JP2004069142A - Receiver tank and vehicle air-conditioner equipped with the receiver tank - Google Patents

Receiver tank and vehicle air-conditioner equipped with the receiver tank Download PDF

Info

Publication number
JP2004069142A
JP2004069142A JP2002227623A JP2002227623A JP2004069142A JP 2004069142 A JP2004069142 A JP 2004069142A JP 2002227623 A JP2002227623 A JP 2002227623A JP 2002227623 A JP2002227623 A JP 2002227623A JP 2004069142 A JP2004069142 A JP 2004069142A
Authority
JP
Japan
Prior art keywords
tank
refrigerant
pipe
receiver tank
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002227623A
Other languages
Japanese (ja)
Other versions
JP4098580B2 (en
Inventor
Yoichi Miyazaki
宮崎 洋一
Hiroshi Hamamoto
濱本 浩
Shinji Watanabe
渡辺 伸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Climate Systems Corp
Original Assignee
Japan Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Climate Systems Corp filed Critical Japan Climate Systems Corp
Priority to JP2002227623A priority Critical patent/JP4098580B2/en
Publication of JP2004069142A publication Critical patent/JP2004069142A/en
Application granted granted Critical
Publication of JP4098580B2 publication Critical patent/JP4098580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small receiver tank 6 capable of appropriately performing heat exchange between refrigerants and arranging a dehumidifying member 8 (desiccating agent) and a strainer 14 inside thereof, and a vehicle air-conditioner equipped with the receiver tank 6. <P>SOLUTION: The invention comprises the tank 6, a flow pipe 12 arranged in the tank 6 in which a refrigerant going from an evaporator 4 to a compressor 1 flows, an inlet pipe 10 into which a refrigerant going from a condenser 2 to the evaporator 4 flows, and the outlet pipe 11 from which a refrigerant flowing into the tank 6 flows out to the evaporator 4. It is arranged in the middle of a refrigerant flow path in which the refrigerant circulates being discharged from the compressor 1 and flowing through the condenser 2, an expansion valve 3 and the evaporator 4 and back to the compressor 1. In the flow pipe 12, a heat exchange promotor 17 for promoting heat exchange between the refrigerant flowing inside the flow pipe 12 and the refrigerant in the tank 6 is formed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、車両用空調装置に設けられ、高圧冷媒と低圧冷媒とで熱交換させるレシーバタンクと、該レシーバタンクを備えた車両用空調装置に関するものである。
【0002】
【従来の技術】
従来、レシーバタンクとして、例えば、特開平9−89420号公報に開示のものがある。このレシーバタンクでは、コンプレッサ側からの高圧冷媒が流入管を介してタンク内に流入し、流出管を介してエバポレータ側へと流出する一方、エバポレータからの低圧冷媒がタンク内を通過する流動管を介してコンプレッサ側へと流動することにより、流動管内の冷媒と、タンク内の冷媒との間で熱交換が行えるようになっている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記構成のレシーバタンクでは、流動管の伝熱面積を大きくしようとすると、大型となって占有スペースが増大する上、内部の冷媒量が増大する結果、肝心のエバポレータ等の必要な箇所に冷媒が適切に供給されなかったり、タンク内のスペースに余裕がなくなり、除湿部材(乾燥剤)やストレーナを配置できなかったりといった問題がある。
【0004】
そこで、本発明は、小型であっても、冷媒間の熱交換を適切に行わせると共に、内部に除湿部材(乾燥剤)やストレーナを配置可能なレシーバタンクと、該レシーバタンクを備えた車両用空調装置とを提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明は、前記課題を解決するための手段として、コンプレッサから吐出された冷媒が、コンデンサ、膨張弁、及びエバポレータを介してコンプレッサに戻って循環する冷媒流路の途中に配設され、タンクと、該タンク内に配設され、エバポレータからコンプレッサに向かう冷媒が流動する流動管と、コンデンサからエバポレータに向かう冷媒が流入する流入管と、タンク内に流入した冷媒がエバポレータに向かって流出する流出管とを備えたレシーバタンクであって、
前記流動管に、該流動管の内部を流動する冷媒と、前記タンク内の冷媒との間の熱交換を促進させる熱交換促進部を設けたものである。
【0006】
この構成により、流入管を介してタンク内に流入したコンデンサからの低温低圧の冷媒と、タンク内で流動管内を流動するエバポレータからの高温高圧の冷媒との間の熱交換は、熱交換促進部を介して行うことができ、小型としても熱交換性能に優れた構成とすることが可能となる。
【0007】
前記流動管は、前記タンクの上面側から下面側に向かって延びる略U字形の配管で構成し、
前記熱交換促進部は、前記流動管に対して接触状態を維持しつつ上下方向に所定間隔で並設される、複数の貫通孔を形成された複数枚のプレートで構成すると、流入管を介してタンク内に流入した冷媒は、貫通孔を介して順次下方のプレートへと流下させることができるので、簡単な構成であるにも拘わらず、優れた熱交換性能を発揮させることができる点で好ましい。
【0008】
前記タンク内に、入口管から流入された冷媒から水分を除去するための除湿部材を収容し、該除湿部材を前記流動管の最下位置と前記タンクの下面との間に配設すればよい。
【0009】
前記流動管は、最下位値で前記除湿部材をタンクの下面との間に挟持可能とするのが好ましい。
【0010】
前記流動管は、下方部を水平方向に屈曲すると、内部の余剰スペースを有効利用することが可能となる点で好ましい。
【0011】
前記流出管に、前記タンク内の冷媒を濾過するストレーナを設け、該ストレーナを、前記熱交換促進部の下方に配設すればよい。
【0012】
前記ストレーナは、前記除湿部材と積層した状態で、前記流動管の最下位置と前記タンクの下面との間に配設すると、内部の余剰スペースをより一層有効利用することが可能となる点で好ましい。
【0013】
前記ストレーナは、前記プレートと積層可能な構成とすると、さらに内部の余剰スペースを有効利用することが可能となる点で好ましい。
【0014】
前記流出管に、前記タンク内の冷媒を濾過し、前記熱交換促進部となるストレーナを設けると、部品点数を減らしつつ、前記同様の効果を得ることが可能となる点で好ましい。
【0015】
前記タンクは、有底筒状のタンク本体と、該タンク本体の上方開口部に嵌合する蓋体とで構成し、該蓋体は、前記タンク本体への嵌合時、前記プレートに当接して嵌合部分に挟まることを防止するプレート押え部を備えると、組立性を向上させることが可能となる点で好ましい。
【0016】
また、本発明は、前記課題を解決するための手段として、車両用空調装置を、前記いずれかの構成のレシーバタンクと、前記エバポレータから前記コンプレッサに至る経路のいずれかで、冷媒のスーパーヒート量を検出するスーパーヒート量検出手段と、該スーパーヒート量検出手段での検出信号に基づいて前記膨張弁の開度を調整することにより、前記コンプレッサに流入する冷媒をスーパーヒート状態とする制御手段とを備えた構成としたものである。
【0017】
この構成により、エバポレータでの冷却能力を最大限に発揮させつつ、エバポレータから流出する冷媒を確実にスーパーヒート状態とできるので、コンプレッサでの液圧縮を未然に防止することが可能となる。
【0018】
【発明の実施の形態】
以下、本発明に係る実施形態を添付図面に従って説明する。
【0019】
図1は、車両用空調装置の冷凍サイクルを示す。この冷凍サイクルでは、コンプレッサ1から吐出された冷媒が、コンデンサ2、膨張弁3、及びエバポレータ4を介してコンプレッサ1に戻って循環する。コンプレッサ1は、図示しないエンジンの駆動力が伝達されることにより所定回転数で駆動する。コンデンサ2は、車両前方部に配設され、冷媒と外気とを熱交換させる。膨張弁3は、冷媒を気化しやすい状態に減圧してエバポレータ4に導く。エバポレータ4は、車内前方部の空調ユニット20内に配設され、内気又は外気と冷媒とを熱交換させる。エバポレータ4の出口に接続される配管には温度センサ5が設けられ、冷媒温度を検出可能となっている。前記膨張弁3の開度は、この検出温度に基づいて制御され、エバポレータ4内に於ける冷媒のスーパーヒート量が所望の値に調整されている。
【0020】
冷凍サイクルの途中にはレシーバタンク6が接続されている。
【0021】
レシーバタンク6は、図2及び図3に示すように、有底筒状のタンク本体7に除湿部材8(乾燥剤)を収容し、蓋体9に流入管10、流出管11、流動管12を取り付け、タンク本体7の上方開口部を蓋体9で閉鎖した構成である。
【0022】
除湿部材8はタンク本体7の底面に配設され、冷凍サイクルの途中、例えば、樹脂製のホース等から侵入する水分を冷媒から除去する。
【0023】
蓋体9には押え部13が設けられている。押え部13は、タンク本体7に蓋体9を装着した際、タンク本体7の上方開口部から所定寸法の位置まで侵入し、後述するプレート17を押圧して装着部分への挟み込みを防止する。
【0024】
流入管10の一端部はコンデンサ2側の配管に接続されている。流入管10の他端部はタンク内の上方開口部近傍に位置し、高温高圧冷媒をレシーバタンク6の上方側から流入させる。
【0025】
流出管11は、一端部がエバポレータ4側の配管に接続され、ストレーナ14を有する他端部がレシーバタンク6の底面近傍に位置している。ストレーナ14は冷媒中に含まれるゴミを除去する。
【0026】
流動管12は、直線部15と湾曲部16からなる略U字形で、一端部がエバポレータ4側の配管に接続され、他端部がコンプレッサ1側の配管に接続されている。流動管12内には、エバポレータ4からの低温低圧冷媒が流動する。直線部15には、上下方向に所定間隔で複数枚のプレート17(本発明の熱交換促進部に相当する。)が設けられている。
【0027】
各プレート17には複数の小径孔が形成され、流入管10を介してレシーバタンク6内に流入した高温高圧冷媒を順次下方側のプレート17へと流下させることが可能となっている。これにより、流入管10から流入した高温冷媒の熱は、各プレート17から流動管12へと伝達され、低温冷媒に吸熱される。
【0028】
除湿部材8及びストレーナ14は、プレート17の下方側で、流動管12の湾曲部16の側方に形成されるデッドスペースに位置し、レシーバタンク6の小型化が図られている。
【0029】
以上の構成からなるレシーバタンク6の熱交換能力は、エバポレータ4内に於ける冷媒のスーパーヒート量に相当する熱交換能力以下、詳しくは、後述するように膨張弁3の開度を変更することにより得られる、エバポレータ4内に於けるスーパーヒート量の最小値に相当する熱交換能力以下となるように設計されている。
【0030】
なお、前記温度センサ5での検出温度は制御装置21に入力される。制御装置21は、入力された検出温度に基づいてエバポレータ4から流出した冷媒がスーパーヒート状態であるか否かを判断し、膨張弁3の開度を制御する。
【0031】
次に、前記車両用空調装置の動作について説明する。
【0032】
コンプレッサ1を駆動して高温高圧冷媒を吐出させると、この冷媒は、コンデンサ2を通過して凝縮された後、流入管10を介してレシーバタンク6に流入する。
【0033】
レシーバタンク6内では、流入した高温冷媒が順次プレート17の小径孔を介して下段のプレート17へと流下する。この間、冷媒の熱は、プレート17を介して流動管12へと伝達される。レシーバタンク6の底面部まで流下した冷媒は、そこで除湿部材8によって水分を除去された後、ストレーナ14でゴミを回収され、流出管11を介してエバポレータ4へと流動する。
【0034】
エバポレータ4に向かう冷媒は、膨張弁3を通過する際、気化しやすい状態まで減圧される。膨張弁3の開度は制御装置21からの制御信号に基づいて調整される。すなわち、制御装置21は、エバポレータ4の出口側配管に設けた温度センサ5での検出温度に基づいて、エバポレータ4から流出した冷媒のスーパーヒート量を検出する。そして、所定のスーパーヒート量となるように膨張弁3の開度を調整することにより、コンプレッサ1に流入する冷媒を常に所望のスーパーヒート状態に維持する。この結果、アキュムレータ(気液分離装置)を必要とすることなく、コンプレッサ1での液圧縮を確実に防止することが可能となる。
【0035】
エバポレータ4では、冷媒は気化して空調ユニット内を通過する空気から吸熱してレシーバタンク6へと向かう。レシーバタンク6では、冷媒は流動管12を流動し、プレート17を介して高温冷媒から吸熱する。プレート17は、前述のように、流動管12の直線部15に上下方向に所定間隔で複数設けられているため、高温冷媒が各プレート17に形成した複数の小径孔を流下することにより、流動管12を流動する低温冷媒に効率良く吸熱させることができる。したがって、エバポレータ4の入口と出口で、冷媒のエンタルピ差を大きくすることができ、エバポレータ4の冷却能力を向上させることが可能となる。
【0036】
その後、レシーバタンク6を流出した冷媒は、コンプレッサ1へと戻って循環する。
【0037】
なお、前記実施形態では、除湿部材8を流動管12の湾曲部16側方に配設するようにしたが、図4に示すように、タンク本体7の底面に配設するようにしてもよい。この場合、除湿部材8を流動管12とタンク本体7の間に挟持可能とすれば、流動管12で除湿部材8の位置決めをも兼ねることができ、構成を簡略化することが可能となる。
【0038】
また、図5に示すように、前記ストレーナ14を前記除湿部材8と積層可能な構成としてもよい。
【0039】
また、図6に示すように、前記流動管12の湾曲部16を水平方向に屈曲させることにより、レシーバタンク6内の余剰空間をさらに抑制することができ、レシーバタンク6をより一層コンパクトな構成とすることが可能となる。
【0040】
また、前記実施形態では、温度センサ5をエバポレータ4の出口側配管に設けるようにしたが、レシーバタンク6の低圧側出口配管である流動管12からコンプレッサ1に向かう配管に設けるようにしてもよい。また、温度センサ5に限らず、コンプレッサ1に流入する冷媒が常にスーパーヒート状態とできるように膨張弁3の開度を調整可能なデータを得られるものであれば、その手段は問わない。
【0041】
【発明の効果】
以上の説明から明らかなように、本発明によれば、流動管に、該流動管の内部を流動する冷媒と、タンク内の冷媒との間の熱交換を促進させる熱交換促進部を設けたので、小型としても、熱交換性能に優れ、内部に除湿部材(乾燥剤)やストレーナを配置するのに十分なスペースを確保することが可能となる。
【図面の簡単な説明】
【図1】本実施形態に係る車両用空調装置の概略図である。
【図2】図1の冷凍サイクルに設けられるレシーバタンクの部分破断斜視図である。
【図3】(a)は図2に示すレシーバタンクの正面断面図、(b)はその側面断面図である。
【図4】(a)は他の実施形態に係るレシーバタンクの正面断面図、(b)はその側面断面図である。
【図5】(a)は他の実施形態に係るレシーバタンクの正面断面図、(b)はその側面断面図である。
【図6】(a)は他の実施形態に係るレシーバタンクの正面断面図、(b)はその側面断面図である。
【符号の説明】
1…コンプレッサ
2…コンデンサ
3…膨張弁
4…エバポレータ
5…温度センサ
6…レシーバタンク
7…タンク本体
8…除湿部材
9…蓋体
10…流入管
11…流出管
12…流動管
13…押え部
14…ストレーナ
15…直線部
16…湾曲部
17…プレート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a receiver tank provided in a vehicle air conditioner and exchanging heat between high-pressure refrigerant and low-pressure refrigerant, and a vehicle air conditioner provided with the receiver tank.
[0002]
[Prior art]
Conventionally, as a receiver tank, for example, there is a receiver tank disclosed in Japanese Patent Application Laid-Open No. 9-89420. In this receiver tank, high-pressure refrigerant from the compressor side flows into the tank through the inflow pipe and flows out to the evaporator side through the outflow pipe, while the low-pressure refrigerant from the evaporator passes through the flow pipe passing through the tank. By flowing to the compressor side via the compressor, heat exchange can be performed between the refrigerant in the flow tube and the refrigerant in the tank.
[0003]
[Problems to be solved by the invention]
However, in the receiver tank having the above-described structure, when the heat transfer area of the flow tube is increased, the size of the flow tube becomes large, the occupied space increases, and the internal refrigerant amount increases. There are problems that the refrigerant is not supplied appropriately, that there is no room in the tank, and that a dehumidifying member (a desiccant) and a strainer cannot be arranged.
[0004]
In view of the above, the present invention provides a receiver tank capable of appropriately performing heat exchange between refrigerants and having a dehumidifying member (a desiccant) and a strainer disposed therein, and a vehicle including the receiver tank. It is an object to provide an air conditioner.
[0005]
[Means for Solving the Problems]
The present invention provides, as a means for solving the above problems, a refrigerant discharged from a compressor, disposed in the middle of a refrigerant flow path circulating back to the compressor via a condenser, an expansion valve, and an evaporator, and a tank. A flow pipe in which the refrigerant flowing from the evaporator to the compressor flows, an inflow pipe through which the refrigerant flows from the condenser to the evaporator, and an outflow pipe through which the refrigerant flowing into the tank flows out toward the evaporator. And a receiver tank with
The fluid pipe is provided with a heat exchange promoting portion for promoting heat exchange between the refrigerant flowing inside the fluid pipe and the refrigerant in the tank.
[0006]
With this configuration, heat exchange between the low-temperature and low-pressure refrigerant flowing from the condenser into the tank through the inflow pipe and the high-temperature and high-pressure refrigerant from the evaporator flowing through the flow pipe in the tank is performed by the heat exchange promoting unit. And a configuration that is excellent in heat exchange performance even if it is small in size.
[0007]
The flow pipe comprises a substantially U-shaped pipe extending from the upper surface side to the lower surface side of the tank,
The heat exchange promoting portion is configured with a plurality of plates having a plurality of through holes formed in parallel at predetermined intervals in the up-down direction while maintaining a contact state with the flow tube. Since the refrigerant flowing into the tank can flow down to the lower plate sequentially through the through-holes, it can exhibit excellent heat exchange performance despite its simple configuration. preferable.
[0008]
In the tank, a dehumidifying member for removing moisture from the refrigerant flowing from the inlet pipe may be accommodated, and the dehumidifying member may be disposed between a lowermost position of the flow pipe and a lower surface of the tank. .
[0009]
It is preferable that the flow pipe is capable of sandwiching the dehumidifying member between the fluid pipe and the lower surface of the tank at the lowest value.
[0010]
It is preferable that the lower part of the flow tube be bent in the horizontal direction, since the excess space inside can be effectively used.
[0011]
A strainer for filtering the refrigerant in the tank may be provided in the outflow pipe, and the strainer may be provided below the heat exchange promoting unit.
[0012]
When the strainer is disposed between the lowermost position of the flow tube and the lower surface of the tank in a state where the strainer is laminated with the dehumidifying member, a surplus space inside can be used more effectively. preferable.
[0013]
It is preferable that the strainer be configured to be able to be stacked on the plate, since the surplus space inside can be used more effectively.
[0014]
It is preferable that the outlet pipe is provided with a strainer that filters the refrigerant in the tank and serves as the heat exchange promoting section, because the same effect as described above can be obtained while reducing the number of components.
[0015]
The tank includes a bottomed cylindrical tank main body and a lid that fits into an upper opening of the tank main body, and the lid comes into contact with the plate when fitted to the tank main body. It is preferable to provide a plate holding portion for preventing the holding portion from being caught by the fitting portion because the assembling property can be improved.
[0016]
Further, according to the present invention, as a means for solving the above-mentioned problems, a vehicle air conditioner is provided with a receiver tank having any one of the above configurations, and a superheat amount of a refrigerant in one of paths from the evaporator to the compressor. A superheat amount detecting means for detecting the amount of heat, and a control means for adjusting a degree of opening of the expansion valve based on a detection signal from the superheat amount detecting means to set a refrigerant flowing into the compressor to a superheat state. Is provided.
[0017]
With this configuration, the refrigerant flowing out of the evaporator can be reliably brought into a superheat state while maximizing the cooling capacity of the evaporator, so that liquid compression in the compressor can be prevented beforehand.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments according to the present invention will be described with reference to the accompanying drawings.
[0019]
FIG. 1 shows a refrigeration cycle of a vehicle air conditioner. In this refrigeration cycle, the refrigerant discharged from the compressor 1 circulates back to the compressor 1 via the condenser 2, the expansion valve 3, and the evaporator 4. The compressor 1 is driven at a predetermined rotational speed by transmitting a driving force of an engine (not shown). The condenser 2 is disposed at a front part of the vehicle and exchanges heat between the refrigerant and the outside air. The expansion valve 3 guides the refrigerant to the evaporator 4 after reducing the pressure of the refrigerant to a state in which the refrigerant is easily vaporized. The evaporator 4 is disposed in the air conditioning unit 20 at the front of the vehicle, and exchanges heat between the inside air or outside air and the refrigerant. A temperature sensor 5 is provided in a pipe connected to the outlet of the evaporator 4 so that the temperature of the refrigerant can be detected. The opening of the expansion valve 3 is controlled based on the detected temperature, and the amount of superheat of the refrigerant in the evaporator 4 is adjusted to a desired value.
[0020]
A receiver tank 6 is connected in the middle of the refrigeration cycle.
[0021]
As shown in FIGS. 2 and 3, the receiver tank 6 stores a dehumidifying member 8 (desiccant) in a bottomed cylindrical tank body 7, and an inflow pipe 10, an outflow pipe 11, and a flow pipe 12 in a lid 9. And the upper opening of the tank body 7 is closed with a lid 9.
[0022]
The dehumidifying member 8 is disposed on the bottom surface of the tank body 7 and removes moisture entering from a refrigerant hose or the like during the refrigeration cycle, for example, from a resin hose.
[0023]
The cover 9 is provided with a holding portion 13. When the lid 9 is mounted on the tank body 7, the pressing portion 13 penetrates to a position of a predetermined size from the upper opening of the tank body 7, and presses a plate 17, which will be described later, to prevent the holding portion 13 from being caught in the mounting portion.
[0024]
One end of the inflow pipe 10 is connected to a pipe on the condenser 2 side. The other end of the inflow pipe 10 is located near the upper opening in the tank, and allows the high-temperature and high-pressure refrigerant to flow from above the receiver tank 6.
[0025]
One end of the outflow pipe 11 is connected to the pipe on the evaporator 4 side, and the other end having the strainer 14 is located near the bottom surface of the receiver tank 6. The strainer 14 removes dust contained in the refrigerant.
[0026]
The flow pipe 12 has a substantially U shape including a straight portion 15 and a curved portion 16, and has one end connected to the pipe on the evaporator 4 side and the other end connected to the pipe on the compressor 1 side. The low-temperature low-pressure refrigerant from the evaporator 4 flows in the flow pipe 12. The straight portion 15 is provided with a plurality of plates 17 (corresponding to a heat exchange promoting portion of the present invention) at predetermined intervals in the vertical direction.
[0027]
A plurality of small-diameter holes are formed in each plate 17 so that the high-temperature and high-pressure refrigerant that has flowed into the receiver tank 6 via the inflow pipe 10 can sequentially flow down to the lower plate 17. Thereby, the heat of the high-temperature refrigerant flowing from the inflow pipe 10 is transmitted from each plate 17 to the flow pipe 12, and is absorbed by the low-temperature refrigerant.
[0028]
The dehumidifying member 8 and the strainer 14 are located in a dead space formed below the plate 17 on the side of the curved portion 16 of the flow tube 12, so that the size of the receiver tank 6 is reduced.
[0029]
The heat exchange capacity of the receiver tank 6 having the above configuration is equal to or less than the heat exchange capacity corresponding to the superheat amount of the refrigerant in the evaporator 4, and more specifically, the opening degree of the expansion valve 3 is changed as described later. Is designed to be equal to or less than the heat exchange capacity corresponding to the minimum value of the superheat amount in the evaporator 4 obtained by the above.
[0030]
The temperature detected by the temperature sensor 5 is input to the control device 21. The control device 21 determines whether the refrigerant flowing out of the evaporator 4 is in a superheat state based on the input detected temperature, and controls the opening of the expansion valve 3.
[0031]
Next, the operation of the vehicle air conditioner will be described.
[0032]
When the compressor 1 is driven to discharge the high-temperature and high-pressure refrigerant, the refrigerant passes through the condenser 2 and is condensed, and then flows into the receiver tank 6 via the inflow pipe 10.
[0033]
In the receiver tank 6, the inflowing high-temperature refrigerant flows down to the lower plate 17 through the small-diameter hole of the plate 17 in order. During this time, the heat of the refrigerant is transmitted to the flow tube 12 via the plate 17. The refrigerant that has flowed down to the bottom of the receiver tank 6 is dewatered by the dehumidifying member 8, and then the refuse is collected by the strainer 14 and flows to the evaporator 4 through the outflow pipe 11.
[0034]
When the refrigerant flowing to the evaporator 4 passes through the expansion valve 3, the pressure of the refrigerant is reduced to a state in which the refrigerant is easily vaporized. The opening of the expansion valve 3 is adjusted based on a control signal from the control device 21. That is, the control device 21 detects the superheat amount of the refrigerant flowing out of the evaporator 4 based on the temperature detected by the temperature sensor 5 provided in the outlet pipe of the evaporator 4. Then, by adjusting the opening of the expansion valve 3 so as to have a predetermined superheat amount, the refrigerant flowing into the compressor 1 is always maintained in a desired superheat state. As a result, it is possible to reliably prevent liquid compression in the compressor 1 without requiring an accumulator (gas-liquid separation device).
[0035]
In the evaporator 4, the refrigerant is vaporized, absorbs heat from the air passing through the air conditioning unit, and travels to the receiver tank 6. In the receiver tank 6, the refrigerant flows through the flow tube 12 and absorbs heat from the high-temperature refrigerant via the plate 17. As described above, the plurality of plates 17 are provided at predetermined intervals in the vertical direction on the straight portion 15 of the flow tube 12. The low-temperature refrigerant flowing through the pipe 12 can efficiently absorb heat. Therefore, the enthalpy difference between the refrigerant at the inlet and the outlet of the evaporator 4 can be increased, and the cooling capacity of the evaporator 4 can be improved.
[0036]
Thereafter, the refrigerant flowing out of the receiver tank 6 returns to the compressor 1 and circulates.
[0037]
In the above-described embodiment, the dehumidifying member 8 is disposed on the side of the curved portion 16 of the flow tube 12, but may be disposed on the bottom surface of the tank body 7 as shown in FIG. . In this case, if the dehumidifying member 8 can be sandwiched between the flow pipe 12 and the tank main body 7, the positioning of the dehumidifying member 8 can also be performed by the flow pipe 12, and the configuration can be simplified.
[0038]
Further, as shown in FIG. 5, the strainer 14 may be configured to be able to be laminated on the dehumidifying member 8.
[0039]
Further, as shown in FIG. 6, by bending the curved portion 16 of the flow tube 12 in the horizontal direction, the excess space in the receiver tank 6 can be further suppressed, and the receiver tank 6 has a more compact configuration. It becomes possible.
[0040]
In the above-described embodiment, the temperature sensor 5 is provided on the outlet pipe of the evaporator 4. However, the temperature sensor 5 may be provided on the pipe from the flow pipe 12, which is the low-pressure outlet pipe of the receiver tank 6, to the compressor 1. . In addition to the temperature sensor 5, any means can be used as long as it can obtain data that can adjust the opening of the expansion valve 3 so that the refrigerant flowing into the compressor 1 can always be in a superheated state.
[0041]
【The invention's effect】
As is clear from the above description, according to the present invention, the flow tube is provided with the heat exchange promoting portion that promotes heat exchange between the refrigerant flowing inside the flow tube and the refrigerant in the tank. Therefore, even if it is small, it has excellent heat exchange performance, and it is possible to secure a sufficient space for disposing a dehumidifying member (drying agent) and a strainer inside.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a vehicle air conditioner according to an embodiment.
FIG. 2 is a partially broken perspective view of a receiver tank provided in the refrigeration cycle of FIG.
3A is a front sectional view of the receiver tank shown in FIG. 2, and FIG. 3B is a side sectional view thereof.
FIG. 4A is a front sectional view of a receiver tank according to another embodiment, and FIG. 4B is a side sectional view thereof.
FIG. 5A is a front sectional view of a receiver tank according to another embodiment, and FIG. 5B is a side sectional view thereof.
FIG. 6A is a front sectional view of a receiver tank according to another embodiment, and FIG. 6B is a side sectional view thereof.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Condenser 3 ... Expansion valve 4 ... Evaporator 5 ... Temperature sensor 6 ... Receiver tank 7 ... Tank body 8 ... Dehumidifying member 9 ... Lid 10 ... Inflow pipe 11 ... Outflow pipe 12 ... Flow pipe 13 ... Pressing part 14 ... Strainer 15 ... Linear part 16 ... Bending part 17 ... Plate

Claims (11)

コンプレッサから吐出された冷媒が、コンデンサ、膨張弁、及びエバポレータを介してコンプレッサに戻って循環する冷媒流路の途中に配設され、タンクと、該タンク内に配設され、エバポレータからコンプレッサに向かう冷媒が流動する流動管と、コンデンサからエバポレータに向かう冷媒が流入する流入管と、タンク内に流入した冷媒がエバポレータに向かって流出する流出管とを備えたレシーバタンクであって、
前記流動管に、該流動管の内部を流動する冷媒と、前記タンク内の冷媒との間の熱交換を促進させる熱交換促進部を設けたことを特徴とするレシーバタンク。
The refrigerant discharged from the compressor is disposed in the middle of a refrigerant flow path that circulates back to the compressor via a condenser, an expansion valve, and an evaporator, is disposed in a tank, and is disposed in the tank, and travels from the evaporator to the compressor. A receiver tank including a flow pipe through which the refrigerant flows, an inflow pipe into which the refrigerant flowing from the condenser toward the evaporator flows, and an outflow pipe through which the refrigerant flowing into the tank flows out toward the evaporator,
A receiver tank provided with a heat exchange promoting portion for promoting heat exchange between a refrigerant flowing inside the flow tube and a refrigerant in the tank, in the flow tube.
前記流動管は、前記タンクの上面側から下面側に向かって延びる略U字形の配管で構成し、
前記熱交換促進部は、前記流動管に対して接触状態を維持しつつ上下方向に所定間隔で並設される、複数の貫通孔を形成された複数枚のプレートで構成したことを特徴とする請求項1に記載のレシーバタンク。
The flow pipe comprises a substantially U-shaped pipe extending from the upper surface side to the lower surface side of the tank,
The heat exchange promoting part is constituted by a plurality of plates having a plurality of through holes formed in parallel at predetermined intervals in a vertical direction while maintaining a contact state with the flow tube. The receiver tank according to claim 1.
前記タンク内に、入口管から流入された冷媒から水分を除去するための除湿部材を収容し、該除湿部材を前記流動管の最下位置と前記タンクの下面との間に配設したことを特徴とする請求項1又は2に記載のレシーバタンク。In the tank, a dehumidifying member for removing moisture from the refrigerant flowing from the inlet pipe is housed, and the dehumidifying member is disposed between a lowermost position of the fluid pipe and a lower surface of the tank. The receiver tank according to claim 1 or 2, wherein: 前記流動管は、最下位値で前記除湿部材をタンクの下面との間に挟持可能であることを特徴とする請求項3に記載のレシーバタンク。4. The receiver tank according to claim 3, wherein the flow pipe is capable of holding the dehumidifying member at a lowest value between the flow pipe and a lower surface of the tank. 5. 前記流動管は、下方部を水平方向に屈曲したことを特徴とする請求項1ないし4のいずれか1項に記載のレシーバタンク。The receiver tank according to any one of claims 1 to 4, wherein a lower part of the flow tube is bent in a horizontal direction. 前記流出管に、前記タンク内の冷媒を濾過するストレーナを設け、該ストレーナを、前記熱交換促進部の下方に配設したことを特徴とする請求項1ないし5のいずれか1項に記載のレシーバタンク。The strainer according to any one of claims 1 to 5, wherein a strainer for filtering the refrigerant in the tank is provided in the outflow pipe, and the strainer is disposed below the heat exchange promoting unit. Receiver tank. 前記ストレーナは、前記除湿部材と積層した状態で、前記流動管の最下位置と前記タンクの下面との間に配設したことを特徴とする請求項6に記載のレシーバタンク。The receiver tank according to claim 6, wherein the strainer is disposed between a lowermost position of the flow tube and a lower surface of the tank in a state of being stacked with the dehumidifying member. 前記ストレーナは、前記プレートと積層可能な構成であることを特徴とする請求項6に記載のレシーバタンク。The receiver tank according to claim 6, wherein the strainer is configured to be stackable with the plate. 前記流出管に、前記タンク内の冷媒を濾過し、前記熱交換促進部となるストレーナを設けたことを特徴とする請求項1ないし5のいずれか1項に記載のレシーバタンク。The receiver tank according to any one of claims 1 to 5, wherein a strainer that filters the refrigerant in the tank and functions as the heat exchange promoting unit is provided in the outflow pipe. 前記タンクは、有底筒状のタンク本体と、該タンク本体の上方開口部に嵌合する蓋体とで構成し、該蓋体は、前記タンク本体への嵌合時、前記プレートに当接して嵌合部分に挟まることを防止するプレート押え部を備えたことを特徴とする請求項2ないし9のいずれか1項に記載のレシーバタンク。The tank includes a bottomed cylindrical tank main body and a lid that fits into an upper opening of the tank main body, and the lid comes into contact with the plate when fitted to the tank main body. The receiver tank according to any one of claims 2 to 9, further comprising a plate holding portion for preventing the holding member from being caught by the fitting portion. 前記請求項1ないし10のいずれか1項に記載のレシーバタンクと、前記エバポレータから前記コンプレッサに至る経路のいずれかで、冷媒のスーパーヒート量を検出するスーパーヒート量検出手段と、該スーパーヒート量検出手段での検出信号に基づいて前記膨張弁の開度を調整することにより、前記コンプレッサに流入する冷媒をスーパーヒート状態とする制御手段とを備えたことを特徴とする車両用空調装置。A receiver tank according to any one of claims 1 to 10, a superheat amount detecting means for detecting a superheat amount of a refrigerant in one of a path from the evaporator to the compressor, and a superheat amount. An air conditioner for a vehicle, comprising: control means for adjusting a degree of opening of the expansion valve based on a detection signal from the detection means to bring a refrigerant flowing into the compressor into a superheat state.
JP2002227623A 2002-08-05 2002-08-05 Receiver tank and vehicle air conditioner equipped with receiver tank Expired - Fee Related JP4098580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002227623A JP4098580B2 (en) 2002-08-05 2002-08-05 Receiver tank and vehicle air conditioner equipped with receiver tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002227623A JP4098580B2 (en) 2002-08-05 2002-08-05 Receiver tank and vehicle air conditioner equipped with receiver tank

Publications (2)

Publication Number Publication Date
JP2004069142A true JP2004069142A (en) 2004-03-04
JP4098580B2 JP4098580B2 (en) 2008-06-11

Family

ID=32014598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002227623A Expired - Fee Related JP4098580B2 (en) 2002-08-05 2002-08-05 Receiver tank and vehicle air conditioner equipped with receiver tank

Country Status (1)

Country Link
JP (1) JP4098580B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20090195A1 (en) * 2009-03-27 2010-09-28 Hiref S P A REFRIGERANT SYSTEM INCLUDING AN EVAPORATED PLATE EVAPORATOR
US7900467B2 (en) 2007-07-23 2011-03-08 Hussmann Corporation Combined receiver and heat exchanger for a secondary refrigerant
EP1808654B1 (en) * 2006-01-17 2012-08-15 Sanden Corporation Vapor compression refrigerating systems and modules which comprise a heat exchanger disposed within a gas-liquid separator
CN103234313A (en) * 2013-04-07 2013-08-07 广东志高空调有限公司 Household air conditioner storage tank and welding process method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1808654B1 (en) * 2006-01-17 2012-08-15 Sanden Corporation Vapor compression refrigerating systems and modules which comprise a heat exchanger disposed within a gas-liquid separator
US7900467B2 (en) 2007-07-23 2011-03-08 Hussmann Corporation Combined receiver and heat exchanger for a secondary refrigerant
ITBO20090195A1 (en) * 2009-03-27 2010-09-28 Hiref S P A REFRIGERANT SYSTEM INCLUDING AN EVAPORATED PLATE EVAPORATOR
EP2233866A1 (en) * 2009-03-27 2010-09-29 Hiref S.p.A. A refrigerating plant comprising a plate-type flooded evaporator
CN103234313A (en) * 2013-04-07 2013-08-07 广东志高空调有限公司 Household air conditioner storage tank and welding process method thereof

Also Published As

Publication number Publication date
JP4098580B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
EP2767769B1 (en) Humidity control module, and humidity control device
CN102112813B (en) Humidity control device
JP4492017B2 (en) Accumulator module
JP2003139438A (en) Refrigerant condenser
JP2003090643A (en) Refrigeration cycle system
JP2001041612A (en) Liquid receiver
JP2004028525A (en) Accumulator and refrigeration cycle using the same
JP4098580B2 (en) Receiver tank and vehicle air conditioner equipped with receiver tank
EP2057425B1 (en) Water-cooled air conditioner
JP2008075998A (en) Air conditioner
JP3583595B2 (en) Gas-liquid separator for refrigeration cycle equipment
JPH11190573A (en) Gas-liquid separator
JP3214318B2 (en) Outdoor heat exchanger for heat pump refrigeration cycle
JP2000205706A (en) Refrigerating device
EP1831619B1 (en) A cooling device
JP6891711B2 (en) Combined heat exchanger
CN102967012B (en) Humidity control device
CN217519969U (en) Dehumidifier integrating water storage and refrigeration functions
JPH09264637A (en) Heat exchanger equipped with receiver
JP2002228305A (en) Drying agent container bag
JP3916298B2 (en) accumulator
WO2007123041A1 (en) Internal heat exchanger
JPH0882463A (en) Liquid tank
JP2013064586A (en) Humidity control device
JP5195216B2 (en) Humidity control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080313

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees