JP2004070709A - Power unit for intrinsically safe apparatus - Google Patents

Power unit for intrinsically safe apparatus Download PDF

Info

Publication number
JP2004070709A
JP2004070709A JP2002229919A JP2002229919A JP2004070709A JP 2004070709 A JP2004070709 A JP 2004070709A JP 2002229919 A JP2002229919 A JP 2002229919A JP 2002229919 A JP2002229919 A JP 2002229919A JP 2004070709 A JP2004070709 A JP 2004070709A
Authority
JP
Japan
Prior art keywords
voltage
circuit
output
power supply
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002229919A
Other languages
Japanese (ja)
Other versions
JP4160336B2 (en
Inventor
Shigetoshi Inoue
井上 繁俊
Kazumasa Danjo
檀上 和正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idec Corp
Original Assignee
Idec Izumi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec Izumi Corp filed Critical Idec Izumi Corp
Priority to JP2002229919A priority Critical patent/JP4160336B2/en
Publication of JP2004070709A publication Critical patent/JP2004070709A/en
Application granted granted Critical
Publication of JP4160336B2 publication Critical patent/JP4160336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To properly supply power to an intrinsically safe apparatus without deteriorating voltage use efficiency or current use efficiency by feedback controlling the voltage of a shunt voltage limiting circuit. <P>SOLUTION: This power unit is provided with a constant voltage control circuit 2, a fuse 1, and a voltage limiting circuit 3 successively from an input side to an output side. The voltage limiting circuit 3 is provided with an output short-circuit 3a for short-circuiting a power source circuit when operating voltage exceeds a predetermined voltage, a shunt voltage limiting circuit 3b for limiting the operating voltage of the output short-circuiting circuit 3a, and a voltage detecting circuit 3c for detecting output voltage. When input voltage to a power source circuit 10 reaches or exceeds the limit voltage of the shunt voltage limiting circuit 3b, the difference between the input voltage and the limit voltage is detected by a voltage detecting circuit 3c, and when the detected voltage is the operating voltage of the output short-circuit 3a or less, a constant voltage control circuit 2 carries out feedback-control so that the output voltage matches reference voltage. When the detected voltage of the voltage detecting circuit 3c reaches or exceeds the operating voltage of the output short-circuit 3a, the power source circuit is short-circuited by the output short-circuit 3a. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、爆発性ガスが爆発する虞がある爆発性雰囲気状態の危険区域内で使用される本質安全防爆構造の電気機器(以下、本安機器という。)に安全区域から電源を供給する本安機器用電源装置に関する。
【0002】
【従来の技術】
本安機器の使用に際して直流電源を供給する場合、電源回路側で生じた過電圧が本安機器に出力されないようにするとともに、供給する電源の電圧値及び電流値を危険区域内の爆発性ガスに応じて規格化された基準値よりも小さくする必要がある。このため、本安機器に安全区域から電源を供給する本安機器用電源装置には、本安機器に対する出力電圧及び出力電流を制限する安全保持機能が備えられている。
【0003】
従来の安全保持機能を備えた本安機器用電源装置として、図5(A)に示すように、本安機器に対する出力電圧を制限する分路電圧制限回路52、本安機器に対する出力電流を制限する電流制限回路53、及び、分路電圧制限回路52を保護するヒューズ51からなる分路ダイオード型安全保持器50を備えたものがある。分路電圧制限回路52には分路ダイオードが含まれ、この分路ダイオードとして一般にツェナダイオードが用いられている。
【0004】
本安機器用電源装置の回路電圧が、分路電圧制限回路52内の分路ダイオードの制限電圧(例えばツェナダイオードのツェナ電圧)よりも高くなると、分路電圧制限回路52に電流が流れ、本安機器に対する出力電圧値が制限電圧に制限される。ところが、図5(A)に示す分路ダイオード型安全保持器50では、対地電圧を下げるために分路電圧制限回路52を最良の方法で接地しなければならない。
【0005】
そこで、図5(B)に示すように、分路電圧制限回路52と電流制限回路53との間に絶縁変圧器61を配置し、分路電圧制限回路52の接地を不要にした絶縁型の分路ダイオード型安全保持器60が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、図5(A)及び(B)に示した従来の分路ダイオード型安全保持器では、分路電圧制限回路52を構成する分路ダイオードの制限電圧が回路電圧に近い場合には、回路電圧が僅かに高くなった際にも分路電圧制限回路52に電流が流れることになり、回路電圧の変動によってヒューズ51が容易に溶断する虞がある。一般に、本安機器用電源装置の安全保持器におけるヒューズの交換作業は煩雑で長時間を必要とするため、ヒューズの溶断はできるだけ回避すべきであり、回路電圧をツェナ電圧に比較して十分に低い値にしなければならず、結果的にツェナ電圧の高いツェナダイオードを用いる必要があり、電圧利用効率が低い欠点があった。また、負荷電流に拘らずヒューズが溶断しない程度の電流を回路内に常に流しておくことによって電圧利用効率を高くすることができるが、電流利用効率が低くなる。
【0007】
この発明の目的は、分路電圧制限回路の電圧をフィードバック制御することにより、電圧利用効率及び電流利用効率を低下させることなく本安機器に適正に電源を供給することができ、かつ容易にヒューズが溶断することのない本安機器用電源装置を提供することにある。
【0008】
【課題を解決するための手段】
この発明は、上記の課題を解決するための手段として、以下の構成を備えている。
【0009】
(1)本安機器に直流電源を供給する本質安全防爆機器用電源装置において、
直流電源の出力電圧を制限する分路電圧制限回路と、分路電圧制限回路によって制限された出力電圧の電圧値を検出する電圧検出回路と、電圧検出回路の検出電圧が動作電圧以上になったときに動作して電源回路を短絡する出力短絡回路と、電圧検出回路の検出電圧が基準電圧に一致するように出力電圧をフィードバック制御する定電圧制御回路と、を設け、分路電圧制限回路に常時電流が流れるように制限電圧を設定したことを特徴とする。
【0010】
この構成においては、電圧検出回路の検出電圧に基づいて出力電圧が基準電圧にフィードバック制御される一方、電圧制限回路の制限電圧によって制限した後出力電圧が検出電圧として出力短絡回路に供給される。したがって、出力電圧が出力短絡回路の動作電圧を超えない範囲で変動した場合には出力電圧が基準電圧に維持されるとともに、出力電圧が出力短絡回路の動作電圧以上に変動した場合には出力短絡回路が動作して電源回路が短絡される。このため、本安機器に対して危険区域ないの爆発性ガスの種類に応じて規格化された範囲の出力電圧及び出力電流が安定して供給される。また、電圧制限回路の制限電圧が出力電圧より低く設定され、電圧利用効率が向上する。さらに、異常電圧の入力時には定電圧制御回路から電圧検出回路に印加された高電圧によって検出電圧が上昇し、出力短絡回路によって電源回路が短絡される。
【0011】
(2)直流電源の出力電流を検出する電流検出回路と、電流検出回路の検出電流値が基準電流以下になるように出力電流をフィードバック制御する電流制御回路と、を含むことを特徴とする。
【0012】
この構成においては、出力電圧が基準電圧に等しくされるだけでなく、ヒューズを流れる出力電流が基準電流以下に制御される。したがって、この基準電流をヒューズの溶断特性以下に設定することにより、本安機器用電源回路に規格上要求されるヒューズの溶断が防止される。
【0013】
(3)直流電源の入出力経路中に絶縁変圧器を配置し、絶縁変圧器の1次側及び2次側の少なくとも一方に、前記出力短絡回路、電圧検出回路及び定電圧制御回路を設けたことを特徴とする。
【0014】
この構成においては、絶縁変圧器の1次側の出力短絡回路、電圧検出回路及び定電圧制御回路、絶縁変圧器、並びに、絶縁変圧器の2次側の出力短絡回路、電圧検出回路及び定電圧制御回路を介して直流電源と本安機器とが接続される。したがって、直流電源と本安機器との間の絶縁状態が確実に維持されるとともに、絶縁変圧器の1次側及び2次側において生じた電圧変動が1次側及び2次側のそれぞれで個別に吸収される。
【0015】
【発明の実施の形態】
図1は、この発明の第1の実施形態に係る本安機器用電源装置(以下、単に電源装置という。)の構成を示すブロック図である。爆発性ガスが爆発する虞がある爆発性雰囲気の危険区域で使用される本安機器には、部品の故障等によって電源回路に生じた過電圧を供給してはならない。また、本安機器に供給すべき電圧値及び電流値は危険区域の爆発性ガスの種類に応じて規格化されており、電源装置10の出力電圧及び出力電流を規格化された基準電圧値以下及び基準電流値以下に保たなければならない。このため、この実施形態に係る電源装置10は、直流電源に接続される入力側から本安機器に接続される出力側に向かって定電圧制御回路2、ヒューズ1、電圧制限回路3及び電流制限回路8を備えている。
【0016】
電圧制限回路3は、本安機器に対する電源ラインの間に、分路電圧制限回路3b及び電圧検出回路3cからなる直列回路に出力短絡回路3aを並列に接続して構成されている。出力短絡回路3aは、例えばサイリスタ等の半導体によって構成され、分路電圧制限回路3bと電圧検出回路3cとの間に入力端子を接続しており、電圧検出回路3cの検出電圧の入力を受ける。出力短絡回路3aは、検出電圧が所定の動作電圧を超えた時に電源ライン間を短絡し、基準電圧を超える出力電圧の本安機器への出力を防止する。分路電圧制限回路3bは、例えばツェナダイオードによって構成され、両端電圧を定電圧であるツェナ電圧に維持する。
【0017】
したがって、電源ライン間の電圧である出力電圧が変動すると電圧検出回路3cの両端電圧が変動し、出力短絡回路3aの入力端子に入力される検出電圧が変動する。即ち、出力短絡回路3aに入力される検出電圧は、出力電圧からツェナ電圧(制限電圧)を差し引いた値となる。電圧検出回路3cは、例えば抵抗によって構成され、出力電圧から制限電圧を差し引いた検出電圧として出力電圧を間接的に検出する。
【0018】
なお、ヒューズ1は、電圧制限回路3に対する規格上の要求に基づいて設けられている。また、電流制限回路8は、例えば抵抗によって構成されており、本安機器に供給される出力電流値を基準電流値以下に制限する。
【0019】
定電圧制御回路2は、電圧制御回路2a、フィードバック抵抗2b、基準電圧回路2c及び電圧誤差増幅回路2dを含む。電圧制限回路3における電圧検出回路3cの検出電圧は、フィードバック抵抗2bを介して電圧誤差増幅回路2dに入力される。電圧誤差増幅回路2dは、フィードバック抵抗2bを介して入力された検出電圧を基準電圧回路2cが発生する基準電圧と比較し、両者の差を増幅した差分電圧信号を電圧制御回路2aに供給する。電圧制御回路2aは、電圧誤差増幅回路2dからの差分電圧信号に基づいて出力電圧を制御する。これによって、電圧検出回路3cが間接的に検出した出力電圧が、基準電圧に一致するようにフィードバック制御される。
【0020】
上記の構成により、定電圧制御回路2の出力電圧が上昇しだすと、出力電圧と分路電圧制限回路3bの制限電圧との電圧差も上昇する。この電圧差は電圧検出回路3cによって検出される。この検出電圧が出力短絡回路3aが動作する動作電圧未満の範囲では、定電圧制御回路2により出力電圧が基準電圧に一致するようにフィードバック制御される。定電圧制御回路2の出力電圧がさらに上昇し、電圧検出回路3cの検出電圧が出力短絡回路3aの動作電圧以上になると、出力短絡回路3aが動作して電源回路が短絡される。また、電源装置10に異常電圧が入力された場合には、定電圧制御回路2のフィードバック抵抗2bから電圧制限回路3の出力短絡回路3aに高電圧が印加され、出力短絡回路3aが動作して電源回路が短絡される。さらに、フィードバック抵抗により出力短絡回路の入力等を高電圧から保護する。
【0021】
これによって、基準電圧に一致する出力電圧の直流電源が本安機器に供給されるとともに、過大な電圧が本安機器に入力されることがなく、本安機器に火花を発生した場合でも危険区域の爆発性ガスへの引火を防止できる。
【0022】
なお、出力短絡回路3aが電源回路を短絡した後は、電源装置10に対する電源を一旦切断した後に再投入することによって電源装置10が動作を復帰する。
【0023】
分路電圧制限回路3bは、出力電圧を直接制限するものではなく、出力短絡回路3aの入力電圧を制御する電圧を供給するものであり、分路電圧制限回路3b及び電圧検出回路3cに常時電流が流れるように制限電圧が設定されている。したがって、分路電圧制限回路3bの制限電圧と電圧検出回路3cの検出電圧との和が電源装置10の出力電圧となり、電圧制御回路の電圧降下がない場合には、電圧利用効率が略100%になる。
【0024】
なお、ヒューズ1は、短絡制御回路3の出力短絡回路3aよりも入力側の適当な箇所に配置することができ、図2に示す電源装置20のように、定電圧制御回路2よりも入力側に配置してもよい。
【0025】
図3は、この発明の第2の実施形態に係る電源装置の構成を示すブロック図である。この実施形態に係る電源装置30は、図1及び図2に示した定電圧制御回路2に代えて、定電圧電流制御回路4を備えたものである。定電圧電流制御回路4は、定電圧制御回路2に含まれるフィードバック抵抗2b、基準電圧回路2c及び電圧誤差増幅回路2dを含むとともに、新たに、電圧・電流制御回路4a、電流検出回路4b、基準電圧回路4c及び電流誤差増幅回路4dを含む。
【0026】
電流検出回路4bは、電源装置30から本安機器に供給される出力電流を検出し、検出した電流値に対応した電圧を検出電圧として出力する。電流検出回路4bの検出電圧は、基準電圧回路4cが発生した基準電圧とともに電流誤差増幅回路4dに入力される。電流誤差増幅回路4dは、電流検出回路4bから入力された検出電圧と基準電流回路4cから入力された基準電圧との差を増幅した差分電流信号を電圧・電流制御回路4aに供給する。電圧・電流制御回路4aは、電圧誤差増幅回路2dから供給される差分電圧信号に基づいて直流電源の出力電圧が基準電圧に一致するように制御するとともに、電流誤差増幅回路4dから供給される差分電流信号に基づいて直流電源の出力電流が基準電流以下になるように制御する。
【0027】
以上の構成により、この実施形態に係る電源装置30では、本安機器に供給すべき直流電源の出力電圧が基準電圧に等しくされるとともに、本安機器に供給すべき直流電源の出力電流が電圧制限回路3が故障した場合や負荷である本安機器が短絡した場合にもヒューズ1が溶断しない電流値に制御される。
【0028】
図4は、この発明の第3の実施形態に係る電源装置の構成を示すブロック図である。この実施形態に係る電源装置40は、電源回路内に絶縁変圧器5を備えたものである。電源装置40において、発振回路6が接続された絶縁変圧器5の1次側に電圧制限回路3、ヒューズ1及び定電圧・電流制御回路4を備え、整流・平滑回路7が接続された絶縁変圧器5の2次側に定電圧制御回路2及び電圧制限回路3を備えている。図4においては、電流制限回路は省略している。
【0029】
この構成により、電源と本安機器との間の絶縁状態を実現することができるとともに、1次側における電源ライン上へのノイズを含む異常電圧の印加による電圧変動及び電流変動は1次側の電圧制限回路3、ヒューズ1及び定電圧・電流制御回路4によって吸収し、2次側における本安機器との間の電源ライン上へのノイズを含む異常電圧の印加による電圧変動及び電流変動は2次側の定電圧制御回路2及び電圧制限回路3によって吸収することができる。
【0030】
なお、電源装置40の1次側において、定電圧・電流制御回路4に代えて定電圧制御回路2を用いることもできる。
【0031】
【発明の効果】
この発明によれば、以下の効果を奏することができる。
【0032】
(1)電圧検出回路の検出電圧に基づいて出力電圧を基準電圧に制御する一方、分路電圧制限回路により制限した出力電圧を検出電圧として出力短絡回路に供給することにより、出力電圧が出力短絡回路の動作電圧を超えない範囲で変動した場合には出力電圧を基準電圧に維持するとともに、出力電圧が出力短絡回路の動作電圧以上に変動した場合、及び、異常電圧が入力された場合には出力短絡回路を動作させて電源回路を短絡させることができる。これによって、本安機器に対して危険区域ないの爆発性ガスの種類に応じて規格化された範囲の電圧及び電流を安定して供給することができる。また、電圧制限回路の制限電圧を出力電圧に近い値に設定することができ、電圧利用効率を向上させることができる。
【0033】
(2)出力電圧を基準電圧に等しくするだけでなく、ヒューズを流れる出力電流を基準電流以下に制御することにより、ヒューズの溶断を防止して、煩雑な交換作業を不要にすることができる。
【0034】
(3)絶縁変圧器の1次側の出力短絡回路、電圧検出回路及び定電圧制御回路、絶縁変圧器、並びに、絶縁変圧器の2次側の出力短絡回路、電圧検出回路及び定電圧制御回路を介して直流電源と本安機器とを接続することにより、直流電源と本安機器との間の絶縁状態を確実に維持することができるとともに、絶縁変圧器の1次側及び2次側において生じた電圧変動を1次側及び2次側のそれぞれで個別に吸収させることができる。これによって、本安機器に対して、危険区域ないの爆発性ガスの種類に応じて規格化された範囲の出力電圧及び出力電流を安定して供給することができる。
【図面の簡単な説明】
【図1】この発明の第1の実施形態に係る電源装置の構成を示すブロック図である。
【図2】上記電源装置の別の構成を示すブロック図である。
【図3】この発明の第2の実施形態に係る電源装置の構成を示すブロック図である。
【図4】この発明の第3の実施形態に係る電源装置の構成を示すブロック図である。
【図5】従来の電源装置に備えられる安全保護器の構成を示すブロック図である。
【符号の説明】
1−ヒューズ
2−定電圧制御回路
2a−電圧制御回路
2b−フィードバック抵抗
2c−基準電圧回路
2d−電圧誤差塑像服回路
3−電圧制限回路
3a−出力短絡回路
3b−分路電圧制限回路
3c−電圧検出回路
4−定電圧・電流制御回路
10,20,30,40−電源装置(本安機器用電源装置)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electric power source for supplying electric power from an intrinsically safe explosion-proof structure (hereinafter, referred to as intrinsically safe equipment) to be used in a hazardous area in an explosive atmosphere where explosive gas may explode. The present invention relates to a power supply for low-cost equipment.
[0002]
[Prior art]
When supplying DC power when using intrinsically safe equipment, ensure that overvoltages generated on the power supply circuit side are not output to the intrinsically safe equipment, and that the voltage and current values of the supplied power supply are applied to explosive gas in the hazardous area. Accordingly, the reference value must be smaller than the standardized value. For this reason, a power supply device for an intrinsically safe device that supplies power to the intrinsically safe device from a safe area is provided with a safety maintaining function for limiting an output voltage and an output current to the intrinsically safe device.
[0003]
As shown in FIG. 5A, as a conventional power supply device for intrinsically safe equipment having a safety maintaining function, a shunt voltage limiting circuit 52 for limiting the output voltage to intrinsically safe equipment and an output current for intrinsically safe equipment are limited. And a shunt diode type safety retainer 50 including a fuse 51 for protecting the shunt voltage limiting circuit 52. The shunt voltage limiting circuit 52 includes a shunt diode, and a zener diode is generally used as the shunt diode.
[0004]
When the circuit voltage of the power supply device for intrinsically safe device becomes higher than the limit voltage of the shunt diode (for example, the Zener voltage of the Zener diode) in the shunt voltage limit circuit 52, a current flows through the shunt voltage limit circuit 52, The output voltage value for the safety device is limited to the limit voltage. However, in the shunt diode type safety retainer 50 shown in FIG. 5A, the shunt voltage limiting circuit 52 must be grounded in the best way to reduce the ground voltage.
[0005]
Therefore, as shown in FIG. 5B, an insulating transformer 61 is arranged between the shunt voltage limiting circuit 52 and the current limiting circuit 53, and the shunt voltage limiting circuit 52 does not need to be grounded. A shunt diode type safety retainer 60 has been proposed.
[0006]
[Problems to be solved by the invention]
However, in the conventional shunt diode type safety retainer shown in FIGS. 5A and 5B, when the limiting voltage of the shunt diode constituting the shunt voltage limiting circuit 52 is close to the circuit voltage, Even when the voltage slightly increases, a current flows through the shunt voltage limiting circuit 52, and there is a possibility that the fuse 51 is easily blown due to a change in the circuit voltage. In general, the work of replacing fuses in the safety retainer of the power supply unit for intrinsically safe equipment is complicated and requires a long time.Fuse blowing should be avoided as much as possible, and the circuit voltage should be sufficiently compared to the Zener voltage. The value must be low, and as a result, it is necessary to use a Zener diode having a high Zener voltage. In addition, the voltage utilization efficiency can be increased by constantly flowing a current that does not blow the fuse into the circuit regardless of the load current, but the current utilization efficiency is reduced.
[0007]
SUMMARY OF THE INVENTION It is an object of the present invention to supply power to the intrinsically safe device without lowering the voltage use efficiency and the current use efficiency by performing feedback control of the voltage of the shunt voltage limiting circuit, and to easily fuse the device. It is an object of the present invention to provide a power supply device for intrinsically safe equipment that does not melt.
[0008]
[Means for Solving the Problems]
The present invention has the following arrangement as means for solving the above-mentioned problems.
[0009]
(1) In a power supply for intrinsically safe explosion-proof equipment that supplies DC power to intrinsically safe equipment,
A shunt voltage limiting circuit that limits the output voltage of the DC power supply, a voltage detection circuit that detects a voltage value of the output voltage limited by the shunt voltage limiting circuit, and a detection voltage of the voltage detection circuit is equal to or higher than the operating voltage. An output short-circuit that operates when the power supply circuit is short-circuited, and a constant-voltage control circuit that feedback-controls the output voltage so that the detection voltage of the voltage detection circuit matches the reference voltage. It is characterized in that the limiting voltage is set so that a current always flows.
[0010]
In this configuration, while the output voltage is feedback-controlled to the reference voltage based on the detection voltage of the voltage detection circuit, the output voltage is supplied to the output short circuit as the detection voltage after being limited by the restriction voltage of the voltage restriction circuit. Therefore, when the output voltage fluctuates within a range not exceeding the operating voltage of the output short circuit, the output voltage is maintained at the reference voltage, and when the output voltage fluctuates beyond the operating voltage of the output short circuit, the output short circuit occurs. The circuit operates and the power supply circuit is short-circuited. For this reason, the output voltage and the output current in the range standardized according to the type of the explosive gas in the dangerous area are not stably supplied to the intrinsically safe device. Further, the limit voltage of the voltage limit circuit is set lower than the output voltage, and the voltage use efficiency is improved. Further, when an abnormal voltage is input, the detection voltage increases due to the high voltage applied from the constant voltage control circuit to the voltage detection circuit, and the power supply circuit is short-circuited by the output short circuit.
[0011]
(2) It is characterized by including a current detection circuit for detecting the output current of the DC power supply, and a current control circuit for performing feedback control of the output current so that the detection current value of the current detection circuit becomes equal to or less than the reference current.
[0012]
In this configuration, not only is the output voltage equal to the reference voltage, but also the output current flowing through the fuse is controlled to be equal to or less than the reference current. Therefore, by setting the reference current to be equal to or less than the fusing characteristics of the fuse, the fusing of the fuse required in the standard of the power supply circuit for intrinsically safe equipment is prevented.
[0013]
(3) An insulation transformer is arranged in the input / output path of the DC power supply, and the output short circuit, the voltage detection circuit, and the constant voltage control circuit are provided on at least one of the primary side and the secondary side of the insulation transformer. It is characterized by the following.
[0014]
In this configuration, the primary side output short circuit, the voltage detection circuit and the constant voltage control circuit of the isolation transformer, the isolation transformer, and the secondary side output short circuit, the voltage detection circuit and the constant voltage of the insulation transformer The DC power supply and the intrinsically safe device are connected via the control circuit. Therefore, the insulation state between the DC power supply and the intrinsically safe equipment is reliably maintained, and the voltage fluctuations that occur on the primary and secondary sides of the insulation transformer are individually detected on the primary and secondary sides, respectively. Is absorbed by
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a block diagram showing a configuration of a power supply device for intrinsically safe equipment (hereinafter, simply referred to as a power supply device) according to a first embodiment of the present invention. Do not supply overvoltages generated in the power supply circuit due to component failures, etc., to intrinsically safe equipment used in hazardous areas in an explosive atmosphere where explosive gas may explode. In addition, the voltage value and the current value to be supplied to the intrinsically safe device are standardized according to the type of explosive gas in the dangerous area, and the output voltage and the output current of the power supply 10 are equal to or less than the standardized reference voltage value. And must be kept below the reference current value. For this reason, the power supply device 10 according to this embodiment includes a constant voltage control circuit 2, a fuse 1, a voltage limit circuit 3, and a current limit from the input side connected to the DC power supply to the output side connected to the intrinsically safe device. The circuit 8 is provided.
[0016]
The voltage limiting circuit 3 is configured by connecting an output short circuit 3a in parallel to a series circuit including a shunt voltage limiting circuit 3b and a voltage detecting circuit 3c between power supply lines for the intrinsically safe device. The output short circuit 3a is made of, for example, a semiconductor such as a thyristor, has an input terminal connected between the shunt voltage limit circuit 3b and the voltage detection circuit 3c, and receives the detection voltage of the voltage detection circuit 3c. The output short circuit 3a short-circuits the power supply lines when the detected voltage exceeds a predetermined operating voltage, and prevents output voltage exceeding the reference voltage from being output to the intrinsically safe device. The shunt voltage limiting circuit 3b is constituted by, for example, a zener diode, and maintains the voltage between both ends at a constant zener voltage.
[0017]
Therefore, when the output voltage that is the voltage between the power supply lines fluctuates, the voltage across the voltage detection circuit 3c fluctuates, and the detection voltage input to the input terminal of the output short circuit 3a fluctuates. That is, the detection voltage input to the output short circuit 3a is a value obtained by subtracting the zener voltage (limit voltage) from the output voltage. The voltage detection circuit 3c is configured by, for example, a resistor, and indirectly detects the output voltage as a detection voltage obtained by subtracting the limit voltage from the output voltage.
[0018]
Note that the fuse 1 is provided based on a standard requirement for the voltage limiting circuit 3. Further, the current limiting circuit 8 is formed of, for example, a resistor, and limits an output current value supplied to the intrinsically safe device to a reference current value or less.
[0019]
The constant voltage control circuit 2 includes a voltage control circuit 2a, a feedback resistor 2b, a reference voltage circuit 2c, and a voltage error amplifier circuit 2d. The detection voltage of the voltage detection circuit 3c in the voltage limiting circuit 3 is input to the voltage error amplifier circuit 2d via the feedback resistor 2b. The voltage error amplifier circuit 2d compares the detection voltage input via the feedback resistor 2b with the reference voltage generated by the reference voltage circuit 2c, and supplies a difference voltage signal obtained by amplifying the difference between the two to the voltage control circuit 2a. The voltage control circuit 2a controls the output voltage based on the difference voltage signal from the voltage error amplifier 2d. As a result, feedback control is performed so that the output voltage indirectly detected by the voltage detection circuit 3c matches the reference voltage.
[0020]
With the above configuration, when the output voltage of the constant voltage control circuit 2 starts to increase, the voltage difference between the output voltage and the limit voltage of the shunt voltage limit circuit 3b also increases. This voltage difference is detected by the voltage detection circuit 3c. When the detected voltage is less than the operating voltage at which the output short circuit 3a operates, the constant voltage control circuit 2 performs feedback control so that the output voltage matches the reference voltage. When the output voltage of the constant voltage control circuit 2 further increases and the detection voltage of the voltage detection circuit 3c becomes higher than the operating voltage of the output short circuit 3a, the output short circuit 3a operates and the power supply circuit is short-circuited. Further, when an abnormal voltage is input to the power supply device 10, a high voltage is applied from the feedback resistor 2b of the constant voltage control circuit 2 to the output short circuit 3a of the voltage limiting circuit 3, and the output short circuit 3a operates. The power supply circuit is shorted. Furthermore, the input and the like of the output short circuit are protected from high voltage by the feedback resistance.
[0021]
As a result, DC power with an output voltage that matches the reference voltage is supplied to the intrinsically safe equipment, and excessive voltage is not input to the intrinsically safe equipment. Can prevent ignition of explosive gas.
[0022]
After the output short-circuit 3a short-circuits the power supply circuit, the power supply 10 is restored by turning off the power supply to the power supply 10 and then turning it on again.
[0023]
The shunt voltage limiting circuit 3b does not directly limit the output voltage but supplies a voltage for controlling the input voltage of the output short circuit 3a. The shunt voltage limiting circuit 3b and the voltage detecting circuit 3c always supply a current. The limit voltage is set so that the current flows. Therefore, the sum of the limit voltage of the shunt voltage limit circuit 3b and the detection voltage of the voltage detection circuit 3c becomes the output voltage of the power supply device 10. If there is no voltage drop of the voltage control circuit, the voltage utilization efficiency is approximately 100%. become.
[0024]
The fuse 1 can be arranged at an appropriate position on the input side of the output short-circuit 3a of the short-circuit control circuit 3 and, like the power supply device 20 shown in FIG. May be arranged.
[0025]
FIG. 3 is a block diagram showing a configuration of a power supply device according to the second embodiment of the present invention. A power supply device 30 according to this embodiment includes a constant voltage / current control circuit 4 instead of the constant voltage control circuit 2 shown in FIGS. The constant voltage / current control circuit 4 includes a feedback resistor 2b, a reference voltage circuit 2c, and a voltage error amplifier circuit 2d included in the constant voltage control circuit 2, and newly includes a voltage / current control circuit 4a, a current detection circuit 4b, It includes a voltage circuit 4c and a current error amplifier circuit 4d.
[0026]
The current detection circuit 4b detects an output current supplied from the power supply device 30 to the intrinsically safe device, and outputs a voltage corresponding to the detected current value as a detection voltage. The detection voltage of the current detection circuit 4b is input to the current error amplification circuit 4d together with the reference voltage generated by the reference voltage circuit 4c. The current error amplifier circuit 4d supplies the voltage / current control circuit 4a with a differential current signal obtained by amplifying a difference between the detection voltage input from the current detection circuit 4b and the reference voltage input from the reference current circuit 4c. The voltage / current control circuit 4a controls the output voltage of the DC power supply to match the reference voltage based on the difference voltage signal supplied from the voltage error amplifier circuit 2d, and controls the difference supplied from the current error amplifier circuit 4d. Control is performed based on the current signal so that the output current of the DC power supply becomes equal to or less than the reference current.
[0027]
With the above configuration, in the power supply device 30 according to this embodiment, the output voltage of the DC power supply to be supplied to the intrinsically safe device is made equal to the reference voltage, and the output current of the DC power supply to be supplied to the intrinsically safe device is the voltage. The current value is controlled so that the fuse 1 is not blown even when the limiting circuit 3 fails or the intrinsically safe device as a load is short-circuited.
[0028]
FIG. 4 is a block diagram showing a configuration of a power supply device according to a third embodiment of the present invention. A power supply device 40 according to this embodiment includes an insulating transformer 5 in a power supply circuit. In the power supply device 40, a voltage limiting circuit 3, a fuse 1, and a constant voltage / current control circuit 4 are provided on a primary side of an insulating transformer 5 to which an oscillation circuit 6 is connected, and an insulating transformer to which a rectifying / smoothing circuit 7 is connected. A constant voltage control circuit 2 and a voltage limiting circuit 3 are provided on the secondary side of the unit 5. In FIG. 4, the current limiting circuit is omitted.
[0029]
With this configuration, an insulation state between the power supply and the intrinsically safe device can be realized, and voltage fluctuations and current fluctuations due to the application of an abnormal voltage including noise to the power supply line on the primary side are reduced. Voltage fluctuations and current fluctuations caused by the application of abnormal voltage including noise on the power supply line between the voltage limiting circuit 3, the fuse 1, and the constant voltage / current control circuit 4 and between the secondary device and the intrinsically safe device are 2 This can be absorbed by the constant voltage control circuit 2 and the voltage limiting circuit 3 on the next side.
[0030]
Note that, on the primary side of the power supply device 40, the constant voltage control circuit 2 can be used instead of the constant voltage / current control circuit 4.
[0031]
【The invention's effect】
According to the present invention, the following effects can be obtained.
[0032]
(1) While the output voltage is controlled to the reference voltage based on the detection voltage of the voltage detection circuit, while the output voltage limited by the shunt voltage limiting circuit is supplied to the output short circuit as the detection voltage, the output voltage is short-circuited. If the output voltage fluctuates within the range not exceeding the operating voltage of the circuit, the output voltage is maintained at the reference voltage, and if the output voltage fluctuates beyond the operating voltage of the output short circuit, and if an abnormal voltage is input, The power supply circuit can be short-circuited by operating the output short circuit. As a result, it is possible to stably supply the intrinsically safe device with a voltage and a current in a range standardized according to the type of explosive gas in a dangerous area. Further, the limit voltage of the voltage limit circuit can be set to a value close to the output voltage, and the voltage use efficiency can be improved.
[0033]
(2) By not only making the output voltage equal to the reference voltage but also controlling the output current flowing through the fuse to be equal to or lower than the reference current, it is possible to prevent the fuse from being blown and to eliminate a complicated replacement operation.
[0034]
(3) Output short circuit, voltage detection circuit and constant voltage control circuit on the primary side of the isolation transformer, insulation transformer, and output short circuit, voltage detection circuit and the constant voltage control circuit on the secondary side of the insulation transformer By connecting the DC power supply and the intrinsically safe equipment through the, the insulation state between the DC power supply and the intrinsically safe equipment can be reliably maintained, and at the primary and secondary sides of the insulation transformer. The generated voltage fluctuation can be individually absorbed on each of the primary side and the secondary side. As a result, it is possible to stably supply the intrinsically safe device with an output voltage and an output current in a range standardized according to the type of explosive gas in a dangerous area.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a power supply device according to a first embodiment of the present invention.
FIG. 2 is a block diagram showing another configuration of the power supply device.
FIG. 3 is a block diagram illustrating a configuration of a power supply device according to a second embodiment of the present invention.
FIG. 4 is a block diagram showing a configuration of a power supply device according to a third embodiment of the present invention.
FIG. 5 is a block diagram showing a configuration of a safety protector provided in a conventional power supply device.
[Explanation of symbols]
1-Fuse 2-Constant voltage control circuit 2a-Voltage control circuit 2b-Feedback resistor 2c-Reference voltage circuit 2d-Voltage error plastic clothing circuit 3-Voltage limiting circuit 3a-Output short circuit 3b-Shunt voltage limiting circuit 3c-Voltage Detection circuit 4-constant voltage / current control circuit 10, 20, 30, 40-power supply (power supply for intrinsically safe equipment)

Claims (3)

本質安全防爆構造の電気機器に直流電源を供給する本安機器用電源装置において、
直流電源の出力電圧を制限する分路電圧制限回路と、分路電圧制限回路によって制限された出力電圧の電圧値を検出する電圧検出回路と、電圧検出回路の検出電圧が動作電圧以上になったときに動作して電源回路を短絡する出力短絡回路と、電圧検出回路の検出電圧が基準電圧に一致するように出力電圧をフィードバック制御する定電圧制御回路と、を設けたことを特徴とする本安機器用電源装置。
A power supply for intrinsically safe equipment that supplies DC power to intrinsically safe explosion-proof electrical equipment,
A shunt voltage limiting circuit that limits the output voltage of the DC power supply, a voltage detection circuit that detects a voltage value of the output voltage limited by the shunt voltage limiting circuit, and a detection voltage of the voltage detection circuit is equal to or higher than the operating voltage. An output short-circuit that operates when the power supply circuit is short-circuited, and a constant-voltage control circuit that feedback-controls the output voltage so that the detection voltage of the voltage detection circuit matches the reference voltage. Power supply for cheap equipment.
直流電源の出力電流を検出する電流検出回路と、電流検出回路の検出電流値が基準電流以下になるように出力電流をフィードバック制御する電流制御回路と、を含むことを特徴とする請求項1に記載の本安機器用電源装置。2. The method according to claim 1, further comprising: a current detection circuit that detects an output current of the DC power supply; and a current control circuit that performs feedback control of the output current such that a detection current value of the current detection circuit is equal to or less than a reference current. Power supply unit for intrinsically safe equipment as described. 直流電源の入出力経路中に絶縁変圧器を配置し、絶縁変圧器の1次側及び2次側の少なくとも一方に、前記出力短絡回路、電圧検出回路及び定電圧制御回路を設けたことを特徴とする請求項1に記載の本安機器用電源装置。An insulation transformer is arranged in an input / output path of a DC power supply, and the output short circuit, a voltage detection circuit, and a constant voltage control circuit are provided on at least one of a primary side and a secondary side of the insulation transformer. The power supply device for intrinsically safe equipment according to claim 1.
JP2002229919A 2002-08-07 2002-08-07 Power supply for genuine equipment Expired - Fee Related JP4160336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229919A JP4160336B2 (en) 2002-08-07 2002-08-07 Power supply for genuine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229919A JP4160336B2 (en) 2002-08-07 2002-08-07 Power supply for genuine equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007340458A Division JP4749411B2 (en) 2007-12-28 2007-12-28 Power supply device for safety device and power supply method for safety device

Publications (2)

Publication Number Publication Date
JP2004070709A true JP2004070709A (en) 2004-03-04
JP4160336B2 JP4160336B2 (en) 2008-10-01

Family

ID=32016151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229919A Expired - Fee Related JP4160336B2 (en) 2002-08-07 2002-08-07 Power supply for genuine equipment

Country Status (1)

Country Link
JP (1) JP4160336B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914857A1 (en) * 2006-10-21 2008-04-23 SMA Technologie AG Circuit apparatus and method, in particular for photovoltaic generators
JP2009008857A (en) * 2007-06-27 2009-01-15 Idec Corp Explosion-proof type liquid crystal display device
US8194380B2 (en) 2005-12-08 2012-06-05 Olympus Corporation Endoscope apparatus
JP2012182875A (en) * 2011-02-28 2012-09-20 Jfe Engineering Corp Power supply circuit of explosion proof electronic apparatus
US8279273B2 (en) 2006-01-27 2012-10-02 Olympus Corporation Endoscope apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194380B2 (en) 2005-12-08 2012-06-05 Olympus Corporation Endoscope apparatus
US8279273B2 (en) 2006-01-27 2012-10-02 Olympus Corporation Endoscope apparatus
EP1914857A1 (en) * 2006-10-21 2008-04-23 SMA Technologie AG Circuit apparatus and method, in particular for photovoltaic generators
JP2009008857A (en) * 2007-06-27 2009-01-15 Idec Corp Explosion-proof type liquid crystal display device
JP2012182875A (en) * 2011-02-28 2012-09-20 Jfe Engineering Corp Power supply circuit of explosion proof electronic apparatus

Also Published As

Publication number Publication date
JP4160336B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
EP3273560B1 (en) Ideal diode with active reverse voltage protection
JP2004312954A (en) Switching ac adapter circuit
JP2008228538A (en) Switching power supply unit
US6738247B2 (en) DC-DC converter
JP2004070709A (en) Power unit for intrinsically safe apparatus
JP2008146576A (en) Regulated power supply circuit and mobile terminal
JP4749411B2 (en) Power supply device for safety device and power supply method for safety device
JP2006141193A (en) Switching power supply apparatus
JP4158487B2 (en) Safety power supply
JP2004266978A (en) Protector for control circuit
WO2020210171A1 (en) Trapezoidal power-supply barrier between hazardous and normal locations
US6816393B2 (en) Switching power supply
JP2009240007A (en) Power supply circuit
JP3806914B2 (en) Inverter device
JP3251814B2 (en) Inverter protection circuit
JPH0657039U (en) Power protection circuit
JP2004254388A (en) Power supply detecting circuit
JP4063476B2 (en) Overvoltage protection circuit
JP2001268777A (en) Overcurrent protective device
JP3134169B2 (en) Fail safe circuit
KR19990015901A (en) Constant voltage generator with overcurrent blocking
JPH04105559A (en) Abnormal voltage protecting circuit
JP3068723B2 (en) Drive circuit for semiconductor laser
JPH0866006A (en) Protective circuit
JP2002010472A (en) Overcurrent protection circuit and electric apparatus incorporating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080717

R150 Certificate of patent or registration of utility model

Ref document number: 4160336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees