JP2004066624A - Method for stretching/blow-molding plastic bottle - Google Patents

Method for stretching/blow-molding plastic bottle Download PDF

Info

Publication number
JP2004066624A
JP2004066624A JP2002228777A JP2002228777A JP2004066624A JP 2004066624 A JP2004066624 A JP 2004066624A JP 2002228777 A JP2002228777 A JP 2002228777A JP 2002228777 A JP2002228777 A JP 2002228777A JP 2004066624 A JP2004066624 A JP 2004066624A
Authority
JP
Japan
Prior art keywords
bottle
bottle container
blow molding
preform
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002228777A
Other languages
Japanese (ja)
Other versions
JP4052055B2 (en
Inventor
Yukito Ueda
上田 幸仁
Kazuhiko Nagao
長尾 和彦
Mutsuyuki Fukushima
福島 睦之
Setsu Matsuhashi
松橋 攝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2002228777A priority Critical patent/JP4052055B2/en
Publication of JP2004066624A publication Critical patent/JP2004066624A/en
Application granted granted Critical
Publication of JP4052055B2 publication Critical patent/JP4052055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/24Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/26Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/28Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • B29C2949/303Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components having more than three components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • B29C2949/3034Preforms or parisons made of several components having components being injected having two or more components being injected
    • B29C2949/3036Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • B29C2949/3034Preforms or parisons made of several components having components being injected having two or more components being injected
    • B29C2949/3036Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
    • B29C2949/3038Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected having more than three components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3041Preforms or parisons made of several components having components being extruded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3041Preforms or parisons made of several components having components being extruded
    • B29C2949/3042Preforms or parisons made of several components having components being extruded having two or more components being extruded
    • B29C2949/3044Preforms or parisons made of several components having components being extruded having two or more components being extruded having three or more components being extruded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3041Preforms or parisons made of several components having components being extruded
    • B29C2949/3042Preforms or parisons made of several components having components being extruded having two or more components being extruded
    • B29C2949/3044Preforms or parisons made of several components having components being extruded having two or more components being extruded having three or more components being extruded
    • B29C2949/3046Preforms or parisons made of several components having components being extruded having two or more components being extruded having three or more components being extruded having more than three components being extruded

Abstract

<P>PROBLEM TO BE SOLVED: To make a plastic bottle of polyethylene terephthalate lightweight while securing suitability for the use with a bender regarding the bottle to be stored inside an automatic vending machine which can be made lightweight as a whole without resistance to deformation under load of the barrel part of the bottle. <P>SOLUTION: This method is characterized by heating a part becoming the shoulder part of the bottle, a center part becoming the barrel part of the bottle and a part becoming the bottom of the bottle to a higher temperature than the other spot, executing blow-molding by one stage blow molding method and orienting the resin at the parts heated to the higher temperature to form a thin-walled part 13a in the central part of the barrel of the bottle. A first and a second thick-walled parts 13b and 13c are formed by allotting a stretching resin to parts connected to the thin-walled parts 13a. Thus, the bottle showing outstanding strength characteristics while being entirely made lightweight is molded. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエチレンテレフタレート等からなるパリソンを延伸ブロー成形することによりプラスチックボトル容器を形成する延伸ブロー成形方法に関する。
特に、本発明は、パリソンの胴部の中央部分や肩部等の所定箇所を他の箇所より高温で加熱して、一段ブロー成形法を用いて延伸ブロー成形することにより、ボトルの胴部中央部分や肩部に位置する樹脂を割り当てて所定部分の肉厚を大きくし、使用樹脂の重量を削減しつつ荷重が掛かる胴部の所定部分の肉厚を大きくし、容器胴部の耐荷重強度を損なうことなくボトル容器全体の軽量化できるプラスチックボトル容器の延伸ブロー成形方法に関する。
【0002】
【従来の技術】
一般に、ポリエチレンテレフタレート等のポリエステル,ポリプロピレン,ポリアミド等からなり、延伸ブローによって成形されるプラスチックボトル容器が知られている。
この種のプラスチックボトル容器は、一般に、射出成形されたパリソン(プリフォーム)を延伸ブロー成形することにより製造される。
延伸ブロー成形方法により製造されたプラスチックボトル容器は、透明性とガスバリヤー性に優れ、コーラ,サイダー等の炭酸飲料、果汁飲料、ミネラルウォーター、各種お茶類等の飲料用のボトル容器として広く使用されている。
【0003】
【発明が解決しようとする課題】
ところで、近年、プラスチックボトル容器は急速に普及,浸透するようになり、この広範な普及にともない、特に飲料用の容器に対して、容器の軽量化が強く要請されるようになった。例えば、現在、容量500ml用の容器として使用されているプラスチックボトル容器は約32gの重量があるが、これを軽量化したいという要請がある。
ここで、プラスチックボトル容器の重量は、延伸ブロー成形される前のパリソンの重量により決定されるので、パリソンを軽量化すればボトル容器も軽量化されることになる。
【0004】
しかし、このように単純にパリソンの重量を削減する方法では、軽量化された分だけボトル容器の壁部の厚み、具体的には延伸される容器胴部の厚みが薄くなり、耐荷重強度が損なわれるという問題が発生した。
特に、飲料用ボトル容器の場合、自動販売機に収納されることが一般的であり、自動販売機内では、横置きされたボトル容器が上下に多数積み重ねられた状態で収納される。そして、販売機内のベンダーバー上に積載された容器の胴部には、積み重ねられた他の容器からの荷重が掛かる。このため、軽量化のために胴部の肉厚が薄くなった容器では、耐荷重強度が不足し、容器の変形やつぶれ等が生じることとなり、ベンダー適性が失われるという問題が発生した。
【0005】
このように、単にパリソンの重量を削減することでボトル容器の軽量化を図ろうとしても、容器胴部の肉厚が薄くなってしまい、容器の耐荷重強度が不充分となり、特に自動販売機に収納される飲料用のボトル容器の軽量化には対応することができなかった。
本発明者は、上記事情に鑑み鋭意研究を重ねた結果、ボトル容器の肩部や胴部中央部分,底部には容器の耐荷重強度を維持するために必要となる量以上の肉厚部分が存在することを見出し、この肩部や胴部中央の肉厚分布を改善することにより、容器の強度を損なうことなく容器全体の軽量化を図ることができることに想到した。
【0006】
すなわち、本発明は、上述のような従来の技術が有する問題を解決するために提案されたものであり、ボトル容器の肩部,胴部中央,底部に相当するパリソンの所定箇所を、他の箇所より高温で加熱して、一段ブロー成形法を用いて延伸ブロー成形することにより、ボトルの胴部中央や肩部を形成する樹脂を特定部分に割り当てることができ、使用樹脂の重量を削減しつつ荷重が掛かる胴部の所定部分の肉厚を大きくし、容器胴部の耐荷重強度を損なうことなくボトル容器全体の軽量化できるプラスチックボトル容器の延伸ブロー成形方法の提供を目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明のプラスチックボトル容器の延伸ブロー成形方法は、有底筒状のプリフォームを所定温度で加熱し、延伸ブロー成形することにより、口部,肩部,胴部及び底部を有するプラスチックボトル容器を形成する延伸ブロー成形方法であって、前記プリフォームの、少なくとも前記ボトル容器の胴部中央に相当する所定箇所を、他の部分の加熱温度より高温で加熱し、当該プリフォームを一段ブロー成形法により延伸ブロー成形することにより、前記高温加熱箇所の樹脂を延伸させて、前記ボトル容器の胴部中央部分に少なくとも一個の肉薄部を形成する方法としてある。
【0008】
また、前記高温加熱箇所の樹脂を延伸させることにより、当該樹脂を前記肉薄部に連続する部分に割り当てて、前記ボトル容器の胴部に少なくとも二個の肉厚部を形成する方法としてある。
さらに、前記プリフォームの、前記ボトル容器の胴部中央に加えて、当該ボトル容器の肩部及び/又は底部の所定箇所を他の部分の加熱温度より高温で加熱することにより、前記肉薄部及び又は肉厚部を形成する方法としてある。
そして、前記肉厚部を、前記プラスチックボトル容器の荷重が加わる位置に形成するようにしてある。
【0009】
このような方法からなる本発明のプラスチックボトル容器の延伸ブロー成形方法によれば、一段ブロー成形法における延伸ブロー工程において、パリソン(プリフォーム)のボトル肩部や胴部中央,底部に相当する特定箇所を、他の部分よりも高温で加熱するようにしてある。そして、この高温加熱部分を延伸することで、当該高温加熱部分の樹脂を他の部分よりも薄くなるように延伸でき、当該延伸部分の樹脂をボトル胴部の所定部分に割り当てることができる。
これにより、パリソンを形成する樹脂の重量を削減しても、肉厚分布をコントロールすることで積載荷重等が掛かる胴部の所定部分の肉厚を大きくすることができ、胴部の耐荷重強度を損なうことなくボトル容器全体を軽量化することができる。
従って、本発明に係るボトル容器が自動販売機内に積載収納されても、変形やつぶれ等は発生せず、ベンダー適性が損なわれることなく清涼飲料等の容器に対するボトル軽量化の要請に充分に対応することができるようになる。
【0010】
そして、前記肉厚部の肉厚が0.33〜0.45mm、前記肉薄部の肉厚が0.25〜0.31mmとなるように形成することが好ましい。
このような範囲に胴部の肉厚部と肉薄部を設定することで、胴部中央部分や肩部の強度が損なわれない範囲で、荷重が掛かる胴部の所定箇所の耐荷重性強度を良好な範囲とすることができ、かつ、ボトル容器全体の軽量化を図ることができるようになる。
【0011】
また、本発明により製造されるプラスチックボトル容器は、前記口部,肩部,胴部及び底部のうち、少なくとも胴部の結晶化度が30〜40%となるように形成することが好ましい。
に形成することが好ましい。
ボトル容器の胴部の結晶化度をこの範囲とすることで、ボトル容器の耐熱性,鯛衝撃強度を更に向上させることができ、特に自動販売機内に収納される飲料用等のボトル容器として好ましい。
【0012】
【発明の実施の形態】
以下、本発明に係るプラスチックボトル容器の延伸ブロー成形方法の好ましい実施形態について、図1及び図2を参照しつつ説明する。
図1は、本発明の一実施形態発明に係る延伸ブロー成形方法によりプラスチックボトル容器を製造するためのプリフォーム(パリソン)の一例を示す断面図である。
図2は、本実施形態に係る延伸ブロー成形方法により形成されるプラスチックボトル容器を示す一部断面図である。
【0013】
[プラスチックボトル容器の製造方法]
1.プリフォームの製造
まず、プロフォームを形成する。
プリフォームは、公知の射出成形や押出成形により、図1に示すような有底筒状のプリフォーム(パリソン)を製造することができる。
なお、プリフォームとしては、後述するように中間層に酸素吸収層を備える多層プリフォームを使用することができ、このような多層プリフォームを使用する場合には、従来から公知の共射出成形機等を用いて、内外層をポリエステル樹脂とし、内外層の間に一層又は二層以上の酸素吸収層を挿入し、射出用プリフォーム金型の形状に対応した、底部及び開口部を有する多層プリフォームを製造することができる。
【0014】
2.延伸ブロー成形
次に、プリフォームを二軸延伸ブロー成形する。
延伸ブロー成形方法には、一般に、ホットパリソン法(一段ブロー成形法)とコールドパリソン法(二段ブロー成形法)の二つの方法がある。ホットパリソン法は、ポリエステル樹脂を射出成形することにより形成された有底プリフォーム(パリソン)を完全に冷却することなく、軟化状態で延伸ブロー成形する方法で、生産性に優れている。
これに対して、コールドパリソン法は、ポリエステル樹脂を射出成形することにより、最終形状より寸法が小さく、かつ、ポリエステルが非結晶である冷却有底プリフォームを予め形成しておき、この冷却プリフォームを延伸温度に予備加熱して、ブロー成形金型内で延伸する方法で、寸法等の精度に優れている。
本実施形態に係るボトル容器10の製造にはいずれの方法を用いることもできる。
【0015】
そして、このような延伸ブロー成形には、プリフォームをそのまま最終成形品の大きさとなるようにブローする一段ブロー成形方法と、プリフォームを一旦最終成形品より大きくなるようにブローして中間品を成形し、この中間品を熱収縮させて最終成形品を得るという二段ブロー成形方法とがある。
二段ブロー成形は、容器の肉厚を均一化するのに適する反面、工程が多数化,複雑化することから生産性が低下するという問題がある。
本実施形態では、以下に示すような一段ブロー成形によって所望の肉厚分布を備えたボトル容器10を得ることができるので、工程が少なく生産性に優れた一段ブロー成形法を採用することができ、安価かつ大量生産が要請される飲料用ボトル容器に対応できるようになっている。
【0016】
本実施形態に係る一段ブロー成形法では、まず、プリフォーム1の口部1aを適宜の手段により結晶化(白化)させる。そして、このプリフォームをガラス転移点(Tg)以上の所定の延伸温度、例えば85〜120℃に加熱し、加熱したプリフォームを、所定の熱処理(ヒートセット)温度に加熱された金型内において二軸延伸ブロー成形する。
具体的には、加熱したプリフォームは、延伸ロッドにより縦方向(軸方向)に延伸されるとともに、ブローエアによって横方向(周方向)に延伸される。
そして、本実施形態では、図1に示すように、プリフォーム1を所定の延伸温度で加熱する際に、プリフォーム1のボトルの肩部となる部分2と、ボトルの胴部となる部分3の中央部分と、更にボトルの底部となる部分4の所定箇所について、他の箇所よりも高温で加熱するようにしてある(図1の●部分が高温加熱箇所を示す)。
この高温加熱箇所は、他の箇所よりも2℃〜10℃程度高温となるように加熱することが好ましい。
また、高温加熱箇所の加熱方法は、例えば、高温加熱箇所のみ高温のヒータ等を配設したり、高温加熱箇所のみプリフォームの内側と外側にヒータ等の加熱手段を配設することにより行える。
【0017】
このように、プリフォーム1のボトル肩部となる部分2,ボトル胴部となる部分3の中央部分及びボトル底部となる部分4の所定箇所を他の箇所より高温で加熱することにより、当該高温加熱箇所は延伸され易くなる。
従って、ロッド延伸及びブロー延伸されることで、高温加熱箇所は他の部分よりも延伸されて肉厚が小さく(薄く)なり、ボトル胴部に相当する中央部分に肉薄部(ボトル容器10の肉薄部13a)が形成される。
そして、この肉薄部に連続する胴部3側の肉厚は、肉薄部で延伸された樹脂の分だけ大きく(厚く)ない、肉厚部(ボトル容器10の第一,第二肉厚部13b,13c)が形成されることになる。
このとき、プリフォーム1上の高温加熱箇所の位置及び加熱温度等を調整することにより、ボトル容器10の所望の箇所に肉薄部及び肉厚部を形成することができる。
なお、最終ブロー成形体の延伸倍率は、縦方向で1.2〜6倍、横方向で1.2〜4.5倍程度が好ましい。
【0018】
3.熱処理(ヒートセット)
上述したブロー金型を、120〜230℃、好ましくは130〜210℃に加熱し、二軸延伸ブロー時に、ブロー成形体の器壁の外側を金型内面に所定時間接触させて熱処理を行う。そして、所定時間の熱処理後、ブロー用流体を内部冷却用流体に切換えて、ブロー成形体内部を冷却する。
ここで、熱処理時間は、ブロー成形体の厚みや温度によっても相違するが、一般に1.5〜30秒、好ましくは2〜20秒程度である。また、冷却時間も、熱処理温度や冷却用流体の種類により異なるが、一般に0.1〜30秒、好ましくは0.2〜20秒程度である。
この熱処理により、ブロー成形体は結晶化される。
従って、ブロー成形体の結晶化度は、容器の肉厚,形状,ヒートセット温度,時間等の条件によるため、これらの条件を最適化することにより、ボトル容器10の胴部13の結晶化度を、後述する30〜40%の好適な範囲とすることができる。
【0019】
なお、冷却用流体としては、常温の空気,冷却された各種気体、例えば、−40℃〜+10℃の窒素,空気,炭酸ガス等のほか、化学的に不活性な液化ガス、例えば、液化窒素ガス,液化炭酸ガス,液化トリクロロフルオロメタンガス,液化ジクロロジフルオロメタンガス,他の液化脂肪族炭化水素ガス等を使用することができる。この冷却用流体には、水等の気化熱の大きい液化ミストを共存させることもできる。以上のような冷却用流体を使用することにより、顕著な冷却温度を得ることができる。
金型から取り出したブロー成形体は、放冷により、又は冷風を吹き付けることにより冷却する。
以上により、図2に示すような本実施形態に係るボトル容器10を得ることができる。
【0020】
[プリフォーム]
1.プリフォームの構造
図1に示すような本実施形態に係る延伸ブロー成形方法によりボトル容器10を製造するためのプリフォーム1は、熱可塑性樹脂からなり、口部1aと肩部2,胴部3及び底部4からなる有底筒状(試験管形状)に形成されている。
なお、このプリフォーム1は任意の形状とすることができ、図1に示す例では底部4がほぼ半球形状となっているが、特にこの形状に限定されず、例えば、底部4を楕円形状としたり底部4の先端を平坦化することもできる。
そして、上述したように、プリフォーム1が所定の延伸温度に加熱されて二軸延伸ブロー成形されることにより、図2に示すようなプラスチックボトル容器10が製造されることになる。
【0021】
2.構成成分
ここで、プリフォーム1(及びボトル容器10)を構成する熱可塑性樹脂は、延伸ブロー成形及び熱結晶化可能な樹脂であれば任意のものを使用することができる。
具体的には、ポリエチレンテレフタレート,ポリブチレンテレフタレート,ポリエチレンナフタレート,ポリカーボネート,ポリアリレート、又はこれらの共重合体等の熱可塑性ポリエステル、これらの樹脂あるいは他の樹脂とのブレンド物が好適であり、特に、ポリエチレンテレフタレート等のエチレンテレフタレート系熱可塑性ポリエステルが好適に使用される。
また、アクリロニトリル樹脂,ポリプロピレン,プロピレン−エチレン共重合体,ポリエチレン等も使用することができる。
これらの樹脂には、成形品の品質を損なわない範囲内で種々の添加剤、例えば、着色剤,紫外線吸収剤,離型剤,滑剤,核剤,酸化防止剤,帯電防止剤等を配合することができる。
【0022】
プリフォーム1を構成するエチレンテレフタレート系熱可塑性ポリエステルは、エステル反復単位の大部分、一般に70モル%以上をエチレンテレフタレート単位を占めるものであり、ガラス転移点(Tg)が50〜90℃、融点(Tm)が200〜275℃の範囲にあるものが好適である。
エチレンテレフタレート系熱可塑性ポリエステルとしては、ポリエチレンテレフタレート(PET)が耐圧性,耐熱性,耐熱圧性等の点で特に優れているが、エチレンテレフタレート単位以外にイソフタル酸やナフタレンジカルボン酸等の二塩基酸とプロピレングリコール等のジオールからなるエステル単位の少量を含む共重合ポリエステルも使用することができる。
【0023】
また、本実施形態のプリフォーム1は、単層(一層)の熱可塑性ポリエステル層で構成される場合の他、二層以上の熱可塑性ポリエステル層により構成することもできる。
さらに、本実施形態のプリフォーム1は、二層以上の熱可塑性ポリエステル層からなる内層及び外層の間に封入される中間層を備えることができ、中間層を酸素吸収層とすることができる。
このように酸素吸収層を備えることにより、ボトル容器内への外部からの酸素の透過を抑制し、ボトル容器内の内容物の外部からの酸素による変質を防止することができ、特に炭酸ガス入り飲料用のボトル容器に好適となる。
ここで、酸素吸収層は、酸素を吸収して酸素の透過を防ぐものであれば任意のものを使用することができるが、酸化可能有機成分及び遷移金属触媒の組合せ、あるいは実質的に酸化しないガスバリヤー性樹脂,酸化可能有機成分及び遷移金属触媒の組み合わせを使用することが好適である。
【0024】
[ボトル容器]
1.ボトル容器の構成
本実施形態の延伸ブロー成形方法により形成されるボトル容器10は、上述したプリフォーム1が延伸ブロー成形されることに形成されるプラスチックボトル容器であり、図2に示すように、口部11,肩部12,胴部13及び底部14を有している。
ボトル容器10の胴部13には、中央部分に肉薄部13aが備えられるとともに、この肉薄部13aを挟んだボトル高さ方向に、肩部側の第一の肉厚部13bと底部側の第二の肉厚部13cが備えられている。
【0025】
2.肉薄部及び肉厚部
胴部13の中央の肉薄部13cと第一の肉厚部13b及び第二の肉厚部13cは、それぞれ連続して形成されており、後述する延伸ブロー成形方法により、プリフォーム1の肩部2,胴部3の中央部分及び底部4の樹脂が高温加熱により延伸され、ボトル胴部に相当する特定部分に樹脂が割り当てられることにより、胴部13の中央部分の肉薄部13aと、第一及び第二の肉厚部13b,13cが形成されるようになっている。
一般に、延伸ブロー成形により製造されるボトル容器では、肩部及び胴下部の肉厚が厚くなっている。また、延伸される胴部は、胴部全体が均一に延伸されて、荷重が掛かる部分も掛からない部分も肉厚がほぼ同じようになっており、荷重の掛からない胴部中央に必要以上の樹脂が存在している。
そこで、本実施形態では、プリフォーム1のボトル肩部(図2に示す点線部分12a参照)と胴部中央(点線部分13a参照)及び底部(点線部分14a)に相当する樹脂を、胴部の所定箇所に割り当てることにより、成形されたボトル容器の胴部13の特定部分(点線部分13b,13c参照)の肉厚が大きくなるようにしてあり、これによって、プリフォーム1(すなわち、ボトル容器10)の樹脂重量を削減することによっても、胴部13の強度が損なわれることなくボトル容器10を形成できるようにしたものである。
【0026】
そして、具体的には、胴部13の第一及び第二の肉厚部13a,13bは、例えば自動販売機内等においてボトル容器10が積載状態となった場合に荷重が加わる位置に形成されるようになっている。
一般に、ボトル容器が飲料用容器として使用される場合、自動販売機に収納されることが一般的である。そして、自動販売機内に収納される場合、ボトル容器は横置きされた状態で上下に多数積み重ねられて収納される。そして、販売機内のベンダーバー上に積載された容器の胴部には、積み重ねられた他の容器からの荷重が掛かる。
このため、積載されるボトル容器では、胴部に他の容器等からの荷重が掛かり、軽量化のために胴部の肉厚が薄くなると、耐荷重強度が不足して、容器の変形やつぶれ等が生じていた。
【0027】
そこで、本実施形態では、ボトル容器10が積載される場合に、他の容器等から荷重が加わる胴部13の所定部分に、第一及び第二の肉厚部13a,13bを形成するようにしてある。
ここで、胴部13の肉厚としては、例えば容量500mlや350ml等の通常の飲料用のボトル容器の場合、第一及び第二の肉厚部13a,13bについては、0.33〜0.45mmの範囲とし、中央肉薄部13cについては、0.25〜0.31mmの範囲に形成することが好ましい。
このような範囲に胴部13の肉厚を設定することで、胴部13の中央部分や肩部12の強度が損なわれない範囲で、積載荷重等が掛かる胴部13の所定箇所の耐荷重性強度を良好な範囲とすることができ、かつ、ボトル容器10全体の軽量化を図ることができるようになる。
【0028】
なお、第一及び第二の肉厚部13b,13cは、それぞれ肩部12及び底部14の連続部分に形成されるようになっているが、この「連続部分」には、胴部13と肩部12の連続する部分,胴部13と底部14の連続する部分、及びその周辺部分が含まれる。
第一及び第二の肉厚部13a,13bは、図1に示したプリフォーム1の高温加熱部が延伸されることにより、プリフォーム1の肩部2,胴部3の中央部分,底部4の樹脂が割り当てられて肉厚状に形成される。
従って、これら第一,第二の肉厚部13a,13bは、ボトル容器の胴部13と肩部12,胴部13と底部14の連続部分に、一定範囲で形成されることになり、胴部と13と肩部12、胴部13と底部14が連続する連続部分とその周辺部分に形成される限り、本明細書中の「連続部分」に含まれる。そして、この第一及び第二の肉厚部13a,13bの間に肉薄部13cが位置している。
【0029】
3.結晶化度
本実施形態のボトル容器10を形成する熱可塑性ポリエステルは、胴部13の結晶化度が30〜40%の範囲となるようにしてある。結晶化度をこの範囲にすることで、ボトル容器10の変形を防止でき、かつ、胴部13のバリヤー性を高めることができるようになる。
結晶化度が30%未満であると、酸素透過,変形防止の効果が充分に得られず、また、結晶化度が40%を超えると、二軸延伸ブロー成形後の金型の離型性が低下し、また、離型後の変形が大きくなる傾向がある。
胴部13の結晶化度をこの範囲とすることで、ボトル容器10の耐熱性,耐衝撃強度を更に向上させることができ、特に自動販売機内に収納される飲料用等のボトル容器として好ましい。
【0030】
以上説明したように、本実施形態のボトル容器の延伸ブロー成形方法によれば、一段ブロー成形法によりプリフォーム1を所定の延伸温度で加熱する際に、プリフォーム1のボトル肩部となる部分2とボトル胴部となる部分3の中央部分、ボトル底部となる部分14の所定箇所を他の部分よりも高温で加熱するようにしてあり、これによって高温加熱部分が延伸され易くなり、ボトル容器10の肩部12や胴部13の中央部分に相当する樹脂を、胴部13の積載荷重の掛かる部分に割り当てることができるようになる。
これにより、プリフォーム1の重量を削減しても、胴部13の所定部分の肉厚を大きくすることができ、胴部13の耐荷重強度を損なうことなくボトル容器全体を軽量化することができる。
従って、本実施形態の延伸ブロー成形方法により得られたボトル容器10は、自動販売機内に積載収納されても、変形やつぶれ等は発生せず、ベンダー適性が損なわれることなく清涼飲料等の容器に対するボトル軽量化の要請に充分に対応することができるようになる。
【0031】
【実施例】
以下、図3及び図4を参照しつつ、本発明のプラスチックボトル容器の具体的な実施例を示す。
[実施例1]
ポリエチレンテレフタレート(PET)を押出機に供給して重量26gのプリフォームを製造した。
このプリフォームをガラス転移点(Tg)以上の90℃に加熱するとともに、プリフォームのボトルの肩部となる部分,ボトルの胴部となる部分の中央部分,ボトルの底部となる部分の各所定箇所(図1の●部分参照)については他の箇所よりも4℃高温で加熱し、このプリフォームを、160℃に加熱された金型内にセットして一段ブロー成形法により二軸延伸ブローを行い、内容量500mlのボトル容器を得た。
【0032】
[比較例1]
従来の軽量化されていないボトル容器であり、ポリエチレンテレフタレート(PET)を重量32g使用し、実施例1におけるプリフォームの特定部分の高温加熱を行わない従来の二軸延伸ブロー成形によって内容量500mlのボトル容器を得た。
【0033】
[比較例2]
比較例1と同様の成形条件により、ポリエチレンテレフタレート(PET)の重量26gに削減して内容量500mlのボトル容器を得た。
【0034】
これらのボトル容器の肩部,胴部及び底部の肉厚分布を図3及び図4に示す。実施例1では、胴部の肉薄部の最小肉厚が最小肉厚が0.269mm(測定箇所100mm)で、第一の肉厚部の最大肉厚が0.361mm(測定箇所120mm)で、胴部の第二の肉厚部の最大肉厚が0.371mm(測定箇所20mm)となった。また、肩部の最小肉厚が0.268mm(測定箇所165mm)で、底部の最小肉厚が0.318mm(測定箇所0mm)となった。
このように、実施例1では、第一及び第二の肉厚部が、胴部中央の肉薄部に比べて、充分に厚みが大きく、ボトル容器の積載荷重が掛かる部分の肉厚が大きく、荷重の掛からない部分の肉厚が小さいボトル容器が得られることがわかった。
【0035】
一方、比較例1では、実施例1の胴部中央の肉薄部に相当する測定箇所100mmの肉厚が0.400mmで、第一の肉厚部に相当する測定箇所120mmの肉厚が0.413mm、第二の肉厚部に相当する測定箇所20mmの肉厚が0.501mmであるのに対し、肩部の測定箇所165mmの肉厚は0.364mm、底部の測定箇所0mmの肉厚が0.520mmであった。
この比較例1では、胴部の積載荷重の掛かる部分とそれ以外の部分の肉厚がほぼ均一となっており、実施例1における肉薄部と第一の肉厚部に相当する部分の肉厚がほとんど同じで、さらに、実施例1の底部の最小肉厚部分に相当する測定箇所0mmの肉厚0.520mmは、胴部の最大肉厚部分の肉厚0.501mm(測定箇所20mm)よりも大きくなった。
【0036】
比較例2では、実施例1の胴部中央の肉薄部に相当する測定箇所100mmの肉厚が0.333mmで、第一の肉厚部に相当する測定箇所120mmの肉厚が0.316mm、第二の肉厚部に相当する測定箇所20mmの肉厚が0.304mmであるのに対し、肩部の測定箇所165mmの肉厚は0.310mm、底部の測定箇所0mmの肉厚が0.323mmであった。
この比較例2でも、比較例1の場合と同様、胴部の積載荷重の掛かる部分とそれ以外の部分の肉厚がほぼ均一となり、実施例1の第一の肉厚部と肉薄部,肩部に相当する部分がほとんど同じ肉厚となった。
しかも、この比較例2では、積載荷重が掛かる実施例1の第二の肉厚部に相当する部分(測定箇所20mm)の肉厚が0.304mmとなり、胴部の中で最小肉厚となった。
【0037】
プリフォームの重量が同一である実施例1と比較例2とを対比すると、まず比較例2では、容器全体の肉厚が均一化しており、荷重の掛からない胴部中央や肩部の肉厚が大きくなる一方で、荷重が掛かる部分である胴部縁部の肉厚が却って小さくなっている。
これに対して、実施例1では、荷重の掛からない肩部や胴部中央,底部の肉厚が小さくなり、その分の樹脂が、荷重の掛かる第一及び第二の肉厚部に割り当てられることで、第一の肉厚部の最大肉厚が0.361mm、第二の肉厚部の最大肉厚が0.371mmと充分に大きくなっている。
従って、本発明に係る実施例1の容器では、比較例1の従来ボトル容器の重量(32g)から6gの軽量化が図れると同時に、比較例2の単なる樹脂重量を削減しただけの容器と比べて、胴部の荷重の掛かる部分を肉厚化でき、ボトル容器の耐荷重性強度を高めることができる。
【0038】
なお、本発明のプラスチックボトル容器の延伸ブロー成形方法は、上述した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。
例えば、上記実施形態では、図2に示したように、外形がほぼ円筒状のボトル容器となっていたが、ボトル容器の外形は特に円筒状のものに限られるものではなく、角筒状のボトル容器,角筒と円筒を組み合わせたボトル容器であっても本発明の適用を妨げるものではない。
そして、ボトル容器の胴部に備えられる肉薄部は、積載荷重の掛からない箇所の少なくとも一箇所に形成されるものであればよく、これを二箇所以上としてもよい。例えば、ボトル容器の荷重の掛かる箇所に肉厚部が形成されれば、それ以外の部分については、肉薄部を何箇所に形成することもでき、三箇所の肉厚部の間に二箇所の肉薄部を設ける等、任意に設定することが可能である。
【0039】
【発明の効果】
以上説明したように、本発明のプラスチックボトル容器の延伸ブロー成形方法によれば、ボトル容器の肩部,胴部中央,底部に相当するパリソンの所定箇所を、他の箇所より高温で加熱して、一段ブロー成形法を用いて延伸ブロー成形することにより、ボトルの胴部中央や肩部を形成する樹脂を特定部分に割り当てることができ、使用樹脂の重量を削減しつつ荷重が掛かる胴部の所定部分の肉厚を大きくし、容器胴部の耐荷重強度を損なうことなくボトル容器全体の軽量化を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態発明に係る延伸ブロー成形方法によりプラスチックボトル容器を製造するためのプリフォーム(パリソン)の一例を示す断面図である。
【図2】本発明の一実施形態に係る延伸ブロー成形方法により形成されるプラスチックボトル容器を示す一部断面図である。
【図3】本発明の延伸ブロー成形方法の一実施例により形成されるボトル容器の肉厚分布を示すグラフである。
【図4】本発明の延伸ブロー成形方法の一実施例により形成されるボトル容器の肉厚分布を示す表である。
【符号の説明】
1 プリフォーム(パリソン)
1a 口部
2 ボトルの肩部となる部分
3 ボトルの胴部となる部分
4 ボトルの底部となる部分
10 ボトル容器
11 口部
12 肩部
13 胴部
14 底部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stretch blow molding method for forming a plastic bottle container by stretch blow molding a parison made of polyethylene terephthalate or the like.
In particular, the present invention is to heat a predetermined portion such as a central portion and a shoulder portion of a parison body at a higher temperature than other portions, and to stretch-blow mold using a single-stage blow molding method to thereby provide a center portion of a bottle body. Resin located in the part and shoulders is allocated to increase the thickness of the predetermined part, reducing the weight of the resin used and increasing the thickness of the predetermined part of the body to which a load is applied, and the load bearing strength of the container body The present invention relates to a stretch blow molding method for a plastic bottle container which can reduce the weight of the entire bottle container without impairing the quality.
[0002]
[Prior art]
Generally, a plastic bottle container made of polyester such as polyethylene terephthalate, polypropylene, polyamide or the like and formed by stretch blow is known.
This type of plastic bottle container is generally manufactured by stretch blow molding an injection molded parison (preform).
Plastic bottle containers manufactured by the stretch blow molding method have excellent transparency and gas barrier properties and are widely used as bottle containers for beverages such as carbonated beverages such as cola and cider, fruit juice beverages, mineral water, and various teas. ing.
[0003]
[Problems to be solved by the invention]
In recent years, plastic bottle containers have rapidly spread and spread, and with this widespread use, there has been a strong demand for lighter containers, especially for beverage containers. For example, a plastic bottle container currently used as a container for a capacity of 500 ml has a weight of about 32 g, and there is a demand to reduce the weight.
Here, the weight of the plastic bottle container is determined by the weight of the parison before being stretch blow-molded. Therefore, if the parison is reduced in weight, the bottle container is also reduced in weight.
[0004]
However, in this simple method of reducing the weight of the parison, the thickness of the wall of the bottle container, specifically, the thickness of the stretched container body is reduced by the reduced weight, and the load bearing strength is reduced. The problem of being damaged occurred.
In particular, in the case of a bottle container for beverages, it is general that the bottle container is stored in a vending machine, and in the vending machine, a large number of bottle containers arranged horizontally are stored in a vertically stacked state. Then, a load from another stacked container is applied to the body of the container stacked on the bender bar in the vending machine. For this reason, in the case of a container having a thinner body portion for reducing the weight, the load-bearing strength is insufficient, and the container is deformed or crushed, thereby causing a problem that the suitability for bender is lost.
[0005]
As described above, even if an attempt is made to reduce the weight of the bottle container simply by reducing the weight of the parison, the thickness of the container body becomes thinner, and the load-bearing strength of the container becomes insufficient. However, it has not been possible to cope with the reduction in the weight of the beverage bottle container stored in the container.
The present inventor has conducted intensive studies in view of the above circumstances. As a result, the shoulder portion, the central portion of the body portion, and the bottom portion of the bottle container have thicker portions than the amount required to maintain the load-bearing strength of the container. The present inventors have found that there is, and have thought that by improving the thickness distribution at the shoulder and the center of the trunk, it is possible to reduce the weight of the entire container without impairing the strength of the container.
[0006]
That is, the present invention has been proposed in order to solve the problems of the conventional technology as described above, and a predetermined portion of the parison corresponding to the shoulder, the center of the body, and the bottom of the bottle container is replaced with another portion. By applying stretch blow molding using a single-stage blow molding method, the resin forming the center and shoulders of the bottle can be allocated to specific parts, and the weight of the resin used can be reduced. It is an object of the present invention to provide a stretch blow molding method for a plastic bottle container that can increase the thickness of a predetermined portion of a body portion to which a load is applied while reducing the load-bearing strength of the container body portion and reduce the weight of the entire bottle container.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the stretch blow molding method for a plastic bottle container according to the present invention comprises heating a bottomed cylindrical preform at a predetermined temperature and stretching blow molding to form a mouth, a shoulder, a trunk, and a body. A stretch blow molding method for forming a plastic bottle container having a bottom portion, wherein at least a predetermined portion of the preform, which corresponds to the center of the body of the bottle container, is heated at a temperature higher than the heating temperature of other portions. The preform is stretch-blow-molded by a single-stage blow molding method to stretch the resin at the high-temperature heating location to form at least one thin portion at the center of the body of the bottle container.
[0008]
Further, a method is provided in which at least two thick portions are formed in the body of the bottle container by stretching the resin at the high-temperature heating portion, thereby allocating the resin to a portion continuous with the thin portion.
Further, in addition to the center of the body of the bottle container of the preform, by heating a predetermined portion of the shoulder and / or bottom of the bottle container at a temperature higher than the heating temperature of the other portion, the thin portion and Alternatively, it is a method of forming a thick portion.
Then, the thick portion is formed at a position where a load of the plastic bottle container is applied.
[0009]
According to the stretch blow molding method for a plastic bottle container of the present invention constituted by such a method, in the stretch blow step in the single-stage blow molding method, a specific portion corresponding to the bottle shoulder, the center, and the bottom of the parison (preform) is specified. The part is heated at a higher temperature than the other parts. By stretching the high-temperature heated portion, the resin in the high-temperature heated portion can be stretched so as to be thinner than the other portions, and the resin in the stretched portion can be allocated to a predetermined portion of the bottle body.
As a result, even when the weight of the resin forming the parison is reduced, the thickness of the predetermined portion of the body to which a load is applied can be increased by controlling the thickness distribution, and the load bearing strength of the body can be increased. Thus, the entire bottle container can be reduced in weight without impairment.
Therefore, even if the bottle container according to the present invention is loaded and stored in a vending machine, deformation and crushing do not occur, and it sufficiently responds to the demand for reducing the weight of bottles for containers of soft drinks without impairing the suitability for vendors. Will be able to
[0010]
And it is preferable that the thickness of the thick part is 0.33 to 0.45 mm, and the thin part is 0.25 to 0.31 mm.
By setting the thick part and the thin part of the torso in such a range, the load-bearing strength of a predetermined part of the torso to which a load is applied is within a range in which the strength of the central part of the torso and the shoulder is not impaired. A good range can be achieved, and the weight of the entire bottle container can be reduced.
[0011]
Further, the plastic bottle container manufactured by the present invention is preferably formed so that at least the body has a crystallinity of 30 to 40% among the mouth, shoulder, body and bottom.
It is preferable to form it.
By setting the crystallinity of the body of the bottle in this range, the heat resistance of the bottle and the impact strength of the snapper can be further improved, which is particularly preferable as a bottle for beverages and the like stored in a vending machine. .
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the stretch blow molding method for a plastic bottle container according to the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view showing an example of a preform (parison) for manufacturing a plastic bottle container by a stretch blow molding method according to an embodiment of the present invention.
FIG. 2 is a partial cross-sectional view showing a plastic bottle container formed by the stretch blow molding method according to the present embodiment.
[0013]
[Method of manufacturing plastic bottle containers]
1. Preform manufacturing
First, a proform is formed.
As the preform, a bottomed cylindrical preform (parison) as shown in FIG. 1 can be manufactured by known injection molding or extrusion molding.
As the preform, a multilayer preform having an oxygen absorbing layer in an intermediate layer as described later can be used. When such a multilayer preform is used, a conventionally known co-injection molding machine is used. The inner and outer layers are made of polyester resin, and one or more oxygen absorbing layers are inserted between the inner and outer layers to obtain a multilayer mold having a bottom and an opening corresponding to the shape of the injection preform mold. Reforms can be manufactured.
[0014]
2. Stretch blow molding
Next, the preform is biaxially stretch blow-molded.
The stretch blow molding method generally includes two methods, a hot parison method (single-stage blow molding method) and a cold parison method (two-stage blow molding method). The hot parison method is a method in which a bottomed preform (parison) formed by injection molding a polyester resin is stretch blow-molded in a softened state without completely cooling, and has excellent productivity.
On the other hand, in the cold parison method, a cooling bottomed preform in which the dimensions are smaller than the final shape and the polyester is amorphous is formed in advance by injection molding a polyester resin. Is pre-heated to a stretching temperature and stretched in a blow molding die, and is excellent in accuracy such as dimensions.
Either method can be used for manufacturing the bottle container 10 according to the present embodiment.
[0015]
For such stretch blow molding, a single-stage blow molding method in which the preform is blown as it is to the size of the final molded product, and an intermediate product in which the preform is once blown so as to be larger than the final molded product. There is a two-stage blow molding method of molding and heat shrinking the intermediate product to obtain a final molded product.
Although the two-stage blow molding is suitable for making the thickness of the container uniform, there is a problem that the number of steps is increased and the productivity is reduced due to complexity.
In the present embodiment, since the bottle container 10 having a desired thickness distribution can be obtained by the single-stage blow molding as described below, a single-stage blow molding method with few steps and excellent productivity can be adopted. It is designed to be compatible with beverage bottle containers that are required to be inexpensive and mass-produced.
[0016]
In the single-stage blow molding method according to the present embodiment, first, the mouth 1a of the preform 1 is crystallized (whitened) by an appropriate means. Then, the preform is heated to a predetermined stretching temperature equal to or higher than the glass transition point (Tg), for example, 85 to 120 ° C., and the heated preform is placed in a mold heated to a predetermined heat treatment (heat set) temperature. Biaxial stretch blow molding.
Specifically, the heated preform is stretched in a longitudinal direction (axial direction) by a stretching rod and is stretched in a lateral direction (circumferential direction) by blow air.
In the present embodiment, as shown in FIG. 1, when the preform 1 is heated at a predetermined stretching temperature, the preform 1 has a portion 2 serving as a bottle shoulder and a portion 3 serving as a bottle trunk. And a predetermined portion of the portion 4 which will be the bottom of the bottle is heated at a higher temperature than the other portions (the black portion in FIG. 1 indicates a high-temperature heating portion).
It is preferable that the high-temperature heating portion be heated so as to be about 2 ° C. to 10 ° C. higher than other portions.
Further, the method of heating the high-temperature heating location can be performed by, for example, disposing a high-temperature heater or the like only at the high-temperature heating location, or disposing heating means such as a heater inside and outside the preform only at the high-temperature heating location.
[0017]
As described above, by heating a predetermined portion of the portion 2 serving as the bottle shoulder portion, the portion 3 serving as the bottle body portion, and the portion 4 serving as the bottle bottom portion of the preform 1 at a higher temperature than other portions, the high temperature can be obtained. The heated part is easily stretched.
Therefore, by the rod stretching and the blow stretching, the high temperature heating portion is stretched to be thinner (thinner) than other portions, and the thin portion (the thinner portion of the bottle container 10) is provided at the central portion corresponding to the bottle body. The part 13a) is formed.
Then, the thickness of the body 3 side continuous to the thin portion is not large (thick) by the resin stretched in the thin portion, but is a thick portion (the first and second thick portions 13b of the bottle container 10). , 13c) will be formed.
At this time, a thin portion and a thick portion can be formed at desired portions of the bottle container 10 by adjusting the position of the high-temperature heating portion on the preform 1, the heating temperature, and the like.
The stretch ratio of the final blow molded product is preferably about 1.2 to 6 times in the longitudinal direction and about 1.2 to 4.5 times in the transverse direction.
[0018]
3. Heat treatment (heat set)
The above-mentioned blow mold is heated to 120 to 230 ° C., preferably 130 to 210 ° C., and heat treatment is performed by bringing the outside of the wall of the blow molded body into contact with the inner surface of the mold for a predetermined time during biaxial stretching blow. After the heat treatment for a predetermined time, the blow fluid is switched to the internal cooling fluid to cool the inside of the blow molded body.
Here, the heat treatment time varies depending on the thickness and temperature of the blow molded body, but is generally 1.5 to 30 seconds, preferably about 2 to 20 seconds. The cooling time also varies depending on the heat treatment temperature and the type of cooling fluid, but is generally about 0.1 to 30 seconds, preferably about 0.2 to 20 seconds.
By this heat treatment, the blow molded body is crystallized.
Therefore, since the crystallinity of the blow molded product depends on conditions such as the thickness, shape, heat setting temperature, and time of the container, the crystallinity of the body 13 of the bottle container 10 can be optimized by optimizing these conditions. Can be set to a preferable range of 30 to 40% described later.
[0019]
Examples of the cooling fluid include room temperature air, various kinds of cooled gas, for example, nitrogen, air, and carbon dioxide at −40 ° C. to + 10 ° C., as well as a chemically inert liquefied gas, for example, liquefied nitrogen. Gas, liquefied carbon dioxide gas, liquefied trichlorofluoromethane gas, liquefied dichlorodifluoromethane gas, other liquefied aliphatic hydrocarbon gases, and the like can be used. A liquefied mist having a large heat of vaporization such as water can coexist in the cooling fluid. By using such a cooling fluid, a remarkable cooling temperature can be obtained.
The blow molded product taken out of the mold is cooled by allowing it to cool or blowing cold air.
As described above, the bottle container 10 according to the present embodiment as shown in FIG. 2 can be obtained.
[0020]
[preform]
1. Preform structure
A preform 1 for manufacturing a bottle container 10 by the stretch blow molding method according to the present embodiment as shown in FIG. 1 is made of a thermoplastic resin, and is formed from a mouth 1 a, a shoulder 2, a body 3, and a bottom 4. It is formed in a bottomed cylindrical shape (test tube shape).
The preform 1 can have an arbitrary shape. In the example shown in FIG. 1, the bottom 4 has a substantially hemispherical shape. However, the present invention is not particularly limited to this shape. The tip of the bottom 4 can also be flattened.
Then, as described above, the plastic bottle container 10 as shown in FIG. 2 is manufactured by heating the preform 1 to a predetermined stretching temperature and performing biaxial stretch blow molding.
[0021]
2. Structural component
Here, as the thermoplastic resin constituting the preform 1 (and the bottle container 10), any resin can be used as long as the resin can be stretch blow molded and thermally crystallized.
Specifically, thermoplastic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyarylate, and copolymers thereof, and blends thereof with these resins or other resins are particularly preferable. An ethylene terephthalate-based thermoplastic polyester such as polyethylene terephthalate is preferably used.
Also, acrylonitrile resin, polypropylene, propylene-ethylene copolymer, polyethylene and the like can be used.
These resins are blended with various additives such as a colorant, an ultraviolet absorber, a release agent, a lubricant, a nucleating agent, an antioxidant, an antistatic agent and the like within a range not to impair the quality of the molded article. be able to.
[0022]
The ethylene terephthalate-based thermoplastic polyester constituting the preform 1 occupies most of the ester repeating units, generally 70 mol% or more, of ethylene terephthalate units, has a glass transition point (Tg) of 50 to 90 ° C., and has a melting point ( Those having Tm) in the range of 200 to 275 ° C are preferred.
As the ethylene terephthalate-based thermoplastic polyester, polyethylene terephthalate (PET) is particularly excellent in terms of pressure resistance, heat resistance, heat pressure resistance and the like. Copolymerized polyesters containing a small amount of ester units consisting of diols such as propylene glycol can also be used.
[0023]
In addition, the preform 1 of the present embodiment can be constituted by two or more thermoplastic polyester layers in addition to the case where the preform 1 is constituted by a single layer (one layer) of thermoplastic polyester layer.
Furthermore, the preform 1 of the present embodiment can include an intermediate layer enclosed between an inner layer and an outer layer composed of two or more thermoplastic polyester layers, and the intermediate layer can be an oxygen absorbing layer.
By providing the oxygen absorbing layer in this manner, the permeation of oxygen from the outside into the bottle container can be suppressed, and the contents in the bottle container can be prevented from being altered by oxygen from the outside. It is suitable for bottle containers for beverages.
Here, as the oxygen absorbing layer, any material can be used as long as it absorbs oxygen and prevents the permeation of oxygen. However, a combination of an oxidizable organic component and a transition metal catalyst, or substantially no oxidation is performed. It is preferred to use a combination of a gas barrier resin, an oxidizable organic component and a transition metal catalyst.
[0024]
[Bottle container]
1. Composition of bottle container
The bottle container 10 formed by the stretch blow molding method of the present embodiment is a plastic bottle container formed by stretch blow molding the preform 1 described above, and as shown in FIG. It has a shoulder 12, a body 13 and a bottom 14.
The body 13 of the bottle container 10 is provided with a thin portion 13a at a central portion, and a first thick portion 13b on the shoulder side and a second thick portion 13b on the bottom side in the height direction of the bottle sandwiching the thin portion 13a. A second thick portion 13c is provided.
[0025]
2. Thin and thick parts
The central thin portion 13c, the first thick portion 13b, and the second thick portion 13c of the body portion 13 are formed continuously, and are formed by a stretch blow molding method described later. 2, the resin in the central portion of the body portion 3 and the resin in the bottom portion 4 are stretched by heating at a high temperature, and the resin is allocated to a specific portion corresponding to the bottle body portion. And second thick portions 13b and 13c are formed.
Generally, in a bottle container manufactured by stretch blow molding, the thickness of the shoulder part and the lower part of the trunk is thick. In addition, the torso to be stretched, the entire torso is uniformly stretched, and the thickness of the part where the load is applied and the part where the load is not applied are almost the same, and the center of the torso where the load is not applied is more than necessary. Resin is present.
Therefore, in the present embodiment, the resin corresponding to the bottle shoulder portion (see the dotted line portion 12a shown in FIG. 2), the center of the body portion (see the dotted line portion 13a) and the bottom portion (the dotted line portion 14a) of the preform 1 is applied to the body portion. By allocating to a predetermined location, the thickness of a specific portion (refer to dotted line portions 13b and 13c) of the body portion 13 of the molded bottle container is increased, whereby the preform 1 (that is, the bottle container 10) is formed. The bottle container 10 can be formed without reducing the strength of the body portion 13 even by reducing the resin weight of the item (1).
[0026]
Specifically, the first and second thick portions 13a and 13b of the body 13 are formed at positions where a load is applied when the bottle container 10 is in a loaded state, for example, in a vending machine. It has become.
Generally, when a bottle container is used as a beverage container, it is generally stored in a vending machine. When stored in a vending machine, a large number of bottle containers are stacked and stored in a horizontal state. Then, a load from another stacked container is applied to the body of the container stacked on the bender bar in the vending machine.
For this reason, in a bottle container to be loaded, a load from another container or the like is applied to the body, and if the thickness of the body is reduced for weight reduction, the load-bearing strength is insufficient, and the container is deformed or crushed. Etc. had occurred.
[0027]
Therefore, in the present embodiment, when the bottle container 10 is loaded, the first and second thick portions 13a and 13b are formed at predetermined portions of the body 13 to which a load is applied from another container or the like. It is.
Here, the wall thickness of the body 13 is, for example, in the case of a normal beverage bottle container having a capacity of 500 ml or 350 ml, for the first and second thick portions 13a, 13b, 0.33-0. It is preferable that the thickness be in the range of 45 mm and the center thin portion 13c be formed in the range of 0.25 to 0.31 mm.
By setting the thickness of the torso 13 in such a range, the load-bearing capacity of a predetermined portion of the torso 13 to which a loading load or the like is applied within a range where the strength of the central portion of the torso 13 and the shoulder 12 is not impaired. The strength can be set in a favorable range, and the weight of the entire bottle container 10 can be reduced.
[0028]
The first and second thick portions 13b and 13c are formed at a continuous portion of the shoulder portion 12 and the bottom portion 14, respectively. A continuous portion of the portion 12, a continuous portion of the trunk portion 13 and the bottom portion 14, and a peripheral portion thereof are included.
The first and second thick portions 13a and 13b are formed by stretching the high-temperature heating portion of the preform 1 shown in FIG. Is allocated to form a thick wall.
Therefore, these first and second thick portions 13a and 13b are formed in a certain range on a continuous portion of the body portion 13 and the shoulder portion 12 and the body portion 13 and the bottom portion 14 of the bottle container. As long as the part 13 and the shoulder part 12 and the trunk part 13 and the bottom part 14 are formed in a continuous part and its peripheral part, it is included in the “continuous part” in this specification. The thin portion 13c is located between the first and second thick portions 13a and 13b.
[0029]
3. Crystallinity
The thermoplastic polyester forming the bottle container 10 of the present embodiment is configured so that the crystallinity of the body 13 is in the range of 30 to 40%. By setting the crystallinity within this range, the deformation of the bottle container 10 can be prevented, and the barrier property of the body 13 can be improved.
If the degree of crystallinity is less than 30%, the effect of preventing oxygen permeation and deformation cannot be sufficiently obtained, and if the degree of crystallinity exceeds 40%, the releasability of the mold after biaxial stretch blow molding. And the deformation after release tends to increase.
By setting the crystallinity of the body portion 13 within this range, the heat resistance and impact resistance of the bottle container 10 can be further improved, and it is particularly preferable as a bottle container for beverages and the like stored in a vending machine.
[0030]
As described above, according to the bottle container stretch blow molding method of the present embodiment, when the preform 1 is heated at a predetermined stretching temperature by the single-stage blow molding method, a portion that becomes the bottle shoulder portion of the preform 1 2 and a central portion of the portion 3 serving as the bottle body and a predetermined portion of the portion 14 serving as the bottle bottom are heated at a higher temperature than the other portions. The resin corresponding to the shoulder portion 12 and the central portion of the trunk 13 can be allocated to the portion of the trunk 13 where the load is applied.
Thereby, even if the weight of the preform 1 is reduced, the thickness of the predetermined portion of the body 13 can be increased, and the entire bottle container can be reduced in weight without impairing the load-bearing strength of the body 13. it can.
Therefore, even if the bottle container 10 obtained by the stretch blow molding method of the present embodiment is loaded and stored in a vending machine, it is not deformed or crushed, and a container for a soft drink or the like without impairing the suitability for a vendor. Satisfactorily can meet the demand for bottle weight reduction.
[0031]
【Example】
Hereinafter, specific examples of the plastic bottle container of the present invention will be described with reference to FIGS.
[Example 1]
Polyethylene terephthalate (PET) was fed to an extruder to produce a preform weighing 26 g.
The preform is heated to 90 ° C. above the glass transition point (Tg), and a predetermined portion of the preform is defined as a shoulder portion of the bottle, a center portion of the body portion of the bottle, and a bottom portion of the bottle. The part (see ● part in FIG. 1) is heated at 4 ° C. higher than the other parts, and this preform is set in a mold heated to 160 ° C., and biaxially stretch blown by a single-stage blow molding method. Was carried out to obtain a bottle container having a content of 500 ml.
[0032]
[Comparative Example 1]
This is a conventional non-lightened bottle container that uses polyethylene terephthalate (PET) weighing 32 g and has a content of 500 ml by a conventional biaxial stretch blow molding that does not perform high-temperature heating of a specific portion of the preform in Example 1. A bottle container was obtained.
[0033]
[Comparative Example 2]
Under the same molding conditions as in Comparative Example 1, the weight of polyethylene terephthalate (PET) was reduced to 26 g to obtain a bottle container having an inner capacity of 500 ml.
[0034]
The wall thickness distribution of the shoulder, body and bottom of these bottle containers is shown in FIGS. In Example 1, the minimum thickness of the thin portion of the body portion was 0.269 mm (the measurement point 100 mm), and the maximum thickness of the first thickness portion was 0.361 mm (the measurement point 120 mm). The maximum thickness of the second thick part of the body was 0.371 mm (measuring point 20 mm). In addition, the minimum thickness of the shoulder was 0.268 mm (at a measurement point of 165 mm), and the minimum thickness of the bottom was 0.318 mm (at a measurement point of 0 mm).
Thus, in Example 1, the first and second thick portions are sufficiently thicker than the thin portion at the center of the body portion, and the thickness of the portion where the loading load of the bottle container is applied is large. It was found that a bottle container having a small thickness at a portion where no load was applied was obtained.
[0035]
On the other hand, in Comparative Example 1, the thickness at the measurement point 100 mm corresponding to the thin part at the center of the body part of Example 1 was 0.400 mm, and the thickness at the measurement point 120 mm corresponding to the first thick part was 0.4 mm. 413 mm, the thickness at the measurement point 20 mm corresponding to the second thickness part is 0.501 mm, whereas the thickness at the shoulder measurement point 165 mm is 0.364 mm, and the thickness at the bottom measurement point 0 mm is It was 0.520 mm.
In Comparative Example 1, the thickness of the portion of the body portion where the load is applied and the other portions are substantially uniform, and the thickness of the thin portion and the portion corresponding to the first thick portion in Example 1 are equal. Furthermore, the thickness 0.520 mm at the measurement point 0 mm corresponding to the minimum thickness part at the bottom of Example 1 is larger than the thickness 0.501 mm (the measurement point 20 mm) at the maximum thickness part of the body part in Example 1. Has also grown.
[0036]
In Comparative Example 2, the thickness of the measuring portion 100 mm corresponding to the thin portion at the center of the body portion of Example 1 was 0.333 mm, and the thickness of the measuring portion 120 mm corresponding to the first thick portion was 0.316 mm. The thickness at the measurement point 20 mm corresponding to the second thick part is 0.304 mm, the thickness at the measurement point 165 mm at the shoulder is 0.310 mm, and the thickness at the measurement point 0 mm at the bottom is 0. 323 mm.
In Comparative Example 2, as in Comparative Example 1, the thickness of the portion of the body portion where the load is applied and the other portions are substantially uniform, and the first thick portion, thin portion, and shoulder of Example 1 are formed. The part corresponding to the part had almost the same thickness.
Moreover, in Comparative Example 2, the thickness of the portion (measuring point 20 mm) corresponding to the second thick portion of Example 1 where the loading load is applied is 0.304 mm, which is the minimum thickness in the trunk portion. Was.
[0037]
Comparing Example 1 and Comparative Example 2 in which the weight of the preform is the same, first, in Comparative Example 2, the thickness of the entire container is made uniform, and the thickness of the center of the trunk and the thickness of the shoulder where no load is applied. While the thickness of the body edge, which is the portion where the load is applied, is rather small.
On the other hand, in the first embodiment, the thickness of the shoulder, the center, and the bottom where no load is applied is reduced, and the resin corresponding to the thickness is allocated to the first and second thick portions where the load is applied. Thus, the maximum thickness of the first thick portion is 0.361 mm, and the maximum thickness of the second thick portion is sufficiently large, 0.371 mm.
Therefore, in the container of Example 1 according to the present invention, the weight (32 g) of the conventional bottle container of Comparative Example 1 can be reduced by 6 g, and at the same time, compared with the container of Comparative Example 2 in which the resin weight is simply reduced. Thus, the portion of the body to which the load is applied can be made thicker, and the load-bearing strength of the bottle container can be increased.
[0038]
In addition, the stretch blow molding method of the plastic bottle container of the present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made within the scope of the present invention.
For example, in the above embodiment, as shown in FIG. 2, the outer shape is a substantially cylindrical bottle container. However, the outer shape of the bottle container is not particularly limited to a cylindrical shape, and may be a rectangular cylindrical shape. Even a bottle container or a combination of a square tube and a cylinder does not prevent the application of the present invention.
The thin portion provided on the body of the bottle container may be formed in at least one of the places where the loading load is not applied, and may be two or more. For example, if a thick part is formed at a place where a load is applied to a bottle container, a thin part can be formed at any number of places other than the thick part, and two places are formed between three thick parts. It can be set arbitrarily, for example, by providing a thin portion.
[0039]
【The invention's effect】
As described above, according to the stretch blow molding method for a plastic bottle container of the present invention, a predetermined portion of the parison corresponding to the shoulder, the center of the body, and the bottom of the bottle is heated at a higher temperature than other portions. By stretching blow molding using a single-stage blow molding method, the resin that forms the center and shoulders of the body of the bottle can be allocated to specific parts, and the weight of the used body can be reduced while reducing the weight of the resin used. By increasing the thickness of the predetermined portion, the weight of the entire bottle container can be reduced without impairing the load-bearing strength of the container body.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of a preform (parison) for producing a plastic bottle container by a stretch blow molding method according to an embodiment of the present invention.
FIG. 2 is a partial cross-sectional view showing a plastic bottle container formed by a stretch blow molding method according to one embodiment of the present invention.
FIG. 3 is a graph showing a wall thickness distribution of a bottle container formed by one embodiment of the stretch blow molding method of the present invention.
FIG. 4 is a table showing a thickness distribution of a bottle container formed by one embodiment of the stretch blow molding method of the present invention.
[Explanation of symbols]
1 Preform (Parison)
1a mouth
2 Shoulder of bottle
3 The part that becomes the body of the bottle
4 The bottom part of the bottle
10 bottle containers
11 mouth
12 Shoulder
13 torso
14 bottom

Claims (6)

有底筒状のプリフォームを所定温度で加熱し、延伸ブロー成形することにより、口部,肩部,胴部及び底部を有するプラスチックボトル容器を形成する延伸ブロー成形方法であって、
前記プリフォームの、少なくとも前記ボトル容器の胴部中央に相当する所定箇所を、他の部分の加熱温度より高温で加熱し、当該プリフォームを一段ブロー成形法により延伸ブロー成形することにより、
前記高温加熱箇所の樹脂を延伸させて、前記ボトル容器の胴部中央部分に少なくとも一個の肉薄部を形成することを特徴とするプラスチックボトル容器の延伸ブロー成形方法。
A stretch blow molding method for forming a plastic bottle container having a mouth, a shoulder, a body, and a bottom by heating a bottomed cylindrical preform at a predetermined temperature and performing stretch blow molding,
By heating the preform, at least a predetermined portion corresponding to the center of the body of the bottle container, at a temperature higher than the heating temperature of the other portions, and stretch-blow molding the preform by a single-stage blow molding method,
A stretch blow molding method for a plastic bottle container, characterized in that the resin at the high-temperature heating location is stretched to form at least one thin portion at the center of the body of the bottle container.
前記高温加熱箇所の樹脂を延伸させることにより、当該樹脂を前記肉薄部に連続する部分に割り当てて、前記ボトル容器の胴部に少なくとも二個の肉厚部を形成する請求項1記載のプラスチックボトル容器の延伸ブロー成形方法。2. The plastic bottle according to claim 1, wherein by stretching the resin at the high-temperature heating portion, the resin is allocated to a portion that is continuous with the thin portion, and at least two thick portions are formed on the body of the bottle container. 3. Stretch blow molding method for containers. 前記プリフォームの、前記ボトル容器の胴部中央に加えて、当該ボトル容器の肩部及び/又は底部の所定箇所を他の部分の加熱温度より高温で加熱することにより、前記肉薄部及び又は肉厚部を形成する請求項1又は2記載のプラスチックボトル容器の延伸ブロー成形方法。By heating a predetermined portion of the preform, in addition to the center of the body of the bottle container, at the shoulder and / or bottom of the bottle container at a temperature higher than the heating temperature of the other portions, the thin portion and / or the meat The stretch blow molding method for a plastic bottle container according to claim 1 or 2, wherein the thick portion is formed. 前記肉厚部を、前記プラスチックボトル容器の荷重が加わる位置に形成する請求項1,2又は3記載のプラスチックボトル容器の延伸ブロー成形方法。The stretch blow molding method for a plastic bottle container according to claim 1, 2 or 3, wherein the thick portion is formed at a position where a load of the plastic bottle container is applied. 前記肉厚部の肉厚が0.33〜0.45mmであり、
前記肉薄部の肉厚が0.25〜0.31mmである請求項2,3又は4記載のプラスチックボトル容器の延伸ブロー成形方法。
The thickness of the thick portion is 0.33 to 0.45 mm,
The stretch blow molding method for a plastic bottle container according to claim 2, 3 or 4, wherein the thin portion has a thickness of 0.25 to 0.31 mm.
前記口部,肩部,胴部及び底部のうち、少なくとも胴部の結晶化度が30〜40%である請求項1,2,3,4又は5記載のプラスチックボトル容器の延伸ブロー成形方法。6. The stretch blow molding method for a plastic bottle container according to claim 1, wherein at least the body has a crystallinity of 30 to 40% among the mouth, the shoulder, the body and the bottom.
JP2002228777A 2002-08-06 2002-08-06 Stretch blow molding method for plastic bottle containers Expired - Fee Related JP4052055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228777A JP4052055B2 (en) 2002-08-06 2002-08-06 Stretch blow molding method for plastic bottle containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228777A JP4052055B2 (en) 2002-08-06 2002-08-06 Stretch blow molding method for plastic bottle containers

Publications (2)

Publication Number Publication Date
JP2004066624A true JP2004066624A (en) 2004-03-04
JP4052055B2 JP4052055B2 (en) 2008-02-27

Family

ID=32015374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228777A Expired - Fee Related JP4052055B2 (en) 2002-08-06 2002-08-06 Stretch blow molding method for plastic bottle containers

Country Status (1)

Country Link
JP (1) JP4052055B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009070238A2 (en) * 2007-11-21 2009-06-04 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
JP2009286457A (en) * 2008-05-30 2009-12-10 Yoshino Kogyosho Co Ltd Stretch blow molded container and its molding method
US8198371B2 (en) 2008-06-27 2012-06-12 Eastman Chemical Company Blends of polyesters and ABS copolymers
US8394997B2 (en) 2010-12-09 2013-03-12 Eastman Chemical Company Process for the isomerization of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8415450B2 (en) 2005-06-17 2013-04-09 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US8420869B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8420868B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8501287B2 (en) 2007-11-21 2013-08-06 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8895654B2 (en) 2008-12-18 2014-11-25 Eastman Chemical Company Polyester compositions which comprise spiro-glycol, cyclohexanedimethanol, and terephthalic acid
US9169388B2 (en) 2006-03-28 2015-10-27 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
JP2016013664A (en) * 2014-07-03 2016-01-28 北海製罐株式会社 Preform
US9598533B2 (en) 2005-11-22 2017-03-21 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US9982125B2 (en) 2012-02-16 2018-05-29 Eastman Chemical Company Clear semi-crystalline articles with improved heat resistance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449023A (en) * 1990-06-18 1992-02-18 Toppan Printing Co Ltd Manufacture of plastic bottle
JPH06255643A (en) * 1993-02-25 1994-09-13 Yoshino Kogyosho Co Ltd Resin bottle container and manufacture thereof
JPH06262670A (en) * 1993-03-11 1994-09-20 Toyo Seikan Kaisha Ltd Polyester container having drum part partially defferent in degree of crystallization and production thereof
JPH07164436A (en) * 1993-12-13 1995-06-27 Denki Kagaku Kogyo Kk Synthetic resin bottle and production thereof
JPH08244100A (en) * 1995-03-09 1996-09-24 Mitsui Petrochem Ind Ltd Bottle made of polyester and its preparation
JPH11106617A (en) * 1997-09-30 1999-04-20 Mitsui Chem Inc Polyester composition, bottle and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449023A (en) * 1990-06-18 1992-02-18 Toppan Printing Co Ltd Manufacture of plastic bottle
JPH06255643A (en) * 1993-02-25 1994-09-13 Yoshino Kogyosho Co Ltd Resin bottle container and manufacture thereof
JPH06262670A (en) * 1993-03-11 1994-09-20 Toyo Seikan Kaisha Ltd Polyester container having drum part partially defferent in degree of crystallization and production thereof
JPH07164436A (en) * 1993-12-13 1995-06-27 Denki Kagaku Kogyo Kk Synthetic resin bottle and production thereof
JPH08244100A (en) * 1995-03-09 1996-09-24 Mitsui Petrochem Ind Ltd Bottle made of polyester and its preparation
JPH11106617A (en) * 1997-09-30 1999-04-20 Mitsui Chem Inc Polyester composition, bottle and its production

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181388B2 (en) 2005-06-17 2015-11-10 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US9175134B2 (en) 2005-06-17 2015-11-03 Eastman Chemical Company Containers comprising polyester compositions which comprise cyclobutanediol
US9534079B2 (en) 2005-06-17 2017-01-03 Eastman Chemical Company Containers comprising polyester compositions which comprise cyclobutanediol
US8415450B2 (en) 2005-06-17 2013-04-09 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US9765181B2 (en) 2005-06-17 2017-09-19 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US9598533B2 (en) 2005-11-22 2017-03-21 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US10017606B2 (en) 2005-11-22 2018-07-10 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US9765203B2 (en) 2006-03-28 2017-09-19 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US9169388B2 (en) 2006-03-28 2015-10-27 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
WO2009070238A2 (en) * 2007-11-21 2009-06-04 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8501287B2 (en) 2007-11-21 2013-08-06 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8501292B2 (en) 2007-11-21 2013-08-06 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8287970B2 (en) 2007-11-21 2012-10-16 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
JP2015083378A (en) * 2007-11-21 2015-04-30 イーストマン ケミカル カンパニー Plastic-made baby bottle, other blow molding and their production method
JP2011505269A (en) * 2007-11-21 2011-02-24 イーストマン ケミカル カンパニー Plastic baby bottles, other blow-molded articles and methods for producing them
WO2009070238A3 (en) * 2007-11-21 2010-04-29 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
JP2009286457A (en) * 2008-05-30 2009-12-10 Yoshino Kogyosho Co Ltd Stretch blow molded container and its molding method
US8198371B2 (en) 2008-06-27 2012-06-12 Eastman Chemical Company Blends of polyesters and ABS copolymers
US8895654B2 (en) 2008-12-18 2014-11-25 Eastman Chemical Company Polyester compositions which comprise spiro-glycol, cyclohexanedimethanol, and terephthalic acid
US8420868B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8420869B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8394997B2 (en) 2010-12-09 2013-03-12 Eastman Chemical Company Process for the isomerization of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US9982125B2 (en) 2012-02-16 2018-05-29 Eastman Chemical Company Clear semi-crystalline articles with improved heat resistance
JP2016013664A (en) * 2014-07-03 2016-01-28 北海製罐株式会社 Preform

Also Published As

Publication number Publication date
JP4052055B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
EP0739823B1 (en) Self-standing container having excellent heat resistance and pressure resistance and method of producing the same
US5622735A (en) Fluid supply apparatus for blow mold
JP4052055B2 (en) Stretch blow molding method for plastic bottle containers
JP4599900B2 (en) Preform and blow molded container comprising the preform
NZ209211A (en) Blow moulding a container in two moulds with intermould transfer under pressure
US6720047B2 (en) Heat resistant blow molded containers
JP4292918B2 (en) Preforms for plastic bottle containers
JP4734896B2 (en) Manufacturing method of plastic bottle container
JP4333280B2 (en) Plastic bottle containers
JP2003191319A (en) Bottle-shaped vessel and manufacturing method thereof
JP2009078844A (en) Plastic bottle
JP4148065B2 (en) Stretch blow molding method of plastic bottle container and plastic bottle container formed by this molding method
JP7059563B2 (en) Preform manufacturing method
JP2004067156A (en) Plastics bottle
JP4284648B2 (en) Manufacturing method of flat container by two-stage blow molding method
JP2005112440A (en) Container
US11040476B2 (en) Stretch-blow formed polyester container and method of producing the same
JP4721138B2 (en) Flat container made of polyester resin
JPH0531792A (en) Manufacture of heat resistant container
JPH0615643A (en) Manufacture of premolded body
JP6589289B2 (en) Preform and method for producing plastic bottle
JP7355185B2 (en) Preform, preform manufacturing method, and plastic bottle manufacturing method
JPH0443499B2 (en)
WO2018003790A1 (en) Polyester stretch blow-molded container and manufacturing method therefor
JPH05193636A (en) Preformed molding of resin with hollow wall and method for its manufacture and container produced therefrom by biaxially stretching blow molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4052055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees