JP2004069572A - Condenser vacuum degree adjusting device for boiling water type nuclear power plant - Google Patents

Condenser vacuum degree adjusting device for boiling water type nuclear power plant Download PDF

Info

Publication number
JP2004069572A
JP2004069572A JP2002230744A JP2002230744A JP2004069572A JP 2004069572 A JP2004069572 A JP 2004069572A JP 2002230744 A JP2002230744 A JP 2002230744A JP 2002230744 A JP2002230744 A JP 2002230744A JP 2004069572 A JP2004069572 A JP 2004069572A
Authority
JP
Japan
Prior art keywords
condenser
gas
main condenser
treatment system
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002230744A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sato
佐藤 弘之
Masahiro Izumi
泉  正宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2002230744A priority Critical patent/JP2004069572A/en
Publication of JP2004069572A publication Critical patent/JP2004069572A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a condenser vacuum degree adjusting device capable of injecting air from a off-gas treatment system for regulating the degree of vacuum of a main condenser when the degree of vacuum of the main condenser rises above a design value during operation in the boiling water type nuclear power plant having the off-gas treatment system following the condenser air extraction system extracting air in the main condenser. <P>SOLUTION: This boiling water type nuclear power plant having the off-gas treatment system following the condenser air extraction system extracting air in the main condenser is provided with a recirculation pipe line 16 returning from the off-gas treatment system to the main condenser 2 and a pressure regulation valve 14 arranged on the recirculation pipe line 16. If the degree of vacuum of the main condenser 2 rises above the design value, air is returned from the off-gas treatment system so that the degree of vacuum of the main condenser 2 can be adjusted by injecting air from the off-gas treatment system via the recirculation pipe line 16. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、沸騰水型原子力発電所の復水器空気抽出系並びに放射性気体廃棄物処理系に関わるものである。
【0002】
【従来の技術】
沸騰水型原子力発電所の復水器空気抽出系、並びに放射性気体廃棄物処理系の従来技術の基本的な構成を図4に示す。原子炉1で炉水の放射線分解により発生した水素及び酸素は、主蒸気と共にタービンを経て主復水器2へ導かれる。ここで、主復水器2は真空で運転されるため、主復水器2本体並びにこれに接続される機器に機器構造上存在する間隙から、外部との圧力差により主復水器2内部へ外部空気の漏れ込む事象(インリーク)が発生する。
【0003】
前述の水素,酸素、並びにインリーク空気は、主復水器2からの排ガスとして空気抽出器3により、その駆動源である水蒸気と共に空気抽出器入口弁4を経て気体廃棄物処理系に抽出される。気体廃棄物処理系に流入した排ガスは、再結合触媒が充填されている再結合器5に流入し、排ガス中の水素及び酸素は触媒反応により再結合処理され水蒸気となる。
【0004】
この結果、再結合器5出口部での排ガスは、水蒸気と主復水器2へのインリーク空気となって排ガス復水器6に流入する。排ガス復水器6に流入した排ガスは、冷却水により冷却復水化され、水蒸気の大部分は凝縮ドレンとなり系外へ排出される。この結果、排ガス復水器6出口部での通常運転時の排ガス性状はインリーク空気のみとなっている。さらに排ガスは、排ガス中に放射性希ガスが存在する場合の処理を目的とした希ガスホールドアップ装置7にて処理された後に、排ガス抽出装置8により排気筒9から環境に放出される。
【0005】
ここで、排ガス復水器6出口には希ガスホールドアップ装置7へ至るプロセス管路から分岐して、主復水器6あるいは空気抽出器入口配管に戻る再循環管路が設置されている。この再循環管路には第1の圧力調節弁10が設置されており、排ガス復水器6出口のプロセス管路上に設置されている第1の圧力検出手段11と、これらを調節する第1の演算器12とで排ガス復水器6出口圧力を設定した圧力になるように第1の圧力調節弁10の開度を自動調節している。
【0006】
なお、従来技術において空気抽出器入口弁4には開度調節機構が設置されており、発電所運転中に復水器の真空度を調節する必要がある場合には、運転員が主復水器2に設置されている第2の圧力検出手段13を見ながら手動調節により空気抽出器入口弁4の開度を調節することにより実施している。
【0007】
【発明が解決しようとする課題】
主復水器の真空度は空気抽出器の抽出性能と主復水器へのインリーク空気量とのバランスにより、ほぼ定まるものである。ここで、空気抽出器の吸い込み性能は発電所運転中ほぼ一定で運転される。一方、主復水器へのインリーク空気は、主復水器本体並びにこれに接続される機器に構造上存在する間隙から主復水器内に漏入することは先に述べたとおりであるが、最近の発電所においては機器の組み立て技術の向上などにより、このインリーク空気量が極めて少ない状況にあり、復水器真空度が設計点から高くなる傾向がある。更に、空気抽出器の吸い込み性能が一定の条件下において、復水器の真空度は冷却水である海水温度に依存することになるが、海水温度が低い冬場の場合に主復水器の真空度はますます高まる傾向がある。
【0008】
主復水器の真空度の高まりは、タービンの回転をより促進することから、電力を多く発電するという面からは好都合となるが、過度の真空度上昇は機器の振動事象を引き起こす可能性が大きくなるなど不都合な面も有しているために、発電所を設計する上では復水器の真空度を調節できるような仕組みを設計段階で予め盛り込んでおく必要がある。
【0009】
このような場合に、従来の技術においては空気抽出器入口弁の弁開度を絞り込み、弁の処理空気量を制限して主復水器の真空度調節を実施するものであるが、従来の技術における問題点の一つは、開度調節する場合の空気抽出器入口弁の制御性が悪いことである。この理由としては、空気抽出器入口弁が非常に大口径弁(プラント電気出力1350MWe級の場合で口径750A)であるが、真空度調節を実施する場合には弁開度を弁全閉に近い状態にて使用しなければならないことにある。
【0010】
すなわち、空気抽出器入口弁の口径が真空度調節が必要となる通常運転時の処理空気量(数m/hr[normal])をベースに選定されている訳ではなく、プラント起動時の復水器真空上昇時に発生する最大処理空気量(約900m/hr
[normal])をベースに設計されていることにあり、両者の処理空気量が極端に異なることにある。
【0011】
さらに、従来の技術における問題点の二つ目は、空気抽出器入口弁の開度調節が中央操作室からの遠隔手動操作となっていることであり、これが発電所運転中における運転員の負担となっていることである。
【0012】
したがって、本発明の目的は、沸騰水型原子力発電所の通常運転時において、空気抽出器入口弁を調節することなく、かつ、運転員に操作上の負担をかけることのない操作性,制御性に優れた復水器真空度調節装置を提供することにある。
【0013】
さらに、本発明の他の目的は、大口径である空気抽出器入口弁の調節の必要性を無くすることにより、従来技術である空気抽出器入口弁の開度調節機構の廃止、あるいは空気抽出弁そのものを廃止することにより、経済性に優れた発電所を提供することにある。
【0014】
【課題を解決するための手段】
本発明によれば、主復水器内の空気を抽出する復水器空気抽出系の後段に気体廃棄物処理系を有する沸騰水型原子力発電所であって、気体廃棄物処理系から主復水器に戻る管路と、その管路上に設置された圧力調節弁を有し、気体廃棄物処理系からの気体を主復水器へ戻すことで主復水器の真空度を調節することが可能な沸騰水型原子力発電所の復水器真空度調節装置が提供される。
【0015】
【発明の実施の形態】
沸騰水型原子力発電所においては、その発電所内の原子炉1で炉水の放射線分解により水素及び酸素が発生する。その水素及び酸素は、原子炉1で発生した主蒸気と共にタービンを経て主復水器2へ導かれる。主復水器2は内部を真空にして運転されるため、主復水器2本体並びにこれに接続される機器に機器構造上存在する間隙から、外部との圧力差により主復水器2内部へ外部空気が漏れ込む事象(インリーク)が発生する。
【0016】
前述の水素,酸素、並びにインリーク空気は、主復水器2からの排ガスとして空気抽出器3により、その駆動源である水蒸気と共に空気抽出器入口弁4を経て気体廃棄物処理系に抽出される。気体廃棄物処理系に流入した排ガスは、再結合触媒が充填されている再結合器5に流入し、排ガス中の水素及び酸素は触媒反応により再結合処理され水蒸気となる。
【0017】
この結果、再結合器5出口部での排ガスは、水蒸気と主復水器2へのインリーク空気となって排ガス復水器6に流入する。排ガス復水器6に流入した排ガスは、冷却水により冷却復水化され、水蒸気の大部分は凝縮ドレンとなり系外へ排出される。この結果、排ガス復水器6出口部での通常運転時の排ガス性状はインリーク空気のみとなっている。さらに排ガスは、排ガス中に放射性希ガスが存在する場合の処理を目的とした希ガスホールドアップ装置7にて処理された後に、排ガス抽出装置8により排気筒9から環境に放出される。
【0018】
ここで、排ガス復水器6出口には希ガスホールドアップ装置7へ至るプロセス管路から分岐して、主復水器6あるいは空気抽出器入口配管に戻る再循環管路
15が設置されている。この再循環管路15には第1の圧力調節弁10が設置されており、排ガス復水器6出口のプロセス管路上に設置されている圧力検出手段11と、これらを調節する第1の演算器12とで排ガス復水器6出口圧力を設定した圧力になるように第1の圧力調節弁10の開度を自動調節している。
【0019】
このような再循環管路15上の空気抽出器入口弁4には開度調節機構を有さない。その代わりに、気体廃棄物処理系から主復水器2に気体を戻す他の再循環管路16と、その管路16上に開度調節機構を有する圧力調節弁14を有する。
【0020】
ここでは、気体廃棄物処理系のプロセス流量条件と管路を流す空気量との関係から、主復水器2に気体を戻す他の再循環管路16のプロセスからの取り出し位置に関する制限事項を述べ、最後に主復水器2の圧力調節方法について述べる。
【0021】
まず、主復水器2に戻る他の再循環管路16の取り出し位置について述べる。従来技術の項で述べたように、復水器空気抽出系から気体廃棄物処理系に流入する排ガスは、水素,酸素,水蒸気,空気の混合ガスであるが、主復水器2に戻す時点での排ガス性状は、他の再循環管路16や圧力調節弁14の設備容量を小さくするとともに、制御をしやすくするという観点より、空気の性状となっていることが望ましい。気体廃棄物処理系の中でこれを満足するのは排ガス復水器6以降となる。
【0022】
次に、主復水器2へ戻す空気量について述べる。沸騰水型原子力発電所における主復水器2への設計インリーク空気量は30〜40m/hr[normal] であることが一般的であることから、気体廃棄物処理系から主復水器2へ戻す最大空気流量は、これと同程度の流量を見込んでおけば良い。ところが、実際に気体廃棄物処理系のプロセス(再結合器5から排ガス抽出装置8入口まで)を流れる空気量であるが、これは主復水器2へのインリーク空気量と同じであり、発電所の起動時を除いて数m/hr[normal] であることが多く、前述の空気量を確保することが出来ない。すなわち、単に気体廃棄物処理系内を流れる空気を戻すのみでは、十分な空気量を確保できないということである。一方、気体廃棄物処理系の最下流に設置される排ガス抽出装置8は、排気筒9へ気体廃棄物処理後の排ガスを放出するための駆動源として圧縮空気等を利用しているものや、ルーツブロワまたは真空ポンプなどの定容量ポンプを利用している場合が主であり、前述の主復水器2へ戻す空気量の確保が可能である。図6に気体廃棄物処理系内のプロセス状態図を示す。
【0023】
図からも判るように、本実施例では他の再循環管路16の気体廃棄物処理系のプロセス配管への接続位置については、排ガス復水器6以降で、かつ、再循環させる空気量を確保できる位置として排ガス抽出装置8出口側のプロセス配管部位を選定している。
【0024】
最後に本実施例における主復水器2の真空度調節方法について述べる。従来技術の項で述べたように、主復水器2には圧力検出手段13が設置されており、従来技術においては操作室で主復水器2の圧力指示値を監視しながら運転員が空気入口弁4の開度を遠隔手動にて微開調節していた。本実施例においても操作の基本は同様であり、操作室で主復水器2の圧力指示値を監視しながら運転員が圧力調節弁14の開度を遠隔手動にて調節することにより実施する。ただし、従来設備と大きく異なるのが第2の圧力調節弁14が空気抽出器入口弁の口径(750A程度)に比較して非常に小さい口径(40A程度)で済むことであり、また使用条件に合わせて適切な絞り仕様を与えられることである。このため、従来設備に比較して安価で、かつ、制御性の良い復水器真空度調節装置が得られる。
【0025】
以上の第1実施例に対して、以下に説明する第2実施例は、圧力調節弁14を以下のように自動調整できる構成を付加し、その他の構成や作用は第1実施例と同じなので、同じ部分は以下の説明では省略する。
【0026】
第2実施例においては、図2に示す復水器空気抽出系と気体廃棄物処理系の系統図のように、基本的な構成は第1の実施例に示す系統構成と同様であるが、主復水器2本体に設置された第2の圧力検出手段13と、気体廃棄物処理系から主復水器2に戻る再循環管路16上に設置された圧力調節弁14と、圧力検出手段13からの信号を受けて、圧力調節弁14の開度を調節する演算器18を有し、気体廃棄物処理系からの気体を主復水器2に戻すことにより、主復水器2の真空度を設定された値に自動調節するように構成が付加されている。これにより、運転員による圧力調節弁14の開度調節の操作が無くなることになり負担が軽減され、第1実施例よりも更に操作性の良い発電所が得られる。
【0027】
本発明の第3実施例は、図3のように、第2実施例から再循環管路16と圧力調整弁14と演算器18を削除した系統を有する。そのような系統においては、排ガス復水器6の出口圧力を調整するために気体廃棄物処理系から主復水器2に気体を戻す再循環管路15を、主復水器2の真空度を調整するために気体廃棄物処理系排ガス復水器6出口から分岐して主復水器2に気体を戻す再循環管路として共用化している。
【0028】
この共用化構成の場合の考慮事項を2点述べる。まず、主復水器2へ気体を戻す再循環管路15上に設置される圧力調節弁10並びに圧力検出手段13や圧力検出手段11からの信号を受けて圧力調節弁14の開度を調節する演算器12の設計仕様を2点仕様とする点である。すなわち、発電所起動時のプロセス圧力調節を目的とした仕様と、発電所通常運転時の主復水器2の真空度調節を目的とした仕様の2点とすることである。目的に応じて仕様を変えた演算器側で目的に合った圧力調節弁10の開度調整を自動的に行う。
【0029】
次に通常運転時における再循環空気量確保の問題である。先に述べた第1実施例のように、主復水器2へ戻す空気量は最大30〜40m/hr[normal] まで見込む必要があるが、本実施例の場合は第1,2実施例の場合と異なり気体廃棄物処理系からの再循環配管15の分岐位置が排ガス復水器6出口部であり排ガス抽出装置8からの駆動空気が期待できない。この空気を確保するための手段として、空気抽出器3と気体廃棄物処理系の再結合器5の入口部側との間の配管に接続された空気注入配管17から気体廃棄物処理系内へ空気を注入することで空気を確保する。
【0030】
以上により、本実施例の場合も第2実施例と同様に運転員による圧力調節弁
14の開度調節の操作が無くなることになり負担が軽減され、第1実施例よりも更に操作性の良い発電所が得られる。
【0031】
本発明の各実施例によれば、気体廃棄物処理系で処理したあとの気体を主復水器へ戻すことにより、主復水器への漏入空気量を意図的に変化させることが可能となり、これにより、空気抽出器により主復水器から抽出する空気量も変化させることが可能となる。
【0032】
ここで、図5に空気抽出器の性能曲線を示す。図によれば、空気抽出器の吸込真空(主復水器の真空度)は空気抽出器により主復水器から抽出する空気量に依存することが判る。
【0033】
このように、主復水器への空気注入は空気抽出器の吸込真空に作用、すなわち主復水器の真空度に作用し、主復水器の真空度調整が可能である。
【0034】
したがって、本発明の各実施例によれば、運転中に主復水器の真空度が設計値より高くなる場合に、気体廃棄物処理系から空気を注入し、主復水器の真空度を調節する復水器真空度調節装置が提供される。これにより、空気抽出器入口弁による開度調節に頼らないで復水器の真空度調整が行える制御性に優れた発電所が得られる。また、高価な空気抽出器入口弁への開度調節機構が不要となるため、合理的な発電所が得られる。
【0035】
第1,2実施例によれば、さらには運転中に主復水器の真空度が設計値より高くなる場合に、気体廃棄物処理系から空気を自動注入し、主復水器の真空度を調節する復水器真空度調節装置が提供される。これにより、発電所の運転が運転員の手動操作から監視主体となるため、運転員の負担低減が図られる。
【0036】
【発明の効果】
空気抽出器入口弁による開度調節に頼らないで主復水器の真空度調整が行える制御性に優れた効果が得られる。
【図面の簡単な説明】
【図1】本発明の第1実施例による沸騰水型原子力発電所の復水器真空度調節装置の系統図である。
【図2】本発明の第2実施例による沸騰水型原子力発電所の復水器真空度調節装置の系統図である。
【図3】本発明の第3実施例による沸騰水型原子力発電所の復水器真空度調節装置の系統図である。
【図4】従来技術による沸騰水型原子力発電所の復水器真空度調節装置の系統図である。
【図5】空気抽出器吸込真空と主復水器からの抽出空気量の関係を示すグラフ図である。
【図6】気体廃棄物処理系内のプロセス状態を示す説明図である。
【符号の説明】
1…原子炉、2…主復水器、3…空気抽出器、4…空気抽出器入口弁、5…再結合器、6…排ガス復水器、7…活性炭式希ガスホールドアップ装置、8…排ガス抽出装置、9…排気筒、10,14…圧力調節弁、11,13…圧力検出手段、12,18…演算器、15,16…再循環管路、17…空気注入配管。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a condenser air extraction system and a radioactive gas waste treatment system of a boiling water nuclear power plant.
[0002]
[Prior art]
FIG. 4 shows a basic configuration of a prior art of a condenser air extraction system and a radioactive gas waste treatment system of a boiling water nuclear power plant. Hydrogen and oxygen generated by the radiolysis of the reactor water in the nuclear reactor 1 are guided to the main condenser 2 through a turbine together with the main steam. Here, since the main condenser 2 is operated in vacuum, a pressure difference between the main condenser 2 main body and the equipment connected to the main condenser 2 due to a pressure difference between the main condenser 2 and the outside causes an internal pressure difference. An external air leak occurs (in leak).
[0003]
The above-mentioned hydrogen, oxygen and in-leak air are extracted as exhaust gas from the main condenser 2 by the air extractor 3 together with water vapor as a driving source thereof through the air extractor inlet valve 4 to the gaseous waste treatment system. . The exhaust gas that has flowed into the gaseous waste treatment system flows into a recombiner 5 filled with a recombination catalyst, and hydrogen and oxygen in the exhaust gas are recombined by a catalytic reaction to become steam.
[0004]
As a result, the exhaust gas at the outlet of the recombiner 5 flows into the exhaust gas condenser 6 as steam and in-leak air to the main condenser 2. The exhaust gas that has flowed into the exhaust gas condenser 6 is cooled and condensed by cooling water, and most of the steam becomes condensed drain and is discharged out of the system. As a result, the exhaust gas properties during normal operation at the outlet of the exhaust gas condenser 6 are only in-leak air. Further, the exhaust gas is treated by a rare gas hold-up device 7 for the purpose of treating a case where a radioactive rare gas is present in the exhaust gas, and then discharged to the environment from an exhaust stack 9 by an exhaust gas extracting device 8.
[0005]
Here, at the outlet of the exhaust gas condenser 6, a recirculation pipeline branching from the process pipeline leading to the rare gas hold-up device 7 and returning to the main condenser 6 or the inlet pipe of the air extractor is provided. A first pressure control valve 10 is installed in this recirculation line, and a first pressure detecting means 11 installed on a process line at the outlet of the exhaust gas condenser 6 and a first pressure detecting means 11 for adjusting these are provided. The opening degree of the first pressure control valve 10 is automatically adjusted so that the pressure at the outlet pressure of the exhaust gas condenser 6 is set to the set pressure by the arithmetic unit 12 of the first embodiment.
[0006]
In the prior art, the air extractor inlet valve 4 is provided with an opening adjustment mechanism, and when it is necessary to adjust the degree of vacuum of the condenser during operation of the power plant, the operator is required to adjust the main condenser. The operation is performed by adjusting the opening of the air extractor inlet valve 4 by manual adjustment while watching the second pressure detecting means 13 installed in the device 2.
[0007]
[Problems to be solved by the invention]
The degree of vacuum of the main condenser is almost determined by the balance between the extraction performance of the air extractor and the amount of in-leak air to the main condenser. Here, the suction performance of the air extractor is operated substantially constant during operation of the power plant. On the other hand, as described above, in-leak air to the main condenser leaks into the main condenser through a gap that is structurally present in the main condenser main body and equipment connected thereto. However, in recent power plants, the amount of in-leak air is extremely small due to improvements in equipment assembly techniques and the like, and the degree of vacuum in the condenser tends to increase from the design point. Further, under the condition that the suction performance of the air extractor is constant, the degree of vacuum of the condenser depends on the temperature of the seawater as the cooling water. The degree tends to be more and more.
[0008]
Increasing the degree of vacuum in the main condenser is advantageous in terms of generating more electric power because it accelerates the rotation of the turbine, but an excessive degree of vacuum may cause a vibration event of the equipment. Because it has disadvantages such as an increase in size, it is necessary to incorporate a mechanism that can adjust the degree of vacuum of the condenser in the design stage in advance when designing a power plant.
[0009]
In such a case, in the related art, the degree of opening of the air extractor inlet valve is reduced, and the degree of processing air of the valve is limited to adjust the degree of vacuum of the main condenser. One of the problems with the technology is the poor controllability of the air extractor inlet valve when adjusting the opening. The reason for this is that the air extractor inlet valve is a very large-diameter valve (a diameter of 750 A in the case of a plant electric output of 1350 MWe class), but when the degree of vacuum is adjusted, the valve opening is close to the valve fully closed. It must be used in a state.
[0010]
That is, the diameter of the inlet valve of the air extractor is not selected based on the processing air amount (several m 3 / hr [normal]) at the time of normal operation that requires the adjustment of the degree of vacuum. Maximum processing air volume generated when the water container vacuum rises (approximately 900 m 3 / hr)
[Normal]), and the processing air amounts of both are extremely different.
[0011]
Further, the second problem with the conventional technology is that the opening degree of the air extractor inlet valve is manually adjusted remotely from the central control room, which is a burden on the operator during the operation of the power plant. It is that.
[0012]
Accordingly, an object of the present invention is to provide an operability and controllability without adjusting an air extractor inlet valve and without imposing an operational burden on an operator during normal operation of a boiling water nuclear power plant. It is an object of the present invention to provide a condenser vacuum degree adjusting device which is excellent in quality.
[0013]
Further, another object of the present invention is to eliminate the necessity of adjusting the large-diameter air extractor inlet valve, thereby eliminating the prior art air extractor inlet valve opening adjustment mechanism or air extraction. The aim is to provide an economical power plant by eliminating the valve itself.
[0014]
[Means for Solving the Problems]
According to the present invention, there is provided a boiling water nuclear power plant having a gas waste treatment system at a stage subsequent to a condenser air extraction system for extracting air in a main condenser. Adjusting the degree of vacuum in the main condenser by returning the gas from the gaseous waste treatment system to the main condenser with a pipe returning to the water condenser and a pressure control valve installed on the pipe The present invention provides a condenser vacuum control device for a boiling water nuclear power plant, which is capable of performing the following.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
In a boiling water nuclear power plant, hydrogen and oxygen are generated by radiolysis of reactor water in a nuclear reactor 1 in the power plant. The hydrogen and oxygen are guided to the main condenser 2 through a turbine together with the main steam generated in the nuclear reactor 1. Since the main condenser 2 is operated with a vacuum inside, the main condenser 2 main body 2 and the equipment connected to the main condenser 2 are separated from the gap existing in the structure of the main condenser 2 by a pressure difference between the main condenser 2 and the outside. An event (in leak) occurs in which outside air leaks into the air.
[0016]
The above-mentioned hydrogen, oxygen and in-leak air are extracted as exhaust gas from the main condenser 2 by the air extractor 3 together with water vapor as a driving source thereof through the air extractor inlet valve 4 to the gaseous waste treatment system. . The exhaust gas that has flowed into the gaseous waste treatment system flows into a recombiner 5 filled with a recombination catalyst, and hydrogen and oxygen in the exhaust gas are recombined by a catalytic reaction to become steam.
[0017]
As a result, the exhaust gas at the outlet of the recombiner 5 flows into the exhaust gas condenser 6 as steam and in-leak air to the main condenser 2. The exhaust gas that has flowed into the exhaust gas condenser 6 is cooled and condensed by cooling water, and most of the steam becomes condensed drain and is discharged out of the system. As a result, the exhaust gas properties during normal operation at the outlet of the exhaust gas condenser 6 are only in-leak air. Further, the exhaust gas is treated by a rare gas hold-up device 7 for the purpose of treating a case where a radioactive rare gas is present in the exhaust gas, and then discharged to the environment from an exhaust stack 9 by an exhaust gas extracting device 8.
[0018]
Here, at the outlet of the exhaust gas condenser 6, a recirculation pipe 15 branching from a process pipe leading to the rare gas hold-up device 7 and returning to the main condenser 6 or the air extractor inlet pipe is provided. . A first pressure control valve 10 is installed in the recirculation line 15, and a pressure detection means 11 installed on a process line at the outlet of the exhaust gas condenser 6 and a first operation for adjusting these are provided. The opening degree of the first pressure control valve 10 is automatically adjusted so that the pressure at the outlet of the exhaust gas condenser 6 is adjusted to the set pressure by the device 12.
[0019]
The air extractor inlet valve 4 on the recirculation line 15 does not have an opening adjustment mechanism. Instead, it has another recirculation line 16 for returning gas from the gas waste treatment system to the main condenser 2 and a pressure control valve 14 having an opening adjustment mechanism on the line 16.
[0020]
Here, from the relationship between the process flow rate condition of the gaseous waste treatment system and the amount of air flowing through the pipeline, there are restrictions on the position of the other recirculation pipeline 16 that returns gas to the main condenser 2 from the process. Finally, a method for adjusting the pressure of the main condenser 2 will be described.
[0021]
First, the position at which another recirculation line 16 is returned to the main condenser 2 will be described. As described in the section of the prior art, the exhaust gas flowing into the gas waste treatment system from the condenser air extraction system is a mixed gas of hydrogen, oxygen, water vapor, and air. It is desirable that the properties of the exhaust gas be the properties of air from the viewpoint of reducing the installed capacity of the other recirculation pipeline 16 and the pressure control valve 14 and facilitating control. The gas waste treatment system that satisfies this condition is the exhaust gas condenser 6 and later.
[0022]
Next, the amount of air returned to the main condenser 2 will be described. Since the designed in leak air amount to the main condenser 2 in the boiling water nuclear power plant is generally 30 to 40 m 3 / hr [normal], the gas condenser system is used for the main condenser 2. The maximum air flow rate to return to should be expected to be approximately the same. However, the amount of air actually flowing through the process of the gaseous waste treatment system (from the recombiner 5 to the inlet of the exhaust gas extraction device 8) is the same as the amount of in-leak air to the main condenser 2, and It is often several m 3 / hr [normal] except at the time of starting the place, and the above-mentioned air amount cannot be secured. That is, simply returning the air flowing through the gaseous waste treatment system cannot secure a sufficient amount of air. On the other hand, the exhaust gas extraction device 8 installed at the most downstream of the gas waste treatment system uses compressed air or the like as a driving source for discharging the exhaust gas after the gas waste treatment to the exhaust stack 9, Mainly, a constant volume pump such as a roots blower or a vacuum pump is used, and the amount of air to be returned to the main condenser 2 can be secured. FIG. 6 shows a process state diagram in the gaseous waste treatment system.
[0023]
As can be seen from the figure, in this embodiment, the connection position of the other recirculation line 16 to the process pipe of the gaseous waste treatment system is determined by the amount of air to be recirculated after the exhaust gas condenser 6. The process pipe section on the outlet side of the exhaust gas extraction device 8 is selected as a position that can be secured.
[0024]
Finally, a method of adjusting the degree of vacuum of the main condenser 2 in the present embodiment will be described. As described in the section of the prior art, the main condenser 2 is provided with the pressure detecting means 13, and in the prior art, the operator monitors the pressure indication value of the main condenser 2 in the operation room and the operator detects the pressure. The opening of the air inlet valve 4 was finely adjusted by remote manual operation. In this embodiment, the basic operation is the same, and the operation is performed by the operator manually adjusting the opening degree of the pressure control valve 14 while monitoring the indicated pressure value of the main condenser 2 in the operation room. . However, the major difference from the conventional equipment is that the second pressure regulating valve 14 needs to have a very small diameter (about 40A) as compared with the diameter of the air extractor inlet valve (about 750A). In addition, appropriate aperture specifications can be given. For this reason, a condenser vacuum degree adjusting device which is inexpensive and has good controllability as compared with the conventional equipment can be obtained.
[0025]
In the second embodiment to be described below, a configuration capable of automatically adjusting the pressure control valve 14 is added to the above-described first embodiment, and other configurations and operations are the same as those of the first embodiment. The same parts are omitted in the following description.
[0026]
In the second embodiment, as shown in the system diagram of the condenser air extraction system and the gas waste treatment system shown in FIG. 2, the basic configuration is the same as the system configuration shown in the first embodiment. A second pressure detecting means 13 installed on the main condenser 2 main body, a pressure regulating valve 14 installed on a recirculation line 16 returning from the gaseous waste treatment system to the main condenser 2, and a pressure detection It has a calculator 18 for adjusting the degree of opening of the pressure control valve 14 in response to a signal from the means 13 and returning the gas from the gas waste treatment system to the main condenser 2 so that the main condenser 2 A configuration is added to automatically adjust the degree of vacuum to a set value. As a result, the operation of adjusting the opening of the pressure control valve 14 by the operator is eliminated, the load is reduced, and a power plant with better operability than in the first embodiment can be obtained.
[0027]
As shown in FIG. 3, the third embodiment of the present invention has a system in which the recirculation line 16, the pressure regulating valve 14, and the calculator 18 are omitted from the second embodiment. In such a system, a recirculation line 15 for returning gas from the gas waste treatment system to the main condenser 2 in order to adjust the outlet pressure of the exhaust gas condenser 6 is connected to the main condenser 2 by a vacuum In order to adjust the temperature, the gas is recycled and returned to the main condenser 2 by branching from the exhaust gas condenser 6 of the gas waste treatment system.
[0028]
Two considerations for this shared configuration are described. First, the opening degree of the pressure control valve 14 is adjusted by receiving signals from the pressure control valve 10 installed on the recirculation line 15 returning the gas to the main condenser 2 and the pressure detection means 13 and the pressure detection means 11. This is the point that the design specifications of the computing unit 12 are two-point specifications. In other words, there are two points, a specification for adjusting the process pressure at the time of starting the power plant and a specification for adjusting the degree of vacuum of the main condenser 2 during the normal operation of the power plant. The computing unit whose specifications are changed according to the purpose automatically adjusts the opening of the pressure control valve 10 according to the purpose.
[0029]
Next, there is a problem of securing the amount of recirculated air during normal operation. As in the case of the first embodiment described above, the amount of air to be returned to the main condenser 2 must be expected to be a maximum of 30 to 40 m 3 / hr [normal]. Unlike the case of the example, the branch point of the recirculation pipe 15 from the gaseous waste treatment system is at the outlet of the exhaust gas condenser 6, and the driving air from the exhaust gas extraction device 8 cannot be expected. As means for securing this air, an air injection pipe 17 connected to a pipe between the air extractor 3 and the inlet of the recombiner 5 of the gaseous waste treatment system enters the gaseous waste treatment system. Air is secured by injecting air.
[0030]
As described above, also in the present embodiment, as in the second embodiment, the operation of adjusting the opening of the pressure control valve 14 by the operator is eliminated, the burden is reduced, and the operability is further improved than in the first embodiment. Power plant is obtained.
[0031]
According to each embodiment of the present invention, by returning the gas processed in the gas waste treatment system to the main condenser, it is possible to intentionally change the amount of air leaking into the main condenser. Accordingly, the amount of air extracted from the main condenser by the air extractor can be changed.
[0032]
Here, FIG. 5 shows a performance curve of the air extractor. According to the figure, the suction vacuum of the air extractor (the degree of vacuum of the main condenser) depends on the amount of air extracted from the main condenser by the air extractor.
[0033]
As described above, the air injection into the main condenser acts on the suction vacuum of the air extractor, that is, acts on the degree of vacuum of the main condenser, and the degree of vacuum of the main condenser can be adjusted.
[0034]
Therefore, according to each embodiment of the present invention, when the degree of vacuum of the main condenser becomes higher than the design value during operation, air is injected from the gas waste treatment system, and the degree of vacuum of the main condenser is reduced. An adjusting condenser vacuum controller is provided. As a result, a power plant with excellent controllability in which the degree of vacuum of the condenser can be adjusted without depending on the opening adjustment by the air extractor inlet valve can be obtained. Further, since a mechanism for adjusting the opening of the expensive air extractor inlet valve is not required, a reasonable power plant can be obtained.
[0035]
According to the first and second embodiments, further, when the degree of vacuum of the main condenser becomes higher than the design value during operation, air is automatically injected from the gas waste treatment system, and the degree of vacuum of the main condenser is increased. The present invention provides a condenser vacuum adjusting device for adjusting the pressure. Thereby, since the operation of the power plant becomes a monitoring subject from the manual operation of the operator, the burden on the operator is reduced.
[0036]
【The invention's effect】
An excellent controllability can be obtained in which the degree of vacuum of the main condenser can be adjusted without relying on the opening adjustment by the air extractor inlet valve.
[Brief description of the drawings]
FIG. 1 is a system diagram of a condenser vacuum control device of a boiling water nuclear power plant according to a first embodiment of the present invention.
FIG. 2 is a system diagram of a condenser vacuum control device of a boiling water nuclear power plant according to a second embodiment of the present invention.
FIG. 3 is a system diagram of a condenser vacuum control device of a boiling water nuclear power plant according to a third embodiment of the present invention.
FIG. 4 is a system diagram of a condenser vacuum control device of a boiling water nuclear power plant according to the related art.
FIG. 5 is a graph showing the relationship between the vacuum of the air extractor suction and the amount of air extracted from the main condenser.
FIG. 6 is an explanatory diagram showing a process state in the gas waste treatment system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reactor, 2 ... Main condenser, 3 ... Air extractor, 4 ... Air extractor inlet valve, 5 ... Recombiner, 6 ... Exhaust gas condenser, 7 ... Activated carbon type rare gas hold-up device, 8 ... exhaust gas extracting device, 9 ... exhaust cylinder, 10,14 ... pressure regulating valve, 11,13 ... pressure detecting means, 12,18 ... computer, 15,16 ... recirculation pipeline, 17 ... air injection piping.

Claims (3)

主復水器内の気体を抽出する復水器空気抽出系と、その復水器空気抽出系に接続された気体廃棄物処理系を有する沸騰水型原子力発電所において、前記気体廃棄物処理系から主復水器に前記気体を戻す管路と、その管路上に設置された圧力調節弁とを有し、前記気体廃棄物処理系から前記気体を主復水器に戻すことにより前記主復水器の真空度を調節する系統を備えていることを特徴とする沸騰水型原子力発電所の復水器真空度調節装置。In a boiling water nuclear power plant having a condenser air extraction system for extracting gas in the main condenser and a gas waste treatment system connected to the condenser air extraction system, the gas waste treatment system A conduit for returning the gas from the gas condenser to the main condenser, and a pressure regulating valve installed on the conduit, and the main condenser is returned by returning the gas from the gas waste treatment system to the main condenser. A condenser vacuum control device for a boiling water nuclear power plant, comprising a system for controlling the degree of vacuum of a water dispenser. 請求項1において、前記主復水器本体に設置された圧力検出手段と、前記気体廃棄物処理系から前記主復水器に前記気体を戻す管路上に設置された前記圧力調節弁と、前記圧力検出手段からの圧力検出信号に基づいて前記圧力調節弁の開度を調節する演算器を有し、前記気体廃棄物処理系から前記気体を前記主復水器に戻すことにより前記主復水器の真空度を設定された値に自動調節する構成を備えていることを特徴とする沸騰水型原子力発電所の復水器真空度調節装置。2. The pressure detection valve according to claim 1, further comprising: a pressure detection unit installed in the main condenser main body; A main unit for controlling the degree of opening of the pressure control valve based on a pressure detection signal from a pressure detection means, and returning the gas from the gas waste treatment system to the main condenser by returning the gas to the main condenser; A condenser vacuum control device for a boiling water nuclear power plant, comprising a structure for automatically adjusting a vacuum degree of a reactor to a set value. 請求項2において、前記気体廃棄物処理系から前記主復水器に前記気体を戻す管路を、排ガス復水器の出口圧力を設定した圧力になるように前記気体廃棄物処理系から分岐して前記主復水器に前記気体を戻す管路と共用した構成を備えていることを特徴とする沸騰水型原子力発電所の復水器真空度調節装置。3. The gas waste treatment system according to claim 2, wherein a pipe for returning the gas from the gas waste treatment system to the main condenser is branched from the gas waste treatment system so that the outlet pressure of the exhaust gas condenser becomes a set pressure. A condenser for a boiling water nuclear power plant, wherein the condenser has a configuration shared with a conduit for returning the gas to the main condenser.
JP2002230744A 2002-08-08 2002-08-08 Condenser vacuum degree adjusting device for boiling water type nuclear power plant Pending JP2004069572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230744A JP2004069572A (en) 2002-08-08 2002-08-08 Condenser vacuum degree adjusting device for boiling water type nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230744A JP2004069572A (en) 2002-08-08 2002-08-08 Condenser vacuum degree adjusting device for boiling water type nuclear power plant

Publications (1)

Publication Number Publication Date
JP2004069572A true JP2004069572A (en) 2004-03-04

Family

ID=32016707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230744A Pending JP2004069572A (en) 2002-08-08 2002-08-08 Condenser vacuum degree adjusting device for boiling water type nuclear power plant

Country Status (1)

Country Link
JP (1) JP2004069572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137815A (en) * 2009-12-28 2011-07-14 Ge-Hitachi Nuclear Energy Americas Llc Method of controlling hydrogen concentration in offgas system of nuclear reactor by passive air injection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137815A (en) * 2009-12-28 2011-07-14 Ge-Hitachi Nuclear Energy Americas Llc Method of controlling hydrogen concentration in offgas system of nuclear reactor by passive air injection
EP2339590A3 (en) * 2009-12-28 2014-06-18 GE-Hitachi Nuclear Energy Americas LLC Methods of controlling hydrogen concentrations in an offgas system of a nuclear reactor by passive air injection

Similar Documents

Publication Publication Date Title
JP2004069572A (en) Condenser vacuum degree adjusting device for boiling water type nuclear power plant
JPH06273077A (en) Apparatus and method for preventing water hammer of coolant pipe of condenser of steam turbine plant
JP2011196963A (en) Gaseous waste treatment system and method of operating the same
JP2003302490A (en) Cooling equipment for nuclear reactor isolation time
JP4131914B2 (en) Reactor pressure vessel top vent facility
JP2001349983A (en) Method for operating boiling water nuclear power plant
JP3135385B2 (en) Nuclear plant water quality improvement equipment
JP7228477B2 (en) Residual heat removal equipment, its operating method and residual heat removal method
JPH08201561A (en) Safety system reactor container
JP3039874B2 (en) Reactor isolation cooling system
US20220254530A1 (en) Hydrogenation system for pressurized water reactor and according method
JP3697316B2 (en) Moisture separator heater protection device for nuclear power plant
JPH068917B2 (en) Air extractor driven steam breaker interlock device
JP2001349975A (en) Nuclear reactor water injection facility using steam turbine drive pump
JPS6124679B2 (en)
JPH10115696A (en) Method for stopping injection of hydrogen-oxygen of nuclear power plant and equipment for injection of hydrogen-oxygen for emergency
JPS646716B2 (en)
JPS6244695A (en) Processor for waste gas of nuclear power plant
JPS5823554B2 (en) Condenser exhaust gas control device
JP2003329794A (en) Vent device for top of reactor pressure vessel
JPH1090488A (en) Exhaust gas recombination device
JPH0198895A (en) Vacuum control device for condenser
JPH07325193A (en) Radioactive gas waste processing system
JPH0519094A (en) Radioactive waste disposal device
JP2000098085A (en) Exhaust gas processor and processing method for reactor power generation