JP2004068993A - Rotary damper - Google Patents

Rotary damper Download PDF

Info

Publication number
JP2004068993A
JP2004068993A JP2002231857A JP2002231857A JP2004068993A JP 2004068993 A JP2004068993 A JP 2004068993A JP 2002231857 A JP2002231857 A JP 2002231857A JP 2002231857 A JP2002231857 A JP 2002231857A JP 2004068993 A JP2004068993 A JP 2004068993A
Authority
JP
Japan
Prior art keywords
side wall
cylindrical chamber
shaft
movable body
rotary damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002231857A
Other languages
Japanese (ja)
Inventor
Satoshi Ito
伊藤 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2002231857A priority Critical patent/JP2004068993A/en
Publication of JP2004068993A publication Critical patent/JP2004068993A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce engagement dimension accuracy between members, facilitate manufacturing, and more stably maintain actuation characteristics. <P>SOLUTION: This rotary damper comprises a cylindrical chamber 12 of which casing 1 has protrusion of a partition wall 11, and a rotary blade 25 protruded from a shaft part 21 of a shaft 2 disposed in the cylindrical chamber with a movable body 5 attached to the rotary blade, so that braking force received from viscous fluid filled in the cylindrical chamber is varied depending on if the shaft is rotated normally or reversely. The rotary blade has a roughly recessed containing part 26, a longer side wall 27A and a shorter side wall 27B facing each other in a circumferential direction to part the containing part, and a fluid passage 28 formed in the longer side wall. The movable body is engaged between both side walls with clearance to be moved by viscous fluid introduced from the fluid passage in the shorter side wall to close a gap for the fluid passage formed between the shorter side wall and the inner circumferential surface of the cylindrical chamber, while keeping the fluid passage opened when it is moved by viscous fluid introduced from the gap. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、流体圧を利用した回転ダンパのうち、特に、正転と逆転とで制動力を可変する回転ダンパに関する。
【0002】
【従来の技術】
最近の回転ダンパは、軸の正転と逆転とで粘性流体から受ける制動力を可変することにより、例えば、蓋体等の閉操作において制動力を強くして静かに閉じ、開操作において制動力を減じて弱い力で行えるようにしている。図14及び図15はそのように制動力を可変する回転ダンパを示している。図14(a)の回転ダンパ(特開平10−205567号)は、ケーシング60が隔壁61を突設した円筒室62を有し、又、軸65がケーシング60に組み付けられて、円筒室62に配置される軸部分に突設した回転翼66、及び回転翼66の縦溝67に径方向移動自在に配置された可動体68を有している。また、回転翼66が対の立壁66a,66aから構成され、両立壁66aのうち、一方の基部に設けられて縦溝67に連通する通路67aを有している。可動体68は、縦溝67に対し上下摺動する板厚をなし、下両側に通路67aと対応する切欠部68aを有している。なお、符号61aは隔壁61に設けられたオリフィスである。そして、軸65が反時計回りに回転されるときは、粘性流体が通路67aから縦溝67に導入され、可動体68が該導入流体圧を切欠部68aで受けて軸心側から外側へ押圧され、上側のごとく縦溝67から突出して円筒室62の内周面に当接することにより制動力を増大する。時計回りに回転されるときは、粘性流体が円筒室62の内周面と立壁66a及び可動体68の先端との間の隙間から漏れるため、可動体68が下側のごとく縦溝67内に退避して制動力を減じる。一方、図14(b)の回転ダンパ(特開2001−50326号)は、前記(a)に比較して、符号60と62がケーシング及び円筒室に対応し、符号61がケーシング60に組み付けられる軸65側の回転翼、符号66と68がケーシング側の隔壁と可動体に対応している。隔壁66は、立壁66a,66aから構成され、両立壁66aのうち、一方に設けられた通路67bを有している。可動体68は、両立壁66aの間に配置されて円筒室62の内周面に摺接し、又、両立壁66aの隙間内で周方向に摺動すると共に通路68aを有している。そして、軸65が反時計回りに回転されるときは、粘性流体が左側立壁66aと内周面との間の隙間、可動体68の通路68a、右側立壁66aの通路67bを通って漏れるため制動力を減じる。時計回りに回転されるときには、粘性流体が立壁66aの通路67bや内周面との間の隙間から両立壁66a内に導入され、可動体68が該導入流体により左側立壁66aに当たるまで動かされて通路68aを閉じるため制動力を増大する。
【0003】
これに対し、図15の回転ダンパ(特開平11−182607号)は、蓋体等の開位置〜閉位置の間の回転途中で制動力を可変する例であり、図4(a)に比較して、符号60と61と62がケーシング及び隔壁と円筒室に対応し、符号65と66は軸及び回転翼、符号69a,69bが回転翼66に付設される可動体に対応している。符号61aは円筒室62の内周面に設けられたオリフィス(円弧状の溝)である。回転翼66の先端側は、周方向に並設された2個の凹部67a,67bを有し、凹部67aが一方外側壁66aと中間側壁66bとの間に区画され、凹部67bが中間側壁66aと他方外側壁66aとの間に区画されている。両側壁66aと中間側壁66bは内周面との間に所定の隙間を保っている。各可動体69a,69bは、各凹部67a,67b内で転動可能な円柱状である。そして、この構成では、軸65が回転され、可動体69a,69bがオリフィス61aを形成している内周面部分と対向しているときと、オリフィス61aの両側にある内周面部分と対向しているときとで制動力を可変する。即ち、軸65の制動力は、両可動体69a,69bがオリフィス61aを形成している内周面部分にあるときには粘性流体をオリフィス61aから漏れるようにして減じられ、可動体69a,69bの一方が例えば同図の位置、つまり内周面のうちオリフィス61aから外れた位置より粘性流体の漏れを少なくして増大する。
【0004】
【発明が解決しようとする課題】
上記したように、従来構造では、それぞれ工夫された構成により制動力を可変するようにしているが、作動特性を長期に安定維持できなかったり加工性などの点から未だ満足できない。即ち、図14(a)の構造では、可動体68と縦溝67との間のはめ合い寸法精度が作動特性を左右し、可動体68が縦溝67に対し緩く係合していると、時計回りに回転されているにもかかわらず縦溝67から突出したり、可動体68が縦溝67に対し強く係合していると、逆時計回りに回転されているにもかかわらず縦溝67から突出しなくなる。図14(b)の構造では、各立壁66aが円筒室62の内周面に隙間を保ち、かつ、可動体68が円筒室62の内周面に摺接する関係であるため、可動体68のはめ合い寸法精度が確実に維持されていないと、前記したと同様な事態となる。また、ケーシング60の筒内に隔壁66を設けると共に隔壁66に通路67bを貫通形成しなくてはならないため成形型が複雑化したり二次加工が必要となる。これに対し、図15の構造では、可動体69a,69bを複数使用したり、オリフィス61aを円筒室62の内周面に形成するため成形型が複雑化したり二次加工が必要となる。
【0005】
本発明の目的は、以上のような従来品に対し、部材間のはめ合い寸法精度を緩和したり製造容易にし、作動特性をより安定維持可能にする。他の目的は可動体の切換作動以外にも、制動力を多面的に可変できるようにする。
【0006】
【課題を解決するための手段】
上記目的を達成するため本発明は、図1〜図3の例で特定すると、ケーシング1が隔壁11を突設した円筒室12を有し、前記ケーシング1に組み付けられる軸2が前記円筒室12に配置される軸部分21に突設した回転翼25及び当該回転翼に付設される可動体5を有しており、前記軸2の正転と逆転とで、前記円筒室12に充填された粘性流体より受ける制動力を可変する回転ダンパにおいて、前記回転翼25は、先端側に設けられた概略凹状の収容部26と、該収容部26を区画形成して周方向に対向している長い側壁27A及び短い側壁27Bと、前記長い側壁に貫通形成した流体通路28とを有し、前記可動体5は、前記収容部の両側壁27A,27Bの間に可動自在に遊嵌されて、前記長い側壁27Aの流体通路28から導入される粘性流体で動いて前記短い側壁27Bと前記円筒室12の内周面との間に形成されている流体通路用隙間を閉状態に切り換え、かつ、当該隙間から導入される粘性流体で動いても前記長い側壁の流体通路28の開状態を保つことを特徴としている。
【0007】
以上の回転ダンパにおいて、軸2が反時計回りに回転されるときには、図1(a)のごとく粘性流体が通路28aから収容部26内に導入され、可動体5が該導入流体圧を受け転動又は摺動されて、短い側壁27Bと内周面との間に形成されている隙間を閉状態にして制動力を増大する。時計回りに回転されるときには、図1(b)のごとく粘性流体が短い側壁27Bと内周面との間の隙間から収容部26内に導入され、可動体5が該導入流体圧で転動又は摺動されて、長い側壁27Aの内面(凸部27a)に当たって規制されるが、収容部26内の形状工夫つまり内面の凹部27bとの間に隙間が確保され、粘性流体が右側の隙間、前記収容部内の隙間、流体通路28を通って漏れるため、その漏れに比例して制動力を減じる。即ち、この構造では、収容部26の長さの異なる両側壁27A,27Bが回転翼25に設けられていることと、可動体5が収容部26内の形状(内面の凹部27bや底面の凹所26b)により図1(b)の態様を得るため、作動特性が可動体5のはめ合い寸法精度により影響されず安定維持でき、加工の容易化を図って製造不良をなくし、寸法精度を緩和できる点などで優れている。
【0008】
以上の発明は、請求項2〜5のごとく具体化されることがより好ましい。即ち、(請求項2)前記可動体5が、前記両側壁27A,27Bの間に転動又は摺動可能な円柱状をなし、前記収容部26内にあって、前記長い側壁27Aと前記短い側壁27Bとの間を上又は下向きに可動する構成である。これは、可動体5が両側壁27A,27Bの間を、各形態のごとく粘性流体圧を受けて若干斜めに動かされるようにすると、両側壁の高さ寸法差を確保しながら、内周面に対して一方側壁27Aを摺接し、他方側壁27Bとの間に所定大の隙間を得やすくする。(請求項3)前記長い側壁27Aの内面が、前記流体通路28から導入される粘性流体を収容部26内に逃がす凹部27bを有している構成である。この凹部27bは、成形型により容易に形成でき、従来品に対し収容部26と可動体5との相対的な寸法精度を緩和したり、可動体5の切換作動を安定維持可能にする。
(請求項4)前記両側壁7A,7Bの間の底面が中間部を欠肉した凹所26bか、略V形部として形成されている構成である。前者は、第1形態の例のごとく凹所26bの存在により粘性流体を収容部26内に導入しやすくすることと、可動体5との間の接触面積を少なくして可動体の切換作動を良好にする。後者は、第2形態のごとく可動体5がV形部の途中位置に保持されるようにすると、粘性流体を流体通路28から収容部26内へ確実に導入できるようにし、又、第3形態のごとく回転翼25の厚さを減じる等、小型化に対応容易にする。
(請求項5)前記円筒室12に配置される軸部分21が、前記回転翼25より低く、かつ、前記隔壁11の端面に摺接又は接近するよう突出した中間翼29a(29b,29c)を有している構成である。この中間翼は、図10〜図12に例示される形状であり、例えば、図10の中間翼29aでは蓋体等の開位置と閉位置との略中間位置で制動力を最大化したり、図11の中間翼29bでは蓋体等の開位置又は閉位置付近で制動力を最大化することで、制動力を多面的に可変できる。そして、この構造では、図15のような複雑化を避けて、設計自由度を拡大できるようにする。
【0009】
【発明の実施の形態】
本発明を適用した形態例について図面を参照し説明する。図1〜図3は第1形態を示し、図4と図5は第2形態を示し、図6と図7は第3形態を示している。図8は第1形態を用いた使用例を示し、図9はオリフィスを追加した使用例を示し、図10と図11は中間翼を追加した2つの使用例を示し、図13は該中間翼の他の変形例を示している。図14は図2の構成部材を変更した例である。
以下の説明では、各形態に共通する基本事項を概要で述べた後、第1形態〜第3形態の各要部を詳述し、使用例及び他の工夫点に言及する。なお、各説明では、作動的に同じ部材に同一符号を付し、重複した説明を極力省く。
【0010】
(概要)対象の回転ダンパは、ケーシング1が隔壁11を突設した円筒室12を有していること、ケーシング1に回転可能に組み付けられる軸2が円筒室12に配置される軸部分21に突設した回転翼25及び回転翼25の収容部26に配置される可動体5を有していること、軸2が正転と逆転とで、円筒室12に充填された粘性流体より受ける制動力を可動体5を介して可変するタイプである。各形態では、図1及び図2に示されるごとく、主部材がケーシング1と、軸2と、支持部材3と、カバー4と、可動体5と、調整部材6とから構成されている。該主部材は全て樹脂成形品である。但し、材質的には樹脂以外でも差し支えない。
【0011】
ここで、ケーシング1は、内周10が最小径の先端部13を除き略同径となっていて、後端に雌ねじ部を形成しており、外周が先端部13を一段径小にし、該径小となった箇所に凹凸部14を形成している。カバー4は、内周に凹凸部41を形成している前部分40と、軸部2の対応部を挿通する径小部を形成している後部分42とからなる。そして、カバー4は、ケーシング1に対し先端部13を前部分40内に押し入れて凹凸部14,41同士の係合を介して連結されている。軸2は、先端側から後側に向かって、枢軸部20、円筒室12に対応した軸部分21、先端部13に対応した軸部分22、後部分42に対応した軸部分23からなり、又、軸心に沿って設けられた連結穴24を有している。枢軸部20は、前記内周10に配置される支持部材3に枢支される。軸部分21は、枢軸部20及び軸部分22よりも径大であり、2個の回転翼25を180度変位した周囲に突設している。そして、軸2は、後述する可動体5を回転翼25の収容部26に配置した後、軸部分23が前記内周10から後部分42の内径に挿入されることにより、ケーシング1及びカバー4に組み込まれる。その際には、先端部13と軸部分22との間が軸部分22の外周に装着されたシール材(Oリング)16を介し密封される。なお、連結穴24には、発明の回転ダンパを適用する蓋体等が枢軸8を介し連結される。
【0012】
支持部材3は、内周10の内径に係合する円盤状であり、前記枢軸部20を枢支する軸穴31と、中心に貫通形成されてボルト7で閉じられる排出口32と、隔壁11と嵌合する対の嵌合溝33とを有している。そして、支持部材3は、ケーシング1の内周10に対し一端側から押し込められ、各隔壁11の片端側を対応する嵌合溝33と嵌合し、又、軸穴31と枢軸部20との係合を介し軸2を回転可能に支持する。その際には、支持部材3と内周10との間が支持部材3の外周に装着されたシール材(Oリング)15を介し密封される。なお、粘性流体が予め充填されている場合、排出口32から不要分が排出された後、ボルト7を装着する。但し、支持部材3を組み付けた後、ボルト7を着脱して粘性流体を排出口32から円筒室26に充填することも可能である。以上の支持部材3は、前記した内周10の雌ねじ部に螺合される調整部材6により内周10に位置規制され、又、必要に応じて軸方向に移動調整される。調整部材6は、内面側に設けられてボルト7の頭を逃げる凹所6a、外面側に設けられてドライバー等で回転操作可能にする操作溝6bを有している。
【0013】
以上の回転ダンパは、各部材が一方向からの挿入操作により組立可能になるよう工夫されている。また、調整部材6は、内周10に対する支持部材3の位置を調整することにより、円筒室12の端面を区画している支持部材3の対応端面と回転翼25との間の隙間バラツキを吸収可能にし、例えば、支持部材3と回転翼25との間の寸法精度を緩和したり製造容易にする。但し、対象の回転ダンパとしては、図13の例のごとく変更しても差し支えない。図13(a)及び(b)では図1のA−A2線断面に対応して示している。各形態では、前記の支持部材3及び調整部材6を省略し、又、前記ケーシング1の先端部13を専用部材45で形成している。また、図13(a)では、円筒室12がケーシング1の内径及び片側端面、軸部分21の外径及び片側端面で区画形成されている。図13(b)では、円筒室12がケーシング1の内径及び片側端面、軸部分21の外径、部材45の片側端面で区画形成されている。このように、回転ダンパの形態としては、以下の要部構成を除いて種々変形可能である。
【0014】
(第1形態の要部)図1〜図3の形態では、各回転翼25に設けられた収容部26と、収容部26の両側壁27A,27Bのうち、突出寸法の長い側壁27Aの方に貫通形成した通路28とを有している。収容部26は、回転翼25の先端側に位置して両側壁27A,27Bにより概略凹状に区画形成されている。両側壁27A,27Bは軸2が回転される周方向に位置している。側壁27Aの上端は、円筒室12の内周面と略同じ曲率の円弧面に形成され、内周面に摺接又は接近配置される。側壁27Bは、高さ寸法が側壁27Aよりも短く設定されて、円筒室12の内周面との間に粘性流体を通す所定大の隙間を形成する。また、両側壁27A,27Bのうち、側壁27Bの内面は傾斜した平坦面に形成されているのに対し、側壁27Aの内面は垂直面であり、両端側に位置した内面部分である凸部27aと、通路28に対応する箇所を上下に欠肉した一段低い内面部分である凹部27bとから形成されている。収容部26の底面26aには、凹部27bに通じる凹所26bが形成されている。一方、可動体5は、全体が収容部26に余裕を持って配置される外径及び長さの円柱状をなしている。そして、この可動体5は、収容部26に配置された状態で軸部分21と共にケーシング1内に組み込まれる。
【0015】
そして、以上の回転ダンパでは、図1(a)のごとく軸2が反時計回りに回転されると、粘性流体が通路28から収容部26内に導入され、可動体5が該導入流体圧により押されて側壁27Bの傾斜内面に沿って上向きに動かされて、側壁27Bの先端と円筒室12の内周面との間の隙間をほぼ閉じるため粘性流体による抵抗を強く受ける。これにより、軸2及びこれに連結される蓋体等は、増大された制動力によって緩く回転される。また、図1(b)のごとく時計回りに回転されると、粘性流体が前記した側壁27Bと内周面との間の隙間から収容部26内に導入され、可動体5が該導入流体圧により押されて元の位置、つまり側壁27Aの内面凸部27aと当たって規制され、該規制状態で粘性流体を通路28、凹所26bとの間の隙間、凹部27bとの間の隙間から通路28を通って逃がすため粘性流体による抵抗を減じる。これにより、軸2及びこれに連結される蓋体等は、相対的に弱くなった制動力によって速く回転される。この利点は、制動力の作動切換を簡易かつ簡明な構成により実現し、従来品に対し加工性、組立性、安定切換性などで優れている。
【0016】
(第2形態の要部)図4及び図5の形態では、第1形態に対し、回転翼25の収容部26を概略V形部にしたものであり、それ以外はほぼ同じ。即ち、この収容部26は、長い側壁27Aと短い側壁27Bとが内面形状として、下側で接続したV形となっている。このため、側壁27Aの内面は、両端の凸部27aと中間部の凹部27bとで傾斜段差面になっていると共に、流体通路28が凹部27bからV形部の下側へ直に通じている。そして、以上の回転ダンパでは、図4(a)のごとく軸2が反時計回りに回転されると、粘性流体が通路28から収容部26内に導入され、可動体5が該導入流体圧により押圧移動されて、側壁27Bの先端と円筒室12の内周面との間の隙間をほぼ閉じるため粘性流体による抵抗を強く受ける。また、図4(b)のごとく時計回りに回転されると、粘性流体が前記隙間から収容部26内に導入され、可動体5が該導入流体圧により押圧移動されて、側壁27Aの内面凸部27bと当たって規制され、該規制状態で粘性流体を前記隙間、凹部27bやV形下部との間の隙間から通路28を通って逃がすため粘性流体による抵抗を減じる。このため、この構造でも、第1形態と同様な作動及び利点を具備できる。
【0017】
(第3形態の要部)図6及び図7の形態は、例えば、回転ダンパが小型化されて、回転翼25の厚さや可動体5を相対的に小さくする場合を想定したものである。構造的には、収容部26の内面形状として、長い側壁27Aが前記凸部27a及び凹部27bからなる垂直面、短い側壁27Bが傾斜内面である点で第1形態と同じであるが、凹所26b付きの底面26aを狭くし、又、流体通路28を凹所26bの下面と面一になるよう連通切り欠いている。このため、可動体5は、図6(b)の状態で流体通路28より上側に位置して、収容部26内に導入される粘性流体を前記した隙間から流体通路28を通って逃がしやすくなっている。
【0018】
(使用例)図8〜図11は以上の回転ダンパが蓋体に適用されるときの態様を模式化したものであり、例えば、上記したケーシング1の隔壁11と軸2の軸部分21との間に設定されるオリフィスによる制動態様を示している。各図において、(a)は蓋体が閉位置、(c)は蓋体が開位置、(b)は蓋体が閉位置から開位置へ枢軸8を支点として回転されている途中とする。なお、(a)が蓋体開位置、(c)が蓋体閉位置としてもよい。また、以下の説明では、蓋体の正逆転において、回転ダンパとしての制動力を上記した可動体5の切換作動により強弱可変するが、その切換作動は無視する。
【0019】
図8の回転ダンパでは、隔壁11と軸部分21との間に設定される隙間Sが一定であり、蓋体が該隙間Sの寸法に応じた大きさの制動力に抗して回転されることになる。この点、図9の回転ダンパでは、前記隙間を設ける構成に対し、軸部分21が隔壁11の端面と摺接される外径で、該外径に対し偏心溝21aを形成した構成である。偏心溝21aは、例えば、一方回転翼25側を深くし、他方回転翼25側に達する前に軸部分21の外径に近づける溝である。この例では、蓋体が(a)から(b)位置になるまで強い制動力を受け、偏心溝21aの入口が(b)位置で隔壁11に達し、粘性流体が(b)位置から偏心溝21aを介し隔壁11と軸部分21の間を流れだし、制動力が次第に弱くなりながら(a)位置に達する。
【0020】
(他の工夫点)以上の2例に対し、図10〜図12のものは本発明者らが工夫したものであり、次のような構造となっている。図10の回転ダンパでは、軸部分21が回転翼25同士の間に突設された中間翼29aを有し、又、隔壁11aの突出寸法が該中間翼29aに応じて低く設定されている。図11の回転ダンパでは、軸部分21が各回転翼25の片側に突設された中間翼29bを有し、又、隔壁11aの突出寸法が該中間翼29bに応じて低く設定されている。即ち、中間翼29aと中間翼29bは、軸部分21に対する突出位置が異なっているが、回転翼25より低く、かつ、隔壁11の突出端面に摺接する点で同じ。各作動において、中間翼29aの場合には、蓋体が(b)位置に達するまで弱い制動力を受け、中間翼29aが(b)位置から隔壁11aを通過する間だけ、つまり開閉途中の一瞬だけ強い制動力を受けて緩やかに回転される。この点、中間翼29bの場合には、蓋体が(a)位置で強く制動されており、その制動力が中間翼29baの隔壁11aに対する摺接を開放する(b)位置に達するまで続き、以後は弱くなるため速く回転されることになる。
【0021】
図12(a),(b)は以上の中間翼構成を更に展開した2例であり、図11(c)の位置に対応して図示している。このうち、図12(a)の回転ダンパは、軸部分21が各回転翼25の一方側に突設された中間翼29bと共に、各回転翼25の他方側にも中間翼29cを追加した例である。この例では、中間壁29cが中間翼29bより突出寸法を低く設定されている。そして、この形態では、図11のものでは蓋体が図11(c)の開位置付近において弱い制動力となるのに対し、中間翼29cが隔壁11aに接近しているため開位置付近でも比較的強い制動力を受け、例えば、該制動力により蓋体の急速回転を抑えることを可能にする。この点、図12(b)の回転ダンパは、上記各形態に対し回転翼25を1個で構成しており、又、隔壁11bが図11の形態における隔壁11aと隔壁11aとを片側で一体に連結した構成である。この形態では、例えば、蓋体が重かったり大きく、しかも自重で回転されるような態様において、開から閉位置、閉から開位置への何れの回転時にも拡大された隔壁11bにより制動力を受け易くし、しかも開位置から少し閉方向へ回転された以後は中間翼29bにより更に強い制動力を受けて緩やかに回転可能にする。このように、本発明は、請求項で特定される要件を具備しておればよく、細部的には種々変形可能なものである。
【0022】
【発明の効果】
以上説明したように、本発明の回転ダンパは、従来品に対し軸側の回転翼が収容部を区画している長い側壁及び短い側壁を有し、可動体が収容部に可動自在に配置されて、長い側壁の流体通路から導入される粘性流体により短い側壁と内周面との間の隙間を閉状態に切り換え、短い側壁の前記隙間から導入される粘性流体により前記流体通路を開状態を保つことから、作動特性を可動体のはめ合い寸法精度に影響されず安定維持でき、製造不良をなくしたり寸法精度を緩和できる。請求項5では、中間翼により制動力を多面的に可変して用途に応じた色々な制動態様を簡単に付与できる。
【図面の簡単な説明】
【図1】本発明の第1形態を示す模式要部作動図である。
【図2】図1(a)のA−A1線に沿って断面した模式断面図である。
【図3】図1の可動体と回転翼との関係を示す模式外観図である。
【図4】本発明の第2形態を示す模式要部作動図である。
【図5】図4の可動体と回転翼との関係を示す模式外観図である。
【図6】本発明の第3形態を示す模式要部作動図である。
【図7】図6の可動体と回転翼との関係を示す模式外観図である。
【図8】第1形態の回転ダンパを用いたときの模式全体作動図である。
【図9】図8の他の例を示す模式全体作動図である。
【図10】本発明の中間翼を追加したときの模式全体作動図である。
【図11】図10の中間翼の他の例を示す模式全体作動図である。
【図12】上記中間翼及び隔壁の他の例を示す模式要部作動である。
【図13】上記回転ダンパの部材構成を変形した2例を示す図である。
【図14】回転ダンパの従来例を示す模式図である。
【図15】回転ダンパの他の従来例を示す模式図である。
【符号の説明】
1…ケーシング(12は円筒室)
2…軸(21は円筒室に配置される軸部分)
5…可動体
8…蓋体側との間に介在される枢軸
11,11a,11b…隔壁
25…回転翼(26は収容部)
27A…長い側壁
27B…短い側壁
26a…底面(26bは凹所)
27a,27b…凸部又は凹部
28…流体通路
29a,29b,29c…中間翼
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary damper that varies a braking force between forward rotation and reverse rotation among rotary dampers that use fluid pressure.
[0002]
[Prior art]
Recent rotary dampers vary the braking force received from a viscous fluid between normal rotation and reverse rotation of the shaft, for example, to increase the braking force when closing a lid or the like and to close quietly, and to adjust the braking force when opening. Is reduced so that it can be performed with a weak force. FIGS. 14 and 15 show a rotary damper that varies the braking force in such a manner. In the rotary damper shown in FIG. 14A (JP-A-10-205567), a casing 60 has a cylindrical chamber 62 in which a partition wall 61 is projected, and a shaft 65 is assembled to the casing 60 so that the cylindrical chamber 62 It has a rotating blade 66 protruding from a shaft portion to be arranged, and a movable body 68 arranged radially movable in a vertical groove 67 of the rotating blade 66. The rotary wing 66 is composed of a pair of standing walls 66a, 66a, and has a passage 67a provided at one base of the standing walls 66a and communicating with the vertical groove 67. The movable body 68 has a plate thickness that slides up and down with respect to the vertical groove 67, and has cutouts 68a corresponding to the passages 67a on both lower sides. Reference numeral 61a denotes an orifice provided in the partition wall 61. When the shaft 65 is rotated counterclockwise, the viscous fluid is introduced into the vertical groove 67 from the passage 67a, and the movable body 68 receives the introduced fluid pressure at the notch 68a and presses outward from the shaft center side. Then, the braking force is increased by projecting from the vertical groove 67 as in the upper side and abutting on the inner peripheral surface of the cylindrical chamber 62. When rotated clockwise, the viscous fluid leaks from the gap between the inner peripheral surface of the cylindrical chamber 62 and the vertical wall 66a and the tip of the movable body 68, so that the movable body 68 is inserted into the vertical groove 67 as shown below. Evacuate and reduce braking force. On the other hand, in the rotary damper shown in FIG. 14B (Japanese Patent Application Laid-Open No. 2001-50326), reference numerals 60 and 62 correspond to the casing and the cylindrical chamber, and reference numeral 61 is assembled to the casing 60, as compared with the above-described (a). Rotor blades on the shaft 65 side, and reference numerals 66 and 68 correspond to the partition wall and the movable body on the casing side. The partition wall 66 is composed of standing walls 66a, 66a, and has a passage 67b provided on one of the standing walls 66a. The movable body 68 is disposed between the two supporting walls 66a and slidably contacts the inner peripheral surface of the cylindrical chamber 62. The movable body 68 slides in the circumferential direction in the gap between the two supporting walls 66a and has a passage 68a. When the shaft 65 is rotated counterclockwise, the viscous fluid leaks through the gap between the left standing wall 66a and the inner peripheral surface, the passage 68a of the movable body 68, and the passage 67b of the right standing wall 66a. Reduce power. When rotated clockwise, the viscous fluid is introduced into the dual wall 66a from the gap between the vertical wall 66a and the passage 67b and the inner peripheral surface, and the movable body 68 is moved by the introduced fluid until it hits the left vertical wall 66a. The braking force is increased to close the passage 68a.
[0003]
On the other hand, the rotary damper shown in FIG. 15 (Japanese Patent Laid-Open No. 11-182607) is an example in which the braking force is varied during rotation between the open position and the closed position of the lid or the like, as compared with FIG. Reference numerals 60, 61, and 62 correspond to a casing, a partition, and a cylindrical chamber, reference numerals 65 and 66 correspond to a shaft and a rotating blade, and reference numerals 69a, 69b correspond to a movable body attached to the rotating blade 66. Reference numeral 61a denotes an orifice (arc-shaped groove) provided on the inner peripheral surface of the cylindrical chamber 62. The tip side of the rotary wing 66 has two concave portions 67a and 67b arranged side by side in the circumferential direction. The concave portion 67a is partitioned between one outer wall 66a and the intermediate side wall 66b, and the concave portion 67b is formed on the intermediate side wall 66a. And the other outer wall 66a. The side walls 66a and the intermediate side walls 66b maintain a predetermined gap between the inner peripheral surface. Each of the movable bodies 69a and 69b has a cylindrical shape that can roll in each of the recesses 67a and 67b. In this configuration, when the shaft 65 is rotated and the movable bodies 69a and 69b face the inner peripheral surface portion forming the orifice 61a, and when the movable bodies 69a and 69b face the inner peripheral surface portions on both sides of the orifice 61a. The braking force varies between when and when. That is, the braking force of the shaft 65 is reduced so that the viscous fluid leaks from the orifice 61a when both movable bodies 69a and 69b are located on the inner peripheral surface portion forming the orifice 61a, and one of the movable bodies 69a and 69b is reduced. For example, the leakage of the viscous fluid is reduced and increased from the position shown in the drawing, that is, the position of the inner peripheral surface deviating from the orifice 61a.
[0004]
[Problems to be solved by the invention]
As described above, in the conventional structure, the braking force is varied by a devised configuration, but the operation characteristics cannot be stably maintained for a long period of time, or the workability and the like are still unsatisfactory. That is, in the structure of FIG. 14A, the dimensional accuracy of the fit between the movable body 68 and the vertical groove 67 affects the operation characteristics, and if the movable body 68 is loosely engaged with the vertical groove 67, If the movable body 68 protrudes from the vertical groove 67 despite being rotated clockwise, or if the movable body 68 is strongly engaged with the vertical groove 67, the vertical groove 67 is rotated despite being rotated counterclockwise. No longer protrude from In the structure of FIG. 14B, each of the upright walls 66 a maintains a gap on the inner peripheral surface of the cylindrical chamber 62, and the movable body 68 is in sliding contact with the inner peripheral surface of the cylindrical chamber 62. If the fitting dimensional accuracy is not reliably maintained, the same situation as described above occurs. Further, since the partition 66 must be provided in the cylinder of the casing 60 and the passage 67b must be formed through the partition 66, the molding die becomes complicated and secondary processing is required. On the other hand, in the structure of FIG. 15, a plurality of movable bodies 69a and 69b are used, and since the orifice 61a is formed on the inner peripheral surface of the cylindrical chamber 62, the molding die becomes complicated and secondary processing is required.
[0005]
An object of the present invention is to reduce the dimensional accuracy of fitting between members as compared with the conventional products as described above, to facilitate manufacture, and to more stably maintain operating characteristics. Another object of the present invention is to make it possible to vary the braking force in various aspects other than the switching operation of the movable body.
[0006]
[Means for Solving the Problems]
According to the present invention, in order to achieve the above object, the casing 1 has a cylindrical chamber 12 in which a partition wall 11 is protruded, and the shaft 2 assembled to the casing 1 And a movable body 5 attached to the rotating blade, and the cylindrical chamber 12 is filled by the forward rotation and the reverse rotation of the shaft 2. In the rotary damper which varies the braking force received from the viscous fluid, the rotary wing 25 has a substantially concave receiving portion 26 provided on the tip end side, and a long portion which defines the receiving portion 26 and faces in the circumferential direction. The movable body 5 has a side wall 27A and a short side wall 27B, and a fluid passage 28 formed through the long side wall. The movable body 5 is loosely fitted between both side walls 27A and 27B of the housing portion so as to be freely movable. Introduced from the fluid passage 28 of the long side wall 27A. The fluid passage gap formed between the short side wall 27B and the inner peripheral surface of the cylindrical chamber 12 is switched to a closed state by moving with the viscous fluid, and moves with the viscous fluid introduced from the gap. Is characterized in that the fluid passage 28 of the long side wall is kept open.
[0007]
In the above rotary damper, when the shaft 2 is rotated counterclockwise, a viscous fluid is introduced from the passage 28a into the housing 26 as shown in FIG. 1A, and the movable body 5 receives the introduced fluid pressure and rotates. By moving or sliding, the gap formed between the short side wall 27B and the inner peripheral surface is closed to increase the braking force. When rotated clockwise, a viscous fluid is introduced into the housing portion 26 from the gap between the short side wall 27B and the inner peripheral surface as shown in FIG. 1B, and the movable body 5 rolls with the introduced fluid pressure. Or, it is slid and is regulated by hitting the inner surface (convex portion 27a) of the long side wall 27A, but a space is secured between the housing portion 26 and the shape thereof, that is, the concave portion 27b on the inner surface. Since the fluid leaks through the gap in the housing portion and the fluid passage 28, the braking force is reduced in proportion to the leak. That is, in this structure, the side walls 27A and 27B having different lengths of the housing portion 26 are provided on the rotary wing 25, and the movable body 5 is formed in the shape of the housing portion 26 (the inner surface recess 27b and the bottom surface recess). 1 (b) by the location 26b), the operating characteristics can be stably maintained without being affected by the dimensional accuracy of the fitting of the movable body 5, the processing is facilitated, the production defect is eliminated, and the dimensional accuracy is reduced. It is excellent in that it can be done.
[0008]
The above invention is more preferably embodied as in claims 2 to 5. That is, (Claim 2) The movable body 5 has a cylindrical shape that can be rolled or slid between the side walls 27A and 27B, and is located in the housing portion 26 and has the long side wall 27A and the short side wall 27A. It is configured to be movable upward or downward between the side wall 27B. This is because when the movable body 5 is moved slightly obliquely between the side walls 27A and 27B by receiving the viscous fluid pressure as in each mode, the inner peripheral surface is secured while maintaining the height dimension difference between the side walls. One side wall 27A is slidably contacted with the other side wall 27B, and a predetermined gap is easily obtained between the side wall 27A and the other side wall 27B. (Claim 3) The inner surface of the long side wall 27A has a concave portion 27b for allowing the viscous fluid introduced from the fluid passage 28 to escape into the housing portion 26. The concave portion 27b can be easily formed by a molding die, so that the relative dimensional accuracy between the accommodating portion 26 and the movable body 5 can be relaxed and the switching operation of the movable body 5 can be stably maintained as compared with the conventional product.
(Claim 4) The bottom surface between the side walls 7A and 7B is formed as a concave portion 26b having a thinned middle portion or a substantially V-shaped portion. The former makes it easy to introduce a viscous fluid into the housing portion 26 by the presence of the recess 26b as in the example of the first embodiment, and reduces the contact area between the movable body 5 and the switching operation of the movable body. Make it good. In the latter case, when the movable body 5 is held at an intermediate position of the V-shaped portion as in the second embodiment, the viscous fluid can be surely introduced from the fluid passage 28 into the housing portion 26. As described above, the thickness of the rotary wing 25 is reduced, and it is easy to cope with miniaturization.
(Claim 5) An intermediate wing 29a (29b, 29c) in which the shaft portion 21 disposed in the cylindrical chamber 12 is lower than the rotary wing 25 and protrudes so as to slide or approach the end face of the partition wall 11. It is a configuration that it has. The intermediate wing has a shape exemplified in FIGS. 10 to 12. For example, in the intermediate wing 29 a in FIG. 10, the braking force is maximized at a substantially intermediate position between the open position and the closed position of the lid or the like. In the eleventh intermediate wing 29b, the braking force can be varied in many aspects by maximizing the braking force near the open or closed position of the lid or the like. In this structure, the degree of freedom in design can be increased while avoiding the complication shown in FIG.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment to which the present invention is applied will be described with reference to the drawings. 1 to 3 show a first embodiment, FIGS. 4 and 5 show a second embodiment, and FIGS. 6 and 7 show a third embodiment. 8 shows a usage example using the first embodiment, FIG. 9 shows a usage example in which an orifice is added, FIGS. 10 and 11 show two usage examples in which an intermediate wing is added, and FIG. 13 shows the intermediate wing. 13 shows another modified example. FIG. 14 is an example in which the constituent members of FIG. 2 are changed.
In the following description, after basic matters common to the respective embodiments are described in outline, the main parts of the first to third embodiments will be described in detail, and use examples and other ideas will be referred to. In addition, in each description, the same reference numerals are given to the same operationally the same members, and redundant description is omitted as much as possible.
[0010]
(Summary) The target rotary damper is such that the casing 1 has a cylindrical chamber 12 in which a partition wall 11 is protruded, and a shaft 2 rotatably assembled to the casing 1 is provided on a shaft portion 21 disposed in the cylindrical chamber 12. It has the rotating blade 25 protruding and the movable body 5 arranged in the accommodating portion 26 of the rotating blade 25, and the shaft 2 receives the viscous fluid filled in the cylindrical chamber 12 by normal rotation and reverse rotation. This is a type in which the power is changed via the movable body 5. In each embodiment, as shown in FIGS. 1 and 2, the main member includes a casing 1, a shaft 2, a support member 3, a cover 4, a movable body 5, and an adjustment member 6. The main members are all resin molded products. However, the material may be other than resin.
[0011]
Here, the casing 1 has an inner periphery 10 having substantially the same diameter except for a tip portion 13 having a minimum diameter, a female screw portion formed at a rear end, and an outer periphery which makes the tip portion 13 one step smaller in diameter. The uneven portion 14 is formed in a portion where the diameter becomes small. The cover 4 includes a front portion 40 having an uneven portion 41 formed on the inner periphery, and a rear portion 42 forming a small-diameter portion through which a corresponding portion of the shaft portion 2 is inserted. The cover 4 is connected to the casing 1 by pushing the distal end portion 13 into the front portion 40 via the engagement between the concave and convex portions 14 and 41. The shaft 2 is composed of a pivot portion 20, a shaft portion 21 corresponding to the cylindrical chamber 12, a shaft portion 22 corresponding to the front end portion 13, and a shaft portion 23 corresponding to the rear portion 42, from the front side toward the rear side. And a connection hole 24 provided along the axis. The pivot 20 is pivotally supported by the support member 3 arranged on the inner periphery 10. The shaft portion 21 is larger in diameter than the pivot portion 20 and the shaft portion 22, and protrudes around the two rotating blades 25 which are displaced by 180 degrees. After the movable body 5 described later is disposed in the accommodating portion 26 of the rotary wing 25, the shaft 2 is inserted into the inner diameter of the rear portion 42 from the inner periphery 10, whereby the casing 1 and the cover 4 Incorporated in At this time, the space between the tip portion 13 and the shaft portion 22 is sealed via a seal member (O-ring) 16 mounted on the outer periphery of the shaft portion 22. A lid or the like to which the rotary damper of the present invention is applied is connected to the connection hole 24 via the pivot 8.
[0012]
The support member 3 has a disk shape engaged with the inner diameter of the inner periphery 10, and has a shaft hole 31 for pivotally supporting the pivot portion 20, an outlet 32 formed through the center and closed by the bolt 7, and a partition 11. And a pair of fitting grooves 33 to be fitted. Then, the support member 3 is pushed into the inner periphery 10 of the casing 1 from one end side, and one end side of each partition 11 is fitted into the corresponding fitting groove 33. The shaft 2 is rotatably supported via the engagement. At this time, the space between the support member 3 and the inner periphery 10 is sealed via a seal member (O-ring) 15 mounted on the outer periphery of the support member 3. When the viscous fluid has been filled in advance, the bolt 7 is attached after unnecessary portions are discharged from the discharge port 32. However, after the support member 3 has been assembled, the viscous fluid can be filled into the cylindrical chamber 26 from the discharge port 32 by attaching and detaching the bolt 7. The position of the support member 3 described above is regulated on the inner periphery 10 by the adjusting member 6 screwed into the female screw portion of the inner periphery 10 described above, and is adjusted in the axial direction as necessary. The adjusting member 6 has a recess 6a provided on the inner surface side to escape the head of the bolt 7, and an operation groove 6b provided on the outer surface side so as to be rotatable by a driver or the like.
[0013]
The rotary damper described above is designed so that each member can be assembled by an insertion operation from one direction. The adjustment member 6 adjusts the position of the support member 3 with respect to the inner circumference 10 to absorb a variation in the gap between the corresponding end surface of the support member 3 defining the end surface of the cylindrical chamber 12 and the rotary blade 25. For example, the dimensional accuracy between the support member 3 and the rotary wing 25 is reduced, or the manufacturing is facilitated. However, the target rotary damper may be changed as in the example of FIG. FIGS. 13A and 13B correspond to the cross section taken along line AA2 in FIG. In each embodiment, the support member 3 and the adjustment member 6 are omitted, and the distal end portion 13 of the casing 1 is formed by a dedicated member 45. In FIG. 13A, the cylindrical chamber 12 is defined by the inner diameter and one end face of the casing 1 and the outer diameter and one end face of the shaft portion 21. In FIG. 13B, the cylindrical chamber 12 is defined by the inner diameter and one end face of the casing 1, the outer diameter of the shaft portion 21, and the one end face of the member 45. As described above, the form of the rotary damper can be variously modified except for the following main configuration.
[0014]
(Main part of the first embodiment) In the embodiment of FIGS. 1 to 3, the housing portion 26 provided on each rotary wing 25 and the side wall 27 </ b> A having the longer protruding dimension among the side walls 27 </ b> A and 27 </ b> B of the housing portion 26 are used. And a passage 28 formed therethrough. The accommodating portion 26 is located on the tip side of the rotary wing 25 and is formed into a generally concave shape by both side walls 27A and 27B. The side walls 27A and 27B are located in the circumferential direction in which the shaft 2 is rotated. The upper end of the side wall 27A is formed in a circular arc surface having substantially the same curvature as the inner peripheral surface of the cylindrical chamber 12, and is slidably contacted or arranged close to the inner peripheral surface. The side wall 27B has a height dimension shorter than that of the side wall 27A, and forms a predetermined gap between the inner peripheral surface of the cylindrical chamber 12 and the viscous fluid. Of the side walls 27A and 27B, the inner surface of the side wall 27B is formed as an inclined flat surface, while the inner surface of the side wall 27A is a vertical surface, and the convex portion 27a is an inner surface portion located at both ends. And a recess 27b, which is a stepped lower inner surface portion in which a portion corresponding to the passage 28 is cut vertically. A recess 26b communicating with the recess 27b is formed in the bottom surface 26a of the housing 26. On the other hand, the movable body 5 has a columnar shape having an outer diameter and a length that are entirely arranged in the accommodation portion 26 with a margin. Then, the movable body 5 is incorporated in the casing 1 together with the shaft portion 21 in a state where the movable body 5 is disposed in the housing portion 26.
[0015]
In the rotary damper described above, when the shaft 2 is rotated counterclockwise as shown in FIG. 1A, the viscous fluid is introduced from the passage 28 into the housing 26, and the movable body 5 is moved by the introduced fluid pressure. When pushed, it is moved upward along the inclined inner surface of the side wall 27B to substantially close the gap between the tip of the side wall 27B and the inner peripheral surface of the cylindrical chamber 12, so that it receives strong resistance by viscous fluid. As a result, the shaft 2 and the lid connected thereto are slowly rotated by the increased braking force. When rotated clockwise as shown in FIG. 1B, the viscous fluid is introduced into the housing portion 26 from the gap between the side wall 27B and the inner peripheral surface, and the movable body 5 is displaced by the introduced fluid pressure. The viscous fluid is restricted by being pressed by the inner surface convex portion 27a of the side wall 27A, and the viscous fluid passes through the gap between the passage 28 and the recess 26b and the gap between the recess 27b. Escape through 28 reduces drag by viscous fluid. As a result, the shaft 2 and the lid connected thereto are quickly rotated by the relatively weak braking force. This advantage is achieved by a simple and simple configuration for switching the operation of the braking force, and is superior to conventional products in workability, assemblability, stable switching performance, and the like.
[0016]
(Main part of the second embodiment) In the embodiment of FIGS. 4 and 5, the housing 26 of the rotary wing 25 is substantially V-shaped compared to the first embodiment, and the other parts are almost the same. That is, the housing portion 26 has a V-shape in which a long side wall 27A and a short side wall 27B are connected on the lower side as inner shapes. For this reason, the inner surface of the side wall 27A is formed as an inclined step surface by the convex portion 27a at both ends and the concave portion 27b at the intermediate portion, and the fluid passage 28 communicates directly from the concave portion 27b to the lower side of the V-shaped portion. . In the rotary damper described above, when the shaft 2 is rotated counterclockwise as shown in FIG. 4A, the viscous fluid is introduced from the passage 28 into the housing 26, and the movable body 5 is moved by the introduced fluid pressure. It is pushed and moved to substantially close the gap between the tip of the side wall 27B and the inner peripheral surface of the cylindrical chamber 12, so that it receives strong resistance by viscous fluid. Further, when rotated clockwise as shown in FIG. 4B, the viscous fluid is introduced into the housing portion 26 from the gap, and the movable body 5 is pressed and moved by the introduced fluid pressure, so that the inner surface of the side wall 27A is convex. In the restricted state, the viscous fluid is released through the passage 28 through the clearance, the concave portion 27b and the clearance between the V-shaped lower portion, thereby reducing the resistance due to the viscous fluid. Therefore, even with this structure, the same operation and advantages as those of the first embodiment can be provided.
[0017]
(Principal part of the third embodiment) The embodiments of FIGS. 6 and 7 assume, for example, a case where the rotary damper is downsized to make the thickness of the rotary wing 25 and the movable body 5 relatively small. Structurally, the inner surface shape of the housing portion 26 is the same as that of the first embodiment in that the long side wall 27A is a vertical surface including the convex portion 27a and the concave portion 27b, and the short side wall 27B is an inclined inner surface. The bottom surface 26a with 26b is narrowed, and the fluid passage 28 is cut off so as to be flush with the lower surface of the recess 26b. For this reason, the movable body 5 is located above the fluid passage 28 in the state of FIG. 6B, and the viscous fluid introduced into the housing portion 26 is easily released from the gap through the fluid passage 28. ing.
[0018]
(Usage Example) FIGS. 8 to 11 schematically show an embodiment in which the above-described rotary damper is applied to a lid body. The mode of braking by an orifice set in between is shown. In each of the drawings, (a) shows the lid being closed, (c) shows the open position, and (b) shows that the lid is being rotated from the closed position to the open position about the pivot 8 as a fulcrum. (A) may be the lid open position, and (c) may be the lid closed position. Further, in the following description, the braking force as the rotary damper is made to vary strongly by the switching operation of the movable body 5 in the forward / reverse rotation of the lid, but the switching operation is ignored.
[0019]
In the rotary damper of FIG. 8, the gap S set between the partition wall 11 and the shaft portion 21 is constant, and the lid is rotated against a braking force having a size corresponding to the dimension of the gap S. Will be. In this regard, the rotary damper of FIG. 9 has a configuration in which the shaft portion 21 has an outer diameter that is slidably contacted with the end face of the partition wall 11 and an eccentric groove 21a is formed with respect to the outer diameter, in contrast to the configuration in which the gap is provided. The eccentric groove 21 a is, for example, a groove that makes the one rotating blade 25 side deeper and approaches the outer diameter of the shaft portion 21 before reaching the other rotating blade 25 side. In this example, the lid receives a strong braking force from the position (a) to the position (b), the entrance of the eccentric groove 21a reaches the partition 11 at the position (b), and the viscous fluid flows from the position (b) to the eccentric groove. It starts to flow between the partition 11 and the shaft portion 21 through the portion 21a, and reaches the position (a) while the braking force gradually decreases.
[0020]
(Other Deviations) In contrast to the above two examples, those shown in FIGS. 10 to 12 have been devised by the present inventors and have the following structure. In the rotary damper of FIG. 10, the shaft portion 21 has an intermediate wing 29 a protruding between the rotary wings 25, and the protrusion dimension of the partition wall 11 a is set low according to the intermediate wing 29 a. In the rotary damper of FIG. 11, the shaft portion 21 has an intermediate wing 29 b protruding from one side of each of the rotary wings 25, and the protrusion dimension of the partition wall 11 a is set low according to the intermediate wing 29 b. That is, the intermediate wing 29a and the intermediate wing 29b are different in the projecting position with respect to the shaft portion 21, but are the same in that they are lower than the rotary wing 25 and slidably contact the projecting end surface of the partition wall 11. In each operation, in the case of the intermediate wing 29a, a weak braking force is applied until the lid reaches the position (b), and only while the intermediate wing 29a passes through the partition 11a from the position (b), that is, momentarily during opening and closing. It is gently rotated under strong braking force. In this regard, in the case of the intermediate wing 29b, the lid is strongly braked at the position (a), and the braking force continues until the braking force reaches the position (b) at which the sliding contact of the intermediate wing 29ba with the partition 11a is released. After that, it will be rotated faster because it becomes weaker.
[0021]
FIGS. 12A and 12B show two examples in which the above-mentioned intermediate wing configuration is further developed, and are shown corresponding to the position of FIG. 11C. Among them, the rotary damper of FIG. 12A has an example in which the shaft portion 21 is provided on one side of each of the rotary blades 25 and the intermediate blade 29 b is added to the other side of each rotary blade 25 as well. It is. In this example, the projecting dimension of the intermediate wall 29c is set lower than that of the intermediate wing 29b. In this embodiment, the lid shown in FIG. 11 has a weak braking force near the open position in FIG. 11 (c), whereas the intermediate wing 29c is close to the partition wall 11a, so the comparison is also made near the open position. A strong braking force is received, and for example, the rapid rotation of the lid can be suppressed by the braking force. In this regard, the rotary damper of FIG. 12B is configured with one rotary blade 25 for each of the above-described embodiments, and the partition 11b is integrated with the partition 11a and the partition 11a of FIG. 11 on one side. It is the structure connected to. In this embodiment, for example, in a mode in which the lid is heavy or large, and is rotated by its own weight, the braking force is applied by the enlarged partition wall 11b when rotating from the open position to the closed position or from the closed position to the open position. After being rotated slightly in the closing direction from the open position, the intermediate wing 29b receives a stronger braking force to enable gentle rotation. As described above, the present invention only needs to satisfy the requirements specified in the claims, and can be variously modified in detail.
[0022]
【The invention's effect】
As described above, the rotary damper of the present invention has a long side wall and a short side wall in which the rotating blade on the shaft side partitions the accommodating portion with respect to the conventional product, and the movable body is movably disposed in the accommodating portion. The gap between the short side wall and the inner peripheral surface is switched to a closed state by viscous fluid introduced from the fluid passage of the long side wall, and the fluid passage is opened by the viscous fluid introduced from the gap of the short side wall. Since the operation characteristics are maintained, the operation characteristics can be stably maintained without being affected by the dimensional accuracy of the fitting of the movable body, so that manufacturing defects can be eliminated and the dimensional accuracy can be reduced. According to the fifth aspect, the braking force can be variously varied by the intermediate wing, and various braking modes according to the application can be easily provided.
[Brief description of the drawings]
FIG. 1 is a schematic main part operation diagram showing a first embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view taken along the line AA1 of FIG.
FIG. 3 is a schematic external view showing a relationship between a movable body and a rotary wing in FIG. 1;
FIG. 4 is a schematic main part operation diagram showing a second embodiment of the present invention.
FIG. 5 is a schematic external view showing a relationship between a movable body and a rotary wing in FIG. 4;
FIG. 6 is a schematic main part operation diagram showing a third embodiment of the present invention.
FIG. 7 is a schematic external view showing a relationship between a movable body and a rotary wing in FIG. 6;
FIG. 8 is a schematic overall operation diagram when the rotary damper of the first embodiment is used.
FIG. 9 is a schematic overall operation diagram showing another example of FIG. 8;
FIG. 10 is a schematic overall operation diagram when an intermediate wing of the present invention is added.
FIG. 11 is a schematic overall operation diagram showing another example of the intermediate wing in FIG. 10;
FIG. 12 is a schematic main part operation showing another example of the intermediate wing and the partition.
FIG. 13 is a view showing two examples in which the member configuration of the rotary damper is modified.
FIG. 14 is a schematic view showing a conventional example of a rotary damper.
FIG. 15 is a schematic view showing another conventional example of a rotary damper.
[Explanation of symbols]
1 ... casing (12 is a cylindrical chamber)
2 ... Shaft (21 is a shaft portion arranged in a cylindrical chamber)
Reference numeral 5: movable body 8: pivots 11, 11a, 11b interposed between the lid and the lid side partition wall 25: rotating wings (26 is a housing portion)
27A long side wall 27B short side wall 26a bottom surface (26b is a recess)
27a, 27b: convex portion or concave portion 28: fluid passage 29a, 29b, 29c: middle wing

Claims (5)

ケーシングが隔壁を突設した円筒室を有し、前記ケーシングに組み付けられる軸が前記円筒室に配置される軸部分に突設した回転翼及び当該回転翼に付設される可動体を有しており、前記軸の正転と逆転とで、前記円筒室に充填された粘性流体より受ける制動力を可変する回転ダンパにおいて、
前記回転翼は、先端側に設けられた概略凹状の収容部と、該収容部を区画形成して周方向に対向している長い側壁及び短い側壁と、前記長い側壁に貫通形成した流体通路とを有し、
前記可動体は、前記収容部の両側壁の間に可動自在に遊嵌されて、前記長い側壁の流体通路から導入される粘性流体で動いて前記短い側壁と前記円筒室の内周面との間に形成されている流体通路用隙間を閉状態に切り換え、かつ、当該隙間から導入される粘性流体で動いても前記長い側壁の流体通路の開状態を保つことを特徴とする回転ダンパ。
The casing has a cylindrical chamber with a partition wall protruding therefrom, and a shaft assembled to the casing has a rotating wing protruding from a shaft portion arranged in the cylindrical chamber and a movable body attached to the rotary wing. In the rotary damper, which varies the braking force received from the viscous fluid filled in the cylindrical chamber with the normal rotation and the reverse rotation of the shaft,
The rotary wing has a substantially concave housing portion provided on the tip side, a long side wall and a short side wall which partition the housing portion and are circumferentially opposed to each other, and a fluid passage formed through the long side wall. Has,
The movable body is movably fitted between both side walls of the housing portion and is moved by a viscous fluid introduced from a fluid passage of the long side wall to move between the short side wall and the inner peripheral surface of the cylindrical chamber. A rotary damper characterized in that a fluid passage gap formed therebetween is switched to a closed state, and the fluid passage on the long side wall is kept open even when moved by viscous fluid introduced from the gap.
前記可動体が、前記両側壁の間に転動又は摺動可能な円柱状をなし、前記収容部内にあって、前記長い側壁と前記短い側壁との間を上又は下向きに可動する請求項1又は2に記載の回転ダンパ。2. The movable body has a cylindrical shape that can be rolled or slid between the two side walls, and is movable upward or downward between the long side wall and the short side wall in the housing portion. 3. Or the rotary damper according to 2. 前記長い側壁の内面が、前記流体通路から導入される粘性流体を収容部内に逃がす凹部を有している請求項1又は2に記載の回転ダンパ。3. The rotary damper according to claim 1, wherein an inner surface of the long side wall has a concave portion for allowing a viscous fluid introduced from the fluid passage to escape into the housing portion. 4. 前記両側壁の間の底面が中間部を欠肉した凹所か、略V形部として形成されている請求項1から3の何れかに記載の回転ダンパ。The rotary damper according to any one of claims 1 to 3, wherein a bottom surface between the side walls is formed as a concave portion having a reduced thickness at an intermediate portion or a substantially V-shaped portion. 前記円筒室に配置される軸部分が、前記回転翼より低く、かつ、前記隔壁の端面に摺接又は接近するよう突出した中間翼を有している請求項1から4の何れかに記載の回転ダンパ。5. The shaft according to claim 1, wherein the shaft portion disposed in the cylindrical chamber has an intermediate wing that is lower than the rotary wing and protrudes so as to slidably contact or approach an end surface of the partition wall. Rotary damper.
JP2002231857A 2002-08-08 2002-08-08 Rotary damper Pending JP2004068993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002231857A JP2004068993A (en) 2002-08-08 2002-08-08 Rotary damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002231857A JP2004068993A (en) 2002-08-08 2002-08-08 Rotary damper

Publications (1)

Publication Number Publication Date
JP2004068993A true JP2004068993A (en) 2004-03-04

Family

ID=32017495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002231857A Pending JP2004068993A (en) 2002-08-08 2002-08-08 Rotary damper

Country Status (1)

Country Link
JP (1) JP2004068993A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185846A (en) * 2008-02-04 2009-08-20 Sugatsune Ind Co Ltd Damper device
KR101023598B1 (en) * 2008-06-24 2011-03-21 가부시키가이샤 니프코 Damper device
JP2012127383A (en) * 2010-12-14 2012-07-05 Katoh Electrical Machinery Co Ltd Fluid damper hinge
EP2636919A3 (en) * 2012-03-06 2017-11-15 Pressalit A/S Rotary damper
KR102091471B1 (en) * 2018-10-24 2020-03-20 주식회사 파츠텍 Hinge module for rotating door

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185846A (en) * 2008-02-04 2009-08-20 Sugatsune Ind Co Ltd Damper device
KR101023598B1 (en) * 2008-06-24 2011-03-21 가부시키가이샤 니프코 Damper device
JP2012127383A (en) * 2010-12-14 2012-07-05 Katoh Electrical Machinery Co Ltd Fluid damper hinge
EP2636919A3 (en) * 2012-03-06 2017-11-15 Pressalit A/S Rotary damper
KR102091471B1 (en) * 2018-10-24 2020-03-20 주식회사 파츠텍 Hinge module for rotating door

Similar Documents

Publication Publication Date Title
US8523548B2 (en) Screw compressor having a gate rotor assembly with pressure introduction channels
EP3636952A1 (en) Rotary damper comprising simple self-supporting mechanism
JP2004068993A (en) Rotary damper
JP2004068991A (en) Rotary damper
JP2004068992A (en) Rotary damper
JP4144792B2 (en) Rotating damper
JP6559493B2 (en) Rotating damper
WO2003074901A1 (en) Rotary damper
JP3981172B2 (en) Rotating damper
JPH0220478Y2 (en)
JPH07119781A (en) Rotary damper
WO2017130847A1 (en) Fluid damper device and apparatus with damper
JP3510764B2 (en) On-off valve device for soft closing damper mechanism
JP7346132B2 (en) fluid damper device
JP2001050326A (en) Rotary damper
JP2002130151A (en) Vane pump
JP2015227719A (en) Simple self-supporting mechanism
JP2000046087A (en) Rotary damper
JP4136570B2 (en) Damper device
JP2001165075A (en) Compressor
JPH07332421A (en) Rotational damper
JPS6014950Y2 (en) rotary compressor
JP4947720B2 (en) Rotating damper
CN219763217U (en) Damper and toilet cover plate
JPH11182531A (en) Rotational action supporting mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603