,2, bibilidine) Cl] + / 2 + , [Os (4,4 , -Diamino-2,2, -biviridine) Cl] + / 2 + , [Os (4,4,-
  • Imidazole complexes such as [Os (4,4, -dialkylated-2,2, -biimidazole)] 2 + / 3 + ),
  • Examples include, but are not limited to, viologen and 2,2-azobis (3-ethylbenzothiazoline-6-sulfonate).
  • viologen and 2,2-azobis (3-ethylbenzothiazoline-6-sulfonate).
  • acid reduction site two or more kinds of the above may be included.
  • One end of the redox polymer may be chemically bonded to the electron conductor, or to a granular material or rod-shaped material that can form the electron conductor.
  • the material of the present invention has a biocatalyst or an analog thereof.
  • An analog is a natural or artificial substance having a function similar to that of a biocatalyst.
  • Examples of the analog include a modified natural biocatalyst or an artificial substance imitating a natural biocatalyst.
  • the biocatalytic reaction refers to a reaction caused by the action of the biocatalyst
  • the biocatalyst-like reaction is a reaction caused by an action similar to that of the biocatalyst by an analog of the biocatalyst.
  • the biocatalyst used in the present invention is preferably oxidase or dehydrogenase, but is not limited thereto.
  • glucose oxidase glucose dehydrogenase, darconate 2-dehydrogenase, ketogluconate 2-dehydrogenase, alcohol oxidase, alcohol dehydrogenase, aldehyde dehydrogenase, formate dehydrogenase, lactate dehydrogenase, aldos dehydrogenase, oligosaccharide
  • examples include, but are not limited to, dehydrogenase, pyrilbinoxidase, laccase, and cytochrome oxidase.
  • the redox sites may include more than one of the above types! ,.
  • a fuel is selected.
  • the biocatalyst used for the material of the present invention is selected depending on the fuel used. For example, when glucose oxidase or glucose dehydrogenase is used as a biocatalyst, glucose is used as a fuel. In addition, when (keto) dalconate 2-dehydrogenase is used as a biocatalyst, Keto) darconic acid is used. Similarly, alcohol is used as a fuel when alcoholoxidase or alcohol dehydrogenase is used as a biocatalyst.
  • biocatalyst / fuel pair is referred to as (biocatalyst, fuel).
  • FIG. 1 is a diagram in which a material 1 of the present invention as an anode is attached on a polymer electrolyte as an electrolyte, and an enlarged conceptual diagram of the material 1.
  • the material 1 of the present invention has an electron conductor 4 composed of a three-dimensional network of a plurality of carbon black particles 3, a redox polymer 6 having an acid reduction site 5, and a biocatalyst 7 (eg, glucose oxidase).
  • Glucose force When contacted with the anode, in particular glucose oxidase, which is the biocatalyst 7, it is oxidized to darconoraton. Electron e ⁇ generated in the biocatalyst is transferred to the electron conductor 4, that is, the carbon black particle 3 through the redox polymer 6 having the redox site 5. By this electron transfer, the material of the present invention can act as a negative electrode.
  • the positive electrode when acting as a positive electrode (cathod), it is as follows.
  • the positive electrode is not shown, but has substantially the same configuration as the negative electrode shown in FIG. That is, the positive electrode has a conductor having electron conductivity and proton conductivity, a redox polymer, and a catalyst (including a biocatalyst) (for example, cytochrome oxidase).
  • Oxygen comes into contact with the positive electrode, in particular with cytochrome oxidase, which is a catalyst, and reacts with protons moving from the polymer electrolyte force and electrons transferred from the outside to produce water. Therefore, the material of the present invention can also act as a positive electrode.
  • the material of the present invention can be used as a battery material, particularly a battery negative electrode or a battery positive electrode. In particular, it is preferably used as a negative electrode for a battery.
  • the material of the present invention is not limited to the above-described battery material, in particular, a fuel cell material, but acts as a material involved in various electron exchanges. For example, it acts as a reverse reaction with fuel cells, ie, a material that brings hydrogen and Z or oxygen from water. For example, in the case of bringing hydrogen from water, the substance that comes into contact with the material is water. By using a biocatalyst or an analog thereof as porphyrin, it is possible to provide a material that brings about hydrogen.
  • the present invention further provides a fuel cell, particularly a biofuel cell.
  • the fuel cell of the present invention particularly the biofuel cell, has a negative electrode; a positive electrode; and an electrolyte sandwiched between the positive electrode and the negative electrode, and the negative electrode and Z or the positive electrode are configured by using the above-described materials.
  • the above materials can be used for the negative electrode.
  • the case where the material of the present invention is used as a negative electrode will be described.
  • the negative electrode may have proton conductivity.
  • the negative electrode may have a material exhibiting proton conductivity, such as Nafion, a hydrocarbon-based proton conductive polymer.
  • biocatalyst As a negative electrode biocatalyst (first biocatalyst), glucose oxidase, glucose dehydrogenase, darconate 2-dehydrogenase, ketogluconate 2-dehydrogenase, alcohol oxidase, alcohol dehydrogenase, aldehyde dehydrogenase, formate dehydrogenase, lactate dehydrogenase, aldo Examples thereof include, but are not limited to, monodehydrogenase and oligosaccharide dehydrogenase.
  • a phencene derivative (a phenoxycene group, a carboxyphenocene, a dicarboxyphenocene, a methicene) Ruferocene, dimethylphenol, buluene, etc.), quinone compounds (benzoquinone, hydroquinone, naphthoquinone, pyroquinoline quinone, etc.), osmium bibilidine complexes ([Os (4,4, -Dimethylolene-2,2, bibilidine) CI] + /
  • Dazole complexes such as [Os (4,4, -dialkyl 2-2,2, -biimidazole)] 2 + / 3 + ), and
  • the positive electrode has proton conductivity.
  • the positive electrode may have a material exhibiting proton conductivity, such as Naf ion, a hydrocarbon proton conductive polymer.
  • the positive electrode has a second electronic conductor which may be the same as or different from the negative electron conductor (first electronic conductor).
  • the positive electrode may have a second redox polymer that may be the same as or different from the redox polymer (first redox polymer) of the negative electrode.
  • the redox polymer preferably has a second acid-reduction site exhibiting acid-acid reduction behavior and exhibits an electron conductivity of 10 -16 SZcm or more.
  • the positive electrode has a catalyst including a biocatalyst.
  • the catalyst of the positive electrode may be a metal (for example, Pt) and a biocatalyst or an analog thereof (second biocatalyst or an analog thereof).
  • the second biocatalyst can include, but is not limited to, pyrilvinoxidase, laccase, and cytochrome oxidase.
  • electrolyte a conventionally known electrolyte, particularly an electrolyte having proton conductivity can be used.
  • the electrolyte is disposed between the positive electrode and the negative electrode.
  • the battery can be configured to operate as follows. That is, when the negative electrode has, for example, glucose oxidase as the first biocatalyst, glucose is used as a fuel in contact with the negative electrode. In the negative electrode, glucose is converted to dalconoratone by darcosoxidase, while electrons are transferred to the first electronic conductor through the first biocatalytic force first redox polymer. Electrons are transmitted from the negative electrode of the battery to the outside.
  • glucose oxidase as the first biocatalyst
  • glucose is used as a fuel in contact with the negative electrode.
  • glucose is converted to dalconoratone by darcosoxidase, while electrons are transferred to the first electronic conductor through the first biocatalytic force first redox polymer. Electrons are transmitted from the negative electrode of the battery to the outside.
  • glucose is used as the negative electrode fuel
  • dalcosoxidase is used as the first negative electrode biocatalyst
  • oxygen is used as the positive electrode fuel (medium)
  • cytochrome oxidase is used as the second positive electrode biocatalyst.
  • biocatalyst for negative electrode and fuel for negative electrode can be used. Also, other combinations can be used for the positive electrode.
  • the present invention can provide a biofuel cell.
  • a fuel supply container for each of the negative electrode and the positive electrode.
  • the present invention also provides the following multi-stage reaction type battery.
  • fuel is decomposed in n stages (n is an integer of 2 or more) by n or more biocatalytic reactions or biocatalytic reactions 1 to!
  • n is an integer of 2 or more
  • Battery areas are the 1st to nth battery areas, and the 1st to nth battery areas are wired in series and Z or in parallel,
  • the first battery region has a first negative electrode, a first positive electrode, and a first electrolyte sandwiched between the first positive electrode and the first negative electrode,
  • the first negative electrode has a specific surface area that acts on pores of 7 nm or more, and the external specific surface area is 0.5 m 2 / g or more, preferably 6 to 5000 m 2 Zg, more preferably 10 to 800 m 2 / g.
  • the first redox polymer has a first redox site exhibiting redox behavior, and 10 _16 S show electron conductivity of / cm or more,
  • the first positive electrode has electronic conductivity
  • the m-th battery region (m is an integer from 2 to n) is the m-th negative electrode, the m-th positive electrode, and the m-th positive electrode and the m-th negative electrode.
  • Anode electron conductor of the m is external specific surface area 0. 5 m 2 Zg least a force mowing specific surface area than the pores 7 nm (electron conductor of the m of the m-th, first to (m — 1) electron
  • the m-th redox polymer (the m-th redox polymer may be the same as or different from the first to (m-1) redox polymers)
  • the m-th biocatalyst (the m-th biocatalyst is different from the first to (m-1) biocatalysts, etc.)
  • the m-th redox polymer is a redox polymer It has a m-th acid-reduction site that exhibits behavior (the m-th acid-reduction site may be the same as or different from the first to (m-1) redox sites).
  • an electronic conductivity of 10 _16 SZcm or more, and the mth positive electrode has electronic conductivity
  • the fuel is decomposed into the first decomposition product by the first biocatalyst and the like, and one or more electrons are generated,
  • the battery in which the (m-1) decomposition product is decomposed into the m-th decomposition product by the m-th biocatalyst and generates one or more electrons In each of the m-th negative electrodes, the battery in which the (m-1) decomposition product is decomposed into the m-th decomposition product by the m-th biocatalyst and generates one or more electrons.
  • the first to n-th negative electrodes and the first to n-th positive electrodes used in the first to n-th battery regions can also be made of the same material as the above-described battery.
  • the first to nth electrolytes are formed on a substantially flat surface
  • the first to nth negative electrodes are on one surface of the substantially flat surface
  • the first to nth positive electrodes are The first to nth fuels and the first to nth decomposition products are in contact with each other on one surface of the substantially one plane on which the first to nth negative electrodes are formed.
  • An nth negative electrode is preferably formed.
  • the (m ⁇ 1) positive electrode and the mth negative electrode are energized, and the first to nth battery regions are wired in series.
  • U ⁇ is preferred because it can provide batteries with high electromotive force by arranging in series.
  • the present invention also provides an embodiment of the configuration of the multistage reaction battery shown below.
  • fuel is decomposed in n stages (n is an integer of 2 or more) by n or more biocatalytic reactions or biocatalytic reactions 1 to!
  • n is an integer of 2 or more
  • Battery areas are the 1st to nth battery areas, and the 1st to nth battery areas are wired in series and Z or in parallel,
  • the first battery region has a first negative electrode, a first positive electrode and a first electrolyte sandwiched between the first positive electrode and the first negative electrode;
  • the first negative electrode is the first electronic conductor, the first redox polymer, and the first biocatalyst Has a like, said first redox polymer has a first redox sites displaying a redox behavior, and shows the 10 _ 16 SZcm more electron conductivity,
  • the first positive electrode has electronic conductivity
  • the m-th battery region (m is an integer from 2 to n) is the m-th negative electrode, the m-th positive electrode, and the m-th positive electrode and the m-th negative electrode.
  • the mth negative electrode is the mth electronic conductor (the mth electronic conductor may be the same as or different from the first to (m-1) th electronic conductors), the mth redox polymer ( The m-th redox polymer may be the same as or different from the first to (m-1) redox polymers), the m-th biocatalyst, etc.
  • the first to (m-1) acid-reduction sites may be the same or different, and exhibit an electronic conductivity of 10 _16 SZcm or more,
  • the mth positive electrode has electronic conductivity
  • the fuel is decomposed into the first decomposition product by the first biocatalyst and the like, and one or more electrons are generated,
  • the (m-1) decomposition product is decomposed into the mth decomposition product by the mth biocatalyst and the like, and one or more electrons are generated,
  • the first to nth electrolytes are formed on substantially one plane, the first to nth negative electrodes are formed on one surface of the substantially one plane, and the first to nth positive electrodes are formed on the other surface of the substantially one plane.
  • the first to nth negative electrodes are formed so that the fuel and the first to nth decomposition products are in contact with each other on a substantially flat surface on which the first to nth negative electrodes are formed.
  • the battery is provided.
  • the first to n-th negative electrodes and the first to n-th positive electrodes used in the first to n-th battery regions are not limited to the same materials as the above-mentioned batteries, but The same material as that of the battery can also be used.
  • the first to nth battery regions are arranged along the direction of fuel flow, the first battery, the second battery, the third battery region, ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ It should be arranged in the order of.
  • the biocatalytic reaction or biocatalyst-like reaction is performed along the flow direction such that the fuel is the first decomposition product, the first decomposition product is the second decomposition product, and so on. Because is done The above arrangement is preferable.
  • the (m ⁇ l) positive electrode and the mth negative electrode are energized, and the first to nth battery regions are wired in series.
  • the first to n-th electron conductors of the first to n-th negative electrodes have an external specific surface area of 0.5 m 2 Zg, which is a specific surface area acting on pores of 7 nm or more. That's it.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of the above-described multi-stage reaction type battery 20.
  • the substantially flat part in FIG. 2 shows the negative electrode part, the positive electrode part, the electrolyte part sandwiched between the negative electrode part and the positive electrode part, the upper part of FIG. 2 is the negative electrode side, and the lower part is the positive electrode side.
  • FIG. 2 shows the negative electrode part, the positive electrode part, the electrolyte part sandwiched between the negative electrode part and the positive electrode part, the upper part of FIG. 2 is the negative electrode side, and the lower part is the positive electrode side.
  • the substantially flat plate portion includes a first battery region 22, a second battery region 23, a third battery region 24, and a fourth battery region 25.
  • the first to fourth battery regions respectively have first to fourth negative electrodes 22a to 25a, first to fourth electrolytes 22b to 25b, and first to fourth positive electrodes 22c to 25c.
  • the first positive electrode 22c and the second negative electrode 23a are energized by the wiring 30.
  • the second positive electrode 23c and the third negative electrode 24a are energized by the wiring 31, and the third positive electrode 24c and the fourth negative electrode 25a are energized by the wiring 32.
  • the insulator 33 is provided with a hole (not shown) through which the wiring 30 passes while insulating the first and second battery regions.
  • the insulators 34 and 35 are also provided in the same manner as the insulator 33.
  • the wiring 37 and the wiring 38 act as a negative electrode and a positive electrode as a battery, respectively.
  • the fuel contacts the first to fourth regions, particularly the first to fourth negative electrodes, in the direction from right to left (in the direction of arrow A). In addition, the fuel is introduced.
  • the right force is also applied to the first to fourth regions, particularly the first to fourth positive electrodes in the direction to the left (in the direction of arrow B).
  • An acidic gas or an acidic liquid is configured to flow in such a way that the acidic liquid contacts.
  • the first to fourth electrolytes have proton conductivity.
  • the first to n-th electrolytes can be electrolytes having various properties depending on the fuel used and the acidic gas or the acidic liquid.
  • solid electrolyte membranes more specifically, commonly used solid electrolyte membranes such as Nafion, in the pores of porous membranes
  • Proton conductive materials such as electrolyte membranes filled with proton conductive liquids (for example, proton conductive polymers, proton conductive buffers, etc.) can be used.
  • the first to fourth positive electrodes have proton conductivity and electron conductivity.
  • each of the first to fourth negative electrodes has different first to fourth biocatalysts.
  • the first biocatalyst or the like causes the fuel to be decomposed into the first decomposed material in the first negative electrode, and one electron or more and one or more protons are generated due to the biocatalytic reaction or the biocatalyst-like reaction. Generated.
  • the first decomposition product is flowed along with the fuel in the vicinity of the second negative electrode along the flow direction, and is decomposed into the second decomposition product by the second biocatalyst or the like at the second negative electrode.
  • this biocatalytic reaction or biocatalyst-like reaction more than: L electrons are generated.
  • the second decomposed product is flown along with the fuel and the first decomposed product in the vicinity of the third negative electrode along the flow direction, and the third decomposed product is generated in the third negative electrode by the third biocatalyst or the like. Is broken down into In addition, one or more electrons and one or more protons are generated along with this biocatalytic reaction or biocatalyst-like reaction. Furthermore, the third decomposition product is caused to flow in the vicinity of the fourth negative electrode along the flow direction together with the fuel and the first and second decomposition products, and in the fourth negative electrode, the fourth biocatalyst, etc. Decomposed into a fourth degradation product. In addition, one or more electrons and one or more protons are generated with this biocatalytic reaction or biocatalyst-like reaction.
  • the protons generated in the first to fourth negative electrodes can be moved to the first to fourth positive electrodes, respectively.
  • an acidic gas such as oxygen reacts with the moving protons and electrons to generate water.
  • the positive electrode preferably has a catalyst in a reaction for generating water from oxygen, protons, and electrons contained in an oxidizing gas or an oxidizing liquid.
  • the positive electrode catalyst depends on the oxidizing gas or oxidizing liquid used, the above-described biocatalyst for the positive electrode can be used.
  • the battery shown in FIG. 2 is a battery in which the first to fourth batteries are arranged in series.
  • the fuel to be used, the first to fourth biocatalysts to be used, etc. a battery that provides a higher voltage (electromotive force) than the voltage (electromotive force) obtained in a single battery region is obtained. it can.
  • the fuel to be used and the first to nth biocatalysts used for the negative electrode will be described with examples.
  • An example using methanol as the fuel is shown below.
  • a battery having the first to third battery regions can be obtained, and alcohol dehydrogenase can be used as the first biocatalyst of the first battery region.
  • aldehyde dehydrogenase can be used as the second biocatalyst, and formate dehydrogenase can be used as the third biocatalyst.
  • first negative electrode two electrons are generated along with the biocatalytic reaction from methanol to formaldehyde.
  • the second negative electrode two electrons are generated along with the biocatalytic reaction from formaldehyde to formic acid.
  • a battery that uses methanol as a fuel and has the first to third battery area power is a battery that generates six electrons as a whole, and can provide a high voltage (electromotive force) based on the six-electron reaction. it can.
  • the battery using ethanol as a fuel and having the first and second battery area power is a battery that generates four electrons as a whole, and provides a high voltage (electromotive force) based on the four-electron reaction. Can do. Furthermore, an example using glucose as a fuel is shown below.
  • Hl lH HH The above example is an example when glucose is used as a fuel.
  • Glucosca is also a three-step biocatalytic reaction scheme to 2,5-diketo-D-dalconic acid, which shows a total of 6 electrons generating a biocatalytic reaction scheme.
  • 5-Diketo -D-Dalcon The acid can be further decomposed by a biocatalytic reaction, for example, to carbon dioxide. In this case, ie in the case of a biocatalytic reaction scheme from glucose to carbon dioxide
  • a total of 24 electrons can be generated. Therefore, when glucose is used as a fuel, a fuel that provides a high electromotive force based on the 24-electron reaction can be provided.
  • the material of the present invention can be prepared by the following production method.
  • a step of mixing and Z or bonding an electron conductor and a redox polymer or redox polymer precursor (however, when a redox polymer precursor having no redox site is used, the acid-reduction site is redoxed). Introduced into polymer precursor to form redox polymer B) forming the electron conductor precursor into a three-dimensional electron conductor;
  • electro conductor electron conductor
  • redox polymer biocatalyst or analog thereof
  • acid-reducing site the terms “electron conductor”, “redox polymer”, “biocatalyst or analog thereof”, and “acid-reducing site” have the same definition as the material.
  • step ⁇ b) step ⁇ c) step v. A) step ⁇ c) step ⁇ b) step; III. B) step ⁇ a) step ⁇ c) step; IV. B ) Step ⁇ c) Step ⁇ a) Step; V. c) Step ⁇ a) Step ⁇ b) Step; VI. C) Step ⁇ b) Step ⁇ a) Step;
  • two or more processes can be performed at the same time, such as a) process and b) process, and then c) process.
  • step a) when a redox polymer precursor having no oxidation reduction site is used instead of the redox polymer having an acid reduction site, the step of introducing the oxidation reduction site into the precursor is performed. It can also be carried out before, after or simultaneously with the above steps a) to c).
  • step a) "bonding" is preferably performed as follows. That is, it is preferable to introduce a polymerization initiating group into the electron conductor and bond the polymerization initiating group to the redox polymer or a precursor thereof.
  • the following is an example of a process for introducing a carbon black hair group (polymerization initiating group) when carbon black is used as the electron conductor.
  • the electron conductor precursor is preferably granular or rod-shaped.
  • the particle diameter thereof, and in the case of a rod shape, the diameter of the cross section thereof should be 10 m or less, preferably 1 ⁇ m or less, more preferably lOOnm or less.
  • electron conductor precursors include, but are not limited to, carbon, conductive polymers, and metals. These precursors are constructed three-dimensionally to form a three-dimensional network.
  • An electronic conductor having an external specific surface area of 0.5 m 2 Zg or more, preferably lm 2 / g or more, preferably 6 to 5000 m 2 Zg, more preferably 10 to 800 m 2 / g by forming a three-dimensional network Form.
  • Carbon ink is prepared by mixing carbon black and a binder (eg, PTFE suspension). This carbon ink is applied to the coated surface by screen printing, dried, and hot-pressed at an appropriate temperature and pressure, whereby an electronic conductor having carbon black and having a three-dimensional network can be formed.
  • a binder eg, PTFE suspension
  • step c) "Introduction of a biocatalyst or an analog thereof" in the step c) may be conducted by simply mixing into a material (for example, mixing into an electronic conductor or mixing into a redox polymer). Chemically bonded to the redox polymer even if introduced to bind chemically to the body Please guide him to do it.
  • a material for example, mixing into an electronic conductor or mixing into a redox polymer.
  • “Introduction of a biocatalyst or an analog thereof” may be simply introduced by mixing into a material, for example, by using a cross-linking reaction between biocatalysts or a cross-linking reaction between biocatalyst, ushi serum albumin and dartaldehyde. Introduce it to be fixed to the material.
  • the deactivated biocatalyst or an analog thereof When the biocatalyst or an analog thereof is deactivated, the deactivated biocatalyst or the like can be removed, and then the active biocatalyst or the like can be recombined.
  • the initial biocatalyst or the like when the initial biocatalyst or the like is chemically bonded or physically bonded to the redox polymer, desorption / rebonding is performed by the weak bond, which is inconsequential to normal battery operation.
  • the deactivated biocatalyst and the like can be removed, and the active biocatalyst and the like can be recombined.
  • a functional group having a charge is introduced into a redox polymer and a biocatalyst or the like is immobilized by electrostatic interaction.
  • the electrostatic interaction include control of the pH of the liquid in which the material of the present invention is immersed. More specifically, when the battery is operated, a liquid adjusted to a pH at which the charged functional group on the redox polymer and the charge of the biocatalyst are reversed is used, so that the electrostatic charge is generated between the functional group and the biocatalyst. By adsorption, a biocatalyst or the like can be fixed.
  • the biocatalyst and the like can be desorbed by flowing a liquid whose pH is adjusted so that the charged functional group on the redox polymer is equal to the charge of the biocatalyst (that is, a desorbing liquid). If the redox polymer is bonded to the electron conductor, the redox polymer may leak into the liquid even if the biocatalyst etc. is desorbed by the pH change of the liquid. It is preferable because it is not.
  • Ketjen black (specific surface area: about 800 m 2 Zg; external specific surface area: about 200 m 2 Zg; particle size: 30 nm) was used as carbon black (hereinafter simply abbreviated as “CB”).
  • graft polymerization of acrylamide (hereinafter simply abbreviated as “AAm”) and bull ferrocene (hereinafter simply abbreviated as “VFc”) was performed on the CB-introduced CB.
  • AAm acrylamide
  • VFc bull ferrocene
  • ultrasonic cleaning was performed in a methanol solution for 10 minutes, and then Soxhlet extraction was performed using water as a solvent for 24 hours.
  • the carbon ink obtained by grafting the redox polymer obtained above and untreated CB and the PTFE suspension as a binder is applied to the carbon paper by screen printing, dried, and 130 ° Hot pressing was performed at C and 0.25 MPa, and a redox polymer graft-polymerized CB force prepared carbon 3D electrode Ered-1 and untreated CB force prepared carbon 3D electrode E-2 were obtained.
  • the three-dimensional electrode Ered-1 obtained above was impregnated with 0.1 M phosphate buffer (PBS) containing 30 mgZml glucose oxidase (hereinafter simply abbreviated as “GOx”) for 10 minutes. Washed with 1M PBS for 30 seconds. Subsequently, 0.1 M PBS containing 20 mg Zml ushi serum albumin (BSA) was impregnated for 10 minutes, and washed with 0.1 M PBS for 30 seconds. Then, the biocatalyst was introduced into the 3D electrode by impregnating in 0.1M PBS containing 2% glutaraldehyde (GA) for 10 minutes and washing with 0.1M PBS for 1 minute. Got.
  • PBS phosphate buffer
  • Gx GmZml glucose oxidase
  • Electrochemical measurements were performed on the electrodes Ered-1, E-2, and Eredlen obtained above. Specifically, a gold wire was fixed to each electrode with a carbon paste to form a working electrode, and electrochemical measurements were performed. A silver / salt / silver silver electrode in saturated KC1 was used as the reference electrode, and a platinum black electrode was used as the counter electrode. Measurements were performed in 0.1 M PBS with 0.1 M glucose and pH 7.0. Before the measurement, the measurement solution was N-published for 30 minutes to remove dissolved oxygen.
  • Figure 3 shows the results of electrochemical measurements of electrodes Ered-1 and E-2 (cyclic voltamgram
  • FIG. 3 shows the solid line shows the result for electrode Ered-1, and the dotted line shows the result for electrode E-2. From FIG. 3, the electrode Ered-1 showed oxidation and reduction peaks in the vicinity of 0.3V. From this, the graft polymerization of redox polymer onto carbon black was confirmed.
  • Figure 4 shows the CV results for the electrode Ered-len. In FIG. 4, the solid line shows the result with a solution containing 0.1 M dalcose, and the dotted line shows the result with a solution not containing glucose. The electrode Ered-len gave a sigmoid response in which the oxidation peak current increased in the glucose solution and almost no reduction peak was observed.
  • FIG. 1 is a diagram in which a material 1 of the present invention as a negative electrode (anode) is deposited on a polymer electrolyte and an enlarged conceptual diagram of the material 1.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of a multistage reaction type battery 20.
  • FIG. 3 shows the results of electrochemical measurements (cyclic voltamgram (CV)) of electrodes Ered-1 and E-2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

A material participating in the donation and receiving of electrons; a biofuel cell making use of the material that exhibits an enhanced output power density; and a process for producing them. In particular, there is provided a material comprising an electron conductor of ≥ 0.5 m2/g external specific surface area being a specific surface area relating to pores of ≥ 7 nm, a redox polymer and a biocatalyst or analogue thereof, wherein the redox polymer has an oxidation-reduction moiety exhibiting oxidation-reduction behavior and exhibits an electron conductivity of ≥ 10-16 S/cm.

Description

明 細 書  Specification
バイオ電池  Bio battery
技術分野  Technical field
[0001] 本発明は、電子授受に関与する材料に関する。また、本発明は、該材料を電極とし て用いるバイオ電池、特にバイオ燃料電池、並びにそれらの製造方法に関する。 背景技術  [0001] The present invention relates to a material involved in electron transfer. The present invention also relates to a bio battery using the material as an electrode, particularly a bio fuel cell, and a method for producing the same. Background art
[0002] 近年、燃料電池の研究.開発が特に盛んになつている。ここでの燃料電池は、水素 源として、水素それ自体又はメタノールを用いている。  In recent years, research and development of fuel cells have become particularly active. The fuel cell here uses hydrogen itself or methanol as a hydrogen source.
一方、触媒として生体触媒を用いるバイオ燃料電池がある。このバイオ燃料電池は 、生体触媒 (例えば酵素及び該酵素を含む生体物質)により燃料を酸化する際に生 じた還元型の補酵素から、容易に酸化'還元反応を行うメディエータ (mediator)により 、電子を外部回路に取り出すことで、燃料の持つ化学エネルギーを電気エネルギー へ変換するデバイスである。前述のように、バイオ燃料電池は、触媒が生体触媒 (例 えば酵素)であるため、該生体触媒の選択により、様々な基質を燃料として利用でき る。そのため、従来の燃料電池では十分に検討されなかった、バイオマス由来の物 質、例えばグルコース又はエタノール力も電気エネルギーを取り出すデバイスとして のバイオ燃料電池、生体内に存在するグルコース又は乳酸などにより作動するミクロ な医療機器の動力源としてのノィォ燃料電池の開発が期待されている。  On the other hand, there is a biofuel cell that uses a biocatalyst as a catalyst. This biofuel cell is composed of a reduced coenzyme generated when a fuel is oxidized by a biocatalyst (for example, an enzyme and a biological substance containing the enzyme), and a mediator that easily performs an oxidation / reduction reaction. It is a device that converts chemical energy of fuel into electrical energy by extracting electrons to an external circuit. As described above, in the biofuel cell, since the catalyst is a biocatalyst (for example, an enzyme), various substrates can be used as fuel by selecting the biocatalyst. For this reason, biomass-derived materials, such as glucose or ethanol, which have not been fully studied in conventional fuel cells, are used as devices for extracting electrical energy, and are operated by glucose or lactic acid present in the living body. Development of a nano fuel cell as a power source for medical devices is expected.
非特許文献 l :A.Heller, Phys. Chem. Chem. Phys., 6, 209(2004)。  Non-patent literature l: A. Heller, Phys. Chem. Chem. Phys., 6, 209 (2004).
特許文献 1 :米国特許第 6, 531, 239号。  Patent Document 1: US Pat. No. 6,531,239.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、上記非特許文献 1における、バイオ燃料電池の最大出力密度は、 35However, the maximum power density of the biofuel cell in Non-Patent Document 1 is 35
0 WZcm2にとどまっている。これは、電極の見かけ面積、即ち投影面積あたりで 有効に働く生体触媒の固定ィ匕量が少ないことが主として考えられる。 It stays at 0 WZcm 2 . This is mainly due to the fact that the amount of immobilization of the biocatalyst that works effectively in the apparent area of the electrode, that is, the projected area, is small.
[0004] そこで、本発明の目的は、出力密度を向上させたバイオ燃料電池、及びそれに用 いられる電極用材料、並びにそれらの製造方法を提供することにある。 また、本発明の目的は、上記の燃料電池用の材料に限らず、電子授受に関与する 材料を提供することにある。 Accordingly, an object of the present invention is to provide a biofuel cell with improved power density, an electrode material used therefor, and a method for producing them. In addition, an object of the present invention is to provide a material involved in electron transfer, not limited to the above-described fuel cell material.
課題を解決するための手段  Means for solving the problem
[0005] 本発明者らは、外部比表面積が大である電子伝導体を用い、該電子伝導体による 3次元ネットワーク構造を形成することにより、電極の見かけ面積の増加を図ることに した。また、生体触媒又はその類似体 (以下、単に「生体触媒など」と略記する場合が ある)を該 3次元ネットワーク中に固定ィ匕することにより、その固定ィ匕量を高めることと した。さらに、レドックスポリマーを含めることにより、該レドックスポリマーが生体触媒 などと、比表面積の大きな、特に外部比表面積の大きな電子伝導体との電子のやりと りを仲介できることを見出した。  [0005] The inventors have decided to increase the apparent area of the electrode by using an electron conductor having a large external specific surface area and forming a three-dimensional network structure with the electron conductor. In addition, the amount of the fixed catalyst was increased by fixing a biocatalyst or an analog thereof (hereinafter sometimes simply abbreviated as “biocatalyst, etc.”) in the three-dimensional network. Furthermore, it has been found that by including a redox polymer, the redox polymer can mediate exchange of electrons between a biocatalyst and the like with an electron conductor having a large specific surface area, particularly an external specific surface area.
[0006] 具体的には、本発明者らは、以下の発明により、上記課題を解決できることを見出 した。  [0006] Specifically, the present inventors have found that the above-described problems can be solved by the following invention.
< 1 > 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2Zg以上 である電子伝導体、レドックスポリマー、及び生体触媒又はその類似体、例えば生体 触媒を有する材料であって、 <1> A material having an electron conductor, a redox polymer, and a biocatalyst or an analog thereof, for example, a biocatalyst having an external specific surface area of 0.5 m 2 Zg or more, which is a specific surface area acting on pores of 7 nm or more. And
前記レドックスポリマーは、酸化還元挙動を示す酸化還元部位を有し、且つ io_16sThe redox polymer has a redox site exhibiting redox behavior, and io — 16 s
Zcm以上の電子伝導性を示す、上記材料。 The above materials exhibiting electronic conductivity of Zcm or more.
[0007] < 2> 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2Zg以上 である電子伝導体、レドックスポリマー、及び生体触媒又はその類似体、例えば生体 触媒を有する材料であって、 [0007] <2> having an electron conductor, a redox polymer, and a biocatalyst or an analog thereof, for example, a biocatalyst having an external specific surface area of 0.5 m 2 Zg or more, which is a specific surface area that works on pores of 7 nm or more Material,
前記レドックスポリマーは、酸化還元挙動を示す酸化還元部位を有し、且つ 10_16 SZcm以上の電子伝導性を示し、 The redox polymer has a redox sites displaying a redox behavior, and shows electron conductivity than 10_ 16 SZcm,
前記材料と接触する第 1の物質が前記生体触媒又はその類似体により酸化される 際に生じる電子を前記レドックスポリマーを介して電子伝導体に伝達する、上記材料  The material that transfers electrons generated when the first substance in contact with the material is oxidized by the biocatalyst or an analog thereof to the electron conductor via the redox polymer.
< 3 > 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2Zg以上 である電子伝導体、レドックスポリマー、及び生体触媒又はその類似体、例えば生体 触媒を有する材料であって、 前記レドックスポリマーは、酸化還元挙動を示す酸化還元部位を有し、且つ io_lb <3> An electron conductor, a redox polymer, and a biocatalyst or an analog thereof, for example, a material having a biocatalyst having an external specific surface area of 0.5 m 2 Zg or more, which is a specific surface area that works on pores of 7 nm or more. And The redox polymer has a redox site exhibiting redox behavior, and io_lb
SZcm以上の電子伝導性を示し、 Shows electronic conductivity above SZcm,
前記材料と接触する第 2の物質が前記生体触媒又はその類似体により還元される 際の電子を電子伝導体を介してレドックスポリマーに伝達する、上記材料。  The material as described above, wherein the second substance in contact with the material is reduced by the biocatalyst or an analog thereof and transmits electrons to the redox polymer via the electron conductor.
[0008] <4> 上記 <1>〜<3>のいずれかにおいて、電子伝導体力 カーボン、導電 性ポリマー、及び金属力もなる群力も選ばれるのがよい。なお、導電性ポリマーの場 合、その分子量が 50〜100万、好ましくは 1000〜10万であるのがよい。 <4> In any one of the above items <1> to <3>, an electron conductor force carbon, a conductive polymer, and a group force including a metal force may be selected. In the case of a conductive polymer, the molecular weight is 50 to 100 million, preferably 1000 to 100,000.
<5> 上記<1>〜<4>のぃずれかにぉぃて、電子伝導体は、その形状が粒状 、又は棒状であるのがよい。粒状の場合はその粒径、棒状である場合はその断面の 直径がそれぞれ、 10 μ m以下、好ましくは 1 μ m以下、より好ましくは lOOnm以下で あるのがよい。  <5> According to any one of the above items <1> to <4>, the shape of the electron conductor may be granular or rod-shaped. The particle diameter should be 10 μm or less, preferably 1 μm or less, and more preferably lOOnm or less in the case of a granular shape.
[0009] <6> 上記 <4>又は <5>において、カーボンが、カーボンブラック、カーボン ナノチューブ、及びカーボンナノホーンからなる群力 選ばれるのがよ 、。  <6> In the above <4> or <5>, the carbon is selected from the group force consisting of carbon black, carbon nanotube, and carbon nanohorn.
<7> 上記<1>〜<6>のぃずれかにぉぃて、電子伝導体の外部比表面積が lm2Zg以上、好ましくは 6〜5000m2Zg、より好ましくは 10〜800m2Zgであるのが よい。 <7> According to any of <1> to <6> above, the external specific surface area of the electron conductor is lm 2 Zg or more, preferably 6 to 5000 m 2 Zg, more preferably 10 to 800 m 2 Zg. There should be.
<8> 上記 <1>〜<7>のいずれかにおいて、レドックスポリマーの酸化還元部 位が、フエ口セン誘導体類(例えばフエ口セン基、カルボキシフエ口セン、ジカルボキ シフエロセン、メチルフエ口セン、ジメチルフエ口セン、ビュルフエ口センなど)、キノン 化合物(例えばべンゾキノン、ヒドロキノン、ナフトキノン、ピロキノリンキノンなど)、ォス ミゥムビビリジン錯体類 ( [Os (4,4, -ジメチル- 2,2, -ビビリジン) CI] +/2+、 [Os (4,4, -<8> In any one of the above items <1> to <7>, the redox polymer may have a redox polymer having a phencene derivative (e.g., phenoxycene group, carboxyphenocene, dicarboxyphenocene, methylphenocene, dimethylphenol). And quinone compounds (eg, benzoquinone, hydroquinone, naphthoquinone, pyroquinoline quinone), osmubiviridine complexes ([Os (4,4, -dimethyl-2,2, -biviridine) CI ] + / 2 + , [Os (4,4,-
2 2
ジァミノ- 2,2,-ビビリジン) Cl]+/2+、 [Os(4,4,-ジメトキシ- 2,2,-ビビリジン) Cl]+/2 Diamino-2,2, -biviridine) Cl] + / 2 + , [Os (4,4, -dimethoxy-2,2, -biviridine) Cl] + / 2
2 2 twenty two
+、 [Os (ターピリジン)(4,4,-ジメチノレ- 2,2,-ビビリジン) Cl]2+/3+、 [Os(4,4,-ジクロ +, [Os (terpyridine) (4,4, -Dimethylol-2,2, -biviridine) Cl] 2 + / 3 + , [Os (4,4, -Dichloro
2  2
口- 2,2, -ビビリジン) C1] +/2+など)、オスミウムビイミダゾール錯体類 ( [Os (4,4, -ジ Mouth-2,2, -biviridine) C1] + / 2 + ), osmium biimidazole complexes ([Os (4,4, -di
2  2
アルキル化- 2, 2,-ビイミダゾール) ]2+/3+など)、ビオローゲン、及び 2,2-ァゾビス(3 Alkylated-2,2, -biimidazole)] 2 + / 3 + ), viologen, and 2,2-azobis (3
3  Three
-ェチルベンゾチアゾリン- 6-スルホネート)力もなる群力も選ばれるのがよ 、。  -Ethylbenzothiazoline-6-sulfonate) The power of the group is also chosen.
[0010] <9> 上記く 1>〜<8>のいずれかにおいて、レドックスポリマーは、その一端 が電子伝導体に化学的に結合するのがよい。 < 10> 上記 < 1 >〜< 9 >のいずれかにおいて、生体触媒が、ォキシダーゼ又 はデヒドロゲナーゼであるのがよぐ特に、グルコースォキシダーゼ、グルコースデヒド ロゲナーゼ、ダルコン酸 2-デヒドロゲナーゼ、ケトグルコン酸 2-デヒドロゲナーゼ、ァ ルコールォキシダーゼ、アルコールデヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ、 ギ酸デヒドロゲナーゼ、乳酸デヒドロゲナーゼ、アルド一スデヒドロゲナーゼ、オリゴ糖 デヒドロゲナーゼ、ビリルビンォキシダーゼ、ラッカーゼ、及びシトクロームォキシダー ゼカ なる群力 選ばれるのがよ!/、。 <9> In any one of the above items 1> to <8>, one end of the redox polymer may be chemically bonded to the electron conductor. <10> In any one of the above items <1> to <9>, the biocatalyst is preferably oxidase or dehydrogenase. In particular, glucose oxidase, glucose dehydrogenase, darconate 2-dehydrogenase, ketogluconate 2- The group power of dehydrogenase, alcohol oxidase, alcohol dehydrogenase, aldehyde dehydrogenase, formate dehydrogenase, lactate dehydrogenase, aldose dehydrogenase, oligosaccharide dehydrogenase, bilirubin oxidase, laccase, and cytochrome oxidase zecta should be chosen! / ,.
< 11 > 上記< 1 >〜< 10>のぃずれかにぉぃて、材料が、電池用負極、又は 電池用正極として用いられるのがよ 、。  <11> According to any one of the above items <1> to <10>, the material may be used as a negative electrode for a battery or a positive electrode for a battery.
[0011] < 12> 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2Zg以 上である第 1の電子伝導体、第 1のレドックスポリマー、及び第 1の生体触媒又はその 類似体を有する負極; [0011] <12> a first electronic conductor, a first redox polymer, and a first biocatalyst having an external specific surface area of 0.5 m 2 Zg or more, which is a specific surface area that works on pores of 7 nm or more Or a negative electrode having an analogue thereof;
プロトン伝導性を有する正極;及び  A positive electrode with proton conductivity; and
前記正極と前記負極とに挟まれた電解質;を有する電池であって、  An electrolyte sandwiched between the positive electrode and the negative electrode;
前記第 1のレドックスポリマーは、酸化還元挙動を示す第 1の酸化還元部位を有し、 且つ 10_16SZcm以上の電子伝導性を示す、上記電池。 The battery, wherein the first redox polymer has a first redox site exhibiting redox behavior, and exhibits an electronic conductivity of 10 _16 SZcm or more.
[0012] < 13 > 上記く 12>において、負極がプロトン伝導性を有するのがよい。特に、プ 口トン伝導性を示す材料、例えば Nafion、炭化水素系プロトン伝導性ポリマーを有 するのがよい。 <13> In the above item <12>, the negative electrode preferably has proton conductivity. In particular, it is preferable to have a material exhibiting proton conductivity, such as Nafion, a hydrocarbon-based proton conductive polymer.
< 14> 上記く 12>又はく 13 >において、第 1の生体触媒が、グルコースォキシ ダーゼ、グルコースデヒドロゲナーゼ、ダルコン酸 2-デヒドロゲナーゼ、ケトグルコン酸 2-デヒドロゲナーゼ、アルコールォキシダーゼ、アルコールデヒドロゲナーゼ、アルデ ヒドデヒドロゲナーゼ、ギ酸デヒドロゲナーゼ、乳酸デヒドロゲナーゼ、アルド一スデヒ ドロゲナーゼ、及びオリゴ糖デヒドロゲナーゼからなる群から選ばれるのがよ 、。  <14> In the above 12> or 13>, the first biocatalyst is glucose oxidase, glucose dehydrogenase, darconate 2-dehydrogenase, ketogluconate 2-dehydrogenase, alcohol oxidase, alcohol dehydrogenase, aldehyde dehydrogenase. , Selected from the group consisting of formate dehydrogenase, lactate dehydrogenase, aldo-dehydrogenase, and oligosaccharide dehydrogenase.
[0013] < 15 > 上記く 12>〜< 14>のいずれかにおいて、第 1の酸化還元部位力 フ エロセン誘導体類(フエ口セン基、カルボキシフエ口セン、ジカルボキシフエ口セン、メ チルフエ口セン、ジメチルフエ口セン、ビュルフエ口センなど)、キノン化合物(ベンゾキ ノン、ヒドロキノン、ナフトキノン、ピロキノリンキノンなど)、才スミゥムビピリジン錯体類( [Os (4,4, -ジメチノレ- 2,2, -ビビリジン) CI] +/2+、 [Os (4,4, -ジァミノ- 2,2, -ビビリジン <0013><15> In any one of the above items 12> to <14>, the first redox site force ferrocene derivative (hue mouth sen group, carboxy phe mouth cene, dicarboxy phe mouth cene, methyl phe Cene, dimethylphenol, buluene, etc.), quinone compounds (benzoquinone, hydroquinone, naphthoquinone, pyroquinoline quinone, etc.), sumi-bibipyridine complexes ( [Os (4,4, -Dimethinole-2,2, -biviridine) CI] + / 2 + , [Os (4,4, -Diamino-2,2, -biviridine)
2  2
) Cl]+/2+、 [Os (4,4,-ジメトキシ- 2,2,-ビビリジン) Cl]+/2+など)、オスミウムビイミ) Cl] + / 2 + , [Os (4,4, -dimethoxy-2,2, -biviridine) Cl] + / 2 +, etc.), osmium biimi
2 2 twenty two
ダゾール錯体類 ( [Os (4,4, -ジアルキルィ匕- 2,2, -ビイミダゾール) ] 2+/3+など)、及 Dazole complexes (such as [Os (4,4, -dialkyl 2-2,2, -biimidazole)] 2 + / 3 + ), and
3  Three
びビオローゲンからなる群力 選ばれるのがよい。  A group power consisting of viologen should be selected.
<16> 上記<12>〜<15>のぃずれかにぉぃて、正極が第 2の電子伝導体を 有するのがよい。  <16> In any one of the above items <12> to <15>, the positive electrode preferably has the second electronic conductor.
<17> 上記く 12>〜<16>のいずれかにおいて、正極が第 2のレドックスポリ マーを有し、該レドックスポリマーは、酸化還元挙動を示す第 2の酸化還元部位を有 し、且つ 10_16S/cm以上の電子伝導性を示すのがよい。 <17> In any one of the above items 12> to <16>, the positive electrode has a second redox polymer, the redox polymer has a second redox site exhibiting redox behavior, and 10 It should show electronic conductivity of _16 S / cm or more.
[0014] <18> 上記く 12>〜<17>のいずれかにおいて、第 2のレドックスポリマー力 才スミゥムビピリジン錯体類 ( [Os (ターピリジン)(4,4' -ジメチノレ- 2,2 ' -ビピリジン) C1 [0014] <18> In any one of the above 12> to <17>, the second redox polymer strength Sumiumbipyridine complex ([Os (terpyridine) (4,4'-dimethinole-2,2 ' -Bipyridine) C1
2 2
]2+/3+、 [os (4,4,-ジクロロ- 2,2,-ビビリジン) Cl]+/2+など)、及び 2,2-ァゾビス(3-] 2 + / 3 +, [os (4,4, -dichloro-2,2, -biviridine) Cl] + / 2 + ), and 2,2-azobis (3-
2 2
ェチルベンゾチアゾリン- 6-スルホネート)力もなる群力も選ばれるのがよ!/、。  Ethyl benzothiazoline-6-sulfonate) The power of the group is also chosen! /.
<19> 上記く 12>〜<18>のいずれかにおいて、正極は、プロトン伝導性ポリ マーを有するのがよい。  <19> In any one of the above items 12> to <18>, the positive electrode may have a proton conductive polymer.
<20> 上記く 12>〜<19>のいずれかにおいて、正極が触媒を有するのがよ い。  <20> In any one of the above items 12> to <19>, the positive electrode preferably has a catalyst.
<21> 上記く 20 >において、触媒が第 2の生体触媒又はその類似体であるの がよい。  <21> In the above item 20>, the catalyst may be the second biocatalyst or an analogue thereof.
<22> 上記く 21 >にお 、て、第 2の生体触媒が、ピリルビンォキシダーゼ、ラッ カーゼ、及びシトクロームォキシダーゼ力もなる群力も選ばれるのがよ!/、。  <22> In the above 21>, the second biocatalyst should also be selected as a group force that also has pyrilbinoxidase, laccase, and cytochrome oxidase power! /.
[0015] <23> 上記<12>〜<22>のぃずれかにぉぃて、第1及び7又は第2の電子 伝導体は、カーボン、導電性ポリマー、及び金属力 なる群力 選ばれるのがよい。 なお、導電性ポリマーの場合、その分子量が 50〜: L00万、好ましくは 1000〜10万 であるのがよい。 [0015] <23> According to any one of the above items <12> to <22>, the first, seventh, or second electronic conductor is selected from a group force consisting of carbon, a conductive polymer, and a metal force. It is good. In the case of a conductive polymer, the molecular weight is 50 to: L00000, preferably 1,000 to 100,000.
<24> 上記<12>〜<23>のぃずれかにぉぃて、第 1及び/又は第 2の電子 伝導体は各独立に、その形状が粒状、又は棒状であるのがよい。粒状の場合はその 粒径、棒状である場合はその断面の直径がそれぞれ、 10/zm以下、好ましくは 1 m以下、より好ましくは lOOnm以下であるのがよい。 <24> According to any one of the above items <12> to <23>, the first and / or second electronic conductors may independently have a granular shape or a rod shape. In the case of granules, the particle diameter is 10 / zm or less, preferably 1 m or less, more preferably lOOnm or less.
<25> 上記く 23>又はく 24>において、カーボンが、カーボンブラック、カー ボンナノチューブ、及びカーボンナノホーン力 なる群力 選ばれるのがよい。  <25> In the above 23> or 24>, it is preferable that carbon is selected as a group force consisting of carbon black, carbon nanotube, and carbon nanohorn force.
<26> 上記<12>〜<25>のぃずれかにぉぃて、第 1及び/又は第 2の電子 伝導体の外部比表面積が lm2Zg以上、好ましくは 6〜5000m2Zg、より好ましくは 10〜800m2Zgであるのがよ ヽ。 <26> According to any of <12> to <25> above, the external specific surface area of the first and / or second electronic conductor is lm 2 Zg or more, preferably 6 to 5000 m 2 Zg. It is preferably 10 to 800 m 2 Zg.
<27> 上記く 12>〜<26>のいずれかにおいて、電池は燃料電池であるのが よい。  <27> In any one of the above items 12> to <26>, the battery may be a fuel cell.
[0016] <28> 7nm以上の細孔に力かる比表面積である外部比表面積が 0.5m2Zg以 上である電子伝導体、レドックスポリマー、及び生体触媒又はその類似体を有する材 料の製造方法であって、次の a)〜c)を順不同に有する力及び Z又は a)〜c)のいず れか 2つもしくは 3つを同時に行う、上記方法: <28> Manufacture of a material having an electron conductor, a redox polymer, and a biocatalyst or an analog thereof having an external specific surface area of 0.5 m 2 Zg or more, which is a specific surface area that is effective for pores of 7 nm or more A method as described above, wherein the following a) to c) are carried out in random order and either Z or a) to c) two or three at the same time:
a)電子伝導体とレドックスポリマー又はレドックスポリマー前駆体とを混合及び Z又 は結合する工程 (但し、酸化還元部位を有しな ヽレドックスポリマー前駆体を用いる 場合、前記酸ィ匕還元部位をレドックスポリマー前駆体に導入しレドックスポリマーを形 成する工程を a)〜c)
Figure imgf000008_0001
、ずれかの前後又は a)〜c)と同時に有する); b)電子伝導体前駆体を 3次元的な電子伝導体へと形成する工程;
a) A step of mixing and Z or bonding an electron conductor and a redox polymer or redox polymer precursor (however, when a redox polymer precursor having no redox site is used, the acid-reduction site is redoxed). Steps a) to c) that are introduced into a polymer precursor to form a redox polymer.
Figure imgf000008_0001
B) forming the electron conductor precursor into a three-dimensional electron conductor;
c)生体触媒又はその類似体を導入する工程。  c) A step of introducing a biocatalyst or an analog thereof.
[0017] <29> 上記く 28 >において、電子伝導体力 カーボン、導電性ポリマー、及び 金属からなる群力 選ばれるのがよい。なお、導電性ポリマーの場合、その分子量が 50〜: LOO万、好ましくは 1000〜10万であるのがよい。  [0017] <29> In the above item 28>, it is preferable that an electron conductor force carbon, a conductive polymer, and a group force composed of a metal be selected. In the case of a conductive polymer, the molecular weight is 50 to: LOO 10,000, preferably 1,000 to 100,000.
<30> 上記 < 28 >又は < 29 >のいずれかにおいて、電子伝導体前駆体は、そ の形状が粒状、又は棒状であるのがよい。粒状の場合はその粒径、棒状である場合 はその断面の直径がそれぞれ、 10 μ m以下、好ましくは 1 μ m以下、より好ましくは 1 OOnm以下であるのがよ!/、。  <30> In any one of the above items <28> or <29>, the electron conductor precursor may have a granular shape or a rod shape. In the case of a granular shape, the particle diameter thereof, and in the case of a rod shape, the diameter of the cross section thereof is 10 μm or less, preferably 1 μm or less, more preferably 1 OOnm or less! /.
[0018] <31> 上記く 29>又はく 30>において、カーボンが、カーボンブラック、カー ボンナノチューブ、及びカーボンナノホーン力 なる群力 選ばれるのがよい。  <31> In the above item 29> or item 30>, carbon is preferably selected from a group force consisting of carbon black, carbon nanotube, and carbon nanohorn force.
<32> 上記<28>〜<31>のぃずれかにぉぃて、電子伝導体の外部比表面 積が lm2/g以上、好ましくは 6〜5000m2Zg、より好ましくは 10〜800m2/gである のがよい。 <32> Outside <28> to <31> above, the external specific surface of the electron conductor The product should be lm 2 / g or more, preferably 6 to 5000 m 2 Zg, more preferably 10 to 800 m 2 / g.
< 33 > 上記く 28 >〜< 32>のいずれかにおいて、レドックスポリマーの酸化還 元部位が、フエ口セン誘導体類(例えばフエ口セン基、カルボキシフエ口セン、ジカル ボキシフエ口セン、メチルフエ口セン、ジメチルフエ口セン、ビュルフエ口センなど)、キ ノン化合物(例えばべンゾキノン、ヒドロキノン、ナフトキノン、ピロキノリンキノンなど)、 オスミウムビビリジン錯体類 ( [Os (4,4, -ジメチル- 2,2, -ビビリジン) CI] +/2+、 [Os (4, <33> In any one of the above 28> to <32>, the oxidation reduction site of the redox polymer may be a phenoxycene derivative (for example, phenoxycene group, carboxyphenoxycene, dicarboxyphenoxycene, methylphenoxycene). , Dimethylphenol, buluene, etc.), quinone compounds (eg, benzoquinone, hydroquinone, naphthoquinone, pyroquinolinequinone), osmium biviridine complexes ([Os (4,4, -dimethyl-2,2,- Biviridine) CI] + / 2 + , [Os (4,
2  2
4,-ジァミノ- 2,2,-ビビリジン) Cl] +Z2+、 [Os (4,4,-ジメトキシ- 2,2,-ビビリジン) C1] 4, -Diamino-2,2, -biviridine) Cl] + Z 2+ , [Os (4,4, -dimethoxy-2,2, -biviridine) C1]
2 2 twenty two
+/2+、 [Os (ターピリジン)(4,4,-ジメチル- 2,2,-ビビリジン) Cl]2+/3+、 [Os (4,4,-ジ + / 2 + , [Os (terpyridine) (4,4, -dimethyl-2,2, -biviridine) Cl] 2 + / 3 + , [Os (4,4, -di
2  2
クロ口- 2,2, -ビビリジン) C1] +/2+など)、オスミウムビイミダゾール錯体類 ( [Os (4,4, -Black mouth-2,2, -biviridine) C1] + / 2 + ), osmium biimidazole complexes ([Os (4,4,-
2 2
ジアルキル化- 2,2,-ビイミダゾール) ]2+/3+など)、ビオローゲン、及び 2,2-ァゾビス( Dialkylated-2,2, -biimidazole)] 2 + / 3 + ), viologen, and 2,2-azobis (
3  Three
3-ェチルベンゾチアゾリン- 6-スルホネート)力 なる群力 選ばれるのがよ!/、。  3-Ethylbenzothiazoline-6-sulfonate) Power is a group power.
[0019] < 34> 上記く 28 >〜< 33 >の工程 a)において、電子伝導体とレドックスポリマ 一又はレドックスポリマー前駆体とは、該レドックスポリマー又はその前駆体の一端が 電子伝導体又は電子伝導体前駆体に化学的に結合するのがよい。 [0019] <34> In steps a) of the above <28> to <33>, the electron conductor and the redox polymer or the redox polymer precursor are: an end of the redox polymer or its precursor is an electron conductor or an electron It may be chemically bonded to the conductor precursor.
< 35 > 上記く 28 >〜< 34>のいずれかにおいて、生体触媒が、グルコースォ キシダーゼ、グルコースデヒドロゲナーゼ、ダルコン酸 2-デヒドロゲナーゼ、ケトグルコ ン酸 2-デヒドロゲナーゼ、アルコールォキシダーゼ、アルコールデヒドロゲナーゼ、ァ ルデヒドデヒドロゲナーゼ、ギ酸デヒドロゲナーゼ、乳酸デヒドロゲナーゼ、アルドース デヒドロゲナーゼ、オリゴ糖デヒドロゲナーゼ、ピリルビンォキシダーゼ、ラッカーゼ、 及びシトクロームォキシダーゼからなる群力も選ばれるのがよい。  <35> In any one of the above 28> to <34>, the biocatalyst is glucose oxidase, glucose dehydrogenase, darconate 2-dehydrogenase, ketogluconate 2-dehydrogenase, alcohol oxidase, alcohol dehydrogenase, aldehyde dehydrogenase. A group force consisting of formate dehydrogenase, lactate dehydrogenase, aldose dehydrogenase, oligosaccharide dehydrogenase, pyrilbinoxidase, laccase, and cytochrome oxidase may also be selected.
< 36 > 上記く 28 >〜< 35 >のいずれかにおいて、材料が、電池用負極、又は 電池用正極として用いられるのがよ 、。  <36> In any one of the above items 28> to <35>, the material may be used as a negative electrode for a battery or a positive electrode for a battery.
[0020] < 37> 燃料を n段階 (nは 2以上の整数)で n以上の生体触媒反応又は生体触媒 類似反応で分解する、 l〜n個の電池領域を有する電池であって、 [0020] <37> A battery having l to n battery regions, in which fuel is decomposed in n stages (n is an integer of 2 or more) by n or more biocatalytic reactions or biocatalytic similar reactions,
1〜!!個の電池領域が第 1〜第 nの電池領域であり、該第 1〜第 nの電池領域が直 列及び Z又は並列に配線され、  1 ~! Battery areas are the 1st to nth battery areas, and the 1st to nth battery areas are wired in series and Z or in parallel,
第 1の電池領域は、第 1の負極、第 1の正極及び前記第 1の正極と前記第 1の負極 とに挟まれた第 1の電解質を有し、 The first battery region includes a first negative electrode, a first positive electrode, and the first positive electrode and the first negative electrode A first electrolyte sandwiched between and
第 1の負極が 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2 /g以上、好ましくは 6〜5000m2Zg、より好ましくは 10〜800m2/gである第 1の電 子伝導体、第 1のレドックスポリマー、及び第 1の生体触媒又はその類似体を有し、前 記第 1のレドックスポリマーは、酸化還元挙動を示す第 1の酸化還元部位を有し、且 つ 10_16S/cm以上の電子伝導性を示し、 The first negative electrode has a specific surface area that acts on pores of 7 nm or more, and the external specific surface area is 0.5 m 2 / g or more, preferably 6 to 5000 m 2 Zg, more preferably 10 to 800 m 2 / g. A first redox polymer, and a first biocatalyst or an analog thereof, wherein the first redox polymer has a first redox site exhibiting redox behavior, And exhibits electronic conductivity of 10 _16 S / cm or more,
第 1の正極が電子伝導性を有し、  The first positive electrode has electronic conductivity;
第 mの電池領域 (mは 2から nまでのすベての整数)は各々、第 mの負極、第 mの正 極及び前記第 mの正極と前記第 mの負極とに挟まれた第 mの電解質を有し、  The m-th battery region (m is an integer from 2 to n) is the m-th negative electrode, the m-th positive electrode, and the m-th positive electrode and the m-th negative electrode. m electrolyte,
第 mの負極が 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2 Zg以上である第 mの電子伝導体 (第 mの電子伝導体は、第 1〜第 (m— 1)の電子 伝導体と同じであっても異なってもよい)、第 mのレドックスポリマー(第 mのレドックス ポリマーは、第 1〜第 (m— 1)のレドックスポリマーと同じであっても異なってもよい)、 及び第 mの生体触媒又はその類似体 (第 mの生体触媒又はその類似体は各々、第 1〜第 (m— 1)の生体触媒又はその類似体とは異なる)を有し、前記第 mのレドックス ポリマーは、酸化還元挙動を示す第 mの酸化還元部位 (第 mの酸化還元部位は、第 1〜第 (m— 1)の酸ィ匕還元部位と同じであっても異なってもよ!/、)を有し、且つ 10_16 SZcm以上の電子伝導性を示し、 Anode electron conductor of the m is external specific surface area 0. 5 m 2 Zg least a force mowing specific surface area than the pores 7 nm (electron conductor of the m of the m-th, first to (m — The same as or different from the electron conductor of 1), m-th redox polymer (the m-th redox polymer may be the same as the first to (m-1) redox polymers) And the m-th biocatalyst or its analog (the m-th biocatalyst or its analog is different from the first to (m-1) biocatalyst or its analog, respectively). The m-th redox polymer has an m-th redox site exhibiting redox behavior (the m-th redox site is the same as the 1st to (m-1) acid-oxidized sites. I also different from each other! /,) have, and shows an electron conductivity of more than 10_ 16 SZcm,
第 mの正極が電子伝導性を有し、  The mth positive electrode has electronic conductivity;
第 1の負極において、燃料が第 1の生体触媒又はその類似体により第 1の分解物に 分解されると共に 1電子以上を生成し、  In the first negative electrode, the fuel is decomposed into the first decomposition product by the first biocatalyst or an analog thereof and generates one or more electrons,
第 mの負極の各々において、第 (m— 1)の分解物が第 mの生体触媒又はその類 似体により第 mの分解物に分解されると共に 1電子以上を生成する、上記電池。  In each of the m-th negative electrodes, the (m-1) decomposition product is decomposed into the m-th decomposition product by the m-th biocatalyst or an analog thereof and generates one or more electrons.
< 38 > 上記く 37>において、第 1〜第 nの電解質が略一平面に形成され、第 1 〜第 nの負極が該略一平面の一面に、第 1〜第 nの正極が該略一平面の他面に形 成され、且つ、第 1〜第 nの負極が形成される略一平面の一面上に、燃料及び第 1〜 第 nの分解物が接触するように、第 1〜第 nの負極が形成されるのがよい。  <38> In the above 37>, the first to n-th electrolytes are formed on a substantially flat surface, the first to n-th negative electrodes are on one surface of the substantially flat surface, and the first to n-th positive electrodes are substantially the same. The first to nth fuels are formed on the other surface of one plane and the first to nth decomposed products are in contact with each other on the substantially one plane on which the first to nth negative electrodes are formed. An nth negative electrode is preferably formed.
< 39 > 上記く 37>又はく 38 >において、第(m—l)の正極と第 mの負極とが 通電され、第 1〜第 nの電池領域が直列に配線されるのがよい。 In <39> above 37> or 38>, the (m−l) positive electrode and the mth negative electrode are The first to nth battery regions are preferably connected in series by being energized.
く 40 > 燃料を n段階 (nは 2以上の整数)で n以上の生体触媒反応又は生体触媒 類似反応で分解する、 l〜n個の電池領域を有する電池であって、  40> A battery having l to n battery regions, in which fuel is decomposed in n stages (n is an integer of 2 or more) by n or more biocatalytic reactions or biocatalytic similar reactions,
1〜!!個の電池領域が第 1〜第 nの電池領域であり、該第 1〜第 nの電池領域が直 列及び Z又は並列に配線され、  1 ~! Battery areas are the 1st to nth battery areas, and the 1st to nth battery areas are wired in series and Z or in parallel,
第 1の電池領域が、第 1の負極、第 1の正極及び前記第 1の正極と前記第 1の負極 とに挟まれた第 1の電解質を有し、  The first battery region has a first negative electrode, a first positive electrode and a first electrolyte sandwiched between the first positive electrode and the first negative electrode;
第 1の負極が第 1の電子伝導体、第 1のレドックスポリマー、及び第 1の生体触媒 又はその類似体を有し、前記第 1のレドックスポリマーは、酸化還元挙動を示す第 1 の酸化還元部位を有し、且つ 10_ 16SZcm以上の電子伝導性を示し、 The first negative electrode has a first electronic conductor, a first redox polymer, and a first biocatalyst or an analog thereof, and the first redox polymer exhibits a redox behavior. has a site, and shows the 10 _ 16 SZcm more electron conductivity,
第 1の正極が電子伝導性を有し、  The first positive electrode has electronic conductivity;
第 mの電池領域 (mは 2から nまでのすベての整数)は各々、第 mの負極、第 mの正 極及び前記第 mの正極と前記第 mの負極とに挟まれた第 mの電解質を有し、  The m-th battery region (m is an integer from 2 to n) is the m-th negative electrode, the m-th positive electrode, and the m-th positive electrode and the m-th negative electrode. m electrolyte,
第 mの負極が第 mの電子伝導体 (第 mの電子伝導体は第 1〜第 (m— 1)の電子 伝導体と同じであっても異なってもよい)、第 mのレドックスポリマー(第 mのレドックス ポリマーは第 1〜第 (m— 1)のレドックスポリマーと同じであっても異なってもよい)、及 び第 mの生体触媒又はその類似体 (第 mの生体触媒又はその類似体は各々、第 1 〜第 (m— 1)の生体触媒又はその類似体とは異なる)を有し、前記第 mのレドックス ポリマーは、酸ィ匕還元挙動を示す第 mの酸ィ匕還元部位 (第 mの酸ィ匕還元部位は第 1 〜第 (m— 1)の酸ィ匕還元部位と同じであっても異なってもよ!/、)を有し、且つ 10_ 16S Zcm以上の電子伝導性を示し、 The mth negative electrode is the mth electronic conductor (the mth electronic conductor may be the same as or different from the first to (m-1) th electronic conductors), the mth redox polymer ( The m-th redox polymer may be the same as or different from the first to (m-1) redox polymers), and the m-th biocatalyst or an analog thereof (the m-th biocatalyst or the like). Each body has a first to (m-1) biocatalyst or an analogue thereof, and the m-th redox polymer has an acid-reduction behavior. (The m-th acid-reduction site may be the same as or different from the 1st to (m-1) -th acid reduction sites! /), And 10 _ 16 S Zcm Showing the above electronic conductivity,
第 mの正極が電子伝導性を有し、  The mth positive electrode has electronic conductivity;
第 1の負極において、燃料が第 1の生体触媒又はその類似体により第 1の分解物に 分解されると共に 1電子以上を生成し、  In the first negative electrode, the fuel is decomposed into the first decomposition product by the first biocatalyst or an analog thereof and generates one or more electrons,
第 mの負極の各々において、第 (m— 1)の分解物が第 mの生体触媒又はその類 似体により第 mの分解物に分解されると共に 1電子以上を生成し、  In each of the m-th negative electrodes, the (m-1) decomposition product is decomposed into the m-th decomposition product by the m-th biocatalyst or an analog thereof and generates one or more electrons.
第 1〜第 nの電解質が略一平面に形成され、第 1〜第 nの負極が該略一平面の一 面に、第 1〜第 nの正極が該略一平面の他面に形成され、且つ、第 1〜第 nの負極が 形成される略一平面の一面上に、前記燃料及び第 1〜第 nの分解物が接触するよう に、第 1〜第 nの負極が形成される、上記電池。 The first to nth electrolytes are formed on substantially one plane, the first to nth negative electrodes are formed on one surface of the substantially one plane, and the first to nth positive electrodes are formed on the other surface of the substantially one plane. And the first to nth negative electrodes are The battery, wherein the first to nth negative electrodes are formed so that the fuel and the first to nth decomposition products are in contact with each other on a substantially flat surface formed.
[0023] <41 > 上記く 40>において、第 1〜第 nの電池領域力 燃料の流れる方向に沿 つて配置されるのがよい。 <41> In the above item 40, it is preferable that the first to n-th cell region forces be arranged along the fuel flow direction.
<42> 上記く 40>又はく 41 >において、第(m—l)の正極と第 mの負極とが 通電され、第 1〜第 nの電池領域が直列に配線されるのがよい。  <42> In the above 40> or 41>, it is preferable that the (m−l) positive electrode and the m-th negative electrode are energized and the first to n-th battery regions are wired in series.
<43 > 上記 <40>〜<42>のいずれかにおいて、第 1〜第 nの負極の第 1〜 第 nの電子伝導体は、 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2Zg以上であるのがよ 、。 <43> In any one of the above items <40> to <42>, the first to n-th electron conductors of the first to n-th negative electrodes have an external specific surface area that is a specific surface area acting on pores of 7 nm or more. Is 0.5m 2 Zg or more.
[0024] <44> 上記く 37>〜<43 >のいずれかにおいて、燃料がメタノールであり、 n 力 S3であり、第 1の生体触媒がアルコールデヒドロゲナーゼであり、第 1の分解物がホ ルムアルデヒドであり、第 2の生体触媒がアルデヒドデヒドロゲナーゼであり、第 2の分 解物がギ酸であり、第 3の生体触媒がギ酸デヒドロゲナーゼであり、第 3の分解物が 二酸ィ匕炭素であるのがよい。 <44> In any one of the above items 37> to <43>, the fuel is methanol, n force S3, the first biocatalyst is alcohol dehydrogenase, and the first decomposition product is hole. Is a aldehyde, the second biocatalyst is an aldehyde dehydrogenase, the second degradation product is formic acid, the third biocatalyst is formate dehydrogenase, and the third degradation product is diacid-carbon. It is good.
< 45 > 上記く 37 >〜 < 43 >の!、ずれかにお 、て、燃料がエタノールであり、 n が 2であり、第 1の生体触媒がアルコールデヒドロゲナーゼであり、第 1の分解物がァ セトアルデヒドであり、第 2の生体触媒がアルデヒドデヒドロゲナーゼであり、第 2の分 解物が酢酸であるのがよ 、。  <45> Above 37> to <43>! In any case, the fuel is ethanol, n is 2, the first biocatalyst is alcohol dehydrogenase, and the first degradation product is It is acetoaldehyde, the second biocatalyst is aldehyde dehydrogenase, and the second degradation product is acetic acid.
[0025] <46 > 上記く 37>〜<43 >のいずれかにおいて、燃料がグルコースであり、 n 力 S3以上であり、第 1の生体触媒がグルコースォキシダーゼであり、第 1の分解物がグ ルコノラタトンであり、第 2の生体触媒がダルコン酸 2—デヒドロゲナーゼであり、第 2の 分解物が 2—ケトグルコン酸であり、第 3の生体触媒がケトグルコン酸デヒドロゲナー ゼであり、第 3の分解物が 2,5-ジケトグルコン酸であるのがよい。 [0025] <46> In any one of the above items 37> to <43>, the fuel is glucose, n force S3 or more, the first biocatalyst is glucose oxidase, and the first degradation product is Gluconorataton, the second biocatalyst is dalconate 2-dehydrogenase, the second degradation product is 2-ketogluconic acid, the third biocatalyst is ketogluconate dehydrogenase, and the third degradation product Should be 2,5-diketogluconic acid.
<47> 上記く 37>〜<46 >のいずれかにおいて、第 1〜第 nの負極がプロトン 伝導性を有するのがよい。特に、プロトン伝導性を示す材料、例えば Nafion、炭化 水素系プロトン伝導性ポリマーを有するのがよい。  <47> In any one of the above items 37> to <46>, the first to nth negative electrodes preferably have proton conductivity. In particular, it is preferable to have a material exhibiting proton conductivity, such as Nafion or a hydrocarbon-based proton conductive polymer.
<48 > 上記 < 37>〜<47>のいずれかにおいて、第 1〜第 nの電子伝導体が 、カーボン、導電性ポリマー、及び金属からなる群力も選ばれるのがよい。なお、導電 性ポリマーの場合、その分子量が 50〜: LOO万、好ましくは 1000〜10万であるのがよ い。 <48> In any one of the above items <37> to <47>, the first to nth electron conductors may be selected from a group force composed of carbon, a conductive polymer, and a metal. Conductive In the case of a conductive polymer, the molecular weight is 50 to: LOO million, preferably 1,000 to 100,000.
[0026] <49> 上記 <37>〜<48>のいずれかにおいて、第 1〜第 nの電子伝導体は 、その形状が粒状、又は棒状であるのがよい。粒状の場合はその粒径、棒状である 場合はその断面の直径がそれぞれ、 10 m以下、好ましくは 1 μ m以下、より好まし くは 1 OOnm以下であるのがよい。  <49> In any one of the above items <37> to <48>, the first to nth electron conductors may have a granular shape or a rod shape. In the case of a granular shape, the particle diameter thereof, and in the case of a rod shape, the diameter of the cross section thereof is 10 m or less, preferably 1 μm or less, more preferably 1 OOnm or less.
<50> 上記く 48>又はく 49>において、カーボンが、カーボンブラック、カー ボンナノチューブ、及びカーボンナノホーン力 なる群力 選ばれるのがよい。  <50> In the above item 48> or 49>, it is preferable that carbon is selected as a group force consisting of carbon black, carbon nanotube, and carbon nanohorn force.
<51> 上記<37>〜<50>のぃずれかにぉぃて、第 1〜第 nの電子伝導体は 、その各々の外部比表面積が lm2/g以上、好ましくは 6〜5000m2/g、より好ましく は 10〜800m2Zgであるのがよい。 <51> In any of the above <37> to <50>, the first to nth electron conductors each have an external specific surface area of lm 2 / g or more, preferably 6 to 5000 m 2. / g, more preferably 10 to 800 m 2 Zg.
[0027] <52> 上記<37>〜<51>のぃずれかにぉぃて、第1〜第11のレドックスポリマ 一の各々の第 1〜第 nの酸ィ匕還元部位の各々 1S フエ口セン誘導体類 (例えばフエ口 セン基、カルボキシフエ口セン、ジカルボキシフエ口セン、メチルフエ口セン、ジメチル フエ口セン、ビュルフエ口センなど)、キノン化合物(例えばべンゾキノン、ヒドロキノン、 ナフトキノン、ピロキノリンキノンなど)、才スミゥムビピリジン錯体類([Os (4,4' -ジメチ ル- 2,2,-ビビリジン) Cl]+/2+、 [Os(4,4,-ジァミノ-2,2,-ビビリジン) Cl]+/2+、 [Os <52> According to any of <37> to <51> above, each of the 1S to nth acid reduction sites of each of the 1st to 11th redox polymers 1S Mouthcene derivatives (for example, pheophene group, carboxy phen cene, dicarboxy phen cene, methyl phen cene, dimethyl phen cene, bul ue cene sen), quinone compounds (eg benzoquinone, hydroquinone, naphthoquinone, pyroquinoline) quinones, etc.), old Sumi © beam bipyridine complexes ([Os (4,4 '- dimethylol Le - 2, 2, - Bibirijin) Cl] + / 2 +, [Os (4, 4, - Jiamino - 2, 2 , -Biviridine) Cl] + / 2 + , [Os
2 2  twenty two
(4,4,-ジメトキシ- 2,2,-ビビリジン) Cl]+/2+、 [Os (ターピリジン)(4,4,-ジメチル- 2,2 (4,4, -dimethoxy-2,2, -biviridine) Cl] + / 2 + , [Os (terpyridine) (4,4, -dimethyl-2,2
2  2
,-ビビリジン) Cl]2+/3+、 [Os (4,4,-ジクロロ- 2,2,-ビビリジン) Cl]+/2+など)、ォス , -Biviridine) Cl] 2 + / 3 + , [Os (4,4, -dichloro-2,2, -biviridine) Cl] + / 2 +, etc.), male
2 2 ミゥムビイミダゾール錯体類( [Os (4,4, -ジアルキル化- 2,2, -ビイミダゾール) ] 2+/3+ 2 2 Mumbiimidazole complexes ([Os (4,4, -dialkylated-2,2, -biimidazole)] 2 + / 3 +
3 など)、ビオローゲン、及び 2,2-ァゾビス(3-ェチルベンゾチアゾリン- 6-スルホネート) 力 なる群力 選ばれるのがよ 、。  3), viologen, and 2,2-azobis (3-ethylbenzothiazoline-6-sulfonate).
[0028] <53> 上記く 37>〜<52>のいずれかにおいて、第 1〜第 nのレドックスポリマ 一は、その一端が各々、第 1〜第 nの電子伝導体に化学的に結合するのがよい。 <53> In any one of the above items 37> to <52>, one end of each of the first to n-th redox polymers is chemically bonded to each of the first to n-th electronic conductors. It is good.
<54> 上記く 37>〜<53>のいずれかにおいて、第 1〜第 nの正極は各々が 第 1〜第 p (pは 2〜nのすベての整数)の電子伝導体を有するのがよ!/、。  <54> In any one of the above 37> to <53>, the first to n-th positive electrodes each have the first to p-th electron conductors (p is an integer of 2 to n). No ...!
<55> 上記く 54>において、第 1〜第 pの電子伝導体は、カーボン、導電性ポリ マー、及び金属力もなる群力も選ばれるのがよい。なお、導電性ポリマーの場合、そ の分子量が 50〜100万、好ましくは 1000〜10万であるのがよい。 <55> In the above item 54, the first to p-th electron conductors may be selected from carbon, a conductive polymer, and a group force including a metal force. In the case of conductive polymers, Has a molecular weight of 50 to 100 million, preferably 1,000 to 100,000.
[0029] <56> 上記く 54>又はく 55>において、第 1〜第 pの電子伝導体は、その形 状が粒状、又は棒状であるのがよい。粒状の場合はその粒径、棒状である場合はそ の断面の直径がそれぞれ、 10 μ m以下、好ましくは 1 μ m以下、より好ましくは ΙΟΟη m以下であるのがよい。 <56> In the above item 54> or 55>, the first to p-th electron conductors may have a granular shape or a rod shape. In the case of a granular shape, the particle diameter thereof, and in the case of a rod shape, the diameter of the cross section thereof is 10 μm or less, preferably 1 μm or less, more preferably ΙΟΟηm or less.
<57> 上記く 55>又はく 56>において、カーボンが、カーボンブラック、カー ボンナノチューブ、及びカーボンナノホーン力 なる群力 選ばれるのがよい。  <57> In the above 55> or 56>, it is preferable that carbon is selected as a group force consisting of carbon black, carbon nanotube, and carbon nanohorn force.
<58> 上記<54>〜<57>のぃずれかにぉぃて、第 1〜第 pの電子伝導体は <58> From the above <54> to <57>, the first to pth electron conductors are
、その各々の外部比表面積が lm2/g以上、好ましくは 6〜5000m2/g、より好ましく は 10〜800m2Zgであるのがよい。 The external specific surface area of each is lm 2 / g or more, preferably 6 to 5000 m 2 / g, more preferably 10 to 800 m 2 Zg.
[0030] <59> 上記く 37>〜<58>のいずれかにおいて、第 1〜第 nの正極は各々が[0030] <59> In any one of the above items 37> to <58>, each of the first to nth positive electrodes is
、プロトン伝導性を有するのがよい。 It is preferable to have proton conductivity.
<60> 上記く 37>〜<59>のいずれかにおいて、第 1〜第 nの正極は各々が 第 1〜第 ρ (pは 2〜nのすベての整数)のレドックスポリマーを有し、該第 1〜第 ρのレ ドックスポリマーは各々力 酸化還元挙動を示す第 1〜第 pの酸化還元部位を有し、 且つ 10_16S/cm以上の電子伝導性を示すのがよい。 <60> In any of the above 37> to <59>, each of the first to n-th positive electrodes has a first to ρ-th redox polymer (p is an integer from 2 to n). The first to ρ redox polymers preferably have first to p-th redox sites exhibiting strong redox behavior, and exhibit an electronic conductivity of 10 _16 S / cm or more.
[0031] <61> 上記 <60>において、第 1〜第 pのレドックスポリマーの各々の第 1〜第 p の酸ィ匕還元部位の各々力 オスミウムビビリジン錯体類([Os (ターピリジン)(4,4,-ジ メチル -2, 2,-ビビリジン) Cl]2+/3+、 [Os (4,4,-ジクロロ- 2,2,-ビビリジン) Cl]+/2+ [0031] <61> In the above item <60>, each force of the first to p-th acid-reduction sites of each of the first to p-th redox polymers is osmium biviridine complex ([Os (terpyridine) (4 , 4, -Dimethyl-2,2, -biviridine) Cl] 2 + / 3 + , [Os (4,4, -Dichloro-2,2, -biviridine) Cl] + / 2 +
2 2 など)、及び 2,2-ァゾビス(3-ェチルベンゾチアゾリン- 6-スルホネート)からなる群から 選ばれるのがよい。  2 2) and 2,2-azobis (3-ethylbenzothiazoline-6-sulfonate).
<62> 上記く 37>〜<61>のいずれかにおいて、第 1〜第 nの正極は各々が 、プロトン伝導性ポリマーを有するのがよい。  <62> In any one of the above items 37> to <61>, each of the first to n-th positive electrodes preferably has a proton-conductive polymer.
<63> 上記く 37>〜<62>のいずれかにおいて、第 1〜第 nの正極は各々が 触媒を有するのがよい。  <63> In any one of the above items 37> to <62>, each of the first to nth positive electrodes preferably has a catalyst.
[0032] <64> 上記く 63 >において、触媒が正極用の生体触媒又はその類似体である のがよい。 <64> In the above item 63, the catalyst may be a biocatalyst for a positive electrode or an analogue thereof.
<65> 上記く 64>において、正極用の生体触媒が、ピリルビンォキシダーゼ、 ラッカーゼ、及びシトクロームォキシダーゼ力もなる群力も選ばれるのがよ!/、。 <65> In the above item 64>, the biocatalyst for the positive electrode is pyrilvinoxydase, Choose a group power that also has laccase and cytochrome oxidase power! /.
< 66 > 上記 < 37>〜< 65 >のいずれかにおいて、第 1〜第 nの正極は酸化性 ガス又は酸化性液体 (例えば、酸素ガス、酸素溶存液体、酸素キャリア含有液体 (酸 素キャリアとは、ヘモグロビン、ヘモグロビン模倣体など酸素運搬機能を有する化合 物の総称を!、う) )と接触するように配置されるのがよ!/、。  <66> In any one of the above items <37> to <65>, the first to nth positive electrodes may be an oxidizing gas or an oxidizing liquid (e.g., oxygen gas, oxygen-dissolved liquid, oxygen carrier-containing liquid (with oxygen carrier and Is a generic term for compounds with oxygen carrying function, such as hemoglobin and hemoglobin mimics !, u))).
発明の効果  The invention's effect
[0033] 本発明により、出力密度を向上させたバイオ燃料電池、及びそれに用いられる電極 用材料、並びにそれらの製造方法を提供することができる。  [0033] According to the present invention, it is possible to provide a biofuel cell with improved power density, an electrode material used therefor, and a production method thereof.
また、本発明により、上記の燃料電池用の材料に限らず、電子授受に関与する材 料を提供することができる。  Further, according to the present invention, not only the material for the fuel cell described above but also a material involved in electron transfer can be provided.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] 以下、本発明を詳細に説明する。 [0034] Hereinafter, the present invention will be described in detail.
本発明は、材料、特に電子授受に関与する材料を提供する。本発明の材料は、例 えば電池用、例えばバイオ燃料電池用材料を提供する。また、本発明の材料は、燃 料電池とは逆反応、即ち、水力 水素及び Z又は酸素をもたらす材料を提供する。さ らに、本発明は、上記作用に限らず、電子授受に関与することができる材料を提供す る。  The present invention provides materials, particularly materials involved in electron transfer. The material of the present invention provides, for example, a battery material, for example, a biofuel cell material. The materials of the present invention also provide materials that are counter-reactive with fuel cells, i.e., provide hydraulic hydrogen and Z or oxygen. Furthermore, the present invention provides a material that is not limited to the above-described action but can participate in electron transfer.
[0035] 本発明の材料は、電子伝導体、レドックスポリマー、及び生体触媒又はその類似体  [0035] The material of the present invention includes an electron conductor, a redox polymer, and a biocatalyst or an analog thereof.
(以下、単に「生体触媒」又は「生体触媒など」と略記する場合がある)を有する。 本発明の材料は、次のように作用する。即ち、本発明の材料と接触する第 1の物質 が生体触媒などにより酸ィ匕される際に生じる電子をレドックスポリマーを介して電子伝 導体に伝達されるか、又は本発明の材料と接触する第 2の物質が生体触媒などによ り還元される際の電子を電子伝導体を介してレドックスポリマーに伝達される。  (Hereinafter, sometimes simply abbreviated as “biocatalyst” or “biocatalyst”). The material of the present invention operates as follows. That is, electrons generated when the first substance in contact with the material of the present invention is oxidized by a biocatalyst or the like are transferred to the electron conductor via the redox polymer, or contacted with the material of the present invention. The electrons when the second substance is reduced by a biocatalyst or the like are transferred to the redox polymer via the electron conductor.
[0036] <電子伝導体 >  [0036] <Electronic conductor>
本発明の用いられる電子伝導体は、外部比表面積が 0. 5m2Zg以上、好ましくは 1 m2Zg以上、好ましくは 6〜5000m2Zg、より好ましくは 10〜800m2Zgであるのが よい。 Electron conductor used with the present invention, an external specific surface area of 0. 5 m 2 Zg or more, preferably 1 m 2 Zg more, preferably 6~5000m 2 Zg, more preferably good is 10~800m 2 Zg .
ここで、外部比表面積とは、 7nm以上の細孔にかかる比表面積を意味する。本発 明において、「外部比表面積」とは、特記しない限り、上記の意味を有する。 Here, the external specific surface area means a specific surface area applied to pores of 7 nm or more. Main departure In the description, “external specific surface area” has the above meaning unless otherwise specified.
[0037] 外部比表面積は、次のように概算することができる。即ち、後述するように、電子伝 導体は、電子伝導性を有する粒状物質又は棒状物質などを 3次元的に集積して形 成したものとすることができる。これらの粒状物質又は棒状物質の粒子 1個又は棒状 物質 1個の比表面積がそのまま「外部比表面積」として概算することができる。  [0037] The external specific surface area can be estimated as follows. That is, as will be described later, the electron conductor can be formed by three-dimensionally accumulating particulate materials or rod-like materials having electron conductivity. The specific surface area of one particle or rod-like substance of these granular substances or rod-like substances can be estimated as the “external specific surface area” as it is.
例えば、電子伝導体が、粒状物質由来である場合、次のように、「外部比表面積」 が概算される。即ち、粒子の半径 r [m]、粒子の密度: d[gZm3]とすると、外部比表面 For example, when the electron conductor is derived from a particulate material, the “external specific surface area” is estimated as follows. That is, if the particle radius r [m] and the particle density: d [gZm 3 ], the external specific surface
P  P
積 S[m2Zg]は次のように表される。 The product S [m 2 Zg] is expressed as
[0038] S= (粒子 1個の表面積) Z{ (粒子 1個の体積) X (密度) } [0038] S = (surface area of one particle) Z {(volume of one particle) X (density)}
8 = 4 π τ 2/ (4/3 π Γ 3 X d) = 3/ (r X d)。 8 = 4 π τ 2 / (4/3 π Γ 3 X d) = 3 / (r X d).
P P P  P P P
[0039] 要するに、電子伝導体が粒状物質由来である場合、該粒状物質の半径 r及び粒  In short, when the electron conductor is derived from a granular material, the radius r and the particle of the granular material
P  P
子の密度 dから、外部比表面積を概算することができる。なお、粒状物質の半径 rは  From the density d of the child, the external specific surface area can be estimated. The radius r of the granular material is
P  P
、得られた電子伝導体の電子顕微鏡像の粒状物質の直径力 求めることができる。 また、粒子の密度は、質量と粒度分布から求めることができる。  Thus, the diameter force of the granular material in the electron microscopic image of the obtained electron conductor can be obtained. The density of the particles can be determined from the mass and the particle size distribution.
[0040] また、電子伝導体が、棒状物質由来である場合、上記と同様に「外部比表面積」を 概算することができる。即ち、棒状物質の断面の半径 r [m]、棒状物質の長さ L[m]、 rod [0040] When the electron conductor is derived from a rod-like substance, the "external specific surface area" can be estimated in the same manner as described above. That is, the radius r [m] of the cross-section of the rod-shaped material, the length L [m] of the rod-shaped material, rod
棒状物質の密度: d[gZm3]とすると、外部比表面積 S[m2Zg]は次のように表される。 Density of rod-shaped substance: If d [gZm 3 ], the external specific surface area S [m 2 Zg] is expressed as follows.
[0041] S= (棒状物質 1個の表面積) Z{ (棒状物質 1個の体積) X (密度) } [0041] S = (surface area of one rod-like substance) Z {(volume of one rod-like substance) X (density)}
S= (27u r 2+ 2 π r X L) / ( π τ Xし X d) S = (27u r 2 + 2 π r XL) / (π τ X then X d)
rod rod rod  rod rod rod
ここで、「2 π Γ 2」はほとんど無視できるので、 Sは次のように概算できる。 Here, "2 π Γ 2 " is almost negligible, so S can be estimated as follows.
rod  rod
S = 2/ (r X d)。  S = 2 / (r X d).
rod  rod
[0042] 要するに、電子伝導体が棒状物質由来である場合、該棒状物質の断面の半径 r rod 及び棒状物質の密度 dから、外部比表面積を概算することができる。  In short, when the electron conductor is derived from a rod-shaped material, the external specific surface area can be estimated from the radius r rod of the cross-section of the rod-shaped material and the density d of the rod-shaped material.
[0043] 電子伝導体は、電子伝導性を有する粒状物質又は棒状物質などを 3次元的に集 積して形成したものであっても、当初より上記外部比表面積を有するものであっても よい。なお、粒子を 3次元的に集積して形成する場合、該粒子は、その粒径が 10 m以下、好ましくは 1 μ m以下、より好ましくは lOOnm以下であるのがよい。また、棒 状物質を 3次元的に集積して形成する場合、その断面の直径が 10 m以下、好まし くは 1 μ m以下、より好ましくは lOOnm以下であるのがよい。また、この場合、粒状物 質又は棒状物質自体の外部比表面積が上記数値を有して 、ても、粒状物質又は棒 状物質などの集積体全体が上記数値を有してもよ!、。 [0043] The electron conductor may be formed by three-dimensionally collecting particulate materials or rod-like materials having electron conductivity, or may have the above external specific surface area from the beginning. . When particles are three-dimensionally accumulated, the particles have a particle size of 10 m or less, preferably 1 μm or less, more preferably lOOnm or less. In addition, when the rod-shaped material is formed by integrating three-dimensionally, the cross-sectional diameter is preferably 10 m or less. 1 μm or less, more preferably lOOnm or less. Further, in this case, the external specific surface area of the granular material or the rod-shaped substance itself may have the above-mentioned numerical value, or the whole aggregate such as the granular material or the rod-shaped substance may have the above-mentioned numerical value.
[0044] 電子伝導体として、その組成は、カーボン、導電性ポリマー、及び金属などを挙げ ることができるが、これらに限定されない。例えば、電子伝導体として、 2つ以上の種 類の材料を含んでもよい。なお、導電性ポリマーの場合、その分子量が 50〜: LOO万 、好ましくは 1000〜10万であるのがよい。 [0044] Examples of the electronic conductor include, but are not limited to, carbon, a conductive polymer, and a metal. For example, the electronic conductor may include two or more types of materials. In the case of a conductive polymer, the molecular weight is 50 to: LOO 10,000, preferably 1,000 to 100,000.
また、電子伝導体として、カーボンを用いる場合、該カーボンとして、カーボンブラッ ク、カーボンナノチューブ、及びカーボンナノホーンなどを挙げることができる力 これ らに限定されない。  In addition, when carbon is used as the electron conductor, the force that can include carbon black, carbon nanotube, carbon nanohorn, and the like is not limited to these.
[0045] <レドックスポリマー > [0045] <Redox polymer>
本発明に用いられるレドックスポリマーは、酸化還元挙動を示す酸化還元部位を有 するのがよい。また、レドックスポリマーは、電子伝導性を有するのがよい。レドックス ポリマーの電子伝導性は、そのポリマー鎖長に依存するが、 10_16SZcm以上であ るのがよい。即ち、レドックスポリマーの鎖長が長い場合、より高い電子伝導性を有す るのがよぐ鎖長が短い場合、低い電子伝導性 (但し、 10_16SZcm以上)であっても よい。 The redox polymer used in the present invention preferably has a redox site exhibiting redox behavior. The redox polymer may have electronic conductivity. The electronic conductivity of the redox polymer depends on the polymer chain length, but it should be 10 _16 SZcm or more. That is, when the chain length of the redox polymer is long, it may have higher electron conductivity, but when the chain length is short, it may have low electron conductivity (however, 10_16 SZcm or more).
レドックスポリマーは、酸化還元部位を有する。該部位を有するレドックスポリマーは 、それを有するモノマーとそれ以外のモノマーとのブロック共重合体であっても、単独 重合体又は共重合体に酸化還元部位を付与する反応により調製してもよ!/、。なお、 共重合体の場合、 2元又は 3元以上のモノマー力もなつてもょ 、。  Redox polymers have redox sites. The redox polymer having the site may be a block copolymer of a monomer having the site and another monomer, or may be prepared by a reaction that gives a redox site to a homopolymer or a copolymer! /. In the case of a copolymer, it may have a monomer power of 2 or 3 or more.
[0046] レドックスポリマーの酸ィ匕還元部位は、上述のように、酸化還元挙動を示すものであ れば、特に限定されない。例えば、酸ィ匕還元部位として、フエ口セン誘導体類 (フエ口 セン基、カルボキシフエ口セン、ジカルボキシフエ口セン、メチルフエ口セン、ジメチル フエ口セン、ビュルフエ口センなど)、キノン化合物(ベンゾキノン、ヒドロキノン、ナフト キノン、ピロキノリンキノンなど)、才スミゥムビピリジン錯体類([Os (4,4,-ジメチノレ- 2,2 ,-ビビリジン) Cl] +/2+、 [Os (4,4,-ジァミノ- 2,2,-ビビリジン) Cl] +/2+、 [Os (4,4,-[0046] The oxidation-reduction site of the redox polymer is not particularly limited as long as it exhibits redox behavior as described above. For example, phenecene derivatives (eg, phenecene group, carboxyphenecene, dicarboxyphenecene, methylpheocene, dimethylphenolate, bulueguchicene), quinone compounds (benzoquinone) , Hydroquinone, naphthoquinone, pyroquinoline quinone, etc.), sumumbipyridine complexes ([Os (4,4, -Dimethinole-2,2, bibilidine) Cl] + / 2 + , [Os (4,4 , -Diamino-2,2, -biviridine) Cl] + / 2 + , [Os (4,4,-
2 2 ジメトキシ- 2, 2,-ビビリジン) Cl] +/2+、 [Os (ターピリジン)(4,4,-ジメチル- 2,2,-ビピ リジン) Cl]2+/3+、 [Os (4,4,-ジクロロ- 2,2,-ビビリジン) Cl] +/2+など)、オスミウムビ2 2 Dimethoxy-2,2, -bipyridine) Cl] + / 2 + , [Os (terpyridine) (4,4, -dimethyl-2,2, -bipi Lysine) Cl] 2 + / 3 + , [Os (4,4, -dichloro-2,2, -biviridine) Cl] + / 2 + ), osmium bi
2 2 twenty two
イミダゾール錯体類 ( [Os (4,4, -ジアルキル化- 2,2, -ビイミダゾール) ] 2+/3+など)、 Imidazole complexes (such as [Os (4,4, -dialkylated-2,2, -biimidazole)] 2 + / 3 + ),
3  Three
ビオローゲン、及び 2, 2-ァゾビス(3-ェチルベンゾチアゾリン- 6-スルホネート)などを 挙げることができるが、これらに限定されない。なお、酸ィ匕還元部位として、上記のう ち、 2つ以上の種類のものを含んでもよい。  Examples include, but are not limited to, viologen and 2,2-azobis (3-ethylbenzothiazoline-6-sulfonate). In addition, as the acid reduction site, two or more kinds of the above may be included.
[0047] レドックスポリマーは、その一端が電子伝導体に、もしくは電子伝導体を形成しうる 粒状物質又は棒状物質に、化学的に結合するのがよい。  [0047] One end of the redox polymer may be chemically bonded to the electron conductor, or to a granular material or rod-shaped material that can form the electron conductor.
[0048] <生体触媒又はその類似体 >  [0048] <Biocatalyst or analog thereof>
本発明の材料は、生体触媒又はその類似体を有する。類似体とは、生体触媒と同 様の機能を有する、天然又は人工の物質である。類似体として、天然の生体触媒の 修飾体、又は天然の生体触媒を模した人工物質を挙げることができる。なお、本明細 書において、生体触媒反応とは、生体触媒の有する作用による反応をいい、生体触 媒類似反応とは、生体触媒の類似体による、生体触媒の有する作用と同様の作用に よる反応をいう。  The material of the present invention has a biocatalyst or an analog thereof. An analog is a natural or artificial substance having a function similar to that of a biocatalyst. Examples of the analog include a modified natural biocatalyst or an artificial substance imitating a natural biocatalyst. In this specification, the biocatalytic reaction refers to a reaction caused by the action of the biocatalyst, and the biocatalyst-like reaction is a reaction caused by an action similar to that of the biocatalyst by an analog of the biocatalyst. Say.
[0049] 本発明に用いられる生体触媒は、ォキシダーゼ、デヒドロゲナーゼであるのがよ ヽ 力 これに限定されない。  [0049] The biocatalyst used in the present invention is preferably oxidase or dehydrogenase, but is not limited thereto.
例えば、生体触媒として、グルコースォキシダーゼ、グルコースデヒドロゲナーゼ、 ダルコン酸 2-デヒドロゲナーゼ、ケトグルコン酸 2-デヒドロゲナーゼ、アルコールォキ シダーゼ、アルコールデヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ、ギ酸デヒドロゲ ナーゼ、乳酸デヒドロゲナーゼ、アルド一スデヒドロゲナーゼ、オリゴ糖デヒドロゲナー ゼ、ピリルビンォキシダーゼ、ラッカーゼ、及びシトクロームォキシダーゼなどを挙げる ことができるがこれらに限定されない。なお、酸化還元部位として、上記のうち、 2っ以 上の種類のものを含んでもよ!、。  For example, as a biocatalyst, glucose oxidase, glucose dehydrogenase, darconate 2-dehydrogenase, ketogluconate 2-dehydrogenase, alcohol oxidase, alcohol dehydrogenase, aldehyde dehydrogenase, formate dehydrogenase, lactate dehydrogenase, aldos dehydrogenase, oligosaccharide Examples include, but are not limited to, dehydrogenase, pyrilbinoxidase, laccase, and cytochrome oxidase. The redox sites may include more than one of the above types! ,.
[0050] また、用いる生体触媒によって、本発明の材料と接触する第 1の物質、例えばバイ ォ燃料電池の場合、燃料が選択される。逆に言うと、用いる燃料により、本発明の材 料に用いる生体触媒が選択される。例えば、グルコースォキシダーゼ又はグルコース デヒドロゲナーゼを生体触媒として用いる場合、燃料としてグルコースが用いられる。 また、(ケト)ダルコン酸 2-デヒドロゲナーゼを生体触媒として用いる場合、燃料として( ケト)ダルコン酸が用いられる。同様にして、アルコールォキシダーゼ又はアルコール デヒドロゲナーゼを生体触媒として用いる場合、燃料としてアルコールが用いられる。 以下、生体触媒と燃料の対を (生体触媒、燃料)というように記載する。(アルデヒドデ ヒドロゲナーゼ、アルデヒド)、(ギ酸デヒドロゲナーゼ、ギ酸)、(乳酸デヒドロゲナーゼ 、乳酸)、(アルド一スデヒドロゲナーゼ、アルドース)、(オリゴ糖デヒドロゲナーゼ、ォ リゴ糖)、(ピリルビンォキシダーゼ、酸素)、(ラッカーゼ、酸素)及び (シトクロームォキ シダーゼ、酸素)。 [0050] Further, depending on the biocatalyst used, in the case of a first substance that contacts the material of the present invention, for example, a biofuel cell, a fuel is selected. In other words, the biocatalyst used for the material of the present invention is selected depending on the fuel used. For example, when glucose oxidase or glucose dehydrogenase is used as a biocatalyst, glucose is used as a fuel. In addition, when (keto) dalconate 2-dehydrogenase is used as a biocatalyst, Keto) darconic acid is used. Similarly, alcohol is used as a fuel when alcoholoxidase or alcohol dehydrogenase is used as a biocatalyst. Hereinafter, a biocatalyst / fuel pair is referred to as (biocatalyst, fuel). (Aldehyde dehydrogenase, aldehyde), (formate dehydrogenase, formate), (lactate dehydrogenase, lactic acid), (aldose dehydrogenase, aldose), (oligosaccharide dehydrogenase, oligosaccharide), (pyrurubin oxidase, oxygen), ( Laccase, oxygen) and (cytochrome oxidase, oxygen).
[0051] 本発明の材料は、上述のような要素により構成され、次のような作用を有する。この 作用を説明するため、図 1を用いる。図 1は、電解質としてのポリマー電解質 (polymer electrolyte)上に負極(anode)としての本発明の材料 1を付着させた図、及び材料 1 の拡大概念図である。本発明の材料 1は、複数のカーボンブラック粒子 3の 3次元ネ ットワークからなる電子伝導体 4、酸ィ匕還元部位 5を有するレドックスポリマー 6、生体 触媒 7 (例えばグルコースォキシダーゼ)を有する。グルコース力 負極(anode)、特 に生体触媒 7であるグルコースォキシダーゼと接触することにより、ダルコノラタトンへ と酸ィ匕される。生体触媒において生じた電子 e—は、酸化還元部位 5を有するレドック スポリマー 6を介して、電子伝導体 4、即ちカーボンブラック粒子 3へと伝達される。こ の電子伝達により、本発明の材料は、負極としての作用を有することができる。  [0051] The material of the present invention is composed of the above-described elements and has the following actions. Figure 1 is used to explain this effect. FIG. 1 is a diagram in which a material 1 of the present invention as an anode is attached on a polymer electrolyte as an electrolyte, and an enlarged conceptual diagram of the material 1. The material 1 of the present invention has an electron conductor 4 composed of a three-dimensional network of a plurality of carbon black particles 3, a redox polymer 6 having an acid reduction site 5, and a biocatalyst 7 (eg, glucose oxidase). Glucose force When contacted with the anode, in particular glucose oxidase, which is the biocatalyst 7, it is oxidized to darconoraton. Electron e− generated in the biocatalyst is transferred to the electron conductor 4, that is, the carbon black particle 3 through the redox polymer 6 having the redox site 5. By this electron transfer, the material of the present invention can act as a negative electrode.
[0052] 一方、正極 (cathod)として作用する場合、次のようになる。即ち、正極に関しては図 示しないが、ほぼ図 1に示す負極と同様の構成を有する。即ち、正極は、電子伝導性 及びプロトン伝導性を有する伝導体、レドックスポリマー、(生体触媒などを含む)触 媒 (例えばシトクロームォキシダーゼ)を有する。酸素が、正極、特に触媒であるシトク ロームォキシダーゼと接触し、ポリマー電解質力 移動してくるプロトンと、外部から伝 達される電子と反応することにより、水が生成される。したがって、本発明の材料は、 正極としての作用をも有することができる。  On the other hand, when acting as a positive electrode (cathod), it is as follows. In other words, the positive electrode is not shown, but has substantially the same configuration as the negative electrode shown in FIG. That is, the positive electrode has a conductor having electron conductivity and proton conductivity, a redox polymer, and a catalyst (including a biocatalyst) (for example, cytochrome oxidase). Oxygen comes into contact with the positive electrode, in particular with cytochrome oxidase, which is a catalyst, and reacts with protons moving from the polymer electrolyte force and electrons transferred from the outside to produce water. Therefore, the material of the present invention can also act as a positive electrode.
また、上記の負極と合わせて構成することにより、燃料電池としての作用を有するこ とがでさる。  Further, when configured in combination with the above-described negative electrode, it can function as a fuel cell.
したがって、本発明の材料は、電池用材料、特に電池用負極、又は電池用正極と して用いることができる。特に、電池用負極として用いるのが好ましい。 [0053] 本発明の材料は、上述の電池用材料、特に燃料電池用材料に限らず、種々の電 子授受に関与する材料として作用する。例えば、燃料電池とは逆反応、即ち水から 水素及び Z又は酸素をもたらす材料として作用する。例えば、水から水素をもたらす 場合、材料と接触する物質が水であり、生体触媒又はその類似体をポルフィリンとす ることにより、水力 水素をもたらす材料を提供することが可能である。 Therefore, the material of the present invention can be used as a battery material, particularly a battery negative electrode or a battery positive electrode. In particular, it is preferably used as a negative electrode for a battery. [0053] The material of the present invention is not limited to the above-described battery material, in particular, a fuel cell material, but acts as a material involved in various electron exchanges. For example, it acts as a reverse reaction with fuel cells, ie, a material that brings hydrogen and Z or oxygen from water. For example, in the case of bringing hydrogen from water, the substance that comes into contact with the material is water. By using a biocatalyst or an analog thereof as porphyrin, it is possible to provide a material that brings about hydrogen.
[0054] 本発明は、燃料電池、特にバイオ燃料電池をさらに提供する。  [0054] The present invention further provides a fuel cell, particularly a biofuel cell.
本発明の燃料電池、特にバイオ燃料電池は、負極;正極;及び正極と負極とに挟ま れた電解質を有し、負極及び Z又は正極が上述の材料を用いることにより構成され る。  The fuel cell of the present invention, particularly the biofuel cell, has a negative electrode; a positive electrode; and an electrolyte sandwiched between the positive electrode and the negative electrode, and the negative electrode and Z or the positive electrode are configured by using the above-described materials.
[0055] <負極>  [0055] <Negative electrode>
上述のように、負極は、上記材料を用いることができる。以下、本発明の材料を負極 として用いる場合を説明する。  As described above, the above materials can be used for the negative electrode. Hereinafter, the case where the material of the present invention is used as a negative electrode will be described.
負極は、プロトン伝導性を有してもよい。特に、負極は、プロトン伝導性を示す材料 、例えば Nafion、炭化水素系プロトン伝導性ポリマーを有するのがよい。  The negative electrode may have proton conductivity. In particular, the negative electrode may have a material exhibiting proton conductivity, such as Nafion, a hydrocarbon-based proton conductive polymer.
負極の生体触媒 (第 1の生体触媒)として、グルコースォキシダーゼ、グルコースデ ヒドロゲナーゼ、ダルコン酸 2-デヒドロゲナーゼ、ケトグルコン酸 2-デヒドロゲナーゼ、 アルコールォキシダーゼ、アルコールデヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ 、ギ酸デヒドロゲナーゼ、乳酸デヒドロゲナーゼ、アルド一スデヒドロゲナーゼ、及びォ リゴ糖デヒドロゲナーゼなどを挙げることができるがこれらに限定されない。  As a negative electrode biocatalyst (first biocatalyst), glucose oxidase, glucose dehydrogenase, darconate 2-dehydrogenase, ketogluconate 2-dehydrogenase, alcohol oxidase, alcohol dehydrogenase, aldehyde dehydrogenase, formate dehydrogenase, lactate dehydrogenase, aldo Examples thereof include, but are not limited to, monodehydrogenase and oligosaccharide dehydrogenase.
[0056] また、負極のレドックスポリマーの酸ィ匕還元部位 (第 1の酸ィ匕還元部位)として、フエ 口セン誘導体類(フエ口セン基、カルボキシフエ口セン、ジカルボキシフエ口セン、メチ ルフエロセン、ジメチルフエ口セン、ビュルフエ口センなど)、キノン化合物(ベンゾキノ ン、ヒドロキノン、ナフトキノン、ピロキノリンキノンなど)、オスミウムビビリジン錯体類([ Os (4,4, -ジメチノレ- 2,2, -ビビリジン) CI] +/ [0056] In addition, as the acid-reduction site (first acid-reduction site) of the redox polymer of the negative electrode, a phencene derivative (a phenoxycene group, a carboxyphenocene, a dicarboxyphenocene, a methicene) Ruferocene, dimethylphenol, buluene, etc.), quinone compounds (benzoquinone, hydroquinone, naphthoquinone, pyroquinoline quinone, etc.), osmium bibilidine complexes ([Os (4,4, -Dimethylolene-2,2, bibilidine) CI] + /
2 2+、 [Os (4,4, -ジァミノ- 2,2, -ビビリジン)2 2+ , [Os (4,4, -Damino-2,2, -biviridine)
Cl] +/2+、 [Os (4,4,-ジメトキシ- 2,2,-ビビリジン) Cl] +/2+、など)、オスミウムビイミCl] + / 2 + , [Os (4,4, -dimethoxy-2,2, -biviridine) Cl] + / 2 + , etc.), osmium biimi
2 2 twenty two
ダゾール錯体類 ( [Os (4,4, -ジアルキルィ匕- 2,2, -ビイミダゾール) ] 2+/3+など)、及 Dazole complexes (such as [Os (4,4, -dialkyl 2-2,2, -biimidazole)] 2 + / 3 + ), and
3  Three
びビオローゲンなどを挙げることができる力 これらに限定されな 、。  The power that can include viologen etc.
[0057] <正極 > 正極は、プロトン伝導性を有する。正極は、プロトン伝導性を示す材料、例えば Naf ion,炭化水素系プロトン伝導性ポリマーを有するのがよい。 [0057] <Positive electrode> The positive electrode has proton conductivity. The positive electrode may have a material exhibiting proton conductivity, such as Naf ion, a hydrocarbon proton conductive polymer.
正極は、負極の電子導電体 (第 1の電子伝導体)と同じであっても異なってもよい第 2の電子伝導体を有するのがよ 、。  The positive electrode has a second electronic conductor which may be the same as or different from the negative electron conductor (first electronic conductor).
また、正極は、負極のレドックスポリマー(第 1のレドックスポリマー)と同じであっても 異なってもよい第 2のレドックスポリマーを有してもよい。該レドックスポリマーは、酸ィ匕 還元挙動を示す第 2の酸ィ匕還元部位を有し、且つ 10_16SZcm以上の電子伝導性 を示すのがよい。 In addition, the positive electrode may have a second redox polymer that may be the same as or different from the redox polymer (first redox polymer) of the negative electrode. The redox polymer preferably has a second acid-reduction site exhibiting acid-acid reduction behavior and exhibits an electron conductivity of 10 -16 SZcm or more.
さらに、正極は、生体触媒を含めた触媒を有する。  Furthermore, the positive electrode has a catalyst including a biocatalyst.
[0058] 正極の触媒は、金属 (例えば Pt)及び生体触媒又はその類似体 (第 2の生体触媒 又はその類似体)であるのがよい。 [0058] The catalyst of the positive electrode may be a metal (for example, Pt) and a biocatalyst or an analog thereof (second biocatalyst or an analog thereof).
第 2の生体触媒として、ピリルビンォキシダーゼ、ラッカーゼ、及びシトクロームォキ シダーゼを挙げることができるがこれらに限定されない。  The second biocatalyst can include, but is not limited to, pyrilvinoxidase, laccase, and cytochrome oxidase.
[0059] 正極の第 2の酸ィ匕還元部位として、オスミウムビビリジン錯体類 ( [Os (ターピリジン) [0059] As the second acid-reduction site of the positive electrode, osmium bibilidine complexes ([Os (terpyridine)
(4,4,-ジメチノレ- 2,2,-ビビリジン) Cl]2+/3+、 [Os (4,4,-ジクロロ- 2,2,-ビビリジン) (4,4, -Dimethylol-2,2, -biviridine) Cl] 2 + / 3 + , [Os (4,4, -Dichloro-2,2, -biviridine)
2 2 twenty two
C1] +/2+など)、及び 2,2-ァゾビス(3-ェチルベンゾチアゾリン- 6-スルホネート)などを 挙げることができるが、これらに限定されない。 C1] + / 2+ ), and 2,2-azobis (3-ethylbenzothiazoline-6-sulfonate), and the like, but are not limited thereto.
[0060] <電解質 > [0060] <Electrolyte>
電解質として、従来より公知の電解質、特にプロトン伝導性を有する電解質を用い ることができる。電解質は、正極と負極との間に配置する。  As the electrolyte, a conventionally known electrolyte, particularly an electrolyte having proton conductivity can be used. The electrolyte is disposed between the positive electrode and the negative electrode.
[0061] 上述のように、電池を構成することにより、次のように作用させることができる。即ち、 負極が第 1の生体触媒として例えばグルコースォキシダーゼを有する場合、該負極 に接触する燃料としてグルコースが用いられる。負極において、グルコースがダルコ ースォキシダーゼによりダルコノラタトンへと変換される一方、電子が第 1の生体触媒 力 第 1のレドックスポリマーを介して第 1の電子伝導体へと伝達される。なお、電子 は、電池の負極から外部へと伝達される。  As described above, the battery can be configured to operate as follows. That is, when the negative electrode has, for example, glucose oxidase as the first biocatalyst, glucose is used as a fuel in contact with the negative electrode. In the negative electrode, glucose is converted to dalconoratone by darcosoxidase, while electrons are transferred to the first electronic conductor through the first biocatalytic force first redox polymer. Electrons are transmitted from the negative electrode of the battery to the outside.
[0062] 一方、正極において、第 2の生体触媒として例えばシトクロームォキシダーゼを用い る場合、該正極に接触する媒体として酸素が用いられる。(負極から電解質へと移動 し且つ)電解質力も移動してくるプロトンと酸素と外部力も伝達される電子とが、正極、 特に正極の第 2の生体触媒において、反応することにより、水が生成される。 [0062] On the other hand, when, for example, cytochrome oxidase is used as the second biocatalyst in the positive electrode, oxygen is used as a medium in contact with the positive electrode. (Move from negative electrode to electrolyte In addition, water is generated by the reaction of protons, oxygen, and electrolytes, which also transfer electrolyte forces, in the positive electrode, particularly the second biocatalyst of the positive electrode.
上記では、負極用の燃料としてグルコース、負極の第 1の生体触媒としてダルコ一 スォキシダーゼを用い、且つ正極用の燃料 (媒体)として酸素、正極の第 2の生体触 媒としてシトクロームォキシダーゼを用いる例を説明した力 これに限定されるもので はなぐ上述の負極用の生体触媒と負極用の燃料を用いることができる。また、正極 につ 、ても、その他の組み合わせを用いることができる。  In the above example, glucose is used as the negative electrode fuel, dalcosoxidase is used as the first negative electrode biocatalyst, oxygen is used as the positive electrode fuel (medium), and cytochrome oxidase is used as the second positive electrode biocatalyst. However, the above-described biocatalyst for negative electrode and fuel for negative electrode can be used. Also, other combinations can be used for the positive electrode.
このようにして、本発明は、バイオ燃料電池を提供することができる。なお、バイオ燃 料電池として構成する場合、燃料供給用容器 (負極用、正極用のそれぞれ)を有する のがよい。  Thus, the present invention can provide a biofuel cell. When configured as a biofuel cell, it is preferable to have a fuel supply container (for each of the negative electrode and the positive electrode).
<多段階反応型電池 > <Multi-stage reaction type battery>
本発明は、次に示す多段階反応型電池も提供する。  The present invention also provides the following multi-stage reaction type battery.
即ち、本発明は、燃料を n段階 (nは 2以上の整数)で n以上の生体触媒反応又は生 体触媒類似反応で分解する、 1〜!!個の電池領域を有する電池であって、  That is, according to the present invention, fuel is decomposed in n stages (n is an integer of 2 or more) by n or more biocatalytic reactions or biocatalytic reactions 1 to! A battery having a number of battery areas,
1〜!!個の電池領域が第 1〜第 nの電池領域であり、該第 1〜第 nの電池領域が直 列及び Z又は並列に配線され、  1 ~! Battery areas are the 1st to nth battery areas, and the 1st to nth battery areas are wired in series and Z or in parallel,
第 1の電池領域は、第 1の負極、第 1の正極及び前記第 1の正極と前記第 1の負極 とに挟まれた第 1の電解質を有し、  The first battery region has a first negative electrode, a first positive electrode, and a first electrolyte sandwiched between the first positive electrode and the first negative electrode,
第 1の負極が 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2 /g以上、好ましくは 6〜5000m2Zg、より好ましくは 10〜800m2/gである第 1の電 子伝導体、第 1のレドックスポリマー、及び第 1の生体触媒などを有し、前記第 1のレド ックスポリマーは、酸化還元挙動を示す第 1の酸化還元部位を有し、且つ 10_16S/c m以上の電子伝導性を示し、 The first negative electrode has a specific surface area that acts on pores of 7 nm or more, and the external specific surface area is 0.5 m 2 / g or more, preferably 6 to 5000 m 2 Zg, more preferably 10 to 800 m 2 / g. A first redox polymer, a first biocatalyst, and the like. The first redox polymer has a first redox site exhibiting redox behavior, and 10 _16 S show electron conductivity of / cm or more,
第 1の正極が電子伝導性を有し、  The first positive electrode has electronic conductivity;
第 mの電池領域 (mは 2から nまでのすベての整数)は各々、第 mの負極、第 mの正 極及び前記第 mの正極と前記第 mの負極とに挟まれた第 mの電解質を有し、  The m-th battery region (m is an integer from 2 to n) is the m-th negative electrode, the m-th positive electrode, and the m-th positive electrode and the m-th negative electrode. m electrolyte,
第 mの負極が 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2 Zg以上である第 mの電子伝導体 (第 mの電子伝導体は、第 1〜第 (m— 1)の電子 伝導体と同じであっても異なってもよい)、第 mのレドックスポリマー(第 mのレドックス ポリマーは、第 1〜第 (m— 1)のレドックスポリマーと同じであっても異なってもよい)、 及び第 mの生体触媒など (第 mの生体触媒などは各々、第 1〜第 (m— 1)の生体触 媒などとは異なる)を有し、前記第 mのレドックスポリマーは、酸化還元挙動を示す第 mの酸ィ匕還元部位 (第 mの酸ィ匕還元部位は、第 1〜第 (m— 1)の酸化還元部位と同 じであっても異なってもよい)を有し、且つ 10_16SZcm以上の電子伝導性を示し、 第 mの正極が電子伝導性を有し、 Anode electron conductor of the m is external specific surface area 0. 5 m 2 Zg least a force mowing specific surface area than the pores 7 nm (electron conductor of the m of the m-th, first to (m — 1) electron The m-th redox polymer (the m-th redox polymer may be the same as or different from the first to (m-1) redox polymers) , And the m-th biocatalyst (the m-th biocatalyst is different from the first to (m-1) biocatalysts, etc.), and the m-th redox polymer is a redox polymer It has a m-th acid-reduction site that exhibits behavior (the m-th acid-reduction site may be the same as or different from the first to (m-1) redox sites). And an electronic conductivity of 10 _16 SZcm or more, and the mth positive electrode has electronic conductivity,
第 1の負極において、燃料が第 1の生体触媒などにより第 1の分解物に分解される と共に 1電子以上を生成し、  In the first negative electrode, the fuel is decomposed into the first decomposition product by the first biocatalyst and the like, and one or more electrons are generated,
第 mの負極の各々において、第 (m— 1)の分解物が第 mの生体触媒などにより第 mの分解物に分解されると共に 1電子以上を生成する、上記電池を提供する。なお、 第 1〜第 nの電池領域に用いられる第 1〜第 nの負極、及び第 1〜第 nの正極などは 、上述の電池と同様の材料も用いることができる。  In each of the m-th negative electrodes, the battery in which the (m-1) decomposition product is decomposed into the m-th decomposition product by the m-th biocatalyst and generates one or more electrons. The first to n-th negative electrodes and the first to n-th positive electrodes used in the first to n-th battery regions can also be made of the same material as the above-described battery.
[0064] また、上述の電池において、第 1〜第 nの電解質が略一平面に形成され、第 1〜第 nの負極が該略一平面の一面に、第 1〜第 nの正極が該略一平面の他面に形成され 、且つ、第 1〜第 nの負極が形成される略一平面の一面上に、燃料及び第 1〜第 nの 分解物が接触するように、第 1〜第 nの負極が形成されるのがよい。 [0064] Further, in the battery described above, the first to nth electrolytes are formed on a substantially flat surface, the first to nth negative electrodes are on one surface of the substantially flat surface, and the first to nth positive electrodes are The first to nth fuels and the first to nth decomposition products are in contact with each other on one surface of the substantially one plane on which the first to nth negative electrodes are formed. An nth negative electrode is preferably formed.
さらに、上述の電池において、第 (m— 1)の正極と第 mの負極とが通電され、第 1〜 第 nの電池領域が直列に配線されるのがよい。直列配置することにより、高起電力を 有する電池を提供できる点で好ま Uヽ。  Further, in the above battery, it is preferable that the (m−1) positive electrode and the mth negative electrode are energized, and the first to nth battery regions are wired in series. U ヽ is preferred because it can provide batteries with high electromotive force by arranging in series.
[0065] また、本発明は、次に示す多段階反応型電池の構成の一態様も提供する。 [0065] The present invention also provides an embodiment of the configuration of the multistage reaction battery shown below.
即ち、本発明は、燃料を n段階 (nは 2以上の整数)で n以上の生体触媒反応又は生 体触媒類似反応で分解する、 1〜!!個の電池領域を有する電池であって、  That is, according to the present invention, fuel is decomposed in n stages (n is an integer of 2 or more) by n or more biocatalytic reactions or biocatalytic reactions 1 to! A battery having a number of battery areas,
1〜!!個の電池領域が第 1〜第 nの電池領域であり、該第 1〜第 nの電池領域が直 列及び Z又は並列に配線され、  1 ~! Battery areas are the 1st to nth battery areas, and the 1st to nth battery areas are wired in series and Z or in parallel,
第 1の電池領域が、第 1の負極、第 1の正極及び前記第 1の正極と前記第 1の負極 とに挟まれた第 1の電解質を有し、  The first battery region has a first negative electrode, a first positive electrode and a first electrolyte sandwiched between the first positive electrode and the first negative electrode;
第 1の負極が第 1の電子伝導体、第 1のレドックスポリマー、及び第 1の生体触媒 などを有し、前記第 1のレドックスポリマーは、酸化還元挙動を示す第 1の酸化還元 部位を有し、且つ 10_ 16SZcm以上の電子伝導性を示し、 The first negative electrode is the first electronic conductor, the first redox polymer, and the first biocatalyst Has a like, said first redox polymer has a first redox sites displaying a redox behavior, and shows the 10 _ 16 SZcm more electron conductivity,
第 1の正極が電子伝導性を有し、  The first positive electrode has electronic conductivity;
第 mの電池領域 (mは 2から nまでのすベての整数)は各々、第 mの負極、第 mの正 極及び前記第 mの正極と前記第 mの負極とに挟まれた第 mの電解質を有し、  The m-th battery region (m is an integer from 2 to n) is the m-th negative electrode, the m-th positive electrode, and the m-th positive electrode and the m-th negative electrode. m electrolyte,
第 mの負極が第 mの電子伝導体 (第 mの電子伝導体は第 1〜第 (m— 1)の電子 伝導体と同じであっても異なってもよい)、第 mのレドックスポリマー(第 mのレドックス ポリマーは第 1〜第 (m— 1)のレドックスポリマーと同じであっても異なってもよい)、及 び第 mの生体触媒など (第 mの生体触媒などは各々、第 1〜第 (m— 1)の生体触媒 などとは異なる)を有し、前記第 mのレドックスポリマーは、酸化還元挙動を示す第 m の酸ィ匕還元部位 (第 mの酸ィ匕還元部位は第 1〜第 (m— 1)の酸ィ匕還元部位と同じで あっても異なってもよい)を有し、且つ 10_16SZcm以上の電子伝導性を示し、 The mth negative electrode is the mth electronic conductor (the mth electronic conductor may be the same as or different from the first to (m-1) th electronic conductors), the mth redox polymer ( The m-th redox polymer may be the same as or different from the first to (m-1) redox polymers), the m-th biocatalyst, etc. To the (m-1) biocatalyst), and the m-th redox polymer has an m-th acid-reduction site that exhibits redox behavior (the m-th acid-reduction site is The first to (m-1) acid-reduction sites may be the same or different, and exhibit an electronic conductivity of 10 _16 SZcm or more,
第 mの正極が電子伝導性を有し、  The mth positive electrode has electronic conductivity;
第 1の負極において、燃料が第 1の生体触媒などにより第 1の分解物に分解される と共に 1電子以上を生成し、  In the first negative electrode, the fuel is decomposed into the first decomposition product by the first biocatalyst and the like, and one or more electrons are generated,
第 mの負極の各々において、第 (m— 1)の分解物が第 mの生体触媒などにより第 mの分解物に分解されると共に 1電子以上を生成し、  In each of the mth negative electrodes, the (m-1) decomposition product is decomposed into the mth decomposition product by the mth biocatalyst and the like, and one or more electrons are generated,
第 1〜第 nの電解質が略一平面に形成され、第 1〜第 nの負極が該略一平面の一 面に、第 1〜第 nの正極が該略一平面の他面に形成され、且つ、第 1〜第 nの負極が 形成される略一平面の一面上に、前記燃料及び第 1〜第 nの分解物が接触するよう に、第 1〜第 nの負極が形成される、上記電池を提供する。なお、第 1〜第 nの電池 領域に用いられる第 1〜第 nの負極、及び第 1〜第 nの正極などは、上述の電池と同 様の材料に限定されることはないが、上述の電池と同様の材料も用いることができる 上述の電池において、第 1〜第 nの電池領域が、燃料の流れる方向に沿って、第 1 の電池、第 2の電池、第 3の電池領域、 · · ·という順に、配置されるのがよい。このよう に配置することにより、燃料が第 1の分解物、第 1の分解物が第 2の分解物、 · · ·という ように、流れの方向に沿って、生体触媒反応又は生体触媒類似反応が行われるので 、上記配置であるのが好ましい。 The first to nth electrolytes are formed on substantially one plane, the first to nth negative electrodes are formed on one surface of the substantially one plane, and the first to nth positive electrodes are formed on the other surface of the substantially one plane. In addition, the first to nth negative electrodes are formed so that the fuel and the first to nth decomposition products are in contact with each other on a substantially flat surface on which the first to nth negative electrodes are formed. The battery is provided. The first to n-th negative electrodes and the first to n-th positive electrodes used in the first to n-th battery regions are not limited to the same materials as the above-mentioned batteries, but The same material as that of the battery can also be used. In the battery described above, the first to nth battery regions are arranged along the direction of fuel flow, the first battery, the second battery, the third battery region, · · · · · · It should be arranged in the order of. By arranging in this way, the biocatalytic reaction or biocatalyst-like reaction is performed along the flow direction such that the fuel is the first decomposition product, the first decomposition product is the second decomposition product, and so on. Because is done The above arrangement is preferable.
また、上述の電池と同様に、第 (m—l)の正極と第 mの負極とが通電され、第 1〜 第 nの電池領域が直列に配線されるのがよい。  Similarly to the battery described above, it is preferable that the (m−l) positive electrode and the mth negative electrode are energized, and the first to nth battery regions are wired in series.
さらに、上述の電池と同様に、第 1〜第 nの負極の第 1〜第 nの電子伝導体は、 7n m以上の細孔に力かる比表面積である外部比表面積が 0. 5m2Zg以上であるのが よい。 Further, as in the case of the battery described above, the first to n-th electron conductors of the first to n-th negative electrodes have an external specific surface area of 0.5 m 2 Zg, which is a specific surface area acting on pores of 7 nm or more. That's it.
[0067] 上述の多段階反応型電池について、図を用いて説明する。図 2は、上述の多段階 反応型電池 20の一態様を示す断面概略図である。図 2の略平板状の部分が負極部 と正極部と該負極部と該正極部とに挟まれた電解質部を示し、図 2の上部が負極側 であり、下部が正極側である。以下、図 2に関して、より詳細に説明する。  [0067] The above-described multistage reaction type battery will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view showing one embodiment of the above-described multi-stage reaction type battery 20. The substantially flat part in FIG. 2 shows the negative electrode part, the positive electrode part, the electrolyte part sandwiched between the negative electrode part and the positive electrode part, the upper part of FIG. 2 is the negative electrode side, and the lower part is the positive electrode side. Hereinafter, a more detailed description will be given with respect to FIG.
略平板状の部分は、第 1の電池領域 22、第 2の電池領域 23、第 3の電池領域 24、 第 4の電池領域 25からなる。第 1〜第 4の電池領域は各々、第 1〜第 4の負極 22a〜 25a,第 1〜第 4の電解質 22b〜25b、第 1〜第 4の正極 22c〜25cを有する。  The substantially flat plate portion includes a first battery region 22, a second battery region 23, a third battery region 24, and a fourth battery region 25. The first to fourth battery regions respectively have first to fourth negative electrodes 22a to 25a, first to fourth electrolytes 22b to 25b, and first to fourth positive electrodes 22c to 25c.
第 1の正極 22cと第 2の負極 23aとは配線 30により通電されている。同様に、第 2の 正極 23cと第 3の負極 24aとは配線 31により、第 3の正極 24cと第 4の負極 25aとは配 線 32により、通電されている。なお、絶縁体 33は、第 1と第 2の電池領域を絶縁する 一方、配線 30を通す図示しない孔を設けられる。また、絶縁体 34及び 35も、絶縁体 33と同様に設けられる。配線 37及び配線 38はそれぞれ、電池としての負極及び正 極としての作用を有する。  The first positive electrode 22c and the second negative electrode 23a are energized by the wiring 30. Similarly, the second positive electrode 23c and the third negative electrode 24a are energized by the wiring 31, and the third positive electrode 24c and the fourth negative electrode 25a are energized by the wiring 32. The insulator 33 is provided with a hole (not shown) through which the wiring 30 passes while insulating the first and second battery regions. The insulators 34 and 35 are also provided in the same manner as the insulator 33. The wiring 37 and the wiring 38 act as a negative electrode and a positive electrode as a battery, respectively.
[0068] 図 2の上部の負極側には、右から左への方向(矢印 Aの方向)に、第 1〜第 4の領 域、特に第 1〜第 4の負極に燃料が接触するように、燃料が流入されるように構成さ れる。一方、図 2の下部の正極側には、右力も左への方向(矢印 Bの方向)に、第 1〜 第 4の領域、特に第 1〜第 4の正極に酸ィヒ性ガス又は酸ィヒ性液体が接触するように、 酸ィ匕性ガス又は酸ィ匕性液体が流入されるように構成される。 [0068] On the negative electrode side in the upper part of FIG. 2, the fuel contacts the first to fourth regions, particularly the first to fourth negative electrodes, in the direction from right to left (in the direction of arrow A). In addition, the fuel is introduced. On the other hand, on the positive electrode side at the bottom of FIG. 2, the right force is also applied to the first to fourth regions, particularly the first to fourth positive electrodes in the direction to the left (in the direction of arrow B). An acidic gas or an acidic liquid is configured to flow in such a way that the acidic liquid contacts.
ここで、第 1〜第 4の電解質は、プロトン伝導性を有する。なお、一般に、第 1〜第 n の電解質は、用いる燃料及び酸ィ匕性ガス又は酸ィ匕性液体に依存して、種々の材質 力もなる、種々の特性を有する電解質を用いることができる。例えば、固体電解質膜 、より具体的には、 Nafionなどの通常用いられる固体電解質膜、多孔性膜の孔中に プロトン伝導性材料、例えばプロトン伝導性を有する液 (例えば、プロトン伝導性を有 するポリマー、プロトン伝導性を有する緩衝液など)を充填させてなる電解質膜などを 用!/、ることができる。 Here, the first to fourth electrolytes have proton conductivity. In general, the first to n-th electrolytes can be electrolytes having various properties depending on the fuel used and the acidic gas or the acidic liquid. For example, solid electrolyte membranes, more specifically, commonly used solid electrolyte membranes such as Nafion, in the pores of porous membranes Proton conductive materials such as electrolyte membranes filled with proton conductive liquids (for example, proton conductive polymers, proton conductive buffers, etc.) can be used.
第 1〜第 4の正極は、プロトン伝導性及び電子伝導性を有する。  The first to fourth positive electrodes have proton conductivity and electron conductivity.
[0069] 第 1〜第 4の負極は各々、上述のように、それぞれが異なる第 1〜第 4の生体触媒 などを有してなる。第 1の生体触媒などにより、第 1の負極において、燃料は第 1の分 解物へと分解されると共に、該生体触媒反応又は生体触媒類似反応に伴い 1電子 以上及び 1つ以上のプロトンが生成される。第 1の分解物は、燃料と共に、流れ方向 に沿って第 2の負極近傍に流され、第 2の負極において、第 2の生体触媒などにより 、第 2の分解物へと分解される。また、この生体触媒反応又は生体触媒類似反応に 伴い :L電子以上が生成される。第 2の分解物は、燃料及び第 1の分解物と共に、流れ 方向に沿って第 3の負極近傍に流され、第 3の負極において、第 3の生体触媒などに より、第 3の分解物へと分解される。また、この生体触媒反応又は生体触媒類似反応 に伴い 1電子以上及び 1つ以上のプロトンが生成される。さらに、第 3の分解物は、燃 料並びに第 1及び第 2の分解物と共に、流れ方向に沿って第 4の負極近傍に流され 、第 4の負極において、第 4の生体触媒などにより、第 4の分解物へと分解される。ま た、この生体触媒反応又は生体触媒類似反応に伴い 1電子以上及び 1つ以上のプ 口トンが生成される。 [0069] As described above, each of the first to fourth negative electrodes has different first to fourth biocatalysts. The first biocatalyst or the like causes the fuel to be decomposed into the first decomposed material in the first negative electrode, and one electron or more and one or more protons are generated due to the biocatalytic reaction or the biocatalyst-like reaction. Generated. The first decomposition product is flowed along with the fuel in the vicinity of the second negative electrode along the flow direction, and is decomposed into the second decomposition product by the second biocatalyst or the like at the second negative electrode. In addition, with this biocatalytic reaction or biocatalyst-like reaction, more than: L electrons are generated. The second decomposed product is flown along with the fuel and the first decomposed product in the vicinity of the third negative electrode along the flow direction, and the third decomposed product is generated in the third negative electrode by the third biocatalyst or the like. Is broken down into In addition, one or more electrons and one or more protons are generated along with this biocatalytic reaction or biocatalyst-like reaction. Furthermore, the third decomposition product is caused to flow in the vicinity of the fourth negative electrode along the flow direction together with the fuel and the first and second decomposition products, and in the fourth negative electrode, the fourth biocatalyst, etc. Decomposed into a fourth degradation product. In addition, one or more electrons and one or more protons are generated with this biocatalytic reaction or biocatalyst-like reaction.
[0070] 第 1〜第 4の電解質は、プロトン伝導性を有するため、第 1〜第 4の負極で生成した プロトンをそれぞれ第 1〜第 4の正極へと移動させることができる。  [0070] Since the first to fourth electrolytes have proton conductivity, the protons generated in the first to fourth negative electrodes can be moved to the first to fourth positive electrodes, respectively.
第 1〜第 4の正極において、酸ィ匕性ガス、例えば酸素が、移動してきたプロトン及び 電子と反応し、水を生成する。なお、一般に、正極は、酸化性ガス又は酸化性液体に 含まれる酸素とプロトンと電子とから水を生成する反応における触媒を有するのがよ い。該正極用触媒は、用いる酸化性ガス又は酸化性液体などに依存するが、上述の 正極用の生体触媒などを用いることができる。  In the first to fourth positive electrodes, an acidic gas such as oxygen reacts with the moving protons and electrons to generate water. In general, the positive electrode preferably has a catalyst in a reaction for generating water from oxygen, protons, and electrons contained in an oxidizing gas or an oxidizing liquid. Although the positive electrode catalyst depends on the oxidizing gas or oxidizing liquid used, the above-described biocatalyst for the positive electrode can be used.
[0071] このように、図 2記載の電池は、第 1の電池〜第 4の電池を直列に配置した電池で ある。用いる燃料、用いる第 1〜第 4の生体触媒などを用いることにより、単一の電池 領域で得られる電圧 (起電力)よりも高!ヽ電圧 (起電力)を提供する電池とすることが できる。 As described above, the battery shown in FIG. 2 is a battery in which the first to fourth batteries are arranged in series. By using the fuel to be used, the first to fourth biocatalysts to be used, etc., a battery that provides a higher voltage (electromotive force) than the voltage (electromotive force) obtained in a single battery region is obtained. it can.
[0072] ここで、用いる燃料と負極に用いる第 1〜第 nの生体触媒について、例を挙げて説 明する。燃料としてメタノールを用いる例を以下に示す。  [0072] Here, the fuel to be used and the first to nth biocatalysts used for the negative electrode will be described with examples. An example using methanol as the fuel is shown below.
[0073] [化 1] [0073] [Chemical 1]
Figure imgf000027_0001
Figure imgf000027_0001
[0074] メタノールを燃料として用いた場合、第 1〜第 3の電池領域を有する電池とすること ができ、第 1の電池領域の第 1の生体触媒として、アルコールデヒドロゲナーゼを用い ることができる。また、第 2の生体触媒としてアルデヒドデヒドロゲナーゼを、第 3の生 体触媒としてギ酸デヒドロゲナーゼを、それぞれ用いることができる。これにより、第 1 の負極においては、メタノールからホルムアルデヒドへの生体触媒反応と共に、 2電 子が生成する。また、第 2の負極においては、ホルムアルデヒドからギ酸への生体触 媒反応と共に、 2電子が生成する。さらに、第 3の負極においては、ギ酸から二酸ィ匕 炭素への生体触媒反応と共に、 2電子が生成する。したがって、メタノールを燃料とし て用い且つ第 1〜第 3の電池領域力 なる電池は、全体として 6電子の生成する電池 であり、該 6電子反応に基づく高い電圧 (起電力)を提供することができる。 [0074] When methanol is used as a fuel, a battery having the first to third battery regions can be obtained, and alcohol dehydrogenase can be used as the first biocatalyst of the first battery region. Also, aldehyde dehydrogenase can be used as the second biocatalyst, and formate dehydrogenase can be used as the third biocatalyst. As a result, in the first negative electrode, two electrons are generated along with the biocatalytic reaction from methanol to formaldehyde. In the second negative electrode, two electrons are generated along with the biocatalytic reaction from formaldehyde to formic acid. Furthermore, in the third negative electrode, two electrons are generated along with the biocatalytic reaction from formic acid to carbon dioxide. Therefore, a battery that uses methanol as a fuel and has the first to third battery area power is a battery that generates six electrons as a whole, and can provide a high voltage (electromotive force) based on the six-electron reaction. it can.
[0075] また、燃料としてエタノールを用いる例を以下に示す。 [0076] [化 2] [0075] Further, an example in which ethanol is used as a fuel is shown below. [0076] [Chemical 2]
ethanol ethanol
Alcohol  Alcohol
dehydrogenase  dehydrogenase
acetaldehyde  acetaldehyde
Aldehyde Aldehyde
dehydrogenase  dehydrogenase
acetic acid
Figure imgf000028_0001
k
acetic acid
Figure imgf000028_0001
k
[0077] エタノールを燃料として用いた場合、詳細は上述の式の通りである力 エタノールか らの酢酸への 2段階反応により、合計 4電子を生成する。これにより、エタノールを燃 料として用い且つ第 1及び第 2の電池領域力 なる電池は、全体として 4電子の生成 する電池であり、該 4電子反応に基づく高い電圧 (起電力)を提供することができる。 さらに、燃料としてグルコースを用いる例を以下に示す。 [0077] When ethanol is used as a fuel, the details are as shown in the above formula. A total of 4 electrons are generated by a two-stage reaction from ethanol to acetic acid. Thus, the battery using ethanol as a fuel and having the first and second battery area power is a battery that generates four electrons as a whole, and provides a high voltage (electromotive force) based on the four-electron reaction. Can do. Furthermore, an example using glucose as a fuel is shown below.
[0078] [化 3] [0078] [Chemical 3]
Figure imgf000029_0001
ffi HH ffi O
Figure imgf000029_0001
ffi HH ffi O
K〇〇 K 〇 〇
O "* "1 O "*" 1
H-l l-H HH 上記の例は、グルコースを燃料として用いた場合の一例である。ここでは、グルコ一 スカも 2,5-ジケト -D -ダルコン酸への 3段階の生体触媒反応スキームであって、合計 で 6電子を生成する生体触媒反応スキームを示して ヽるが、 2,5-ジケト -D-ダルコン 酸を生体触媒反応によりさらに分解させ、例えば二酸化炭素にまで分解することもで きる。この場合、即ちグルコースから二酸ィ匕炭素までの生体触媒反応スキームの場合Hl lH HH The above example is an example when glucose is used as a fuel. Here, Glucosca is also a three-step biocatalytic reaction scheme to 2,5-diketo-D-dalconic acid, which shows a total of 6 electrons generating a biocatalytic reaction scheme. 5-Diketo -D-Dalcon The acid can be further decomposed by a biocatalytic reaction, for example, to carbon dioxide. In this case, ie in the case of a biocatalytic reaction scheme from glucose to carbon dioxide
、合計で 24電子を生成することができる。したがって、グルコースを燃料として用いた 場合、該 24電子反応に基づく高い起電力をもたらす燃料を提供することができる。 A total of 24 electrons can be generated. Therefore, when glucose is used as a fuel, a fuel that provides a high electromotive force based on the 24-electron reaction can be provided.
[0080] <材料の製造法 > [0080] <Production method of material>
本発明の材料は、次のような製法により調製することができる。  The material of the present invention can be prepared by the following production method.
即ち、次の a)〜c)を順不同に有する力及び Z又は a)〜c)のいずれか 2つもしくは 3 つを同時に行うことにより、調製することができる。  That is, it can be prepared by simultaneously carrying out any two or three of the following a) to c) in any order and Z or a) to c).
a)電子伝導体とレドックスポリマー又はレドックスポリマー前駆体とを混合及び Z又 は結合する工程 (但し、酸化還元部位を有しな ヽレドックスポリマー前駆体を用いる 場合、前記酸ィ匕還元部位をレドックスポリマー前駆体に導入しレドックスポリマーを形
Figure imgf000030_0001
、ずれかの前後又は a)〜c)と同時に有する); b)電子伝導体前駆体を 3次元的な電子伝導体へと形成する工程;
a) A step of mixing and Z or bonding an electron conductor and a redox polymer or redox polymer precursor (however, when a redox polymer precursor having no redox site is used, the acid-reduction site is redoxed). Introduced into polymer precursor to form redox polymer
Figure imgf000030_0001
B) forming the electron conductor precursor into a three-dimensional electron conductor;
c)生体触媒又はその類似体を導入する工程。  c) A step of introducing a biocatalyst or an analog thereof.
なお、ここで、「電子伝導体」、「レドックスポリマー」、「生体触媒又はその類似体」、 「酸ィ匕還元部位」の語は、材料と同定義である。  Here, the terms “electron conductor”, “redox polymer”, “biocatalyst or analog thereof”, and “acid-reducing site” have the same definition as the material.
[0081] 例えば、 I. a)工程→b)工程→c)工程; Π. a)工程→c)工程→b)工程; III. b)工程 →a)工程→c)工程; IV. b)工程→c)工程→a)工程; V. c)工程→a)工程→b)工程 ; VI. c)工程→b)工程→a)工程; t 、うように行うことができる。 [0081] For example, I. a) step → b) step → c) step; v. A) step → c) step → b) step; III. B) step → a) step → c) step; IV. B ) Step → c) Step → a) Step; V. c) Step → a) Step → b) Step; VI. C) Step → b) Step → a) Step;
また、 a)工程と b)工程との同時に行い、その後に c)工程を行うなど、 2つ以上のェ 程を同時に行うことができる。  Also, two or more processes can be performed at the same time, such as a) process and b) process, and then c) process.
さらに、 a)工程において、酸ィ匕還元部位を有するレドックスポリマーの代わりに、酸 化還元部位を有しな 、レドックスポリマー前駆体を用いる場合、該酸化還元部位を前 駆体に導入する工程を、上記 a)〜c)工程の前後又は同時に行うこともできる。  Further, in the step a), when a redox polymer precursor having no oxidation reduction site is used instead of the redox polymer having an acid reduction site, the step of introducing the oxidation reduction site into the precursor is performed. It can also be carried out before, after or simultaneously with the above steps a) to c).
[0082] a)工程において、「結合」は次のように行うのがよい。即ち、電子伝導体に重合開始 基を導入し、該重合開始基とレドックスポリマー又はその前駆体とを結合させるのがよ い。以下に、電子伝導体としてカーボンブラックを用いた場合であって、カーボンブラ ックヘアゾ基 (重合開始基)を導入する工程を例示する。 以下の、簡略化した化学反応式に示すように、カーボンブラックへのァゾ基導入を 行った。これには、まず、カーボンブラック上のフエノール性 OH基又は COOH基へ ジイソシァネートを反応させることによりイソシァネート(一NCO)基を導入する。その 後、このイソシァネート(— NCO)基と、両末端にカルボキシル基を有するァゾィ匕合物 とを反応させることにより、ァゾ(一 N = N—)基をカーボンブラックに導入する。 [0082] In the step a), "bonding" is preferably performed as follows. That is, it is preferable to introduce a polymerization initiating group into the electron conductor and bond the polymerization initiating group to the redox polymer or a precursor thereof. The following is an example of a process for introducing a carbon black hair group (polymerization initiating group) when carbon black is used as the electron conductor. As shown in the simplified chemical reaction equation below, an azo group was introduced into carbon black. This involves first introducing an isocyanate (one NCO) group by reacting a diisocyanate with a phenolic OH group or COOH group on carbon black. Thereafter, this isocyanate (—NCO) group is reacted with an azo compound having a carboxyl group at both ends, thereby introducing an azo (one N = N—) group into carbon black.
[0083] [化 4]  [0083] [Chemical 4]
Figure imgf000031_0001
Figure imgf000031_0001
[0084] b)工程にぉ 、て、電子伝導体前駆体は、その形状が粒状、又は棒状であるのがよ い。粒状の場合はその粒径、棒状である場合はその断面の直径がそれぞれ、 10 m以下、好ましくは 1 μ m以下、より好ましくは lOOnm以下であるのがよい。電子伝導 体前駆体として、カーボン、導電性ポリマー、及び金属を挙げることができるが、これ らに限定されない。これら前駆体を 3次元的に構築して 3次元ネットワークを形成する 。 3次元ネットワークを形成することにより、外部比表面積が 0. 5m2Zg以上、好ましく は lm2/g以上、好ましくは 6〜5000m2Zg、より好ましくは 10〜800m2/gである 電子伝導体を形成する。 [0084] During the step b), the electron conductor precursor is preferably granular or rod-shaped. In the case of a granular shape, the particle diameter thereof, and in the case of a rod shape, the diameter of the cross section thereof should be 10 m or less, preferably 1 μm or less, more preferably lOOnm or less. Examples of electron conductor precursors include, but are not limited to, carbon, conductive polymers, and metals. These precursors are constructed three-dimensionally to form a three-dimensional network. An electronic conductor having an external specific surface area of 0.5 m 2 Zg or more, preferably lm 2 / g or more, preferably 6 to 5000 m 2 Zg, more preferably 10 to 800 m 2 / g by forming a three-dimensional network Form.
[0085] 電子伝導体前駆体として粒径 30nmのカーボンブラックを用いて、 3次元ネットヮー クを有する電子伝導体を形成する方法を具体的に説明する。カーボンブラックと結着 剤(例えば PTFE懸濁液)とを混合してカーボンインクを調製する。このカーボンイン クをスクリーン印刷により塗布面へと塗布し、乾燥後、適切な温度及び圧力でホットプ レスすることにより、 3次元ネットワークを有する、カーボンブラックを有する電子伝導 体を形成することができる。  [0085] A method for forming an electron conductor having a three-dimensional network using carbon black having a particle size of 30 nm as an electron conductor precursor will be specifically described. Carbon ink is prepared by mixing carbon black and a binder (eg, PTFE suspension). This carbon ink is applied to the coated surface by screen printing, dried, and hot-pressed at an appropriate temperature and pressure, whereby an electronic conductor having carbon black and having a three-dimensional network can be formed.
[0086] c)工程における「生体触媒又はその類似体の導入」は、単に材料へ混合すること( 例えば、電子伝導体への混合、レドックスポリマーへの混合)によって導入しても、電 子伝導体に化学的に結合するように導入しても、レドックスポリマーに化学的に結合 するように導人してちょい。 [0086] "Introduction of a biocatalyst or an analog thereof" in the step c) may be conducted by simply mixing into a material (for example, mixing into an electronic conductor or mixing into a redox polymer). Chemically bonded to the redox polymer even if introduced to bind chemically to the body Please guide him to do it.
「生体触媒又はその類似体の導入」は、単に材料への混合による導入であっても、 例えば生体触媒同士の架橋反応、生体触媒とゥシ血清アルブミンとダルタルアルデ ヒドとの架橋反応を用いることにより、材料に固定するように導入するのがよ 、。  “Introduction of a biocatalyst or an analog thereof” may be simply introduced by mixing into a material, for example, by using a cross-linking reaction between biocatalysts or a cross-linking reaction between biocatalyst, ushi serum albumin and dartaldehyde. Introduce it to be fixed to the material.
[0087] なお、生体触媒又はその類似体が失活した場合などは、その失活した生体触媒な どを脱離し、その後、活性を有する生体触媒などを再結合させることもできる。例えば 、当初の生体触媒などをレドックスポリマーと化学結合又は物理結合させる際、通常 の電池操作にぉ 、ては切れな 、程度の弱 、結合により脱離 ·再結合を行う。これによ り、失活した生体触媒などを脱離させることができ、且つ活性を有する生体触媒など を再結合させることができる。この手法として、例えば、レドックスポリマーに荷電を有 する官能基を導入し、静電相互作用により生体触媒などを固定ィ匕する手法がある。 静電相互作用としては、本発明の材料を浸漬する液の pHの制御を挙げることができ る。より具体的には、電池の操作時は、レドックスポリマー上の荷電官能基と生体触 媒の荷電が逆となる pHに調整した液を用いることにより、官能基と生体触媒との間で 静電吸着により、生体触媒などを固定ィ匕することができる。一方、レドックスポリマー 上の荷電官能基と生体触媒の荷電とが等しくなるように pHを調整した液 (即ち、脱離 液)を流すことにより、生体触媒などを脱離させることができる。なお、レドックスポリマ 一が電子伝導体と結合している場合、液の pH変化による生体触媒などの脱離化'再 結合ィ匕の操作を行っても、液中にレドックスポリマーが漏出することがないため、好ま しい。  [0087] When the biocatalyst or an analog thereof is deactivated, the deactivated biocatalyst or the like can be removed, and then the active biocatalyst or the like can be recombined. For example, when the initial biocatalyst or the like is chemically bonded or physically bonded to the redox polymer, desorption / rebonding is performed by the weak bond, which is inconsequential to normal battery operation. As a result, the deactivated biocatalyst and the like can be removed, and the active biocatalyst and the like can be recombined. As this technique, for example, there is a technique in which a functional group having a charge is introduced into a redox polymer and a biocatalyst or the like is immobilized by electrostatic interaction. Examples of the electrostatic interaction include control of the pH of the liquid in which the material of the present invention is immersed. More specifically, when the battery is operated, a liquid adjusted to a pH at which the charged functional group on the redox polymer and the charge of the biocatalyst are reversed is used, so that the electrostatic charge is generated between the functional group and the biocatalyst. By adsorption, a biocatalyst or the like can be fixed. On the other hand, the biocatalyst and the like can be desorbed by flowing a liquid whose pH is adjusted so that the charged functional group on the redox polymer is equal to the charge of the biocatalyst (that is, a desorbing liquid). If the redox polymer is bonded to the electron conductor, the redox polymer may leak into the liquid even if the biocatalyst etc. is desorbed by the pH change of the liquid. It is preferable because it is not.
[0088] 以下、実施例に基づいて、本発明をさらに詳細に説明するが、本発明は本実施例 に限定されるものではない。  [0088] Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the examples.
実施例 1  Example 1
[0089] <ァゾ基 (重合開始基)導入カーボンブラックの調製 >  [0089] <Preparation of azo group (polymerization initiating group) -introduced carbon black>
カーボンブラック(以下、単に「CB」と略記する)としてケッチェンブラック (比表面積: 約 800m2Zg;外部比表面積:約 200m2Zg;粒径: 30nm)を用 、た。 Ketjen black (specific surface area: about 800 m 2 Zg; external specific surface area: about 200 m 2 Zg; particle size: 30 nm) was used as carbon black (hereinafter simply abbreviated as “CB”).
CB2. 5g、脱水ジメチルスルホキシド(以下、単に「DMSO」と略記する) 65ml、 a 一ピコリン lml、及び 2,4-ジイソシアン酸トリレン lmlを、窒素雰囲気下、 60°Cで 4時 間反応させることで、 CBにイソシァネート(一 NCO)基を導入した。 CB2.5 (5 g), dehydrated dimethyl sulfoxide (hereinafter simply abbreviated as “DMSO”) (65 ml), a monopicoline (1 ml), and 2,4-diisocyanate tolylene (1 ml) at 60 ° C under nitrogen atmosphere for 4 hours By reacting for a while, an isocyanate (one NCO) group was introduced into CB.
反応溶液を室温まで冷却後、 4,4,-ァゾビス (4-シァノ吉草酸) 2. Ogの DMSO (8m 1)溶液を該反応溶液へ加え、窒素雰囲気下、室温で 8時間反応させることにより、ァ ゾ(一 N=N—)基を CBに導入した。反応後、反応溶液を濾過により除去し、未反応 物を除去するためにメタノール溶液中で 10分間攪拌した。その後、減圧濾過を行い 、メタノールにより数回洗浄した。なお、特記しない限り、試薬は精製せずに用いた。  After cooling the reaction solution to room temperature, add 4,4, -azobis (4-cyananovaleric acid) 2. Og in DMSO (8m 1) to the reaction solution and react at room temperature for 8 hours under nitrogen atmosphere. An azo (one N = N—) group was introduced into CB. After the reaction, the reaction solution was removed by filtration and stirred in a methanol solution for 10 minutes to remove unreacted substances. Then, it filtered under reduced pressure and wash | cleaned several times with methanol. Unless otherwise specified, reagents were used without purification.
[0090] <レドックスポリマーのグラフト重合〉  [0090] <Graft polymerization of redox polymer>
ァゾ基導入 CBへ、アクリルアミド(以下、単に「AAm」と略記する)、ビュルフエロセ ン(以下、単に「VFc」と略記する)のグラフト重合を行った。ァゾ基導入 CBO. 3gへ、 [AAm] = l. 41molZL、 [VFc] =0. 42molZLのジォキサン溶液を 10mlカロえ、 系内を脱気、窒素置換後、 70°Cで 24時間反応させた。非グラフト性ポリマー、及び 未反応物を除去するために、メタノール溶液中で 10分間超音波洗浄した後、水を溶 媒として 24時間ソックスレー抽出を行った。  Graft polymerization of acrylamide (hereinafter simply abbreviated as “AAm”) and bull ferrocene (hereinafter simply abbreviated as “VFc”) was performed on the CB-introduced CB. Add azo group to CBO. 3 g, [AAm] = l. 41 molZL, [VFc] = 0.4 ml of dioxane solution of 42 molZL was degassed and purged with nitrogen, then reacted at 70 ° C for 24 hours. It was. In order to remove the non-grafting polymer and unreacted substances, ultrasonic cleaning was performed in a methanol solution for 10 minutes, and then Soxhlet extraction was performed using water as a solvent for 24 hours.
[0091] <カーボン 3次元電極の調製 (スクリーン印刷) >  [0091] <Preparation of carbon 3D electrode (screen printing)>
上記で得られた、レドックスポリマーをグラフト重合した CB又は未処理の CBと、結 着剤として PTFE懸濁液を混合したカーボンインクをスクリーン印刷によりカーボンぺ 一パーへ塗布し、乾燥後、 130°C、 0. 25MPaでホットプレスを行い、レドックスポリマ ーをグラフト重合した CB力 調製したカーボン 3次元電極 Ered— 1、及び未処理 CB 力 調製したカーボン 3次元電極 E— 2を得た。  The carbon ink obtained by grafting the redox polymer obtained above and untreated CB and the PTFE suspension as a binder is applied to the carbon paper by screen printing, dried, and 130 ° Hot pressing was performed at C and 0.25 MPa, and a redox polymer graft-polymerized CB force prepared carbon 3D electrode Ered-1 and untreated CB force prepared carbon 3D electrode E-2 were obtained.
[0092] <生体触媒の導入 >  [0092] <Introduction of biocatalyst>
上記で得られた 3次元電極 Ered— 1を、 30mgZmlグルコースォキシダーゼ(以下 、単に「GOx」と略記する)を含む 0. 1Mリン酸緩衝液 (PBS)へ 10分間含浸させた 後、 0. 1M PBSで 30秒間洗浄を行った。続いて、 20mgZmlのゥシ血清アルブミ ン(BSA)を含む 0. 1M PBSへ 10分間含浸させ、 0. 1M PBSで 30秒間洗浄を行 つた。その後、 2%のグルタルアルデヒド(GA)を含む 0. 1M PBSへ 10分間含浸さ せ、 0. 1M PBSで 1分間洗浄を行うことにより、生体触媒を 3次元電極へ導入した 電極 Ered— 1 enを得た。  The three-dimensional electrode Ered-1 obtained above was impregnated with 0.1 M phosphate buffer (PBS) containing 30 mgZml glucose oxidase (hereinafter simply abbreviated as “GOx”) for 10 minutes. Washed with 1M PBS for 30 seconds. Subsequently, 0.1 M PBS containing 20 mg Zml ushi serum albumin (BSA) was impregnated for 10 minutes, and washed with 0.1 M PBS for 30 seconds. Then, the biocatalyst was introduced into the 3D electrode by impregnating in 0.1M PBS containing 2% glutaraldehyde (GA) for 10 minutes and washing with 0.1M PBS for 1 minute. Got.
[0093] <電気化学測定 > 上記で得られた電極 Ered— 1、 E— 2、及び Ered— lenに関して電気化学測定を行 つた。具体的には、各電極に金線をカーボンペーストにより固定ィ匕して作用極とし、 電気化学測定を行った。参照極は飽和 KC1中の銀 ·塩ィ匕銀電極、対極は白金黒電 極を用いた。測定は、 0. 1Mグルコースを含む pH7. 0の 0. 1M PBS中で行った。 測定前に、測定溶液について Nパブリングを 30分間行い、溶存酸素を除去した。 [0093] <Electrochemical measurement> Electrochemical measurements were performed on the electrodes Ered-1, E-2, and Eredlen obtained above. Specifically, a gold wire was fixed to each electrode with a carbon paste to form a working electrode, and electrochemical measurements were performed. A silver / salt / silver silver electrode in saturated KC1 was used as the reference electrode, and a platinum black electrode was used as the counter electrode. Measurements were performed in 0.1 M PBS with 0.1 M glucose and pH 7.0. Before the measurement, the measurement solution was N-published for 30 minutes to remove dissolved oxygen.
2  2
電気化学測定の結果を図 3及び図 4に示す。  The results of electrochemical measurements are shown in Figs.
[0094] 図 3は、電極 Ered— 1及び E— 2の電気化学測定の結果 (サイクリックボルタムグラム [0094] Figure 3 shows the results of electrochemical measurements of electrodes Ered-1 and E-2 (cyclic voltamgram
(CV) )を示す。なお、図 3中、実線が電極 Ered— 1の結果、点線が電極 E— 2の結果 を示す。図 3から、電極 Ered— 1は、 0. 3V付近に酸化及び還元のピークを示した。こ のことから、レドックスポリマーのカーボンブラック上へのグラフト重合を確認した。 図 4は、電極 Ered— lenの CVの結果を示す。なお、図 4中、実線は 0. 1Mダルコ ースを含む液での結果であり、点線はグルコースを含まない液での結果を示す。電 極 Ered— lenは、グルコース溶液中において、酸化ピーク電流が増加し、還元ピー クがほぼみられないシグモイド型の応答が得られた。一方、グルコースを含まない液 における電極 E— len (図 4中、点線の結果)は、シグモイド型の応答が観察されなか つた。これは、電極中の生体触媒がグルコースを酸化した際に生じた還元型の補酵 素により、酸ィ匕型レドックスポリマーが還元されたためと考えられ、カーボン三次元電 極中へ固定ィ匕した生体触媒は、レドックスポリマーと電子授受することが示された。 図面の簡単な説明  (CV)). In Fig. 3, the solid line shows the result for electrode Ered-1, and the dotted line shows the result for electrode E-2. From FIG. 3, the electrode Ered-1 showed oxidation and reduction peaks in the vicinity of 0.3V. From this, the graft polymerization of redox polymer onto carbon black was confirmed. Figure 4 shows the CV results for the electrode Ered-len. In FIG. 4, the solid line shows the result with a solution containing 0.1 M dalcose, and the dotted line shows the result with a solution not containing glucose. The electrode Ered-len gave a sigmoid response in which the oxidation peak current increased in the glucose solution and almost no reduction peak was observed. On the other hand, no sigmoid response was observed for the electrode E-len in the solution containing no glucose (the dotted line in Fig. 4). This is thought to be due to the reduction of the acid-redox polymer by the reduced coenzyme generated when the biocatalyst in the electrode oxidizes glucose, and it was fixed in the carbon three-dimensional electrode. Biocatalysts have been shown to exchange electrons with redox polymers. Brief Description of Drawings
[0095] [図 1]ポリマー電解質(polymerelectrolyte)上に負極(anode)としての本発明の材料 1 を付着させた図、及び材料 1の拡大概念図である。  FIG. 1 is a diagram in which a material 1 of the present invention as a negative electrode (anode) is deposited on a polymer electrolyte and an enlarged conceptual diagram of the material 1.
[図 2]多段階反応型電池 20の一態様を示す断面概略図である。  FIG. 2 is a schematic cross-sectional view showing one embodiment of a multistage reaction type battery 20.
[図 3]電極 Ered— 1及び E— 2の電気化学測定 (サイクリックボルタムグラム(CV) )の 結果を示す。  FIG. 3 shows the results of electrochemical measurements (cyclic voltamgram (CV)) of electrodes Ered-1 and E-2.
[図 4]電極 Ered— lenの CVの結果を示す。  [Figure 4] Electrode Ered-len CV results are shown.

Claims

請求の範囲 The scope of the claims
[1] 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2Zg以上である 電子伝導体、レドックスポリマー、及び生体触媒又はその類似体を有する材料であつ て、 [1] A material having an electronic conductor, a redox polymer, and a biocatalyst or an analog thereof having an external specific surface area of 0.5 m 2 Zg or more, which is a specific surface area acting on pores of 7 nm or more,
前記レドックスポリマーは、酸化還元挙動を示す酸化還元部位を有し、且つ io_16sThe redox polymer has a redox site exhibiting redox behavior, and io — 16 s
Zcm以上の電子伝導性を示す、上記材料。 The above materials exhibiting electronic conductivity of Zcm or more.
[2] 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2Zg以上である 電子伝導体、レドックスポリマー、及び生体触媒又はその類似体を有する材料であつ て、 [2] A material having an electron conductor, a redox polymer, and a biocatalyst or an analog thereof having an external specific surface area of 0.5 m 2 Zg or more, which is a specific surface area acting on pores of 7 nm or more,
前記レドックスポリマーは、酸化還元挙動を示す酸化還元部位を有し、且つ 10_16 SZcm以上の電子伝導性を示し、 The redox polymer has a redox sites displaying a redox behavior, and shows electron conductivity than 10_ 16 SZcm,
前記材料と接触する第 1の物質が前記生体触媒又はその類似体により酸化される 際に生じる電子を前記レドックスポリマーを介して電子伝導体に伝達する、上記材料  The material that transfers electrons generated when the first substance in contact with the material is oxidized by the biocatalyst or an analog thereof to the electron conductor via the redox polymer.
[3] 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2Zg以上である 電子伝導体、レドックスポリマー、及び生体触媒又はその類似体を有する材料であつ て、 [3] A material having an electron conductor, a redox polymer, and a biocatalyst or an analog thereof having an external specific surface area of 0.5 m 2 Zg or more, which is a specific surface area that is effective for pores of 7 nm or more,
前記レドックスポリマーは、酸化還元挙動を示す酸化還元部位を有し、且つ 10_16 The redox polymer has a redox sites displaying a redox behavior, and 10_ 16
SZcm以上の電子伝導性を示し、 Shows electronic conductivity above SZcm,
前記材料と接触する第 2の物質が前記生体触媒又はその類似体により還元される 際の電子を電子伝導体を介してレドックスポリマーに伝達する、上記材料。  The material as described above, wherein the second substance in contact with the material is reduced by the biocatalyst or an analog thereof and transmits electrons to the redox polymer via the electron conductor.
[4] 前記電子伝導体が、カーボン、導電性ポリマー、及び金属力 なる群力 選ばれる 請求項 1〜3のいずれか 1項記載の材料。 [4] The material according to any one of claims 1 to 3, wherein the electronic conductor is selected from a group force consisting of carbon, a conductive polymer, and a metal force.
[5] 前記カーボンが、カーボンブラック、カーボンナノチューブ、及びカーボンナノホー ンカ なる群力 選ばれる請求項 4記載の材料。 5. The material according to claim 4, wherein the carbon is selected from the group force of carbon black, carbon nanotube, and carbon nanohorn.
[6] 前記電子伝導体の外部比表面積が lm2Zg以上、好ましくは 6〜5000m2Zgであ る請求項 1〜5のいずれ力 1項記載の材料。 6. The material according to any one of claims 1 to 5, wherein the external specific surface area of the electron conductor is lm 2 Zg or more, preferably 6 to 5000 m 2 Zg.
[7] 前記レドックスポリマーの酸ィ匕還元部位力 フエ口セン誘導体類、キノンィ匕合物、ォ スミゥムビピリジン錯体類、オスミウムビイミダゾール錯体類、ビオローゲン、及び 2,2- ァゾビス(3-ェチルベンゾチアゾリン- 6-スルホネート)からなる群から選ばれる請求項 1〜6のいずれか 1項記載の材料。 [7] Acid-reduction site strength of the redox polymer: Phenocene derivatives, quinone compounds, 7. The method according to claim 1, selected from the group consisting of sumumbipyridine complexes, osmium biimidazole complexes, viologen, and 2,2-azobis (3-ethylbenzothiazoline-6-sulfonate). Material.
[8] 前記レドックスポリマーは、その一端が前記電子伝導体に化学的に結合する請求 項 1〜7のいずれ力 1項記載の材料。  8. The material according to any one of claims 1 to 7, wherein one end of the redox polymer is chemically bonded to the electron conductor.
[9] 前記生体触媒が、グルコースォキシダーゼ、グルコースデヒドロゲナーゼ、ダルコン 酸 2-デヒドロゲナーゼ、ケトグルコン酸 2-デヒドロゲナーゼ、アルコールォキシダーゼ 、アルコールデヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ、ギ酸デヒドロゲナーゼ、 乳酸デヒドロゲナーゼ、アルド一スデヒドロゲナーゼ、オリゴ糖デヒドロゲナーゼ、ピリ ルビンォキシダーゼ、ラッカーゼ、及びシトクロームォキシダーゼからなる群力 選ば れる請求項 1〜8の 、ずれか 1項記載の材料。  [9] The biocatalyst is glucose oxidase, glucose dehydrogenase, darconate 2-dehydrogenase, ketogluconate 2-dehydrogenase, alcohol oxidase, alcohol dehydrogenase, aldehyde dehydrogenase, formate dehydrogenase, lactate dehydrogenase, aldo-is dehydrogenase, oligosaccharide. The material according to any one of claims 1 to 8, which is selected from the group consisting of dehydrogenase, pyrurubinoxidase, laccase, and cytochrome oxidase.
[10] 前記材料が、電池用負極、又は電池用正極として用いられる請求項 1〜9のいずれ 力 1項記載の材料。  10. The material according to any one of claims 1 to 9, wherein the material is used as a negative electrode for a battery or a positive electrode for a battery.
[11] 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2Zg以上である 電子伝導体、レドックスポリマー、及び生体触媒又はその類似体を有する材料の製 造方法であって、次の a)〜c)を順不同に有する力及び Z又は a)〜c)のいずれか 2 つもしくは 3つを同時に行う、上記方法: [11] A method for producing a material having an electronic conductor, a redox polymer, and a biocatalyst or an analog thereof, wherein the external specific surface area, which is a specific surface area acting on pores of 7 nm or more, is 0.5 m 2 Zg or more. The above method wherein the following a) to c) are carried out in random order and Z or any two or three of a) to c) are simultaneously performed:
a)電子伝導体とレドックスポリマー又はレドックスポリマー前駆体とを混合及び Z又 は結合する工程 (但し、酸化還元部位を有しな ヽレドックスポリマー前駆体を用いる 場合、前記酸ィ匕還元部位をレドックスポリマー前駆体に導入しレドックスポリマーを形 成する工程を a)〜c)
Figure imgf000036_0001
、ずれかの前後又は a)〜c)と同時に有する); b)電子伝導体前駆体である粒子を 3次元的な電子伝導体へと形成する工程; c)生体触媒又はその類似体を導入する工程。
a) A step of mixing and Z or bonding an electron conductor and a redox polymer or redox polymer precursor (however, when a redox polymer precursor having no redox site is used, the acid-reduction site is redoxed). Steps a) to c) that are introduced into a polymer precursor to form a redox polymer.
Figure imgf000036_0001
B) a step of forming particles that are electron conductor precursors into a three-dimensional electron conductor; c) introduction of a biocatalyst or an analog thereof. Process.
[12] 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2Zg以上である 第 1の電子伝導体、第 1のレドックスポリマー、及び第 1の生体触媒又はその類似体 を有する負極; [12] The first specific electron conductor, the first redox polymer, and the first biocatalyst or the like having an external specific surface area of 0.5 m 2 Zg or more, which is a specific surface area acting on pores of 7 nm or more A negative electrode having:
電子伝導性及びプロトン伝導性を有する正極;及び  A positive electrode having electronic and proton conductivity; and
前記正極と前記負極とに挟まれた電解質;を有する電池であって、 前記第 1のレドックスポリマーは、酸化還元挙動を示す第 1の酸化還元部位を有し、 且つ 10_16S/cm以上の電子伝導性を示す、上記電池。 An electrolyte sandwiched between the positive electrode and the negative electrode; The battery, wherein the first redox polymer has a first redox site exhibiting redox behavior, and exhibits an electronic conductivity of 10 _16 S / cm or more.
[13] 前記負極がプロトン伝導性を有する請求項 12記載の電池。 13. The battery according to claim 12, wherein the negative electrode has proton conductivity.
[14] 前記第 1の生体触媒が、グルコースォキシダーゼ、グルコースデヒドロゲナーゼ、グ ルコン酸 2-デヒドロゲナーゼ、ケトグルコン酸 2-デヒドロゲナーゼ、アルコールォキシ ダーゼ、アルコールデヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ、ギ酸デヒドロゲナ ーゼ、乳酸デヒドロゲナーゼ、アルド一スデヒドロゲナーゼ、及びオリゴ糖デヒドロゲナ ーゼカもなる群力も選ばれる請求項 12又は 13記載の電池。  [14] The first biocatalyst is glucose oxidase, glucose dehydrogenase, gluconate 2-dehydrogenase, ketogluconate 2-dehydrogenase, alcohol oxidase, alcohol dehydrogenase, aldehyde dehydrogenase, formate dehydrogenase, lactate dehydrogenase, 14. The battery according to claim 12 or 13, wherein a group power comprising aldos dehydrogenase and oligosaccharide dehydrogenase is also selected.
[15] 前記第 1の酸化還元部位が、フエ口セン誘導体類、キノンィ匕合物、オスミウムビビリ ジン錯体類、オスミウムビイミダゾール錯体類、及びビオローゲン力もなる群力も選ば れる請求項 12〜 14のいずれ力 1項記載の電池。  [15] The structure according to any one of claims 12 to 14, wherein the first redox site is selected from the group consisting of pheucose derivatives, quinone compounds, osmium bibilidine complexes, osmium biimidazole complexes, and viologen force. Power Battery according to item 1.
[16] 前記正極が第 2の電子伝導体を有する請求項 12〜 15のいずれ力 1項記載の電池  16. The battery according to any one of claims 12 to 15, wherein the positive electrode has a second electronic conductor.
[17] 前記正極が第 2のレドックスポリマーを有し、該レドックスポリマーは、酸化還元挙動 を示す第 2の酸化還元部位を有し、且つ 10_16SZcm以上の電子伝導性を示す請 求項 12〜16のいずれ力 1項記載の電池。 [17] The positive electrode has a second redox polymer, the redox polymer has a second redox site exhibiting redox behavior, and exhibits an electronic conductivity of 10 _16 SZcm or more. The battery according to any one of ˜16.
[18] 前記第 2のレドックスポリマー力 オスミウムビビリジン錯体、及び 2,2-ァゾビス(3-ェ チルベンゾチアゾリン- 6-スルホネート)力 なる群から選ばれる請求項 12〜17の!ヽ ずれか 1項記載の電池。 [18] The second redox polymer force is selected from the group consisting of an osmium biviridine complex and a 2,2-azobis (3-ethylbenzothiazoline-6-sulfonate) force. The battery according to item.
[19] 前記正極は、プロトン伝導性ポリマーを有する請求項 12〜18のいずれか 1項記載 の電池。 [19] The battery according to any one of claims 12 to 18, wherein the positive electrode has a proton conductive polymer.
[20] 前記正極が触媒を有する請求項 12〜 19のいずれか 1項記載の電池。  [20] The battery according to any one of claims 12 to 19, wherein the positive electrode has a catalyst.
[21] 前記触媒が第 2の生体触媒又はその類似体である請求項 20記載の電池。  21. The battery according to claim 20, wherein the catalyst is a second biocatalyst or an analog thereof.
[22] 前記第 2の生体触媒が、ピリルビンォキシダーゼ、ラッカーゼ、及びシトクロームォキ シダーゼ力 なる群力 選ばれる請求項 21記載の電池。  22. The battery according to claim 21, wherein the second biocatalyst is selected from the group force consisting of pyrilvinoxydase, laccase, and cytochrome oxidase power.
[23] 燃料を n段階 (nは 2以上の整数)で n以上の生体触媒反応又は生体触媒類似反応 で分解する、 l〜n個の電池領域を有する電池であって、 [23] A battery having l to n battery regions, in which fuel is decomposed in n stages (n is an integer of 2 or more) by n or more biocatalytic reactions or biocatalytic analog reactions,
1〜!!個の電池領域が第 1〜第 nの電池領域であり、該第 1〜第 nの電池領域が直 列及び Z又は並列に配線され、 1 ~! ! Battery areas are the 1st to nth battery areas, and the 1st to nth battery areas are directly Wired in rows and Z or in parallel,
第 1の電池領域は、第 1の負極、第 1の正極及び前記第 1の正極と前記第 1の負極 とに挟まれた第 1の電解質を有し、  The first battery region has a first negative electrode, a first positive electrode, and a first electrolyte sandwiched between the first positive electrode and the first negative electrode,
第 1の負極が 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2 Zg以上である第 1の電子伝導体、第 1のレドックスポリマー、及び第 1の生体触媒又 はその類似体を有し、前記第 1のレドックスポリマーは、酸化還元挙動を示す第 1の 酸化還元部位を有し、且つ 10_ 16SZcm以上の電子伝導性を示し、 The first electronic conductor, the first redox polymer, and the first biocatalyst or the first specific negative electrode surface area of which the first negative electrode is a specific surface area that is effective for pores of 7 nm or more is 0.5 m 2 Zg or more It has its analogues, wherein the first redox polymer has a first redox sites displaying a redox behavior, and shows the 10 _ 16 SZcm more electron conductivity,
第 1の正極が電子伝導性を有し、  The first positive electrode has electronic conductivity;
第 mの電池領域 (mは 2から nまでのすベての整数)は各々、第 mの負極、第 mの正 極及び前記第 mの正極と前記第 mの負極とに挟まれた第 mの電解質を有し、  The m-th battery region (m is an integer from 2 to n) is the m-th negative electrode, the m-th positive electrode, and the m-th positive electrode and the m-th negative electrode. m electrolyte,
第 mの負極が 7nm以上の細孔に力かる比表面積である外部比表面積が 0. 5m2 Zg以上である第 mの電子伝導体 (第 mの電子伝導体は、第 1〜第 (m— 1)の電子 伝導体と同じであっても異なってもよい)、第 mのレドックスポリマー(第 mのレドックス ポリマーは、第 1〜第 (m— 1)のレドックスポリマーと同じであっても異なってもよい)、 及び第 mの生体触媒又はその類似体 (第 mの生体触媒又はその類似体は各々、第 1〜第 (m— 1)の生体触媒又はその類似体とは異なる)を有し、前記第 mのレドックス ポリマーは、酸化還元挙動を示す第 mの酸化還元部位 (第 mの酸化還元部位は、第 1〜第 (m— 1)の酸ィ匕還元部位と同じであっても異なってもよ!/、)を有し、且つ 10_16 SZcm以上の電子伝導性を示し、 Anode electron conductor of the m is external specific surface area 0. 5 m 2 Zg least a force mowing specific surface area than the pores 7 nm (electron conductor of the m of the m-th, first to (m — The same as or different from the electron conductor of 1), m-th redox polymer (the m-th redox polymer may be the same as the first to (m-1) redox polymers) And the m-th biocatalyst or its analog (the m-th biocatalyst or its analog is different from the first to (m-1) biocatalyst or its analog, respectively). The m-th redox polymer has an m-th redox site exhibiting redox behavior (the m-th redox site is the same as the 1st to (m-1) acid-oxidized sites. I also different from each other! /,) have, and shows an electron conductivity of more than 10_ 16 SZcm,
第 mの正極が電子伝導性を有し、  The mth positive electrode has electronic conductivity;
第 1の負極において、燃料が第 1の生体触媒又はその類似体により第 1の分解物に 分解されると共に 1電子以上を生成し、  In the first negative electrode, the fuel is decomposed into the first decomposition product by the first biocatalyst or an analog thereof and generates one or more electrons,
第 mの負極の各々において、第 (m— 1)の分解物が第 mの生体触媒又はその類 似体により第 mの分解物に分解されると共に 1電子以上を生成する、上記電池。  In each of the m-th negative electrodes, the (m-1) decomposition product is decomposed into the m-th decomposition product by the m-th biocatalyst or an analog thereof and generates one or more electrons.
[24] 第 1〜第 nの電解質が略一平面に形成され、第 1〜第 nの負極が該略一平面の一 面に、第 1〜第 nの正極が該略一平面の他面に形成され、且つ、第 1〜第 nの負極が 形成される略一平面の一面上に、前記燃料及び第 1〜第 nの分解物が接触するよう に、第 1〜第 nの負極が形成される請求項 23記載の電池。 [24] The 1st to nth electrolytes are formed on a substantially flat surface, the 1st to nth negative electrodes are on one surface of the substantially flat surface, and the 1st to nth positive electrodes are surfaces on the substantially flat surface. The first to n-th negative electrodes are formed so that the fuel and the first to n-th decomposed products are in contact with each other on a substantially flat surface on which the first to n-th negative electrodes are formed. 24. A battery according to claim 23 formed.
[25] 第 (m— 1)の正極と第 mの負極とが通電され、第 1〜第 nの電池領域が直列に配線 される請求項 23又は 24記載の電池。 25. The battery according to claim 23 or 24, wherein the (m-1) positive electrode and the mth negative electrode are energized, and the first to nth battery regions are wired in series.
[26] 燃料を n段階 (nは 2以上の整数)で n以上の生体触媒反応又は生体触媒類似反応 で分解する、 l〜n個の電池領域を有する電池であって、 [26] A battery having l to n battery regions, in which fuel is decomposed in n stages (n is an integer of 2 or more) by n or more biocatalytic reactions or biocatalyst-like reactions,
1〜!!個の電池領域が第 1〜第 nの電池領域であり、該第 1〜第 nの電池領域が直 列及び Z又は並列に配線され、  1 ~! Battery areas are the 1st to nth battery areas, and the 1st to nth battery areas are wired in series and Z or in parallel,
第 1の電池領域が、第 1の負極、第 1の正極及び前記第 1の正極と前記第 1の負極 とに挟まれた第 1の電解質を有し、  The first battery region has a first negative electrode, a first positive electrode and a first electrolyte sandwiched between the first positive electrode and the first negative electrode;
第 1の負極が第 1の電子伝導体、第 1のレドックスポリマー、及び第 1の生体触媒 又はその類似体を有し、前記第 1のレドックスポリマーは、酸化還元挙動を示す第 1 の酸化還元部位を有し、且つ 10_16SZcm以上の電子伝導性を示し、 The first negative electrode has a first electronic conductor, a first redox polymer, and a first biocatalyst or an analog thereof, and the first redox polymer exhibits a redox behavior. And has an electronic conductivity of 10 _16 SZcm or more,
第 1の正極が電子伝導性を有し、  The first positive electrode has electronic conductivity;
第 mの電池領域 (mは 2から nまでのすベての整数)は各々、第 mの負極、第 mの正 極及び前記第 mの正極と前記第 mの負極とに挟まれた第 mの電解質を有し、  The m-th battery region (m is an integer from 2 to n) is the m-th negative electrode, the m-th positive electrode, and the m-th positive electrode and the m-th negative electrode. m electrolyte,
第 mの負極が第 mの電子伝導体 (第 mの電子伝導体は第 1〜第 (m— 1)の電子 伝導体と同じであっても異なってもよい)、第 mのレドックスポリマー(第 mのレドックス ポリマーは第 1〜第 (m— 1)のレドックスポリマーと同じであっても異なってもよい)、及 び第 mの生体触媒又はその類似体 (第 mの生体触媒又はその類似体は各々、第 1 〜第 (m— 1)の生体触媒又はその類似体とは異なる)を有し、前記第 mのレドックス ポリマーは、酸ィ匕還元挙動を示す第 mの酸ィ匕還元部位 (第 mの酸ィ匕還元部位は第 1 〜第 (m— 1)の酸ィ匕還元部位と同じであっても異なってもよ!/、)を有し、且つ 10_16S Zcm以上の電子伝導性を示し、 The mth negative electrode is the mth electronic conductor (the mth electronic conductor may be the same as or different from the first to (m-1) th electronic conductors), the mth redox polymer ( The m-th redox polymer may be the same as or different from the first to (m-1) redox polymers), and the m-th biocatalyst or an analog thereof (the m-th biocatalyst or the like). Each body has a first to (m-1) biocatalyst or an analogue thereof, and the m-th redox polymer has an acid-reduction behavior. (The m-th acid-reduction site may be the same as or different from the first to (m-1) acid-reduction sites! /), And 10 _16 S Zcm or more The electronic conductivity of
第 mの正極が電子伝導性を有し、  The mth positive electrode has electronic conductivity;
第 1の負極において、燃料が第 1の生体触媒又はその類似体により第 1の分解物に 分解されると共に 1電子以上を生成し、  In the first negative electrode, the fuel is decomposed into the first decomposition product by the first biocatalyst or an analog thereof and generates one or more electrons,
第 mの負極の各々において、第 (m— 1)の分解物が第 mの生体触媒又はその類 似体により第 mの分解物に分解されると共に 1電子以上を生成し、  In each of the m-th negative electrodes, the (m-1) decomposition product is decomposed into the m-th decomposition product by the m-th biocatalyst or an analog thereof and generates one or more electrons.
第 1〜第 nの電解質が略一平面に形成され、第 1〜第 nの負極が該略一平面の一 面に、第 1〜第 nの正極が該略一平面の他面に形成され、且つ、第 1〜第 nの負極が 形成される略一平面の一面上に、前記燃料及び第 1〜第 nの分解物が接触するよう に、第 1〜第 nの負極が形成される、上記電池。 The first to nth electrolytes are formed on a substantially flat surface, and the first to nth negative electrodes are formed on a substantially flat surface. On the surface, the first to nth positive electrodes are formed on the other surface of the substantially one plane, and the fuel and the first to nth electrodes are disposed on one surface of the approximately one plane on which the first to nth negative electrodes are formed. The battery, wherein the first to n-th negative electrodes are formed so that the decomposition product of n comes into contact therewith.
[27] 第 1〜第 nの電池領域が、燃料の流れる方向に沿って配置される請求項 26記載の 電池。 27. The battery according to claim 26, wherein the first to nth battery regions are arranged along a fuel flow direction.
[28] 第 (m— 1)の正極と第 mの負極とが通電され、第 1〜第 nの電池領域が直列に配線 される請求項 26又は 27記載の電池。  [28] The battery according to claim 26 or 27, wherein the (m-1) positive electrode and the mth negative electrode are energized, and the first to nth battery regions are wired in series.
[29] 第 1〜第 nの負極の第 1〜第 nの電子伝導体は、 7nm以上の細孔に力かる比表面 積である外部比表面積が 0. 5m2Zg以上である請求項 26〜28記載の電池。 [29] The first to n-th electron conductors of the first to n-th negative electrodes have an external specific surface area of 0.5 m 2 Zg or more, which is a specific surface area acting on pores of 7 nm or more. A battery according to ~ 28.
[30] 前記燃料カ^タノールであり、前記 nが 3であり、前記第 1の生体触媒がアルコール デヒドロゲナーゼであり、前記第 1の分解物がホルムアルデヒドであり、第 2の生体触 媒がアルデヒドデヒドロゲナーゼであり、第 2の分解物がギ酸であり、第 3の生体触媒 がギ酸デヒドロゲナーゼであり、第 3の分解物が二酸ィ匕炭素である請求項 23〜29の いずれか 1項記載の電池。  [30] The fuel ethanol, n is 3, the first biocatalyst is alcohol dehydrogenase, the first decomposition product is formaldehyde, and the second biocatalyst is aldehyde dehydrogenase. The battery according to any one of claims 23 to 29, wherein the second decomposition product is formic acid, the third biocatalyst is formate dehydrogenase, and the third decomposition product is diacid-carbon. .
[31] 前記燃料がエタノールであり、前記 nが 2であり、前記第 1の生体触媒がアルコール デヒドロゲナーゼであり、前記第 1の分解物がァセトアルデヒドであり、第 2の生体触 媒がアルデヒドデヒドロゲナーゼであり、第 2の分解物が酢酸である請求項 23〜29の いずれか 1項記載の電池。  [31] The fuel is ethanol, the n is 2, the first biocatalyst is alcohol dehydrogenase, the first decomposition product is acetoaldehyde, and the second biocatalyst is aldehyde. 30. The battery according to claim 23, wherein the battery is dehydrogenase and the second degradation product is acetic acid.
[32] 前記燃料がグルコースであり、前記 nが 3以上であり、前記第 1の生体触媒がダルコ ースォキシダーゼであり、前記第 1の分解物がダルコノラタトンであり、第 2の生体触 媒がダルコン酸 2—デヒドロゲナーゼであり、第 2の分解物が 2—ケトグルコン酸であり 、第 3の生体触媒がケトグルコン酸デヒドロゲナーゼであり、第 3の分解物が 2,5-ジケ トグルコン酸である請求項 23〜29のいずれ力 1項記載の電池。  [32] The fuel is glucose, the n is 3 or more, the first biocatalyst is dalcosoxidase, the first degradation product is darconoraton, and the second biocatalyst is dalconic acid. A 2-dehydrogenase, the second degradation product is 2-ketogluconic acid, the third biocatalyst is ketogluconate dehydrogenase, and the third degradation product is 2,5-dikegluconic acid. 29. The battery according to 1 above.
[33] 前記第 1〜第 nの負極がプロトン伝導性を有する請求項 23〜32のいずれか 1項記 載の電池。  [33] The battery according to any one of claims 23 to 32, wherein the first to n-th negative electrodes have proton conductivity.
[34] 前記第 1及び第 mの酸化還元部位の各々は、フエ口セン誘導体類、キノンィ匕合物、 オスミウムビビリジン錯体類、オスミウムビイミダゾール錯体類、及びピオローゲンから なる群力も選ばれる請求項 23〜33のいずれか 1項記載の電池。  [34] The first and m-th redox sites may each be selected from the group forces consisting of pheucose derivatives, quinone compounds, osmium biviridine complexes, osmium biimidazole complexes, and pyrogens. The battery according to any one of 23 to 33.
PCT/JP2005/021801 2004-11-26 2005-11-28 Biocell WO2006057387A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006547901A JP5059413B2 (en) 2004-11-26 2005-11-28 Bio battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-341423 2004-11-26
JP2004341423 2004-11-26

Publications (1)

Publication Number Publication Date
WO2006057387A1 true WO2006057387A1 (en) 2006-06-01

Family

ID=36498120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021801 WO2006057387A1 (en) 2004-11-26 2005-11-28 Biocell

Country Status (2)

Country Link
JP (1) JP5059413B2 (en)
WO (1) WO2006057387A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009992A2 (en) 2006-07-19 2008-01-24 Acal Energy Limited Fuel cells
JP2008261680A (en) * 2007-04-11 2008-10-30 National Institute For Materials Science Bioreactive carbon nanotube functionalized by bonding with redox protein by noncovalent bonding and its preparation method
JP2008288134A (en) * 2007-05-21 2008-11-27 Toyota Motor Corp Fuel cell
JP2009048848A (en) * 2007-08-20 2009-03-05 Sony Corp Fuel cell
WO2010041511A1 (en) * 2008-10-06 2010-04-15 ソニー株式会社 Fuel cell and enzyme electrode
JP2010219021A (en) * 2009-02-20 2010-09-30 Sony Corp Fuel cell, electronic apparatus, and biosensor
WO2011015875A1 (en) 2009-08-05 2011-02-10 Acal Energy Limited Fuel cells
US8603684B2 (en) 2007-09-20 2013-12-10 Acal Energy Limited Fuel cells
WO2013187485A1 (en) 2012-06-16 2013-12-19 天野エンザイム株式会社 Oxidoreductase reaction control and use thereof
US8647781B2 (en) 2008-01-23 2014-02-11 Acal Energy Limited Redox fuel cells
US8753783B2 (en) 2006-04-25 2014-06-17 ACAL Enegy Limited Fuel cells with improved resistance to fuel crossover
US8951695B2 (en) 2008-01-23 2015-02-10 Acal Energy Limited Redox fuel cell with catholyte redox mediator
US9005828B2 (en) 2006-03-24 2015-04-14 Acal Energy Limited Redox fuel cells with a catholyte solution containing a polyoxometallate
US9029042B2 (en) 2007-09-24 2015-05-12 Acal Energy Limited Redox fuel cell
US9136554B2 (en) 2006-07-19 2015-09-15 Acal Energy Limited Fuel cells
JP2017130446A (en) * 2016-01-15 2017-07-27 新日鐵住金株式会社 Carbon material for catalyst carrier, catalyst layer for solid polymer type fuel battery and solid polymer type fuel battery
CN108387545A (en) * 2018-02-01 2018-08-10 上海工程技术大学 Ferroso-ferric oxide base composite carbon nanometer tube analogue enztme and its preparation method and application
JP2020004487A (en) * 2018-06-25 2020-01-09 東洋インキScホールディングス株式会社 Electrode for enzyme power generation device and enzyme power generation device
JP2020135975A (en) * 2019-02-14 2020-08-31 国立大学法人福井大学 Flow channel device, power generation device, sensor, power generation method, and sensing method
WO2024084858A1 (en) * 2022-10-19 2024-04-25 株式会社村田製作所 Secondary battery electrolyte and secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903804B (en) * 2021-01-27 2022-02-18 中国科学院生态环境研究中心 Metabolic enzyme-induced biodegradation of carbon black particles and analysis method of products thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450396A (en) * 1977-09-28 1979-04-20 Matsushita Electric Ind Co Ltd Enzyme electrode
JP2004071559A (en) * 2002-07-26 2004-03-04 Sony Corp Fuel cell
JP2004234976A (en) * 2003-01-29 2004-08-19 Honda Motor Co Ltd Fuel cell
JP2004303651A (en) * 2003-03-31 2004-10-28 Honda Motor Co Ltd Planar laminated layer type fuel battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450396A (en) * 1977-09-28 1979-04-20 Matsushita Electric Ind Co Ltd Enzyme electrode
JP2004071559A (en) * 2002-07-26 2004-03-04 Sony Corp Fuel cell
JP2004234976A (en) * 2003-01-29 2004-08-19 Honda Motor Co Ltd Fuel cell
JP2004303651A (en) * 2003-03-31 2004-10-28 Honda Motor Co Ltd Planar laminated layer type fuel battery

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005828B2 (en) 2006-03-24 2015-04-14 Acal Energy Limited Redox fuel cells with a catholyte solution containing a polyoxometallate
US8753783B2 (en) 2006-04-25 2014-06-17 ACAL Enegy Limited Fuel cells with improved resistance to fuel crossover
US8492048B2 (en) 2006-07-19 2013-07-23 Acal Energy Limited Fuel cells
GB2440434A (en) * 2006-07-19 2008-01-30 Acal Energy Ltd Fuel Cells
US9136554B2 (en) 2006-07-19 2015-09-15 Acal Energy Limited Fuel cells
WO2008009992A2 (en) 2006-07-19 2008-01-24 Acal Energy Limited Fuel cells
GB2440434B (en) * 2006-07-19 2011-03-09 Acal Energy Ltd Fuel cells
JP2008261680A (en) * 2007-04-11 2008-10-30 National Institute For Materials Science Bioreactive carbon nanotube functionalized by bonding with redox protein by noncovalent bonding and its preparation method
JP2008288134A (en) * 2007-05-21 2008-11-27 Toyota Motor Corp Fuel cell
JP2009048848A (en) * 2007-08-20 2009-03-05 Sony Corp Fuel cell
US8603684B2 (en) 2007-09-20 2013-12-10 Acal Energy Limited Fuel cells
US9029042B2 (en) 2007-09-24 2015-05-12 Acal Energy Limited Redox fuel cell
US8647781B2 (en) 2008-01-23 2014-02-11 Acal Energy Limited Redox fuel cells
US8951695B2 (en) 2008-01-23 2015-02-10 Acal Energy Limited Redox fuel cell with catholyte redox mediator
WO2010041511A1 (en) * 2008-10-06 2010-04-15 ソニー株式会社 Fuel cell and enzyme electrode
US8911908B2 (en) 2008-10-06 2014-12-16 Sony Corporation Fuel cell and enzyme electrode
JP2010219021A (en) * 2009-02-20 2010-09-30 Sony Corp Fuel cell, electronic apparatus, and biosensor
WO2011015875A1 (en) 2009-08-05 2011-02-10 Acal Energy Limited Fuel cells
WO2013187485A1 (en) 2012-06-16 2013-12-19 天野エンザイム株式会社 Oxidoreductase reaction control and use thereof
US9777299B2 (en) 2012-06-16 2017-10-03 Amano Enzyme Inc. Oxidoreductase reaction control and use thereof
JP2017130446A (en) * 2016-01-15 2017-07-27 新日鐵住金株式会社 Carbon material for catalyst carrier, catalyst layer for solid polymer type fuel battery and solid polymer type fuel battery
CN108387545A (en) * 2018-02-01 2018-08-10 上海工程技术大学 Ferroso-ferric oxide base composite carbon nanometer tube analogue enztme and its preparation method and application
CN108387545B (en) * 2018-02-01 2020-11-27 上海工程技术大学 Triiron tetraoxide-based composite carbon nanotube mimic enzyme and preparation method and application thereof
JP2020004487A (en) * 2018-06-25 2020-01-09 東洋インキScホールディングス株式会社 Electrode for enzyme power generation device and enzyme power generation device
JP7192264B2 (en) 2018-06-25 2022-12-20 東洋インキScホールディングス株式会社 Electrode for enzyme power generation device and enzyme power generation device
JP2020135975A (en) * 2019-02-14 2020-08-31 国立大学法人福井大学 Flow channel device, power generation device, sensor, power generation method, and sensing method
JP7162303B2 (en) 2019-02-14 2022-10-28 国立大学法人福井大学 Channel device, power generation device, sensor, power generation method and sensing method
WO2024084858A1 (en) * 2022-10-19 2024-04-25 株式会社村田製作所 Secondary battery electrolyte and secondary battery

Also Published As

Publication number Publication date
JP5059413B2 (en) 2012-10-24
JPWO2006057387A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
WO2006057387A1 (en) Biocell
Xiao et al. Tackling the challenges of enzymatic (bio) fuel cells
Saboe et al. Biomimetic and bioinspired approaches for wiring enzymes to electrode interfaces
US8048660B2 (en) Immobilized enzymes and uses thereof
US7238440B2 (en) Membrane free fuel cell
Knoche et al. Hybrid glucose/O2 biobattery and supercapacitor utilizing a pseudocapacitive dimethylferrocene redox polymer at the bioanode
JP4632437B2 (en) Enzyme electrode, device having enzyme electrode, sensor, fuel cell, electrochemical reaction device
ul Haque et al. A review: Evolution of enzymatic biofuel cells
JP2011007803A (en) Enzyme electrode, device, sensor, fuel cell, and electrochemical reactor each having enzyme electrode
Dutta et al. Electron transfer-driven single and multi-enzyme biofuel cells for self-powering and energy bioscience
JP2006058289A (en) Enzyme electrode, sensor, fuel cell, electrochemical reactor
Le Goff et al. Molecular engineering of the bio/nano-interface for enzymatic electrocatalysis in fuel cells
Escalona-Villalpando et al. Glucose microfluidic fuel cell using air as oxidant
Kashyap et al. Recent developments in enzymatic biofuel cell: Towards implantable integrated micro-devices
Ha et al. Nanobiocatalysis for enzymatic biofuel cells
Barelli et al. Enzymatic fuel cell technology for energy production from bio-sources
Karajić et al. Enzymatic glucose-oxygen biofuel cells for highly efficient interfacial corrosion protection
US10090116B2 (en) Biological supercapacitor structure and method for manufacturing and use of the same
JP2013541132A (en) Direct transfer bio battery
JP2008096352A (en) Manufacturing method for enzyme electrode
US11664504B2 (en) Hematin modified bilirubin oxidase cathode
Le et al. Tailoring Nanostructured Supports to Achieve High Performance in Enzymatic Biofuel Cells
Arjun et al. A 3D printed low volume hybrid enzyme fuel cell for low power applications
JP2008177088A (en) Enzyme electrode, and biofuel cell equipped with it
US10522841B2 (en) Electrochemical reactor block

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547901

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809759

Country of ref document: EP

Kind code of ref document: A1