JP4136570B2 - Damper device - Google Patents

Damper device Download PDF

Info

Publication number
JP4136570B2
JP4136570B2 JP2002278681A JP2002278681A JP4136570B2 JP 4136570 B2 JP4136570 B2 JP 4136570B2 JP 2002278681 A JP2002278681 A JP 2002278681A JP 2002278681 A JP2002278681 A JP 2002278681A JP 4136570 B2 JP4136570 B2 JP 4136570B2
Authority
JP
Japan
Prior art keywords
cylinder
groove
rotating body
damper
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002278681A
Other languages
Japanese (ja)
Other versions
JP2004124952A (en
JP2004124952A5 (en
Inventor
良祐 林
誠一郎 井上
義郎 寺田
悟 加藤
英司 福澤
孝幸 外村
直久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2002278681A priority Critical patent/JP4136570B2/en
Publication of JP2004124952A publication Critical patent/JP2004124952A/en
Publication of JP2004124952A5 publication Critical patent/JP2004124952A5/ja
Application granted granted Critical
Publication of JP4136570B2 publication Critical patent/JP4136570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、作動油を用いることにより一回動方向への外力に対する抵抗力を得るようにして、当該抵抗力による緩衝作用、即ち、制動力を発揮させるようにし、かつ、逆回動方向に対しては、可及的に小さな抵抗力ですむようにした各種の用途に供し得るダンパー機構の改良に関する。
【0002】
【従来の技術】
近年、温水洗浄装置は清潔かつ衛生的であるので広く使用されるようになってきている。この温水洗浄装置の便蓋や便座などを開閉するときに便器に当たり衝撃を発するため、一部の温水洗浄装置には回動軸とともにダンパー装置を用いて衝撃を抑制することが試みられている。
従来、この種のダンパー装置には図13に示すような構成のものがあった。以下その構成について図面を参照しながら説明する。図13に示すように、ダンパー装置100はシリンダー102、回転軸103、逆止弁104等によって構成され、シリンダー102はその内壁に仕切壁102aを有し、内部には回転軸103が貫通し、回転軸103と仕切壁102aとによって二分割された室105内にオイルが充填されている。回転軸103は放射状に突出した翼部106を有し、逆止弁104と翼部106とによって室105を加圧室105aと減圧室105bとにさらに二分割している。また翼部106は加圧室105aと減圧室105bとを連通させる連通路107を有し、逆止弁104はその外面がシリンダー102の内周面に接し、その内面が翼部106を囲んでおり、減圧室105b側に制御口108を設け、翼部106の連通路107とともに加圧室105aと減圧室105bとを連通させている。なお図14における109はOリング、110はシリンダー102の先端を封止するためのキャップを示す。そして、回転軸103が回動して翼部106と逆止弁104との相互位置が変化し、逆止弁104が加圧室105aから減圧室105bへ流れるオイル量を制御して回動速度を抑制するものである。
14に示すように、ダンパー装置100は便器上に設置された洗浄装置本体112に固定するとともに、便座113および便蓋114とは個々のダンパー装置100の回転軸103を介して結合している。そして、使用者が便座113または便蓋114を開放するときに、上方に持ち上げて開放したり閉止する場合には、便座113または便蓋114を軽く手前に引くと、ダンパー装置100の作用によって急激な回動速度を抑制しつつ閉止するものである。(例えば、特許文献1参照。)
【0003】
【特許文献1】
特開平5−296267号公報
【0004】
【発明が解決しようとする課題】
ところが、生産バラツキによってシリンダーと回転軸の間には軸線方向に隙間が形成されるため、この隙間をオイルが通過するために粘性流体速度をコントロールできず、緩閉止時間がばらついて閉止動作が安定しなかった。
このような課題を解決するために、たとえば軸線方向のバラツキに対して、回転軸をシリンダーに押し付けて隙間をなくす調節機構を設けたものがある。
しかしこの方法では、開閉回数を重ねると、接触部分が磨耗して摩擦力が低下するため、緩閉止時間が初期よりもかなり短くなり、ついには緩閉止動作しなくなる恐れがある。
さらに、閉止動作時には翼部が粘性流体を押し込むため、オイル室内には大きな内圧が発生し、弁体はシリンダー内周壁と翼部外周壁とで押さえつけられながら粘性流体の流れを遮断しようとするため、弁体が磨耗して、長期間の繰り返し開閉回数を重ねると初期の安定したソフト閉止動作を持続できなくなる恐れがあった。
【0005】
【課題を解決するための手段及び作用及び効果】
上記課題を解決するために本発明では、内部を軸方向に2分する仕切壁を有する円筒状のシリンダーと、該シリンダー内に回動自在に挿入配設される円柱状の回転軸と、該回転軸のシリンダーに対する相対的な回動によって、シリンダーの内周壁面を摺動可能で、該回転軸の外周にあってその径方向へ突設した翼部と、この翼部によりシリンダー内部が回転軸の軸線方向に仕切られる室と、該室に充填されるオイルと、回転軸に対し回動不能に固定される回転体と、該回転体と前記翼部との間に設けられる逆止弁装置部とからなり、該逆止弁装置部における前記オイルの押圧力により前記回転軸及び回転体をそれぞれ前記軸線方向に移動させダンパー装置を構成したので、回転軸と回転体の間に設けられた逆止弁装置部の弁体がオイルから受ける圧力で回転軸及び回転体をシリンダーの端面壁側に押し付け、「生産バラツキ」によって生じた回転軸とシリンダー間の軸線方向の隙間を全て回転軸と回転体の隙間に集約させることができる。
それにより、「生産バラツキ」による回転軸とシリンダー間の軸線方向の隙間によって緩閉止時時間が変わることがなく、安定した緩閉止動作を得ることができる。
そのため、回転軸とシリンダーとの軸線方向の隙間を調節する機構は不要となり、コストダウンを図ることができる。
更に、弁体を回転軸とシリンダーとの間に配置した場合と比べ、摺動摩擦が発生しないため弁体の磨耗による性能劣化はほとんど発生しないため、開閉回数を重ねても安定した緩閉止動作を実現できる。
また、前記回転体の外周壁と前記シリンダー内周壁面間にOリングを嵌装し、前記回転体の溝付近の回転体外周壁に逆止弁装置部を経由せずにOリング側からオイルを他室へ逃がすためのバイパス溝を形成した場合には、座蓋等の自重トルクよりも大きな力を受けた際、このバイパス溝を通してOリングを押しつぶすことでOリングが変形して、Oリング溝の流路が押し広げられて、そのバイパス経路から粘性流体が流れ込んでいくことで、衝撃力によるダンパー装置の破壊を防ぐことができる。
また、前記シリンダー内周の仕切壁上方にエア抜き溝を形成した場合には、ダンパー室に粘性流体を封入する際、エア抜き溝を介してエアを外部に排出することが出来る。
【0006】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して説明する。まず図1乃至図6を用いて第1の実施例を説明する。図1は本発明の第1実施例のダンパー装置1の分解斜視図、図2は断面図、図3はダンパー室A,Bを説明するための平視図、図4は逆止弁40により連通路52aを遮断した際の部分拡大断面図、図5は逆止弁40により連通路52aを開放した際の部分拡大断面図、図6は溝52及び連通路52aを説明するための回転体50の部分拡大斜視図である。
まず、図1を用いて、ダンパー装置1の構成部品を説明する。ダンパー装置1は、シリンダー20、Oリング29、回転軸30、逆止弁装置部の弁体40、回転体50、Oリング59、蓋60及び永久磁石70にて構成される。永久磁石70はダンパー装置1近傍に設けられるホールICにより回転軸30の回転位置を検知するためのものであり、回転位置を検出する必要がない場合には省略される。
シリンダー20は有底筒状に形成され、底部には回転軸30の出力軸31を回動自在に支持するための枢孔21を設ける。またシリンダー内壁には底部側に仕切壁22を形成すると共に開放端には雌ネジ部23を形成する。
回転軸30は略円柱状に形成され、先端に出力軸31を形成し、中間部外周にその径方向へ突設した翼部35を形成し、後端に連結軸34を形成する。なお、出力軸31には便座や便蓋等のヒンジピンを回動不能に固定するためのヒンジ孔32を形成する。また、翼部35後端には逆止弁体40の一部を収納するための溝33を形成する。更に出力軸31の外周にはOリング29を収容するためのOリング溝36を設ける。
回転体50は、シリンダー20よりも僅かに小さい径の略円柱状に形成され、前端に連結軸34と相似形状のヒンジ孔51及び逆止弁体40の一部を収納するための溝52を形成し、外周にはOリング59を収容するためのOリング溝53を形成する。また、後端外周には永久磁石70を挿通するための挿通孔54を設ける。更に、回転体50の前端面とOリング溝53とを連絡するバイパス溝55を設ける。 蓋60は有底筒状に形成され、シリンダー20内に螺着するために、外周に雄ネジ部61を形成する。蓋60は、回転体50を回転軸30に当接させ、これら部材をシリンダー20から抜け止めしている。また、後端面には組立用専用治具により把持するための把持孔62を複数形成する。
【0007】
次に図2及び図3を用いてダンパー装置1の構成を説明する。ダンパー装置1内部のOリング29とOリング59とで封止された回転軸30周囲の仕切壁22によって二分割されたダンパー室A、B内にオイルが充填されている。翼部35の端面に配された逆止弁体40と、向かい合う面同士が接する翼部35及び回転体50とによって室A(B)を加圧室A1(B1)と減圧室A2(B2)とにさらに二分割している。また溝52には加圧室A1と減圧室A2とを連通させる連通路52aを有し、逆止弁40は翼部35及び回転体50の溝33、溝52内を摺動可能に設けている。図4乃至図6に示すように溝33は弁体40の動作範囲を規定するために端部は弁体40と略同一径で中間部分は直線で結んだ断面形状で且つ弁体40と略同一長に形成する。溝52に設ける連通路52aは一端を前記溝33に相対する位置内に設け、他端を溝33に相対する位置からはみ出す部分に設けている。
ここで、回転軸30のシリンダー20との相対的な回転運動により、ダンパー機構による制動力が作用することになるが、今、図1にあって矢印R方向へ回転軸30が回動した際、後述する上記逆止弁体40と溝33,52によって構成される装置部40が閉止状態となり、これによりダンパーONの状態となって、オイルに基づく制動力が発揮される。(図4参照)
すなわち、ダンパーONの状態には、回転軸30にあって、その一直径線上に延出している翼部35が、図1の矢印R方向へ回動することになり、仕切壁22との間の加圧室A1、B1内のオイルが加圧されるので、オイルに押圧されて逆止弁40は回転軸30の回動方向とは逆の方向に移動し溝52に凹設した連通路52aを閉塞する。この際逆止弁40がオイルから受ける押圧力は溝33、溝52によって分解され、回転軸30と回転体50を軸線方向に押圧する。これにより、回転軸30とシリンダー20の底部との隙間が無くなる。よって、オイルは翼部35とシリンダー20間の僅かな隙間を介して減圧室A2、B2へ若しくは仕切壁22と回転軸30との僅かな隙間を介して減圧室B2、A2へ夫々移動する。
さらに、上記の回転軸30につき、これを矢印R方向とは反対の方向に回動すれば、ダンパーOFFの状態となる。ダンパーOFFの状態には、逆止弁40が連通路52aを開放するので、オイルは連通路52aを介して減圧室A2、B2から加圧室A1、B2へ夫々スムーズに移動する。(図5参照)
【0008】
次に図7乃至図12を用いて第2の実施例を説明する。第2の実施例は第1の実施例に加え、シリンダー20の底面に溝24を形成した。この溝24の構成及び作用について図を用いて詳細に説明する。図7は第2実施例のダンパー装置1の断面図、図8はダンパー室A,B及び溝24を説明するための平視図、図9は図8のC−C線に沿った簡易断面を示す模式図、図10は便座の状態を示す側面図、図11は第2実施例のダンパー装置1を搭載した便座が倒伏する際の角度に対する角速度を示すグラフ、図12はエア抜き溝25を説明する為のシリンダー20の斜視図である。
溝24は図9に示すように減圧室A2側の仕切壁22の根元から40°の範囲(クイックスタート領域)は略一定の深さの溝を形成し、40〜90°の範囲(除変領域)では徐々に浅く形成し、90〜120°の範囲(スローエンド領域)には溝24を形成しないよう構成する。
これにより、便座が自立する位置を越えるまでは、翼部35と仕切壁22との間の加圧室A1、B1内のオイルは加圧され、オイルに押圧されて逆止弁体40は回転軸30の回動方向とは逆の方向に移動し連通路52aを閉塞するが、このクイックスタート領域では溝24が略一定深さ形成されているので減圧室A2、B2と加圧室A1、B1とは連通されるので、この溝24を介して減圧室B2、A2へオイルは夫々移動する。従って、このクイック領域ではダンパーOFFの状態と同じ状態となる。
便座が自立位置(自重では倒れない位置)を越えて自重で倒伏する領域では、溝24は徐々に浅く形成されているので、溝24を介して加圧室A1、B1から減圧室A2、B2へ移動するオイルの量は徐々に少なくなっていき、徐々にダンパーはON状態となる。便座が閉止間際となる領域には溝24は形成されていないので、ダンパーはONの状態となり、上述に説明したように、オイルは翼部35外周とシリンダー20内周間の僅かな隙間を介して減圧室A2、B2へ若しくは仕切壁22内周と回転軸30外周との僅かな隙間を介して減圧室B2、A2へ夫々移動する。
これにより、便座は比較的早く閉止間際状態まで移行し、その後緩やかな速度で便座は便器上面へ当接閉止される。
【0009】
本実施例においては、クイックスタート領域を開放端から40°としたが、これは、便座の自立角度によって設定されるもので、便座のヒンジ位置、重心位置が変更されればそれに合わせて変更しなければならない。
また、スローエンド領域を閉止端から30°としたがこれも、便座のヒンジ位置、重心位置及び自重が変更されればそれに合わせて変更する必要がある。これは、スローエンド領域で十分に減速して所定値以下の角速度としなければ、便器上面に衝突して激しい音を出すからである。
【0010】
次にバイパス溝55について図を用いて説明する。バイパス溝55は図示のように翼部35を迂回するように設けられる(図示しない反対側の翼部35側にも同様のバイパス溝55を設ける)。このような構成により、衝撃力(回転軸に便座又は便蓋の自重トルクよりも大きな力)を受けた場合には、加圧室A1(B1)の内圧が上がり、粘性流体が衝撃緩衝用バイパス溝55を通して、Oリングを押し潰すことでOリングが変形して、Oリング溝の流路が押し広げられて、粘性流体が流れ易くなり、粘性流体は加圧室A1(B1)からOリング溝を通過して減圧室A2(B2)に流れ込んで行くことで、衝撃力による加圧室A1(B1)の内圧の上昇を抑えることができるため、ダンパー装置1の衝撃破壊を防ぐことができる。
【0011】
次にエア抜き溝25について図12を用いて説明する。エア抜き溝25は図示のように仕切壁22の上方に滑らかな曲率で設けられる。このような構成により、ダンパー室に粘性流体を封入する場合、シリンダー20に回転軸30を組み付けて粘性流体を注入した後に、回転体50に粘性流体を封入シールのためのOリング59を取り付けてシリンダー20に装着しようとするが、この際ダンパー室に溜まったエアは回転体50のOリング59とエア抜き溝25との間隙を通って、外部へ排出されるため、ダンパー室は粘性流体で満タンに充填される。
また、エア抜き溝25がシリンダ−20内側面と曲率的に滑らかな小さな溝であるため、Oリング59からの粘性流体の液漏れも生じない。
【図面の簡単な説明】
【図1】 本発明のダンパー装置1の分解斜視図
【図2】 本発明のダンパー装置1の第1実施例の断面図
【図3】 本発明のダンパー装置1の第1実施例のダンパー室A,Bを説明するための平視図
【図4】 本発明のダンパー装置1の第1実施例において、逆止弁40により連通路52aを遮断した際の部分拡大断面図
【図5】 本発明のダンパー装置1の第1実施例において、逆止弁40により連通路52aを開放した際の部分拡大断面図
【図6】 本発明のダンパー装置1の第1実施例の溝52及び連通路52aを説明するための回転体50の部分拡大斜視図
【図7】 本発明のダンパー装置1の第2実施例の断面図
【図8】 本発明の第2実施例のダンパー装置1のダンパー室A,B及び溝24を説明するための平視図
【図9】 図8のC−C線に沿った簡易断面を示す模式図
【図10】 本発明の第2実施例のダンパー装置1を搭載した便座の状態を示す側面図
【図11】 本発明の第2実施例のダンパー装置1を搭載した便座が倒伏する際の角度に対する角速度を示すグラフ
【図12】 エア抜き溝25を説明する為のシリンダー20の斜視図
【図13】 従来のダンパー装置を示す断面図で、(a)は縦断面図、(b)は横断面図
【図14】 従来のダンパー装置を設けた衛生洗浄装置本体の斜視図
【符号の説明】
20…シリンダー、22…仕切壁、30…回転軸、33…溝、35…翼部、40…弁体、50…回転体、52…溝、52a…連通路、A1…加圧室、A2…減圧室、B1…加圧室、B2…減圧室
[0001]
BACKGROUND OF THE INVENTION
The present invention obtains a resistance force against an external force in one rotation direction by using hydraulic oil, exhibits a buffering action by the resistance force, that is, a braking force, and in a reverse rotation direction. On the other hand, the present invention relates to an improvement of a damper mechanism that can be used for various applications that require as little resistance as possible.
[0002]
[Prior art]
In recent years, hot water cleaning apparatuses have become widely used because they are clean and hygienic. To open and close the toilet lid, toilet seat, and the like of this hot water cleaning device, and hit the toilet, an attempt is made to suppress the impact by using a damper device together with a rotating shaft in some hot water cleaning devices.
Conventionally, there has been constituted as shown in FIG. 13 for this type of damper device. The configuration will be described below with reference to the drawings. As shown in FIG. 13 , the damper device 100 is composed of a cylinder 102, a rotary shaft 103, a check valve 104, and the like. The cylinder 102 has a partition wall 102a on its inner wall, and the rotary shaft 103 penetrates inside. Oil is filled in the chamber 105 divided into two by the rotating shaft 103 and the partition wall 102a. The rotating shaft 103 has a wing 106 protruding radially, and the check valve 104 and the wing 106 divide the chamber 105 into a pressurizing chamber 105a and a depressurizing chamber 105b. The wing portion 106 has a communication passage 107 that allows the pressurization chamber 105 a and the decompression chamber 105 b to communicate. The check valve 104 has an outer surface that is in contact with the inner peripheral surface of the cylinder 102, and an inner surface that surrounds the wing portion 106. In addition, a control port 108 is provided on the decompression chamber 105b side, and the pressurization chamber 105a and the decompression chamber 105b are communicated together with the communication passage 107 of the blade portion 106. In FIG. 14, 109 denotes an O-ring, and 110 denotes a cap for sealing the tip of the cylinder 102. Then, the rotating shaft 103 rotates to change the mutual position between the wing portion 106 and the check valve 104, and the check valve 104 controls the amount of oil flowing from the pressurizing chamber 105a to the decompression chamber 105b to rotate the rotation speed. It suppresses.
As shown in FIG. 14 , the damper device 100 is fixed to the cleaning device main body 112 installed on the toilet, and the toilet seat 113 and the toilet lid 114 are coupled to each other via the rotation shaft 103 of each damper device 100. . Then, when the user opens the toilet seat 113 or the toilet lid 114 and lifts it upward or closes it, if the user pulls the toilet seat 113 or the toilet lid 114 lightly toward the front, the damper device 100 will suddenly It closes while suppressing the rotational speed. (For example, refer to Patent Document 1.)
[0003]
[Patent Document 1]
JP-A-5-296267 [0004]
[Problems to be solved by the invention]
However, because there is a gap in the axial direction between the cylinder and the rotating shaft due to production variations, the fluid speed cannot be controlled because oil passes through this gap, and the slow closing time varies and the closing operation is stable. I did not.
In order to solve such a problem, for example, there is a mechanism provided with an adjustment mechanism that eliminates a gap by pressing a rotating shaft against a cylinder against variations in the axial direction.
However, in this method, if the number of times of opening and closing is increased, the contact portion is worn and the frictional force is reduced, so that the slow closing time becomes considerably shorter than the initial time, and there is a possibility that the slow closing operation is finally stopped.
Furthermore, since the wings push viscous fluid during the closing operation, a large internal pressure is generated in the oil chamber, and the valve body tries to block the flow of viscous fluid while being pressed by the cylinder inner wall and the wing outer wall. If the valve body is worn out and repeated opening and closing over a long period of time, the initial stable soft closing operation may not be maintained.
[0005]
[Means for solving the problem, operation and effect]
In order to solve the above problems, in the present invention, a cylindrical cylinder having a partition wall that bisects the interior in the axial direction, a columnar rotation shaft that is rotatably inserted into the cylinder, By rotating the rotation shaft relative to the cylinder, the inner peripheral wall surface of the cylinder can be slid, and the wing portion on the outer periphery of the rotation shaft projects in the radial direction, and this wing portion rotates the inside of the cylinder. a chamber which is divided in the axial direction of the shaft, opposite which are provided between the oil to be filled into the chamber, a rotating body fixed to the rotating non ability to the rotary shaft, and the rotating body and the wings Ri Do and a check valve device unit, since it is configured the rotating shaft and the rotating body is moved in the axial direction, respectively the damper device by the pressing force of the oil in the check valve device portion, between the rotating body and the rotating shaft The valve body of the check valve device provided in the Kicking pressing the rotary shaft and the rotary member on the end wall side of the cylinder pressure, it is possible to aggregate the gap in the axial direction between the rotary shaft and the cylinder caused by the "Production variations" in the gap of the rotating body with all the rotating shaft.
As a result, the slow closing time is not changed by the gap in the axial direction between the rotating shaft and the cylinder due to “production variation”, and a stable slow closing operation can be obtained.
Therefore, a mechanism for adjusting the gap in the axial direction between the rotating shaft and the cylinder is not necessary, and the cost can be reduced.
In addition, compared to the case where the valve element is placed between the rotating shaft and the cylinder, sliding friction does not occur, so performance degradation due to wear of the valve element hardly occurs. realizable.
An O-ring is fitted between the outer peripheral wall of the rotating body and the inner peripheral wall surface of the cylinder, and oil is supplied from the O-ring side to the outer peripheral wall of the rotating body near the groove of the rotating body without passing through the check valve device. When a bypass groove for escaping to another chamber is formed, the O-ring is deformed by crushing the O-ring through the bypass groove when a force greater than the self-weight torque of the seat cover or the like is received, and the O-ring groove When the viscous fluid flows in from the bypass path, the damper device can be prevented from being destroyed by the impact force.
Further, when an air bleeding groove is formed above the partition wall on the inner periphery of the cylinder, air can be discharged to the outside through the air bleeding groove when the viscous fluid is sealed in the damper chamber.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. First, the first embodiment will be described with reference to FIGS. FIG. 1 is an exploded perspective view of a damper device 1 according to a first embodiment of the present invention, FIG. 2 is a sectional view, FIG. 3 is a plan view for explaining damper chambers A and B, and FIG. FIG. 5 is a partially enlarged cross-sectional view when the communication path 52a is opened by the check valve 40, and FIG. 6 is a rotating body for explaining the groove 52 and the communication path 52a. 50 is a partially enlarged perspective view of 50. FIG.
First, the components of the damper device 1 will be described with reference to FIG. The damper device 1 includes a cylinder 20, an O-ring 29, a rotating shaft 30, a valve body 40 of a check valve device section, a rotating body 50, an O-ring 59, a lid 60, and a permanent magnet 70. The permanent magnet 70 is for detecting the rotational position of the rotary shaft 30 by a Hall IC provided in the vicinity of the damper device 1, and is omitted when it is not necessary to detect the rotational position.
The cylinder 20 is formed in a cylindrical shape with a bottom, and a pivot hole 21 for rotatably supporting the output shaft 31 of the rotary shaft 30 is provided at the bottom. Further, a partition wall 22 is formed on the bottom side of the cylinder inner wall, and a female screw portion 23 is formed at the open end.
The rotating shaft 30 is formed in a substantially columnar shape, the output shaft 31 is formed at the tip, the wing portion 35 projecting in the radial direction is formed on the outer periphery of the intermediate portion, and the connecting shaft 34 is formed at the rear end. The output shaft 31 is formed with a hinge hole 32 for fixing a hinge pin such as a toilet seat or a toilet lid so that the hinge pin cannot rotate. Further, a groove 33 for accommodating a part of the check valve body 40 is formed at the rear end of the wing portion 35. Further, an O-ring groove 36 for accommodating the O-ring 29 is provided on the outer periphery of the output shaft 31.
The rotating body 50 is formed in a substantially cylindrical shape having a slightly smaller diameter than the cylinder 20, and has a hinge hole 51 similar to the connecting shaft 34 and a groove 52 for accommodating a part of the check valve body 40 at the front end. An O-ring groove 53 for accommodating the O-ring 59 is formed on the outer periphery. In addition, an insertion hole 54 for inserting the permanent magnet 70 is provided on the outer periphery of the rear end. Further, a bypass groove 55 that connects the front end surface of the rotating body 50 and the O-ring groove 53 is provided. The lid 60 is formed in a bottomed cylindrical shape, and a male screw portion 61 is formed on the outer periphery in order to be screwed into the cylinder 20. The lid 60 keeps the rotating body 50 in contact with the rotating shaft 30 and prevents these members from coming off the cylinder 20. Further, a plurality of gripping holes 62 for gripping with a dedicated assembly jig are formed on the rear end surface.
[0007]
Next, the structure of the damper apparatus 1 is demonstrated using FIG.2 and FIG.3. Oil is filled in the damper chambers A and B which are divided into two by the partition wall 22 around the rotary shaft 30 sealed by the O-ring 29 and the O-ring 59 inside the damper device 1. The check valve body 40 disposed on the end face of the wing portion 35, and the wing portion 35 and the rotating body 50 that are in contact with each other face the chamber A (B) into the pressurizing chamber A1 (B1) and the decompression chamber A2 (B2). It is further divided into two. Further, the groove 52 has a communication passage 52a that allows the pressurizing chamber A1 and the decompression chamber A2 to communicate with each other, and the check valve 40 is slidably provided within the groove 33 and the groove 52 of the blade portion 35 and the rotating body 50. Yes. As shown in FIGS. 4 to 6, in order to define the operating range of the valve body 40, the groove 33 has a cross-sectional shape in which the end is substantially the same diameter as the valve body 40 and the middle portion is connected by a straight line, and is substantially the same as the valve body 40. Form the same length. One end of the communication path 52 a provided in the groove 52 is provided in a position facing the groove 33, and the other end is provided in a portion protruding from the position facing the groove 33.
Here, the braking force by the damper mechanism is applied by the relative rotational movement of the rotating shaft 30 with respect to the cylinder 20, but now when the rotating shaft 30 is rotated in the direction of arrow R in FIG. The device portion 40 constituted by the check valve body 40 and the grooves 33 and 52, which will be described later, is in a closed state, whereby the damper is turned on and a braking force based on oil is exhibited. (See Figure 4)
That is, in the state of the damper ON, the wing portion 35 on the rotary shaft 30 and extending on one diameter line thereof rotates in the direction of arrow R in FIG. Since the oil in the pressurizing chambers A1 and B1 is pressurized, the check valve 40 is pressed by the oil and the check valve 40 moves in the direction opposite to the rotating direction of the rotary shaft 30 and is recessed in the groove 52. 52a is closed. At this time, the pressing force received from the oil by the check valve 40 is disassembled by the grooves 33 and 52 and presses the rotating shaft 30 and the rotating body 50 in the axial direction. Thereby, the clearance gap between the rotating shaft 30 and the bottom part of the cylinder 20 is eliminated. Accordingly, the oil moves to the decompression chambers A2 and B2 through a slight gap between the blade portion 35 and the cylinder 20, or to the decompression chambers B2 and A2 through a slight gap between the partition wall 22 and the rotating shaft 30, respectively.
Further, if the rotary shaft 30 is rotated in the direction opposite to the arrow R direction, the damper is turned off. When the damper is OFF, the check valve 40 opens the communication passage 52a, so that the oil smoothly moves from the decompression chambers A2 and B2 to the pressurization chambers A1 and B2 via the communication passage 52a. (See Figure 5)
[0008]
Next a second embodiment will be described with reference to FIGS. 7 through 12. In the second embodiment, a groove 24 is formed on the bottom surface of the cylinder 20 in addition to the first embodiment. The configuration and operation of the groove 24 will be described in detail with reference to the drawings. 7 is a sectional view of the damper device 1 according to the second embodiment, FIG. 8 is a plan view for explaining the damper chambers A and B and the groove 24, and FIG. 9 is a simplified sectional view taken along the line CC in FIG. FIG. 10 is a side view showing the state of the toilet seat, FIG. 11 is a graph showing the angular velocity with respect to the angle when the toilet seat on which the damper device 1 of the second embodiment is mounted, and FIG. 12 is the air vent groove 25. It is a perspective view of the cylinder 20 for demonstrating these.
As shown in FIG. 9, the groove 24 forms a groove having a substantially constant depth in the range of 40 ° (quick start region) from the base of the partition wall 22 on the decompression chamber A2 side, and the range of 40 to 90 ° (variation) The region 24 is formed so as to be gradually shallow, and the groove 24 is not formed in the range of 90 to 120 ° (slow end region).
Thus, the oil in the pressurizing chambers A1 and B1 between the wing portion 35 and the partition wall 22 is pressurized and pressed by the oil until the check seat 40 is rotated until the toilet seat exceeds the position where the toilet seat is self-supporting. The shaft 30 moves in a direction opposite to the direction of rotation of the shaft 30 and closes the communication path 52a. However, since the groove 24 is formed at a substantially constant depth in this quick start region, the decompression chambers A2, B2 and the pressurization chamber A1, Since it communicates with B1, the oil moves to the decompression chambers B2 and A2 via the groove 24, respectively. Therefore, in this quick region, the state is the same as the state of damper OFF.
In the region where the toilet seat falls over its own position (position where it cannot fall by its own weight) and falls due to its own weight, the groove 24 is formed gradually shallower, so that the pressurizing chambers A1, B1 through the groove 24 to the decompression chambers A2, B2 The amount of oil that moves to gradually decreases, and the damper is gradually turned on. Since the groove 24 is not formed in the region where the toilet seat is just closed, the damper is in an ON state, and as described above, the oil passes through a slight gap between the outer periphery of the wing 35 and the inner periphery of the cylinder 20. Then, they move to the decompression chambers A2 and B2 or to the decompression chambers B2 and A2 through a slight gap between the inner periphery of the partition wall 22 and the outer periphery of the rotary shaft 30, respectively.
As a result, the toilet seat moves to a state immediately before closing relatively quickly, and then the toilet seat comes into contact with and closes to the upper surface of the toilet bowl at a moderate speed.
[0009]
In this embodiment, the quick start area is set to 40 ° from the open end, but this is set according to the toilet seat's self-supporting angle. If the hinge position and the center of gravity position of the toilet seat are changed, the quick start area is changed accordingly. There must be.
Further, although the slow end region is set to 30 ° from the closed end, this also needs to be changed in accordance with the change of the hinge position, the gravity center position and the own weight of the toilet seat. This is because if the vehicle is not sufficiently decelerated in the slow end region and the angular velocity is less than or equal to a predetermined value, it collides with the upper surface of the toilet and makes a loud sound.
[0010]
It will now be described with reference to FIG. 6 bypass channel 55. The bypass groove 55 is provided so as to bypass the wing part 35 as shown (the same bypass groove 55 is also provided on the opposite wing part 35 side not shown). With such a configuration, when an impact force (a force greater than the weight of the toilet seat or toilet lid on the rotating shaft) is applied, the internal pressure of the pressurizing chamber A1 (B1) increases, and the viscous fluid is bypassed for shock buffering. By crushing the O-ring through the groove 55, the O-ring is deformed, the flow path of the O-ring groove is expanded and the viscous fluid easily flows, and the viscous fluid flows from the pressurizing chamber A1 (B1) to the O-ring. By passing through the groove and flowing into the decompression chamber A2 (B2), an increase in the internal pressure of the pressurization chamber A1 (B1) due to the impact force can be suppressed, and therefore, the impact damage of the damper device 1 can be prevented. .
[0011]
Next, the air release groove 25 will be described with reference to FIG. 12. The air vent groove 25 is provided with a smooth curvature above the partition wall 22 as shown. With such a configuration, when the viscous fluid is sealed in the damper chamber, the rotary shaft 30 is assembled to the cylinder 20 to inject the viscous fluid, and then the viscous fluid is sealed in the rotating body 50 with an O-ring 59 for sealing sealing. At this time, the air accumulated in the damper chamber is discharged to the outside through the gap between the O-ring 59 of the rotating body 50 and the air vent groove 25. Therefore, the damper chamber is made of viscous fluid. Fully filled.
Further, since the air vent groove 25 is a small groove that is smoothly curved with respect to the inner surface of the cylinder 20, leakage of viscous fluid from the O-ring 59 does not occur.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a damper device 1 of the present invention. FIG. 2 is a sectional view of a first embodiment of the damper device 1 of the present invention. FIG. 3 is a damper chamber of the first embodiment of the damper device 1 of the present invention. FIG. 4 is a partially enlarged cross-sectional view of the damper device 1 according to the first embodiment of the present invention when the communication passage 52a is blocked by the check valve 40 in the first embodiment of the present invention. FIG. 6 is a partially enlarged cross-sectional view of the first embodiment of the damper device 1 of the present invention when the communication passage 52a is opened by the check valve 40. FIG. 6 shows the groove 52 and the communication passage of the first embodiment of the damper device 1 of the present invention. Fig. 7 is a partial enlarged perspective view of a rotating body 50 for explaining 52a. Fig. 7 is a sectional view of a second embodiment of the damper device 1 of the present invention. Fig. 8 is a damper chamber of the damper device 1 of the second embodiment of the present invention. FIG. 9 is a plan view for explaining A and B and the groove 24. FIG. FIG. 10 is a side view showing a state of a toilet seat on which a damper device 1 according to a second embodiment of the present invention is mounted. FIG. 11 shows a damper device 1 according to the second embodiment of the present invention. FIG. 12 is a perspective view of a cylinder 20 for explaining an air vent groove 25. FIG . 13 is a cross-sectional view showing a conventional damper device. FIG. Fig . 14 is a longitudinal sectional view. Fig . 14 is a transverse sectional view . Fig . 14 is a perspective view of a main body of a sanitary washing device provided with a conventional damper device.
DESCRIPTION OF SYMBOLS 20 ... Cylinder, 22 ... Partition wall, 30 ... Rotating shaft, 33 ... Groove, 35 ... Blade part, 40 ... Valve body, 50 ... Rotating body, 52 ... Groove, 52a ... Communication path, A1 ... Pressurization chamber, A2 ... Decompression chamber, B1 ... pressurization chamber, B2 ... decompression chamber

Claims (5)

内部を軸方向に2分する仕切壁を有する円筒状のシリンダーと、該シリンダー内に回動自在に挿入配設される円柱状の回転軸と、該回転軸のシリンダーに対する相対的な回動によって、シリンダーの内周壁面を摺動可能で、該回転軸の外周にあってその径方向へ突設した翼部と、この翼部によりシリンダー内部が回転軸の軸線方向に仕切られる室と、該室に充填されるオイルと、回転軸に対し回動不能に固定される回転体と、該回転体と前記翼部との間に設けられる逆止弁装置部とからなり、該逆止弁装置部における前記オイルの押圧力により前記回転軸及び回転体をそれぞれ前記軸線方向に移動させるダンパー装置。By a cylindrical cylinder having a partition wall that bisects the interior in the axial direction, a columnar rotation shaft that is rotatably inserted into the cylinder, and a relative rotation of the rotation shaft with respect to the cylinder A wing that is slidable on the inner peripheral wall surface of the cylinder and that protrudes in the radial direction on the outer periphery of the rotating shaft, a chamber in which the inside of the cylinder is partitioned in the axial direction of the rotating shaft by the wing, and oil filled in the chamber, Ri Do from a rotating body fixed to the rotating non ability to the rotary shaft, a check valve device portion provided between said rotary member and said wings, inverse the rotary shaft and the damper device Before moving the rotating body to each of the axial direction by the pressing force of the oil in the check valve device unit. 前記逆止弁装置部は、前記翼部後端及び/又は回転体前端に設けられる溝と、該溝間を摺動可能な弁体とで構成したことを特徴とする請求項1記載のダンパー装置。  2. The damper according to claim 1, wherein the check valve device portion includes a groove provided at the rear end of the wing portion and / or the front end of the rotating body, and a valve body that can slide between the grooves. apparatus. 前記弁体を円柱状に形成し、該円柱状弁体の軸線が前記回転軸の径方向を向くように配置したことを特徴とする請求項2記載のダンパー装置。  The damper device according to claim 2, wherein the valve body is formed in a columnar shape, and is arranged so that an axis of the columnar valve body faces a radial direction of the rotating shaft. 前記回転体の外周壁と前記シリンダー内周壁面間にOリングを嵌装し、前記回転体の溝付近の回転体外周壁に逆止弁装置部を経由せずにOリング側からオイルを他室へ逃がすためのバイパス溝を形成したことを特徴とする請求項1〜請求項3のいずれか1項に記載のダンパー装置。  An O-ring is fitted between the outer peripheral wall of the rotating body and the inner peripheral wall surface of the cylinder, and oil is supplied to the outer peripheral wall of the rotating body near the groove of the rotating body from the O-ring side without passing through the check valve device. The damper device according to any one of claims 1 to 3, wherein a bypass groove is formed for escape. 前記シリンダー内周の仕切壁上方にエア抜き溝を形成したことを特徴とする請求項1〜請求項4のいずれか1項に記載のダンパー装置。  The damper device according to any one of claims 1 to 4, wherein an air vent groove is formed above the partition wall on the inner periphery of the cylinder.
JP2002278681A 2002-08-02 2002-09-25 Damper device Expired - Fee Related JP4136570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278681A JP4136570B2 (en) 2002-08-02 2002-09-25 Damper device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002226656 2002-08-02
JP2002278681A JP4136570B2 (en) 2002-08-02 2002-09-25 Damper device

Publications (3)

Publication Number Publication Date
JP2004124952A JP2004124952A (en) 2004-04-22
JP2004124952A5 JP2004124952A5 (en) 2005-09-22
JP4136570B2 true JP4136570B2 (en) 2008-08-20

Family

ID=32300807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278681A Expired - Fee Related JP4136570B2 (en) 2002-08-02 2002-09-25 Damper device

Country Status (1)

Country Link
JP (1) JP4136570B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5031505B2 (en) * 2007-10-03 2012-09-19 不二ラテックス株式会社 Rotating damper device
JP2016153687A (en) * 2015-02-13 2016-08-25 日本電産サンキョー株式会社 Fluid damper device, equipment with damper and process of manufacture of fluid damper device
JP7334966B2 (en) 2020-01-20 2023-08-29 株式会社ソミックマネージメントホールディングス Rotary damper and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004124952A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
US6393624B1 (en) Damping device for a toilet seat and lid unit in western-style toilet
JP5022448B2 (en) Rotating damper
JP2005113980A (en) Rotary damper
WO2003046405A1 (en) Rotary damper and automobile part comprising it and auxiliary mechanism of rotary operation
JP2003176845A5 (en)
US11441632B2 (en) Rotary damper having simple self-standing mechanism
WO2007116574A1 (en) Breakdown prevention mechanism for rotary damper
JP4136570B2 (en) Damper device
WO1993001425A1 (en) Damper mechanism
JP5180231B2 (en) Damper device
WO2003074901A1 (en) Rotary damper
JPH0333533A (en) Equipment for changing temporal flow rate of fluid-like shock absorbing medium in rotary vibration shock absorber
JP4164312B2 (en) Hinge device
US10920476B1 (en) Hinge device for rotating door
WO2009013712A2 (en) Rotational damper hinge
JP2009092086A (en) Rotating damper device
JP2870602B2 (en) Variable displacement vane pump
JP2015227719A (en) Simple self-supporting mechanism
CN210799847U (en) Adjustable damping mechanism
JP2004068899A (en) Damper device
KR930010634B1 (en) Door closer
CN211115353U (en) Damping mechanism
JP2007085503A (en) Motion control device
KR930010633B1 (en) Door closer
KR100913782B1 (en) Rotary damper

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Ref document number: 4136570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees