JPH06262670A - Polyester container having drum part partially defferent in degree of crystallization and production thereof - Google Patents

Polyester container having drum part partially defferent in degree of crystallization and production thereof

Info

Publication number
JPH06262670A
JPH06262670A JP5050910A JP5091093A JPH06262670A JP H06262670 A JPH06262670 A JP H06262670A JP 5050910 A JP5050910 A JP 5050910A JP 5091093 A JP5091093 A JP 5091093A JP H06262670 A JPH06262670 A JP H06262670A
Authority
JP
Japan
Prior art keywords
container
panel
mold
heat
pillar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5050910A
Other languages
Japanese (ja)
Other versions
JP2757732B2 (en
Inventor
Eishiro Sakurai
英四郎 桜井
Yoshimichi Ookubo
慶通 大久保
Minoru Yoshino
實 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP5091093A priority Critical patent/JP2757732B2/en
Publication of JPH06262670A publication Critical patent/JPH06262670A/en
Application granted granted Critical
Publication of JP2757732B2 publication Critical patent/JP2757732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a thermoplastic polyester container excellent in the combination of heat resistance, appearance characteristics and impact resistance by subjecting the drum part of a container to orientation thermal crystallization as a whole by thermal fixing and highly crystallizing the part to which higher heat resistance must be given to the drum part as compared with other part. CONSTITUTION:In a thermoplastic polyester container 1, the whole of the drum part 4 of the container 1 is subjected to orientation thermal crystallization by stretch molding and thermal fixing and the part requiring higher heat resistance of the drum part 4, that is, the part receiving the stress due to heat and easy to deform thereof is highly crystallized as compared with other part. By this method, since the thermal deformation of this part is prevented and the degree of crystallization of the other part is suppressed to a low level as compared with that of the highly crystallized part, the generation of unevenness due to the so-called sink is eliminated and excellent appearance characteristics can be obtained and the container 1 is more excellent in impact resistance as compared with one highly crystallized as a whole. The cooling time of this container in a mold is short as compared with the one highly crystallized as a whole and the productivity of the container 1 is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性、外観特性及び
耐衝撃性の組合せに優れており、内容物の熱間充填や充
填後の加熱殺菌の用途に特に有用な耐熱性に優れたポリ
エステル製容器に関する。本発明は更に上記ポリエステ
ル製容器を高い生産性をもって製造しうる方法に関す
る。
INDUSTRIAL APPLICABILITY The present invention is excellent in a combination of heat resistance, appearance characteristics and impact resistance, and is excellent in heat resistance particularly useful for hot filling of contents or heat sterilization after filling. Regarding a container made of polyester. The present invention further relates to a method for producing the above polyester container with high productivity.

【0002】[0002]

【従来の技術】ポリエチレンテレフタレート(PET)
の如き熱可塑性ポリエステルの二軸延伸ブロー成形容器
は、優れた透明性や表面光沢を有すると共に、瓶に必要
な耐衝撃性、剛性、ガスバリヤー性をも有しており、各
種液体の瓶詰容器として利用されている。
2. Description of the Related Art Polyethylene terephthalate (PET)
Biaxially stretched blow molded containers of thermoplastic polyester such as those have excellent transparency and surface gloss, as well as the impact resistance, rigidity and gas barrier properties required for bottles, and are bottled containers for various liquids. Is used as.

【0003】しかしなから、ポリエステル容器は、耐熱
性に劣るという欠点があり、内容物を熱間充填や加熱殺
菌の用途に対しては、熱変形や容積の収縮変形を生じる
ため、二軸延伸ブロー容器を成形後に熱固定(ヒート・
セット)することが要求される。
However, the polyester container has a drawback that it is inferior in heat resistance, and when used for the purpose of hot filling or heat sterilization of the contents, thermal deformation or shrinkage deformation of volume occurs, and thus biaxially stretched. After molding the blow container, heat setting (heat
Set) is required.

【0004】熱固定の方法には、特公昭60−5660
6号公報に見られる通り、延伸ブロー成形により得られ
る成形品をブロー金型から取り出した後、熱固定用の金
型内に保持して熱固定を行う方法や、特公昭59−62
16号公報に見られる通り、ブロー成形型中で延伸ブロ
ー金型と同時に熱固定を行う方法が知られている。ま
た、特開昭57−53326号公報には、一次金型中で
延伸ブロー成形と同時に熱処理を行い、成形品を取り出
してこれを冷却することなく、二次金型中でブロー成形
する方法が記載されている。
The heat fixing method is disclosed in Japanese Examined Patent Publication No. 60-5660.
As disclosed in Japanese Patent Laid-Open No. 6-62, a method in which a molded product obtained by stretch blow molding is taken out from a blow mold and then held in a mold for heat setting for heat setting, and JP-B-59-62.
As can be seen in Japanese Patent No. 16, a method is known in which heat setting is performed simultaneously with a stretch blow mold in a blow mold. Further, JP-A-57-53326 discloses a method in which heat treatment is performed simultaneously with stretch blow molding in a primary mold, a molded product is taken out, and the molded product is blow molded in a secondary mold without cooling. Have been described.

【0005】本出願人の出願にかかる特開昭63−59
513号公報には、ブロー金型を100乃至120℃の
温度に維持し、熱可塑性ポリエステルのプリフォームを
その固有粘度とジエチレングリコール含有量とに関連し
て特定の温度に加熱し、このプリフォーム内に高温の熱
風を吹き込み、このプリフォームを高速延伸することに
より、ワンモールド法で耐熱性ポリエステル中空成形体
を製造することが記載されている。
Japanese Patent Application Laid-Open No. 63-59 filed by the present applicant
No. 513, a blow mold is maintained at a temperature of 100 to 120 ° C., a thermoplastic polyester preform is heated to a specific temperature in relation to its intrinsic viscosity and diethylene glycol content, and within this preform. It is described that a heat-resistant polyester hollow molded article is produced by a one-mold method by blowing hot air at high temperature and stretching the preform at a high speed.

【0006】[0006]

【発明が解決しようとする課題】耐熱性容器の変形に
は、容器の側壁部が熱により単純に変形する所謂熱変形
と、容器が熱い内容物と接触し、次いで冷却される際の
内容積変化に伴って生じる減圧変形とがある。
The heat-resistant container is deformed by so-called thermal deformation in which the side wall portion of the container is simply deformed by heat, and the internal volume when the container comes into contact with hot contents and is then cooled. There is a reduced pressure deformation that occurs with the change.

【0007】減圧変形を防止するために、容器側壁に凹
んだパネル部と膨出したピラー部とを設け、パネル部の
膨出及び凹みによる変形を利用して、内容積の増大及び
縮少を吸収し、容器に不規則な変形が生じないようにす
ることが一般に行われているが、熱固定の程度が十分で
ないと、前記パネル部が熱変形して、パネル部の膨出及
び凹みによる内容積の調節作用がうまく機能しないとい
う欠点を生じる。
In order to prevent deformation under reduced pressure, a recessed panel portion and a bulged pillar portion are provided on the side wall of the container, and deformation due to bulging and denting of the panel portion is utilized to increase and reduce the internal volume. It is generally practiced to absorb and prevent irregular deformation of the container, but if the degree of heat fixation is not sufficient, the panel part will be thermally deformed, resulting in bulging and denting of the panel part. The disadvantage is that the regulation function of the internal volume does not work well.

【0008】このため、従来の熱固定法では、金型全体
を高温にし、成形される容器の側壁部(胴部)を高結晶
化させる方法が用いられてきた。
Therefore, in the conventional heat setting method, a method of raising the temperature of the entire mold to highly crystallize the side wall (body) of the container to be molded has been used.

【0009】しかしながら、このような高温熱固定で
は、容器の側壁部、特に径の大きい膨出部に所謂ヒケ
(凹凸)が発生し、容器の外観特性が著しく低下すると
いう問題を生じる。また、高温熱固定では、ポリエステ
ルの耐衝撃性が低下し、落下衝撃等により、容器の出張
った部分が破損しやすいという傾向も認められる。
However, such high temperature heat setting causes a problem that so-called sink marks (concavities and convexities) are generated on the side wall portion of the container, particularly on the bulging portion having a large diameter, and the appearance characteristics of the container are significantly deteriorated. Further, it is also observed that the impact resistance of the polyester is lowered by heat fixing at a high temperature, and that a portion of the container on a business trip is likely to be damaged due to a drop impact or the like.

【0010】更に、金型全体の温度を高くすると、従来
の熱固定法では、成形熱固定容器の冷却に時間を要し、
型内の占有時間が長くなるため、生産性が低下するとい
う欠点も生じる。
Further, if the temperature of the entire mold is increased, it takes a long time to cool the molding heat setting container in the conventional heat setting method.
Since the occupation time in the mold becomes long, there is a drawback that productivity is lowered.

【0011】従って、本発明の目的は、耐熱性、外観特
性及び耐衝撃性の組合せに優れた熱可塑性ポリエステル
の延伸成形・熱固定容器及びその製法を提供するにあ
る。
Accordingly, it is an object of the present invention to provide a stretch-molding / heat-fixing container of thermoplastic polyester which is excellent in the combination of heat resistance, appearance characteristics and impact resistance, and a method for producing the same.

【0012】本発明の他の目的は、容器の側壁のパネル
部が高結晶化されており、ピラー部を含めてその他の側
壁部が相対的に結晶化の低い状態となっており、熱間充
填等に際して熱変形がなく、またヒケの発生もない耐熱
性に優れたポリエステル製容器及びその製法を提供する
にある。
Another object of the present invention is that the panel portion of the side wall of the container is highly crystallized, and other side wall portions including the pillar portion are in a state of relatively low crystallization. (EN) It is an object to provide a polyester container excellent in heat resistance that does not undergo thermal deformation during filling or the like and does not cause sink marks, and a method for producing the same.

【0013】本発明の更に他の目的は、上記の優れた特
性を有するポリエステル容器を高生産性をもって製造し
うる方法を提供するにある。
Still another object of the present invention is to provide a method capable of producing a polyester container having the above-mentioned excellent properties with high productivity.

【0014】[0014]

【課題を解決するための手段】本発明によれば、熱可塑
性ポリエステルの延伸ブロー成形及び熱固定で製造され
た耐熱性容器において、容器の胴部が全体として熱固定
により配向熱結晶化されていると共に、胴部のより高い
耐熱性を付与すべき部分が他の部分に比して高度に結晶
化されていることを特徴とする部分的に結晶化度の異な
る胴部を備えたポリエステル製容器が提供される。
According to the present invention, in a heat resistant container produced by stretch blow molding and heat setting of a thermoplastic polyester, the body of the container as a whole is oriented and heat crystallized by heat setting. In addition, the part of the body that should have higher heat resistance is more highly crystallized than other parts, and is made of polyester with a part of different crystallinity. A container is provided.

【0015】本発明によればまた、熱可塑性ポリエステ
ルの延伸ブロー成形及び熱固定で形成され、容器の胴部
に相対的に径外方に位置し且つ周長の短いピラー状凸部
と、相対的に径内方に位置し且つ周長の長いパネル状凹
部とが短い連結部を介して周方向に交互に複数個設けら
れており、必要により胴部の上方または下方にラベル部
が設けられている耐熱性容器において、容器の胴部が全
体として熱固定により配向結晶化されていると共に、前
記パネル状凹部がピラー状凸部或いは他の部分に比して
高度に熱結晶化されていることを特徴とする部分的に結
晶化度の異なる胴部を備えたポリエステル製容器が提供
される。
Further, according to the present invention, a pillar-shaped convex portion, which is formed by stretch blow molding and heat setting of thermoplastic polyester, is located radially outward in the body of the container, and has a short circumference, A plurality of panel-shaped recesses located radially inward and having a long circumference are alternately provided in the circumferential direction via short connecting portions, and a label portion is provided above or below the body portion as necessary. In the heat-resistant container, the body of the container is oriented and crystallized as a whole by heat setting, and the panel-shaped concave portion is highly thermally crystallized as compared with the pillar-shaped convex portion or other portion. There is provided a polyester container having a body part having partially different crystallinity.

【0016】本発明によれば更に、高温に維持されたブ
ロー金型内に予備加熱された熱可塑性ポリエステルのプ
リフォームを装着し、該プリフォームを周方向に膨張延
伸させると共に、軸方向に引っ張り延伸させ、次いで型
内に容器を保持して熱固定を行うことから成る耐熱性に
優れたポリエステル製容器の製法において、ヒータを備
えた金型本体に、金型本体のヒータとは別に独立したヒ
ータを備えしかも表面が金型本体表面よりも高温に維持
されている入れ子を配置し、延伸ブロー成形される容器
の胴部を全体として配向熱結晶化させると共に前記入れ
子表面に接触する部分を選択的に高度に結晶化させるこ
とを特徴とするポリエステル製容器の製法が提供され
る。
Further, according to the present invention, a preheated thermoplastic polyester preform is mounted in a blow mold maintained at a high temperature, and the preform is expanded and stretched in the circumferential direction and is stretched in the axial direction. In a method for producing a polyester container having excellent heat resistance, which comprises stretching and then holding the container in a mold to perform heat fixation, a mold body equipped with a heater is provided separately from the heater of the mold body. Arrangement of a nest equipped with a heater and the surface of which is maintained at a temperature higher than that of the mold body surface, and orientation thermal crystallization of the body of the container to be stretch-blow-molded as a whole and selection of a portion in contact with the nest surface There is provided a method for producing a polyester container, which is characterized by being highly crystallized.

【0017】[0017]

【作用】本発明のポリエステル製容器では、胴部全体を
延伸成形及び熱固定により配向熱結晶化させると共に、
胴部のより高い耐熱性を付与すべき部分、即ち熱による
ストレスを受け、変形し易い部分を、他の部分に比して
高度に結晶化させる。即ち、本発明の容器の胴部では、
部分的に結晶化度が異っており、熱によるストレスを受
けやすく、変形し易い部分を高度に結晶化させたため、
この部分の熱変形が防止されると共に、他の部分(熱が
加わっても大きな力を受けない部分)では、結晶化度が
高結晶化部分に比して低いレベルに抑えられているか
ら、所謂ヒケによる凹凸発生がなく、優れた外観特性が
得られ、また全体を高度に結晶化させたものに比して、
耐衝撃性にも優れているという利点が得られる。また、
製造の点でも、全体を高度に結晶化させる場合に比し
て、型内での冷却時間が短かくてすみ、型占有時間を短
縮して、容器の生産性を向上させ得るという利点が奏さ
れる。
In the polyester container of the present invention, the entire body is oriented and thermally crystallized by stretch molding and heat setting.
The portion of the body portion to which higher heat resistance is to be imparted, that is, the portion which is susceptible to deformation due to heat stress is crystallized to a higher degree than other portions. That is, in the body of the container of the present invention,
The degree of crystallinity is partially different, it is easy to receive stress due to heat, and because the part that is easily deformed is highly crystallized,
Thermal deformation of this part is prevented, and the crystallinity of the other part (the part that does not receive a large force even if heat is applied) is suppressed to a low level compared to the highly crystallized part. There is no unevenness due to so-called sink marks, excellent appearance characteristics are obtained, and in comparison with a highly crystallized whole,
The advantage is that it is also excellent in impact resistance. Also,
Also in terms of manufacturing, compared with the case where the whole is highly crystallized, the cooling time in the mold is shorter, the mold occupying time is shortened, and the productivity of the container can be improved. To be done.

【0018】本発明は、容器の胴部に、相対的に径外方
に位置し且つ周長の短いピラー状凸部と、相対的に径内
方に位置し且つ周長の長いパネル状凹部とが短い連結部
を介して周方向に交互に複数個設けられており、必要に
より胴部の上方または下方にラベル部が設けられている
容器に有用であり、このパネル状凹部をピラー状凹部や
ラベル部に比して高度に結晶化させることにより、次の
利点が奏される。
According to the present invention, a pillar-shaped convex portion located relatively radially outward and having a short circumferential length and a panel-shaped concave portion relatively located radially inward and having a long circumferential length are provided on the body of the container. And are alternately provided in the circumferential direction via short connecting portions, and are useful for a container in which a label portion is provided above or below the body portion as necessary. By crystallization to a high degree as compared with the label portion, the following advantages are exhibited.

【0019】上記構造の容器では、パネル部が熱時の内
圧の増大により径外方に突出し且つ冷時の内圧の減少に
より径内方に凹むことにより、前述した減圧変形を緩和
するという作用があるが、熱時の内圧増大でパネル部が
塑性変形すると、冷時の内圧減少によりパネルが凹むこ
とができなくなり、容器に意図外の不斉変形を生じると
いう事態になるが、本発明では、パネル部を高度に結晶
化させたことにより、熱時の内圧増大でもパネル部の塑
性変形が防止され、パネル・ピラーによる減圧変形吸収
作用が円滑に機能するという作用が得られる。
In the container having the above-mentioned structure, the panel portion projects radially outward due to an increase in internal pressure when heated and dents radially inward due to a decrease in internal pressure when cold, so that the above-mentioned reduced pressure deformation is alleviated. However, when the panel portion plastically deforms due to an increase in internal pressure during heating, the panel cannot be dented due to a decrease in internal pressure during cooling, resulting in a situation in which unintended asymmetric deformation occurs in the container. Since the panel portion is highly crystallized, the plastic deformation of the panel portion is prevented even when the internal pressure increases during heating, and the function of smoothly absorbing the reduced pressure deformation by the panel pillar is obtained.

【0020】容器の外観上目立つ部分は、ピラー状凸部
或いは更にラベル部であるが、本発明では、これらの部
分の金型本体の温度が比較的低く結晶化度を相対的に低
く抑えているため、ヒケによる凹凸(ヒケは成形時の熱
いものを冷却することにより発生する)の発生がなく、
容器の外観をよくし、その商品価値を高めることができ
る。また、容器に対する衝撃等の外力が最も作用するの
は、補強リブとしての作用も兼ねたピラー部であるが、
本発明では、ピラー部の結晶化度を低く抑えているた
め、柔軟性が保持され、強い耐衝撃性が得られることに
なる。
The parts that stand out from the outside of the container are pillar-shaped protrusions or label parts, but in the present invention, the temperature of the mold body in these parts is relatively low and the crystallinity is kept relatively low. Since there is no unevenness due to sink marks (the sink marks are generated by cooling hot things during molding),
The appearance of the container can be improved and its commercial value can be increased. In addition, it is the pillar portion that also acts as a reinforcing rib that receives the most external force such as impact on the container.
In the present invention, since the crystallinity of the pillar portion is suppressed to be low, flexibility is maintained and strong impact resistance can be obtained.

【0021】更に、本発明の製法では、高温に維持され
たブロー金型内に予備加熱された熱可塑性ポリエステル
のプリフォームを装着し、該プリフォームを周方向に膨
張延伸させると共に、軸方向に引っ張り延伸させ、次い
で型内に容器を保持して熱固定を行うが、ヒータを備え
た金型本体に、金型本体のヒータとは独立のヒータを備
えしかも表面が金型本体表面よりも高温に維持されてい
る入れ子を配置することが顕著な特徴である。
Further, in the manufacturing method of the present invention, a preheated thermoplastic polyester preform is mounted in a blow mold maintained at a high temperature, the preform is expanded and stretched in the circumferential direction, and the preform is axially stretched. It is stretched and stretched, and then the container is held in the mold for heat setting, but the mold body equipped with a heater is equipped with a heater independent of the mold body heater, and the surface is hotter than the mold body surface. Placing a nest that is maintained in is a salient feature.

【0022】ヒータを備えた金型本体に、前記ヒータと
は別の独立したヒータを備えた入れ子を配置することに
より、入れ子表面の温度とそれ以外の金型表面の温度と
を夫々制御することが可能となり、容器の胴部全体を所
定の結晶化度に配向結晶化させながら、入れ子表面に接
する部分を、高温に保持して、高い結晶化度となるよう
に熱固定することが可能となる。
The temperature of the mold surface and the temperature of the mold surface other than that are controlled by disposing a nest having a heater independent of the heater in the mold body provided with the heater. It is possible to hold the part in contact with the insert surface at a high temperature and heat-set it so that the crystallinity becomes high while orienting and crystallizing the entire body of the container to a predetermined crystallinity. Become.

【0023】[0023]

【発明の好適態様】本発明はパネル・ピラー構造を有す
る容器の製造に特に有用であるので、以下にはこの例に
ついて本発明を専ら説明するが、本発明は勿論この例に
限定されない。
BEST MODE FOR CARRYING OUT THE INVENTION Since the present invention is particularly useful for manufacturing a container having a panel pillar structure, the present invention will be described below with reference to this example, but the present invention is not limited to this example.

【0024】(容器)本発明の容器の好適な一例を示す
図1において、この熱固定二軸延伸容器1は、未延伸の
口頚部(首部)2、円錐台状の肩部3、略筒状の胴部4
及び閉ざされた底部5から成っている。この具体例にお
いて、胴部4は上方のラベル部6と下方胴部7とから成
っており、両者の中間には小径に絞られたウエスト部8
が存在している。
(Container) In FIG. 1 showing a preferred example of the container of the present invention, this heat-set biaxially stretched container 1 has an unstretched mouth / neck portion (neck portion) 2, a truncated cone-shaped shoulder portion 3, and a substantially cylindrical shape. Body 4
And a closed bottom part 5. In this specific example, the body portion 4 is composed of an upper label portion 6 and a lower body portion 7, and a waist portion 8 narrowed to a small diameter is interposed between the label portion 6 and the lower body portion 7.
Exists.

【0025】下方胴部7には、相対的に径が大で且つ周
長の短いピラー状凸部9と、相対的に径が小で且つ周長
の長いパネル(ミラー)状凹部10とが短い連結部11
を介して周方向に交互に多数個設けられている。ピラー
状凸部9は容器軸方向(高さ方向)に延びており、従っ
てパネル状凹部10はこのピラー状凸部9で仕切られた
容器軸方向に長い角が丸められたほぼ長方形の形状を有
している。パネル状凹部10は内圧の増大により径外方
に膨張する(突出する)こと及び内圧の減少により内方
に収縮する(凹む)ことが可能であり、これにより内圧
変化を緩和させる作用を有している。
The lower body portion 7 has a pillar-shaped convex portion 9 having a relatively large diameter and a short circumference, and a panel (mirror) concave portion 10 having a relatively small diameter and a long circumference. Short connecting part 11
A large number of them are alternately provided in the circumferential direction via the. The pillar-shaped convex portion 9 extends in the container axial direction (height direction), and therefore the panel-shaped concave portion 10 has a substantially rectangular shape partitioned by the pillar-shaped convex portion 9 with long corners rounded in the container axial direction. Have The panel-shaped concave portion 10 can expand (project) radially outward due to an increase in internal pressure and contract inward (concave) due to a decrease in internal pressure, which has the effect of relaxing the internal pressure change. ing.

【0026】本発明の熱固定延伸ポリエステル容器にお
いて、胴部の厚み0.20乃至1.00mm、特に0.
25乃至0.80mmの範囲にあるのがよく、一方パネ
ル状凹部の寸法は、容器の大きさによっても変化する
が、一般に周方向寸法が10乃至50mm、軸方向(高
さ方向)寸法が40乃至160mmの範囲内にあること
が望ましい。また、径の大きいピラー状凸部と径の小さ
いパネル状凹部との段差、即ち径の差は1乃至8mmの
範囲内にあることが望ましい。
In the heat-set stretched polyester container of the present invention, the thickness of the body portion is 0.20 to 1.00 mm, particularly,
The size of the panel-shaped concave portion may vary depending on the size of the container, but the size in the circumferential direction is generally 10 to 50 mm, and the size in the axial direction (height direction) is 40 mm. It is desirable to be within the range of 160 mm to 160 mm. Further, it is preferable that the step difference between the pillar-shaped convex portion having a large diameter and the panel-shaped concave portion having a small diameter, that is, the difference in diameter is within a range of 1 to 8 mm.

【0027】本発明の容器の好適な他の例を示す図4に
おいて、この熱固定二軸延伸容器1は、肩部3が角錐台
状となり且つ胴部4の断面がほぼ正方形乃至長方形の中
空角柱状となっている。この胴部4は、上方部6aと下
方部7aとら成っており、両者の中間にはやはり絞られ
たウエスト部8が存在している。
Referring to FIG. 4 showing another preferred example of the container of the present invention, this heat-set biaxially stretched container 1 has a hollow shoulder portion 3 having a truncated pyramid shape and a trunk portion 4 having a substantially square or rectangular cross section. It has a prismatic shape. The body portion 4 is composed of an upper portion 6a and a lower portion 7a, and a narrowed waist portion 8 is also present between the both.

【0028】上方胴部6a及び下方胴部7aの各々の4
つのコーナ部には面積の小さいピラー状凸部9が設けら
れており、これらのピラー状凸部間には面積の大きいほ
ぼ正方形乃至長方形のパネル(ミラー)部10が設けら
れている。
4 of each of the upper body 6a and the lower body 7a
A pillar-shaped convex portion 9 having a small area is provided at each corner portion, and a substantially square or rectangular panel (mirror) portion 10 having a large area is provided between the pillar-shaped convex portions.

【0029】これらの容器の内容積は180乃至500
0mlの範囲にあるのが一般的である。
The internal volume of these containers is 180 to 500.
It is generally in the range of 0 ml.

【0030】本発明において、容器を構成する熱可塑性
ポリエステルとしては、エチレンテレフタレート単位を
主体とする熱可塑性ポリエステル、例えばポリエチレン
テレフタレート(PET)やグリコール成分としてヘキ
サヒドロキシリレングリコール等の他のグリコール類の
少量を含有せしめ或いは二塩基酸成分としてイソフタル
酸やヘキサヒドロテレフタル酸等の他の二塩基酸成分の
少量を含有せしめた所謂、改質PET等が使用される。
これらのポリエステルは、単独でも或いはその本質を損
なわない範囲で少量のナイロン類、ポリカーボネート或
いはポリアリレート等の他の樹脂とのブレンド物の形や
多層構造の形でも使用し得る。
In the present invention, the thermoplastic polyester constituting the container is a thermoplastic polyester mainly composed of ethylene terephthalate units, for example, polyethylene terephthalate (PET) and a small amount of other glycols such as hexahydroxyrylene glycol as a glycol component. Or modified PET containing a small amount of another dibasic acid component such as isophthalic acid or hexahydroterephthalic acid is used as the dibasic acid component.
These polyesters may be used alone or in the form of a blend with a small amount of other resins such as nylons, polycarbonate or polyarylate, or in the form of a multilayer structure as long as the essence thereof is not impaired.

【0031】用いる熱可塑性ポリエステルの固有粘度
(η)が0.65dl/g以上、特に0.70乃至0.
90dl/gの範囲にあり、且つジエチレングリコール
単位の含有量が1.60重量%以下、特に1.50重量
%以下の範囲内にあることが望ましい。
The intrinsic viscosity (η) of the thermoplastic polyester used is 0.65 dl / g or more, particularly 0.70 to 0.
It is desirable that it is in the range of 90 dl / g and the content of diethylene glycol units is in the range of 1.60% by weight or less, particularly 1.50% by weight or less.

【0032】本発明の容器では、胴部4全体が二軸延伸
及び熱固定により配向熱結晶化されており、前記パネル
状凹部10が高度に結晶化されている。パネル状凹部の
結晶化度(密度法)は34乃至50%、特に好適には3
5乃至45%の範囲にあるのがよい。尚、密度法結晶化
度は、昭和59年11月20日共立出版株式会社発行
「高分子実験学第17巻、高分子の固定構造II」第30
5頁に記載されている通り、式
In the container of the present invention, the entire body 4 is oriented thermally crystallized by biaxial stretching and heat setting, and the panel-shaped recess 10 is highly crystallized. The crystallinity (density method) of the panel-shaped recess is 34 to 50%, and particularly preferably 3
It is preferably in the range of 5 to 45%. In addition, the density method crystallinity is based on “Polymer Experimental Science Vol. 17, Polymer Fixed Structure II”, No. 30, published by Kyoritsu Shuppan Co., Ltd. on November 20, 1984.
The formula, as described on page 5,

【数1】 式中、ρは密度勾配管で測定される試料の密度(g/cm
3 、25℃)であり、ρa は完全非晶質の密度、一般に
PETで1.335g/cm3 であり、ρc は完全結晶の
密度、一般にPET1.455g/cm3 であり、Xc v
は、結晶化度(%)を表わす、で求められる。
[Equation 1] Where ρ is the density of the sample (g / cm
3 , 25 ° C.), ρ a is a completely amorphous density, typically 1.335 g / cm 3 for PET, and ρ c is a completely crystalline density, typically PET 1.455 g / cm 3 , X cv
Is the crystallinity (%).

【0033】パネル状凹部の結晶化度が上記範囲よりも
低いと、熱時に変形が生じる等、耐熱性が不十分であ
り、一方上記範囲を越えて大きくなると、耐衝撃性が低
下したり、外観不良となりやすく、好ましくない。最も
好適な範囲は、用途によっても相違するが、例えば一般
耐熱(85℃)と称されるものでは、34%以上であ
り、高耐熱(95℃)と称されるものでは、37%以上
である。
When the crystallinity of the panel-shaped recess is lower than the above range, heat resistance is insufficient such as deformation when heated, while when it exceeds the above range, impact resistance is lowered, This is not preferable because it tends to result in poor appearance. The most preferable range varies depending on the application, but is 34% or more for what is called general heat resistance (85 ° C) and 37% or more for what is called high heat resistance (95 ° C). is there.

【0034】一方、パネル状凹部以外の胴部の結晶化度
は、一般に30乃至45%、特に33乃至42%の範囲
にあり、しかもパネル状凹部よりも少なくとも1%低
い、特に好適には少なくとも2%低い結晶化度を有する
のがよく、上記範囲よりも低いと、容器全体の耐熱性が
不十分となり、一方上記範囲よりも高いと、成形時の冷
却不足により容器にヒケが発生して、その外観特性が不
良となり、耐衝撃性も低下するようになる。好適には、
減圧変形を有効に緩和するという点から、ピラー状凸部
は、ラベル部とパネル状凹部との中間の結晶化度を有す
るのがよく、ピラー状凸部は33乃至45%の結晶化
度、ラベル部は30乃至42%の結晶化度を有するのが
よい。
On the other hand, the crystallinity of the body other than the panel-shaped recess is generally in the range of 30 to 45%, particularly 33 to 42%, and at least 1% lower than that of the panel-shaped recess, and particularly preferably at least. It preferably has a low crystallinity of 2%. When it is lower than the above range, the heat resistance of the entire container becomes insufficient. On the other hand, when it is higher than the above range, sink marks occur in the container due to insufficient cooling during molding. , Its appearance characteristics are poor and impact resistance is also lowered. Preferably,
From the viewpoint of effectively relieving the reduced-pressure deformation, the pillar-shaped convex portion preferably has a crystallinity intermediate between the label portion and the panel-shaped concave portion, and the pillar-shaped convex portion has a crystallinity of 33 to 45%. The label portion preferably has a crystallinity of 30 to 42%.

【0035】(製造法)本発明に用いる二軸延伸ブロー
及び熱固定用金型(キャビティ型)の要部を一部断面側
面で示す図2及び図2のIII −III 断面を示す図3にお
いて、このキャビティ型20,20は、パーティング面
20Aにおいて開閉可能であり、金型本体21とその内
面側に配置されたパネル形成用入れ子22とから成って
いる。キャビティ型20の内側には、図1の容器構造に
関連して、口頚部の下方部成形用表面23、肩部成形用
表面24、ラベル部成形用表面24a、ウエスト部成形
用表面25及び下方胴部成形用表面26が夫々形成され
ている。キャビティ型20の一端部(図において左方端
部)には底型挿入用の開口27があり、この開口27を
通して、底打ち用ドーム28を備えた底型29が出入り
できるようになっている。また、キャビティ型20の他
端部(図において右端部)においても、プリフォーム
(図示せず)の口部に近接した部分が収まる開口30が
あり、キャビティ型20,20が開いた状態でコア金型
キャビティ型20の他端部に密接して、これにより支持
されるプリフォーム(共に図示せず)がキャビティ型内
に装着されるようになっている。
(Manufacturing Method) FIG. 2 showing a partial cross sectional side view of an essential part of the biaxially stretched blow and heat fixing mold (cavity mold) used in the present invention and FIG. 3 showing the III-III cross section of FIG. The cavity molds 20, 20 can be opened and closed on the parting surface 20A, and are composed of a mold main body 21 and a panel forming insert 22 arranged on the inner surface side thereof. Inside the cavity mold 20, in relation to the container structure of FIG. 1, the lower neck molding surface 23, the shoulder molding surface 24, the label molding surface 24a, the waist molding surface 25 and the lower surface. Body forming surfaces 26 are formed respectively. An opening 27 for inserting a bottom mold is provided at one end (left end in the figure) of the cavity mold 20, and a bottom mold 29 having a bottoming dome 28 can be put in and out through the opening 27. . Also, at the other end (right end in the figure) of the cavity mold 20, there is an opening 30 for accommodating a portion close to the mouth of the preform (not shown), and the cores are kept in a state where the cavity molds 20 and 20 are opened. A preform (both not shown) that is closely supported by the other end of the mold cavity mold 20 is mounted in the cavity mold.

【0036】金型本体21は内部に軸方向に延びる本体
用ヒータ31を備えており、下方胴部形成用表面26に
は、ピラー形成用表面32と入れ子支持座33とが周方
向に交互に多数配置されている。
The mold main body 21 is provided internally with a heater 31 for the main body extending in the axial direction. On the lower body forming surface 26, pillar forming surfaces 32 and nest support seats 33 are alternately arranged in the circumferential direction. Many are arranged.

【0037】パネル入れ子22は、その内部に本体用ヒ
ータ31とは独立の加熱用ヒーター34と給電用リード
線35とを備えており、そのパネル形成用表面36が、
金型本体21のピラー形成用表面32よりも小間隔だけ
内側に位置するように、ボルト等の締結手段(図示せ
ず)により金型本体21に取付けられている。かくし
て、入れ子22のパネル形成用表面36は金型本体21
のピラー形成用表面32よりも高温に維持されている。
尚、入れ子22と金型本体のピラー形成用表面32との
間の段差部37により、パネルとピラーとの間の連結部
11(図1)が形成されることになる。
The panel insert 22 is provided with a heater 34 for heating, which is independent of the heater 31 for the main body, and a lead wire 35 for power supply inside, and the panel forming surface 36 is
The mold body 21 is attached to the mold body 21 by fastening means (not shown) such as bolts so as to be located inside the pillar forming surface 32 of the mold body 21 by a small distance. Thus, the panel forming surface 36 of the insert 22 has the mold body 21.
Is maintained at a temperature higher than that of the pillar forming surface 32.
The step portion 37 between the insert 22 and the pillar forming surface 32 of the mold body forms the connecting portion 11 (FIG. 1) between the panel and the pillar.

【0038】本発明の製法によると、上記金型内に予備
加熱された熱可塑性ポリエステルのプリフォームを装着
し、該プリフォームを周方向に膨張延伸させると共に、
軸方向に引っ張り延伸させ、次いで型内に容器を保持し
て熱固定を行う。
According to the manufacturing method of the present invention, a preheated thermoplastic polyester preform is mounted in the mold, and the preform is expanded and stretched in the circumferential direction.
It is stretched in the axial direction and stretched, and then the container is held in a mold for heat setting.

【0039】延伸ブロー成形に使用する有底プリフォー
ムは、それ自体公知の任意の手法、例えば射出成形法、
パイプ押出成形法等で製造される。前者の方法では、溶
融ポリエステルを射出し、最終容器に対応する口頚部を
備えた有底プリフォームを非晶質の状態で製造する。後
者の方法は、押出された非晶質パイプを切断し、一端部
に圧縮成形で口頚部を形成させると共に、他端部を閉じ
て有底プリフォームとする。一般には、射出成形法で製
造することが好ましい。射出条件等は、特に限定された
ものではないが、一般に、260乃至300℃の射出温
度、30乃至60kg/cm2 の射出圧力で、有底プリ
フォームを成形することができる。
The bottomed preform used for stretch blow molding may be any method known per se, such as injection molding.
It is manufactured by a pipe extrusion method or the like. In the former method, molten polyester is injected to produce a bottomed preform having a mouth and neck corresponding to the final container in an amorphous state. In the latter method, an extruded amorphous pipe is cut, a mouth neck portion is formed by compression molding at one end, and the other end is closed to form a bottomed preform. Generally, it is preferable to manufacture by injection molding. The injection conditions and the like are not particularly limited, but generally, the bottomed preform can be molded at an injection temperature of 260 to 300 ° C. and an injection pressure of 30 to 60 kg / cm 2 .

【0040】かくして得られたプリフォームの首部に耐
熱性、剛性を与えるため、プリフォームの段階で螺合
部、嵌合部、支持リング等を有する口頚部を熱処理によ
り結晶化し白化せしめる場合があり、一方後述の2軸延
伸ブローを完了したるものをボトル成形完了後、未延伸
部分の口頚部を結晶化し、白化する場合もある。
In order to impart heat resistance and rigidity to the neck portion of the thus obtained preform, the neck and neck portion having a screwing portion, a fitting portion, a supporting ring and the like may be crystallized and whitened by heat treatment at the preform stage. On the other hand, in some cases, after completion of the molding of a bottle for which biaxial stretching blow described below is completed, the mouth and neck portion of the unstretched portion is crystallized and whitened.

【0041】有底プリフォームを、熱可塑性ポリエステ
ルのガラス転移点以上で熱結晶化開始温度よりも低い温
度で加熱するかあるいは結晶化温度以上で短時間予備加
熱する。具体的な予備加熱温度は、ポリエステルの組成
によっても相違するが、PETの場合一般に80乃至1
50℃、特に90乃至130℃の範囲が適当である。
The bottomed preform is heated at a temperature higher than the glass transition point of the thermoplastic polyester and lower than the thermal crystallization start temperature, or preheated at a temperature higher than the crystallization temperature for a short time. Although the specific preheating temperature varies depending on the composition of the polyester, it is generally 80 to 1 in the case of PET.
A range of 50 ° C, especially 90 to 130 ° C, is suitable.

【0042】本発明において、金型本体の表面の温度を
100乃至170℃、特に110乃至160℃の温度に
維持するのがよい。加熱温度が上記範囲よりも低い場合
には、延伸による歪を除去するのが十分でなくかつ耐熱
性も劣り、結晶化度も本発明のように高めることが困難
となる。一方この温度が余りにも高すぎると、耐衝撃性
が低下したり、生産性が悪くなったりする傾向がある。
In the present invention, the surface temperature of the mold body is preferably maintained at 100 to 170 ° C., particularly 110 to 160 ° C. When the heating temperature is lower than the above range, it is not sufficient to remove strain due to stretching, heat resistance is poor, and it is difficult to increase the crystallinity as in the present invention. On the other hand, if this temperature is too high, the impact resistance tends to decrease and the productivity tends to deteriorate.

【0043】一方、入れ子表面は、110乃至190
℃、特に120乃至185℃の範囲で、しかも金型本体
表面より少なくとも3℃以上好ましくは5℃以上高い温
度に維持するのがよい。上記範囲よりも入れ子表面温度
が低い場合には、パネル部を選択的に高結晶化すること
が困難となる場合があり、一方上記範囲よりも高くする
ことは、容器の諸特性の点でも、生産性の点でも不利と
なりやすい。
On the other hand, the surface of the nest is 110 to 190.
It is preferable to maintain the temperature in the range of 120 ° C., particularly 120 to 185 ° C., and at least 3 ° C. or more, preferably 5 ° C. or more higher than the surface of the mold body. If the nesting surface temperature is lower than the above range, it may be difficult to selectively highly crystallize the panel portion, while higher than the above range, in terms of various characteristics of the container, Also in terms of productivity, it tends to be disadvantageous.

【0044】胴部形成用の金型本体の表面温度と、入れ
子表面温度との間には、上述した相違が存在するが、金
型本体の表面温度はその部位によって差異があることも
了解されるべきである。例えば、図面に示す具体例で
は、ピラー部形成用表面の温度がラベル形成用表面の温
度よりも若干高くなることがある。これは、入れ子ヒー
ターからの伝熱の影響でピラー部形成用表面の温度が若
干上昇するためである。このような温度勾配は、減圧変
形の緩和にはかなり有効であるが、ピラー部形成用表面
とラベル部形成用表面との温度差を少なくするために、
入れ子と入れ子支持座との間に断熱材を介在させたり、
或いは熱遮断用空間を設けたりすることも勿論可能であ
る。
Although there is the above-mentioned difference between the surface temperature of the die main body for forming the body and the surface temperature of the nest, it is also understood that the surface temperature of the die main body differs depending on the site. Should be. For example, in the specific example shown in the drawings, the temperature of the pillar portion forming surface may be slightly higher than the temperature of the label forming surface. This is because the temperature of the surface for forming the pillar portion slightly rises due to the effect of heat transfer from the nest heater. Such a temperature gradient is quite effective in alleviating the reduced pressure deformation, but in order to reduce the temperature difference between the pillar portion forming surface and the label portion forming surface,
Insulating material is interposed between the nest and the nest support seat,
Alternatively, it is of course possible to provide a heat shield space.

【0045】本発明によれば、前記温度に維持されたブ
ロー金型内に、上記温度に予備加熱された熱可塑性ポリ
エステルのプリフォームを装着し、該プリフォームを周
方向に膨張延伸させると共に、軸方向に引っ張り延伸さ
せる。延伸操作は、一般にプリフォーム内に加圧流体を
吹き込み、延伸棒による軸方向引張延伸と周方向膨張延
伸とを行うが、この延伸初期における延伸速度を高速度
で行うこともできる。また、高圧気体の吹き込みによる
ブローに先立って、圧力の低い流体によってプリブロー
を行うこともできる。本発明において、加圧用流体とし
ては、未加熱の空気或いは不活性気体でも、或いは加熱
された空気或いは不活性気体でも使用し得るが、加熱さ
れた流体を使用すとる、熱固定の時間が短縮されるとい
う利点がある。
According to the present invention, a thermoplastic polyester preform preheated to the above temperature is mounted in the blow mold maintained at the above temperature, and the preform is expanded and stretched in the circumferential direction. It is stretched and stretched in the axial direction. In the stretching operation, generally, a pressurized fluid is blown into the preform to perform axial tensile stretching and circumferential expansion stretching with a stretching rod, but the stretching speed at the initial stage of this stretching may be high. Further, prior to the blowing by blowing the high-pressure gas, the pre-blowing can be performed with a fluid having a low pressure. In the present invention, as the pressurizing fluid, unheated air or an inert gas may be used, or heated air or an inert gas may be used. However, when the heated fluid is used, the heat setting time is shortened. There is an advantage that is done.

【0046】用いる加圧流体の圧力は、最終容器の容量
やプリフォームの厚みによっても相違するが、一般に用
いる気体の初期圧力は、25kg/cm2 以上、特に3
0乃至40kg/cm2 の範囲内にあることが好まし
い。また、流体の温度は20乃至250℃の範囲にある
のがよい。
The pressure of the pressurized fluid used varies depending on the capacity of the final container and the thickness of the preform, but the initial pressure of the gas generally used is 25 kg / cm 2 or more, especially 3
It is preferably in the range of 0 to 40 kg / cm 2 . Also, the temperature of the fluid is preferably in the range of 20 to 250 ° C.

【0047】最終容器における延伸倍率は、面積倍率で
5乃至20倍、特に7乃至15倍が適当であり、一方軸
方向延伸線倍率は1.2乃至4倍、特に1.5乃至3倍
とし、周方向延伸線倍率は2乃至7倍、特に2.5乃至
5倍とするのがよい。
The stretching ratio in the final container is preferably 5 to 20 times, particularly 7 to 15 times in terms of area ratio, while the axial stretching linear magnification is 1.2 to 4 times, particularly 1.5 to 3 times. The draw ratio in the circumferential direction is preferably 2 to 7 times, more preferably 2.5 to 5 times.

【0048】延伸ブローされたプリフォームの器壁の熱
可塑性ポリエステルは、加熱された金型内面と接触し
て、熱固定(ヒートセット)が開始される。熱処理時間
は、ブロー成形体の厚みや温度によっても相違するが、
この熱固定は、前述した結晶化度をもたらすものであ
り、一般に言って0.5乃至10秒、特に1乃至5秒の
オーダーが適当である。
The thermoplastic polyester of the vessel wall of the preform that has been stretch-blown comes into contact with the heated inner surface of the mold, and heat fixation (heat setting) is started. The heat treatment time varies depending on the thickness and temperature of the blow molded product,
This heat setting brings about the above-mentioned crystallinity, and generally speaking, the order of 0.5 to 10 seconds, particularly 1 to 5 seconds is suitable.

【0049】熱固定終了後、ブロー金型内の成形容器内
に閉じこめられていた加圧流体を容器外に解放すると共
に、容器内に冷風を導入して冷却する。パネル・ピラー
部に重点的に冷風を吹き付けることが望ましい。容器の
内、ブロー金型からの取り出しに際して、容器の最も変
形し易い部分は肉厚の薄いパネル・ピラー部であり、ま
たこの部分では金型表面からの伝熱により冷却もされに
くいが、本発明では、金型温度がパネル部より低いため
この部分に冷風を重点的に吹き付けることにより、取り
出しに際しての変形を防止することができる。
After the heat fixing is completed, the pressurized fluid trapped in the molding container in the blow mold is released to the outside of the container, and cold air is introduced into the container to cool it. It is desirable to focus cool air on the panel pillars. The most deformable part of the container when it is taken out from the blow mold is the thin-walled panel / pillar part, and this part is difficult to cool due to heat transfer from the mold surface. In the invention, since the mold temperature is lower than that of the panel portion, the cold air is intensively blown to this portion, so that the deformation at the time of taking out can be prevented.

【0050】冷却用流体としては、冷却された各種気
体、例えば−40℃乃至室温の窒素、空気、炭酸ガス等
の他に、化学的に不活性な液化ガス、例えば液化窒素ガ
ス、液化炭酸ガス、液化トリクロロフルオロメタンガ
ス、液化ジクロロジフルオロメタンガス、他の液化脂肪
族炭化水素ガス等も使用される。この冷却用流体には、
水等の気化熱の大きい液体ミストを共存させることもで
きる。上述した冷却用流体を使用することにより、著し
く大きい冷却速度を得ることができる。しかしながら、
本発明によれば、室温の空気を使用しても十分な冷却が
短時間で行われるという利点がある。
As the cooling fluid, in addition to various cooled gases such as nitrogen at -40 ° C. to room temperature, air and carbon dioxide gas, a chemically inert liquefied gas such as liquefied nitrogen gas and liquefied carbon dioxide gas is used. Liquefied trichlorofluoromethane gas, liquefied dichlorodifluoromethane gas, and other liquefied aliphatic hydrocarbon gas are also used. This cooling fluid includes
A liquid mist having a large heat of vaporization such as water can also be present together. By using the cooling fluids mentioned above, significantly higher cooling rates can be obtained. However,
According to the present invention, there is an advantage that sufficient cooling is performed in a short time even when using room temperature air.

【0051】[0051]

【実施例】本発明を次の実施例で更に説明する。 実施例1 固有粘度(I.V)が0.76dl/gのポリエチレン
テレフタレートを射出成形して、口径28mm、重さ5
9gのプリフォームを得、このプリフォームの口頚部を
加熱して熱結晶化した。このプリフォームを使用し、図
2及び図3に示すキャビティ型を使用して、図1に示す
形状及び構造の容器を製造した。容器の各寸法は、次の
ように設定した。 内容積 :1500ml ボトル高さ : 305mm 下方胴部の最大径 : 92mm 下方胴部の高さ : 185mm パネル状凹部の周方向寸法 : 32mm パネル状凹部の高さ : 125mm ピラー状凸部の周方向寸法 : 14mm 下方胴部の厚さ : 0.4mm パネルとピラーとの最大段差: 5mm キャビティ型の金型本体表面温度を154℃に、パネル
形成用入れ子表面温度を177℃に設定し、この金型
に、105℃に予備加熱したプリフォームを装着し、室
温の加圧空気(30kg/cm2 ゲージ)を吹込み、膨
張延伸すると共に、延伸棒で引張り延伸した。周方向延
伸倍率は、最大部で4.5倍、軸方向延伸倍率は2.5
倍に設定した。ブロー延伸開始後の容器の金型内保持時
間を3秒として熱固定を行ない、次いでボトル内に室温
空気を循環させ、2秒で冷却を完了させた。型を開き、
取り出したボトルを更に空気中で放冷し、製品を得た。
この容器の各部について、結晶化度を測定した結果及び
ヒケの有無を目視により判定した結果を表1に示す。
The present invention will be further described in the following examples. Example 1 Polyethylene terephthalate having an intrinsic viscosity (IV) of 0.76 dl / g was injection-molded to have a diameter of 28 mm and a weight of 5.
9 g of a preform was obtained, and the mouth and neck of this preform was heated and thermally crystallized. Using this preform and the cavity mold shown in FIGS. 2 and 3, a container having the shape and structure shown in FIG. 1 was manufactured. Each dimension of the container was set as follows. Inner volume: 1500 ml Bottle height: 305 mm Maximum diameter of lower body: 92 mm Height of lower body: 185 mm Circumferential dimension of panel recess: 32 mm Height of panel recess: 125 mm Circumferential dimension of pillar protrusion : 14 mm Thickness of lower body: 0.4 mm Maximum step between panel and pillar: 5 mm Cavity type mold body surface temperature is set to 154 ° C and panel forming nest surface temperature is set to 177 ° C. A preform that had been preheated to 105 ° C. was attached to the above, and pressurized air (30 kg / cm 2 gauge) at room temperature was blown therein to expand and stretch, and at the same time, stretch and stretch with a stretching rod. The maximum stretching ratio in the circumferential direction is 4.5, and the maximum stretching ratio in the axial direction is 2.5.
Set to double. After the blow stretching was started, the container was held in the mold for 3 seconds to perform heat setting, and then room temperature air was circulated in the bottle to complete cooling in 2 seconds. Open the mold,
The bottle taken out was further cooled in air to obtain a product.
Table 1 shows the results of measuring the degree of crystallinity and visually determining the presence or absence of sink marks for each part of this container.

【0052】本実施例の容器は、ピラー部及びラベル部
にヒケ等の凹凸が全くなく、外観が良好であると共に、
93℃の熱間充填においてもピラー部との境界を含めて
パネル部の変形が全くなく、しかも冷却後にも容器胴部
に異状なへこみ等の発生が全くなかった。
The container of this embodiment has no unevenness such as sink marks on the pillar portion and the label portion and has a good appearance, and
Even during hot filling at 93 ° C., the panel portion including the boundary with the pillar portion was not deformed at all, and no abnormal dent or the like was formed in the body portion of the container even after cooling.

【0053】実施例2 実施例1において、キャビティ型の金型表面温度を15
5℃、パネル成形用入れ子表面温度を160℃に設定
し、ブロー用流体として180℃の加圧空気を使用する
以外は、実施例1と同様にして、二軸延伸熱固定容器を
製造した。この容器の各部について、結晶化度を測定し
た結果を表1に示す。
Example 2 In Example 1, the mold surface temperature of the cavity mold was set to 15
A biaxially stretched heat-fixed container was produced in the same manner as in Example 1 except that the temperature of the panel molding insert surface was set to 5 ° C and the temperature of the panel molding nest was set to 160 ° C, and 180 ° C pressurized air was used as the blowing fluid. Table 1 shows the results of measuring the crystallinity of each part of this container.

【0054】本発明の容器は、ピラー部及びラベル部に
ヒケ等の凹凸が全くなく、外観が良好であると共に、9
3℃の熱間充填においてもピラー部の境界を含めてパネ
ル部の変形が全くなく、しかも冷却後にも容器胴部に異
状なへこみ等の発生が全くなかった。
The container of the present invention has no unevenness such as sink marks on the pillar portion and the label portion, has a good appearance, and
Even during hot filling at 3 ° C, the panel portion including the boundary of the pillar portion was not deformed at all, and even after cooling, no abnormal dent or the like was generated in the body portion of the container.

【0055】実施例3 実施例1において、キャビティ型の金型表面温度を12
5℃、パネル成形用入れ子表面温度を135℃に設定す
る以外は、実施例1と同様にして、二軸延伸熱固定容器
を製造した。この容器の各部について、結晶化度を測定
した結果を表1に示す。
Example 3 In Example 1, the mold surface temperature of the cavity mold was set to 12
A biaxially stretched heat-fixed container was produced in the same manner as in Example 1 except that the temperature of the panel molding insert surface was set to 5 ° C and 135 ° C. Table 1 shows the results of measuring the crystallinity of each part of this container.

【0056】本実施例の容器は、ピラー部及びラベル部
にヒケ等の凹凸が全くなく、外観が良好であると共に、
85℃の熱間充填においてもピラー部との境界を含めて
パネル部の変形が全くなく、しかも冷却後にも容器胴部
に異状なへこみ等の発生が全くなかった。
The container of this example has no unevenness such as sink marks on the pillar portion and the label portion and has a good appearance, and
Even during hot filling at 85 ° C., the panel portion including the boundary with the pillar portion was not deformed at all, and no abnormal dent or the like was formed in the body portion of the container even after cooling.

【0057】実施例4 固有粘度(I.V.)が0.76dl/gのポリエチレ
ンテレフタレートを射出成形して、口径28mm、重さ
70gのプリフォームを製造し、口頚部を熱結晶化し
た。このプリフォームを使用し、図4に示す形状及び構
造の容器を製造した。尚、使用したキャビティ型は、パ
ネル状凹部に相当する部分に、金型本体とは別で独立の
ヒータを備えた入れ子を設けたものであり、金型本体を
125℃、入れ子を145℃の温度に設定した。容器の
諸寸法は次の通りである。 内容積 :2000ml ボトル高さ : 305mm 胴部の長辺 : 106mm 胴部の短辺 : 87mm 胴部の肉厚 : 0.4mm プリフォームの予備加熱温度、延伸条件及び金型内保持
時間は実施例1と同様であるが、周方向延伸倍率は4.
2倍、軸方向延伸倍率は2.2倍と設定した。得られた
結果を表1に示す。
Example 4 Polyethylene terephthalate having an intrinsic viscosity (IV) of 0.76 dl / g was injection-molded to produce a preform having a diameter of 28 mm and a weight of 70 g, and the neck of the mouth was thermally crystallized. Using this preform, a container having the shape and structure shown in FIG. 4 was manufactured. The cavity mold used was one in which a nest equipped with an independent heater separate from the mold body was provided in a portion corresponding to the panel-shaped recess. The mold body was 125 ° C., and the nest was 145 ° C. Set to temperature. The dimensions of the container are as follows. Inner volume: 2000 ml Bottle height: 305 mm Long side of body: 106 mm Short side of body: 87 mm Wall thickness of body: 0.4 mm Preheating temperature of preform, stretching conditions and holding time in the mold are examples. 1, but with a circumferential draw ratio of 4.
The draw ratio was set to 2 and the axial draw ratio was set to 2.2. The results obtained are shown in Table 1.

【0058】本実施例の容器は、ピラー部及びラベル部
にヒケ等の凹凸が全くなく、外観が良好であると共に、
85℃の熱間充填においてもピラー部との境界を含めて
パネル部の変形が全くなく、しかも冷却後にも容器胴部
に異常なへこみ等の発生が全くなかった。
The container of this example has no unevenness such as sink marks on the pillar portion and the label portion and has a good appearance, and
Even during hot filling at 85 ° C., the panel portion including the boundary with the pillar portion was not deformed at all, and no abnormal dent or the like was generated in the body portion of the container even after cooling.

【0059】比較例1 実施例1において、入れ子を設けていない通常の金型を
使用し、ピラー成形部の金型表面温度を137℃、パネ
ル成形部の表面温度を137℃に設定する以外は、実施
例1と同様にして、二軸延伸熱固定容器を製造した。こ
の容器の各部について、結晶化度を測定した結果を表1
に示す。
Comparative Example 1 In the same manner as in Example 1, except that a normal mold having no insert was used and the mold surface temperature of the pillar molding part was set to 137 ° C. and the surface temperature of the panel molding part was set to 137 ° C. A biaxially stretched heat setting container was manufactured in the same manner as in Example 1. The results of measuring the crystallinity of each part of this container are shown in Table 1.
Shown in.

【0060】本比較例の容器は、ピラー部とパネル部の
境界部分にヒケ等の凹凸がかなり発生し、外観が不良で
あった。
The container of this comparative example had a considerable appearance of unevenness such as sink marks at the boundary portion between the pillar portion and the panel portion, and the appearance was poor.

【0061】比較例2 実施例1において、入れ子を設けていない通常の金型を
使用し、ピラー成形部の金型表面温度を125℃、パネ
ル成形部の表面温度を125℃に設定する以外は、実施
例1と同様にして、二軸延伸熱固定容器を製造した。こ
の容器の各部について、結晶化度を測定した結果を表1
に示す。
COMPARATIVE EXAMPLE 2 The procedure of Example 1 was repeated except that an ordinary mold having no insert was used, the mold surface temperature of the pillar molding part was set to 125 ° C., and the surface temperature of the panel molding part was set to 125 ° C. A biaxially stretched heat setting container was manufactured in the same manner as in Example 1. The results of measuring the crystallinity of each part of this container are shown in Table 1.
Shown in.

【0062】本比較例の容器は、ピラー部とパネル部の
境界部分にヒケ等の凹凸が若干発生し、外観がやや不良
であると共に、85℃の熱間充填においてパネル部の変
形が生じ、しかも冷却後にも容器胴部に異常なへこみの
発生が認められた。
In the container of this comparative example, unevenness such as sink marks was slightly generated at the boundary portion between the pillar portion and the panel portion, the appearance was somewhat poor, and the panel portion was deformed during hot filling at 85 ° C. Moreover, abnormal dents were found in the body of the container even after cooling.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【発明の効果】本発明によれば、胴部全体を延伸成形及
び熱固定により配向結晶化させると共に、胴部の耐熱性
を付与すべき部分、即ち熱が加わったとき力を受け易い
部分を、他の部分に比して高度に結晶化させることによ
り、変形しやすい部分の高温での熱変形が有効に防止さ
れると共に他の部分(熱が加わっても大きな力を受けな
い部分)では、結晶化度が高結晶化部分に比して低いレ
ベルに抑えられているから、所謂ヒケによる凹凸発生も
なく、優れた外観特性が得られ、また全体を高度に結晶
化させたものに比して、耐衝撃性にも優れているという
利点が得られる。また、製造の点でも、全体を高度に結
晶化させる場合に比して、型内での冷却時間が短かくて
すみ、型占有時間を短縮して、容器の生産性を向上させ
得るという利点が奏される。
According to the present invention, the entire body is oriented and crystallized by stretch molding and heat setting, and the portion of the body to which heat resistance is to be imparted, that is, the portion which is apt to receive force when heat is applied. By crystallizing to a higher degree than other parts, thermal deformation of the easily deformable part at high temperature is effectively prevented, and at the other part (the part that does not receive large force even if heat is applied) Since the crystallinity is suppressed to a low level compared to the highly crystallized part, there is no unevenness due to so-called sink marks, excellent appearance characteristics are obtained, and the whole is highly crystallized. As a result, it is possible to obtain the advantage that the impact resistance is excellent. Also, in terms of manufacturing, compared to the case where the whole is highly crystallized, the cooling time in the mold is shorter, the mold occupying time is shortened, and the productivity of the container can be improved. Is played.

【0065】特に、本発明を、パネル・ピラー構造の容
器に適用すると、熱時の内圧増大でもパネル部の塑性変
形が防止され、パネル・ピラーによる減圧変形吸収作用
が円滑に機能するという作用が得られる。また、容器の
外観上目立つ部分は、ピラー状凸部或いは更にラベル部
であるが、本発明では、これらの部分の結晶化度を相対
的に低く抑えているため、ヒケによる凹凸の発生がな
く、容器の外観をよくし、その商品価値を高めることが
できる。また、容器に対する衝撃等の外力が最も作用す
るのは、補強リブとしての作用も兼ねたピラー部である
が、本発明では、ピラー部の結晶化度を低く抑えている
ため、柔軟性が保持され、強い耐衝撃性が得られること
になる。
In particular, when the present invention is applied to a container having a panel / pillar structure, the plastic deformation of the panel portion is prevented even if the internal pressure increases during heating, and the function of smoothly absorbing the reduced pressure deformation by the panel / pillar functions. can get. Further, the part that is noticeable in the appearance of the container is the pillar-shaped convex part or the label part, but in the present invention, since the crystallinity of these parts is kept relatively low, there is no unevenness due to sink marks. , The appearance of the container can be improved and its commercial value can be increased. Further, the external force such as impact on the container acts most on the pillar portion which also functions as the reinforcing rib, but in the present invention, the flexibility is maintained because the crystallinity of the pillar portion is suppressed to a low level. As a result, strong impact resistance can be obtained.

【0066】更に、本発明によれば、ヒータを備えた金
型本体に、前記ヒータとは独立のヒータを備えた入れ子
を配置することにより、入れ子表面の温度とそれ以外の
金型表面の温度とを夫々制御することが可能となり、容
器の胴部全体を所定の結晶化度に配向結晶化させなが
ら、入れ子表面に接する部分を、高温に保持して、高い
結晶化度となるように熱固定することが可能となる。
Further, according to the present invention, the temperature of the mold surface and the temperature of the mold surface other than the mold surface are arranged by disposing the nest having the heater independent of the heater in the mold body having the heater. It is possible to control the temperature of each part of the container body, while maintaining the temperature of the part in contact with the nest surface at a high temperature while performing the oriented crystallization of the entire body of the container to a predetermined crystallinity. It becomes possible to fix it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の容器の好適な一例を示す側面図であ
る。
FIG. 1 is a side view showing a preferred example of the container of the present invention.

【図2】本発明に用いる二軸延伸ブロー及び熱固定用金
型の要部を示す一部断面側面図である。
FIG. 2 is a partial cross-sectional side view showing essential parts of a biaxially stretched blow and heat-fixing mold used in the present invention.

【図3】図2の金型の線III −III における断面図であ
る。
FIG. 3 is a sectional view taken along the line III-III of the mold shown in FIG.

【図4】本発明の容器の他の好適な例を示す側面図であ
る。
FIG. 4 is a side view showing another preferred example of the container of the present invention.

【符号の説明】[Explanation of symbols]

1 容器 2 口頚部(首部) 3 肩部 4 胴部 5 底部 6 ラベル部 9 ピラー状凸部 10 パネル(ミラー)状凹部 20 キャビティ型 21 金型本体 22 入れ子 29 底型 31 本体用ヒータ 34 加熱用ヒーター 1 Container 2 Mouth Neck (Neck) 3 Shoulder 4 Body 5 Bottom 6 Label 9 Pillar Convex 10 Panel (Mirror) Recess 20 Cavity 21 Mold Main Body 22 Nest 29 Bottom 31 Heater 34 for Heating heater

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性ポリエステルの延伸ブロー成形
及び熱固定で製造された耐熱容器において、少なくとも
容器の胴部が全体として熱固定により配向熱結晶化され
ていると共に、胴部のより高い耐熱性を付与すべき部分
が他の部分に比して高度に結晶化されていることを特徴
とする部分的に結晶化度の異なる胴部を備えたポリエス
テル製容器。
1. A heat-resistant container produced by stretch blow molding of thermoplastic polyester and heat-setting, wherein at least the body of the container is oriented and thermally crystallized by heat-setting as a whole, and the body has higher heat resistance. A polyester container provided with a body part having a partially different crystallinity, characterized in that the part to be provided with is crystallized to a higher degree than other parts.
【請求項2】 胴部の高度に結晶化されている部分が3
3%以上の結晶化度を有し且つ胴部の他の部分より少な
くとも1%高い結晶化度を有する請求項1記載のポリエ
ステル製容器。
2. The highly crystallized portion of the body is 3
The polyester container according to claim 1, which has a crystallinity of 3% or more and a crystallinity higher than that of the other parts of the body portion by at least 1%.
【請求項3】 胴部のより高い耐熱性を付与すべき部分
が熱によるストレスを受け変形し易い部分である請求項
1または2記載のポリエステル製容器。
3. The polyester container according to claim 1 or 2, wherein the portion of the body portion to which higher heat resistance is to be applied is a portion which is easily deformed under stress due to heat.
【請求項4】 高度に結晶化された胴部の部分が、内圧
の増大により径外方に突出することができ且つ内圧の減
少により径内方に凹むことのできるパネル部である請求
項1または2記載のポリエステル製容器。
4. The highly crystallized body portion is a panel portion which can be projected radially outward by an increase in internal pressure and can be recessed radially inward by a decrease in internal pressure. Alternatively, the polyester container described in 2.
【請求項5】 熱可塑性ポリエステルの延伸ブロー成形
及び熱固定で形成され、容器の胴部に、相対的に径外方
に位置し且つ周長の短いピラー状凸部と、相対的に径内
方に位置し且つ周長の長いパネル状凹部とが短い連結部
を介して周方向に交互に複数個設けられており、前記パ
ネル状凹部がピラー状凸部に比して高度に結晶化されて
いることを特徴とする部分的に結晶化度の異なる胴部を
備えたポリエステル製容器。
5. A pillar-shaped convex portion, which is formed by stretch blow molding of thermoplastic polyester and is heat-fixed, is located relatively radially outward on the body of the container, and has a short circumference, and relatively inner diameter. A plurality of panel-shaped recesses located in the opposite direction and having a long circumference are alternately provided in the circumferential direction via short connecting portions, and the panel-shaped recesses are highly crystallized as compared with the pillar-shaped projections. A polyester container provided with a body part having a partially different crystallinity.
【請求項6】 熱可塑性ポリエステルの延伸ブロー成形
及び熱固定で形成され、容器の胴部の少なくとも下方部
分に、相対的に径外方に位置し且つ周長の短いピラー状
凸部と、相対的に径内方に位置し且つ周長の長いパネル
状凹部とが短い連結部を介して周方向に交互に複数個設
けられており、必要により胴部の上方または下方にラベ
ル部が設けられている耐熱容器において、容器の少なく
とも胴部が全体として熱固定により配向熱結晶化されて
いると共に、前記パネル状凹部がピラー状凸部或いは更
にラベル部に比して高度に結晶化されていることを特徴
とする部分的に結晶化度の異なる胴部を備えたポリエス
テル製容器。
6. A pillar-shaped convex portion, which is formed by stretch blow molding and thermosetting of a thermoplastic polyester and is located relatively radially outward and has a short circumferential length, at least at a lower portion of a body of a container. A plurality of panel-shaped recesses located radially inward and having a long circumference are alternately provided in the circumferential direction via short connecting portions, and a label portion is provided above or below the body portion as necessary. In the heat-resistant container, at least the body of the container is oriented and thermally crystallized by heat setting as a whole, and the panel-shaped concave portion is highly crystallized as compared with the pillar-shaped convex portion or the label portion. A polyester container provided with a body part having a partially different crystallinity.
【請求項7】 胴部のパネル状凹部が34乃至50%の
結晶化度を有し且つ胴部のピラー状凸部が30乃至45
%でパネル状凹部よりも低い結晶化度を有する請求項5
または6記載のポリエステル製容器。
7. The panel-shaped concave portion of the body portion has a crystallinity of 34 to 50% and the pillar-shaped convex portion of the body portion is 30 to 45.
% Crystallinity lower than that of the panel-shaped recess.
Or the polyester container described in 6.
【請求項8】 前記ラベル部が30乃至43%で、パネ
ル状凹部よりも低い結晶化度を有する請求項6記載のポ
リエステル製容器。
8. The polyester container according to claim 6, wherein the label portion has a crystallinity of 30 to 43% and has a lower crystallinity than that of the panel-shaped recess.
【請求項9】 高温に維持されたブロー金型内に予備加
熱された熱可塑性ポリエステルのプリフォームを装着
し、該プリフォームを周方向に膨張延伸させると共に、
軸方向に引っ張り延伸させ、次いで型内に容器を保持し
て熱固定を行うことから成る耐熱性に優れたポリエステ
ル製容器の製法において、金型加熱ヒータを備えた金型
本体に、金型本体のヒータとは独立したヒータを備えし
かも表面が金型本体表面よりも高温に維持されている入
れ子を配置し、延伸ブロー成形される容器の胴部を全体
として配向熱結晶化させると共に前記入れ子表面に接触
する部分を選択的に高度に結晶化させることを特徴とす
るポリエステル製容器の製法。
9. A preheated thermoplastic polyester preform is mounted in a blow mold maintained at a high temperature, and the preform is expanded and stretched in the circumferential direction, and
In a method for producing a polyester container having excellent heat resistance, which comprises pulling and stretching in the axial direction, and then holding the container in a mold to perform heat fixation, in a mold body equipped with a mold heater, A heater independent of the heater of (1) and the surface of which is maintained at a temperature higher than that of the mold body surface is arranged, and the body of the container to be stretch-blow molded is oriented and thermally crystallized as a whole, and the surface of the nest is formed. A process for producing a polyester container, which is characterized by selectively highly crystallizing a portion that comes into contact with.
【請求項10】 前記金型本体は、その内表面に交互に
周方向に配置されたピラー形成用表面と入れ子支持座と
を有し、パネル形成用入れ子は前記支持座にピラー形成
用表面よりも内側に突出するように設けられている請求
項9記載の製法。
10. The mold body has pillar-forming surfaces and nest support seats alternately arranged in the circumferential direction on the inner surface of the mold body, and the panel-forming nest is formed on the support seat from the pillar-forming surface. 10. The manufacturing method according to claim 9, which is also provided so as to project inward.
【請求項11】 パネル形成用入れ子と入れ子支持座と
の間に断熱材を介在させ或いは熱遮断用空間を設ける請
求項10記載の製法。
11. The manufacturing method according to claim 10, wherein a heat insulating material is provided between the panel forming insert and the insert supporting seat or a space for heat insulation is provided.
【請求項12】 前記金型本体の表面を100乃至17
0℃の温度に維持し、一方入れ子表面を110乃至19
0℃の範囲でしかも金型本体表面よりも少なくとも3℃
高い温度に維持する請求項9または10記載の製法。
12. The surface of the mold body is 100 to 17
Maintain a temperature of 0 ° C. while maintaining the nesting surface between 110 and 19
Within the range of 0 ℃ and at least 3 ℃ from the surface of the mold body
The method according to claim 9 or 10, which is maintained at a high temperature.
JP5091093A 1993-03-11 1993-03-11 Polyester container having a body part partially different in crystallinity and method for producing the same Expired - Fee Related JP2757732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5091093A JP2757732B2 (en) 1993-03-11 1993-03-11 Polyester container having a body part partially different in crystallinity and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5091093A JP2757732B2 (en) 1993-03-11 1993-03-11 Polyester container having a body part partially different in crystallinity and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06262670A true JPH06262670A (en) 1994-09-20
JP2757732B2 JP2757732B2 (en) 1998-05-25

Family

ID=12871942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5091093A Expired - Fee Related JP2757732B2 (en) 1993-03-11 1993-03-11 Polyester container having a body part partially different in crystallinity and method for producing the same

Country Status (1)

Country Link
JP (1) JP2757732B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066624A (en) * 2002-08-06 2004-03-04 Toyo Seikan Kaisha Ltd Method for stretching/blow-molding plastic bottle
JP2007269033A (en) * 2007-05-07 2007-10-18 Toyo Seikan Kaisha Ltd Polyester container
JP2014121852A (en) * 2012-12-21 2014-07-03 Mitsubishi Plastics Inc Plastic bottle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066624A (en) * 2002-08-06 2004-03-04 Toyo Seikan Kaisha Ltd Method for stretching/blow-molding plastic bottle
JP2007269033A (en) * 2007-05-07 2007-10-18 Toyo Seikan Kaisha Ltd Polyester container
JP4544264B2 (en) * 2007-05-07 2010-09-15 東洋製罐株式会社 Polyester container
JP2014121852A (en) * 2012-12-21 2014-07-03 Mitsubishi Plastics Inc Plastic bottle

Also Published As

Publication number Publication date
JP2757732B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
JP3047732B2 (en) Manufacturing method of biaxially stretched blow container
JP4840367B2 (en) Method for producing biaxially stretched polyester bottle
US5145632A (en) Process for the manufacture of pet containers designed to be filled with a hot liquid
JPH0688315B2 (en) Primary blow-molded products for heat-resistant hollow containers
US4564495A (en) Method of producing a container
JP5353242B2 (en) Thin biaxially stretched polyester bottle
US5445784A (en) Method of blow-molding biaxially-oriented polyethylene terephthalate resin bottle-shaped container
JP4052055B2 (en) Stretch blow molding method for plastic bottle containers
JP4210901B2 (en) Manufacturing method of bottle-shaped container
JP2003053823A (en) Preform for blow-molding bottle
JPS6356104B2 (en)
JP2757732B2 (en) Polyester container having a body part partially different in crystallinity and method for producing the same
JP4148065B2 (en) Stretch blow molding method of plastic bottle container and plastic bottle container formed by this molding method
JPH09118322A (en) Self-standing container excellent in heat-resistance/ pressure-resistance, and its manufacture
JPH0443498B2 (en)
JPH01157828A (en) Heat-setting polyester orientation molding container
JPS63185620A (en) Production of thermally set polyester stretched molded container
JP3680526B2 (en) Stretched resin container and manufacturing method thereof
JP2002067129A (en) Biaxially stretched polyester bottle and its manufacturing method
JP3794305B2 (en) Manufacturing method of heat-resistant bottle
JP2003103607A (en) Bottom structure of heat-resistant bottle
JPH06143397A (en) Heat-fixation polyester molded container and manufacture thereof
JP3449182B2 (en) Manufacturing method of heat-resistant stretched resin container
JP2005112440A (en) Container
JPS63202425A (en) Manufacture of biaxially stretched polyester bottle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees