JP2004066240A - Cylinder for injection-molding machine for light alloy - Google Patents

Cylinder for injection-molding machine for light alloy Download PDF

Info

Publication number
JP2004066240A
JP2004066240A JP2002224307A JP2002224307A JP2004066240A JP 2004066240 A JP2004066240 A JP 2004066240A JP 2002224307 A JP2002224307 A JP 2002224307A JP 2002224307 A JP2002224307 A JP 2002224307A JP 2004066240 A JP2004066240 A JP 2004066240A
Authority
JP
Japan
Prior art keywords
base material
cylinder
cylinder base
molding machine
light alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002224307A
Other languages
Japanese (ja)
Inventor
Shigeru Hirakawa
平川 茂
Kenichiro Shimizu
清水 健一郎
Eihachirou Matsunaga
松永 榮八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002224307A priority Critical patent/JP2004066240A/en
Publication of JP2004066240A publication Critical patent/JP2004066240A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylinder for an injection-molding machine for light alloy of which the base material secures heat-resistance and high temperature strength and of which the manufacturing cost is lower than that of a conventional cylinder. <P>SOLUTION: In the cylinder for the injection-molding machine for light alloy in which a coating layer made of erosion-resistant material is deposited on the inner surface of the hollow cylindrical base material for the cylinder, the base material for cylinder is formed by joining front cylinder base material disposed at the injection outlet side with back cylinder base material disposed behind the front cylinder base material in the longitudinal direction. The front cylinder base material is made of a nickel-based heat-resistant alloy and the back cylinder base material is made of an iron-based material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、マグネシウム、アルミニウムなどの軽合金を射出成形するため、材料を加熱攪拌溶融し、溶湯状態もしくは半溶融状態にして金型内に射出して製品を成形する射出成形機に用いられるシリンダに関するものである。
【0002】
【従来の技術】
マグネシウム合金の射出成形機に用いられるシリンダは、使用中に約650℃の高温に達するため耐熱性が要求されるとともに、溶融マグネシウム合金に対する耐溶損性が要求される。この種のマグネシウムなどの軽合金を射出する射出成形機用シリンダとして、例えば特許第2862799号公報には、ニッケル基耐熱合金でシリンダ母材を構成すると共に、シリンダ母材の内面にコバルト基耐熱合金を被覆したシリンダが開示されている。
【0003】
【発明が解決しようとする課題】
シリンダ母材であるニッケル基耐熱合金は、溶解・鋳造などの製造プロセスが精巧に管理されているため品質上の信頼性が高く、耐熱性、高温強度に優れるものである。しかしながら、高価な元素であるニッケルを多量に用いているので材料費が高く、また難削材であるため機械加工に要するコストも高くなりやすい。したがって、特許第2862799号公報のように、シリンダ製品の全長に亘って、シリンダ母材をニッケル基耐熱合金で構成するとシリンダ製品の製造コストが高くなるという問題がある。
【0004】
したがって、本発明の目的は、シリンダ母材の耐熱性、高温強度を確保するとともに、従来に比べ製造コストを低減できる軽合金射出成形機用シリンダを提供することである。
【0005】
【課題を解決するための手段】
軽合金用射出成形機用シリンダでは、シリンダの射出出口側先端に近い前方の部分ほど、それよりも後方の部分に比べ高温領域となりしかも高い射出内圧がかかるので、十分な耐熱性、耐久性が必要である。そこで本発明者らは、シリンダの後方の部分がシリンダの前方の部分よりも耐熱性、耐久性が多少劣っても十分に耐用できるという知見を得て本発明を完成した。
【0006】
本発明の軽合金射出成形機用シリンダは、中空円筒状のシリンダ母材の内面に耐溶損性材料からなる被覆層を形成した軽合金射出成形機用シリンダにおいて、シリンダ母材は、射出出口側に配置した前部のシリンダ母材と、その後方に配置した後部のシリンダ母材とを長手方向に接合してなり、前部のシリンダ母材がニッケル基耐熱合金、後部のシリンダ母材が鉄基材料からなることを特徴とする。
【0007】
本発明において、前記後部のシリンダ母材を形成する鉄基材料が、オーステナイト系鋼材またはオーステナイト系耐熱鋼からなることを特徴とする。また、前部のシリンダ母材と後部のシリンダ母材との常温から650℃までの平均熱膨張係数の差が5×10−6/℃以内であることを特徴とする。
【0008】
また、シリンダ母材の内面に形成した被覆層が、コバルト基合金、鉄基合金、コバルト基合金にセラミックスを分散させたサーメット系材料、および鉄基合金にセラミックスを分散させたサーメット系材料のいずれかからなることを特徴とする。また、前部のシリンダ母材と後部のシリンダ母材とをHIP法により接合したことを特徴とする。さらに、被覆層をシリンダ母材の内面にHIP法により接合したことを特徴とする。
【0009】
本発明に係るシリンダは、シリンダ母材を長手方向に2個以上の領域に分けて構成し、すなわちシリンダの前方に設けられる射出用ノズルに隣接し、射出内圧が高い領域に配置される前部のシリンダ母材として、高温強度、耐クリープ性に優れたニッケル基耐熱合金を用いる。また、前部のシリンダ母材の後方に配置される後部のシリンダ母材として、ニッケル基耐熱合金と熱的特性が類似し、ニッケル基耐熱合金より材料費が安い鉄基材料を用いる。
【0010】
本発明のシリンダ母材の基本的な形態は、1個の前部のシリンダ母材と1個の後部のシリンダ母材からなる。ただし、例えば1個の前部のシリンダ母材と、2個の後部のシリンダ母材を接合してシリンダ母材全体を製作するように、前部および後部のシリンダ母材をそれぞれ長手方向に複数個に分けて構成してもよい。
【0011】
前部のシリンダ母材のニッケル基耐熱合金としては、例えばインコネル718、インコネル706、インコネルX−750などに代表される合金が望ましい。
【0012】
異なる材質のシリンダ母材を長手方向に接合する場合、接合後の固溶化熱処理及び時効処理、そして射出中に作用する熱サイクルを受ける際に、シリンダ母材の熱膨張係数の差が存在すると、その接合部及びシリンダ母材内面の被覆層に熱応力や残留応力が発生する。この応力は、薄い被覆層に割れなど起す原因となりやすい。
【0013】
ニッケル基耐熱合金は一般の鋼材に比べ熱膨張係数が大きい。例えばインコネル718では常温から650℃間の熱膨張係数は約15×10−6/℃である。上述のような熱応力、残留応力を緩和するには、これに近い熱膨張係数をもった材料を用いる必要がある。
【0014】
前部のシリンダ母材と後部のシリンダ母材との常温から650℃までの熱膨張係数の差が5×10−6/℃以内、より望ましくは3×10−6/℃以内であることが好ましい。後部のシリンダ母材として、例えばSUS304やSUS316などのオーステナイト系鋼、SUH309、SUH310などのオーステナイト系耐熱鋼が望ましい。これらは高温強度も高く、シリンダ先端部分の領域以外では十分に耐用できる。
【0015】
前部のシリンダ母材と後部のシリンダ母材とを長手方向に接合する場合、後述の実施例のように、前部のシリンダ母材と後部のシリンダ母材を長手方向に積み重ねて、両母材の端面同士を突き合わせて接合させる。また、前部のシリンダ母材に雄ねじ(あるいは雌ねじ)を刻設し、後部のシリンダ母材に雌ねじ(あるいは雄ねじ)を刻設し、予め両母材を長手方向にねじ締結した後、接合させてもよい。後者のほうがより強固に両母材を接合できるので望ましい。
【0016】
シリンダ母材の内面に被覆する合金は、コバルト基合金、鉄基合金、コバルト基合金にセラミックスを分散させたサーメット系材料、鉄基合金にセラミックスを分散させたサーメット系材料のいずれかが望ましい。これらの材料はマグネシウムなどの溶融金属に対する耐溶損性に優れ、耐摩耗性、高温強度などを兼ね備えたものであり、射出成形機用部材の寿命を延ばすことができる。
【0017】
【発明の実施の形態】
本発明の実施例を図面に基づき詳細に説明する。図1は、本発明の軽合金射出成形機用シリンダの概略断面図を示す。図1において、シリンダ本体1は、前部のシリンダ母材2と後部のシリンダ母材3とを同心軸上に接合してなる中空円筒状のシリンダ母材4と、シリンダ母材4の溶融金属と接触する内周表面に耐溶損性材料からなる被覆層5を形成して構成される。
【0018】
まず、重量%でCr:19%、Mo:3%、Fe:19%、Nb:5%、Ti:0.8%、Al:0.5%、Ni:残部のニッケル基耐熱鋼を用いて、外径150mm、内径45mm、長さ300mmの中空円筒状の前部のシリンダ母材2を作製した。前部のシリンダ母材2は常温から650℃までの平均熱膨張係数が15.0×10−6/℃である。
【0019】
次に、重量%でSi:0.3%、Mn:1.5%、Ni:8%、Cr:18%、Fe:残部からなるオーステナイト系鋼材を用いて、外径150mm、内径45mm、長さ400mmの中空円筒状の後部のシリンダ母材3を作製した。後部のシリンダ母材3は常温から650℃までの平均熱膨張係数が19.0×10−6/℃である。
【0020】
次いで、HIP缶の中央に芯金を設置し、その芯金の外周に前部のシリンダ母材2と後部のシリンダ母材3を嵌挿し、長手方向に積み重ねた。そして、芯金の外面と、前部のシリンダ母材2および後部のシリンダ母材3の内面との間に形成された約3mm幅の空隙に、被覆層5として重量%でSi:1%、Mn:1%、Cr:20%、B:3%、Co:残部からなるコバルト基合金粉末を充填させた。
【0021】
このようにセットした状態でHIP処理を実施した。HIP処理後、芯金を除去して、前部のシリンダ母材2と後部のシリンダ母材3とが同心軸上に接合してなるシリンダ母材4の内面にコバルト基合金からなる被覆層5を形成したシリンダ本体1を取り出し、所定の機械加工を施すことにより、本発明の軽合金射出成形機用シリンダを得た。
【0022】
前部のシリンダ母材2と後部のシリンダ母材3の接合面、また、シリンダ母材4と被覆層5の接合面を浸透探傷にて検査した結果、クラックなどの欠陥は認められず健全に接合されていた。また、本発明の軽合金射出成形機用シリンダは、シリンダ母材の全長に亘って、材料費および加工費の高価なニッケル基耐熱合金で構成した従来のシリンダに比べて製造コストを大幅に低減できた。
【0023】
この本発明の軽合金射出成形機用シリンダを用いて、使用中の温度がシリンダの射出出口側先端面から約200mmの範囲では600〜650℃、それより後方の領域では600℃未満であるマグネシウム合金の射出成形を実機試験したところ、長期間使用において溶損、摩耗の発生などは認められず耐久性に優れることが確認できた。
【0024】
【発明の効果】
本発明の軽合金射出成形機用シリンダによれば、マグネシウムなどの溶融金属の射出成形機用部材として要求される耐熱性、高温強度、耐溶損性、耐摩耗性などの特性を具備するとともに、従来に比べ製造コストを低減できる軽合金射出成形機用シリンダを得ることができる。
【図面の簡単な説明】
【図1】本発明の軽合金射出成形機用シリンダの概略断面図である。
【符号の説明】
1 シリンダ本体、 2 前部のシリンダ母材、 3 後部のシリンダ母材、
4 シリンダ母材、 5 被覆層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cylinder used in an injection molding machine that heats, stirs and melts a material to form a product by injecting it into a mold in a molten or semi-molten state for injection molding of a light alloy such as magnesium and aluminum. It is about.
[0002]
[Prior art]
Cylinders used in magnesium alloy injection molding machines reach a high temperature of about 650 ° C. during use, so that they are required to have heat resistance and are required to have erosion resistance to molten magnesium alloys. As a cylinder for an injection molding machine for injecting a light alloy such as magnesium of this kind, for example, Japanese Patent No. 2862799 discloses that a cylinder base material is formed of a nickel-base heat-resistant alloy, and a cobalt-base heat-resistant alloy is formed on the inner surface of the cylinder base material. Is disclosed.
[0003]
[Problems to be solved by the invention]
Nickel-base heat-resistant alloys, which are cylinder base materials, have high quality reliability and are excellent in heat resistance and high-temperature strength because their manufacturing processes such as melting and casting are precisely controlled. However, since a large amount of nickel, which is an expensive element, is used, the material cost is high, and since it is a difficult-to-cut material, the cost required for machining tends to be high. Therefore, when the cylinder base material is made of a nickel-base heat-resistant alloy over the entire length of the cylinder product as in Japanese Patent No. 2862799, there is a problem that the production cost of the cylinder product increases.
[0004]
Accordingly, an object of the present invention is to provide a cylinder for a light alloy injection molding machine capable of securing the heat resistance and high-temperature strength of a cylinder base material and reducing the production cost as compared with the related art.
[0005]
[Means for Solving the Problems]
In a cylinder for a light alloy injection molding machine, the front part closer to the tip of the injection outlet side of the cylinder is in a higher temperature range than the part behind it and a high injection internal pressure is applied, so sufficient heat resistance and durability are achieved. is necessary. Therefore, the present inventors have found that the rear portion of the cylinder can be sufficiently used even if the heat resistance and the durability are somewhat inferior to the front portion of the cylinder, and have completed the present invention.
[0006]
The light alloy injection molding machine cylinder of the present invention is a light alloy injection molding machine cylinder in which a coating layer made of a erosion-resistant material is formed on the inner surface of a hollow cylindrical cylinder base material. The front cylinder base material placed in the front and the rear cylinder base material placed behind it are joined in the longitudinal direction, the front cylinder base material is a nickel-base heat-resistant alloy, and the rear cylinder base material is iron. It is characterized by being made of a base material.
[0007]
In the present invention, the iron-based material forming the rear cylinder base material is made of austenitic steel or heat-resistant austenitic steel. Further, the difference between the average thermal expansion coefficient of the front cylinder base material and the rear cylinder base material from room temperature to 650 ° C. is within 5 × 10 −6 / ° C.
[0008]
Further, the coating layer formed on the inner surface of the cylinder base material may be made of a cobalt-based alloy, an iron-based alloy, a cermet-based material in which ceramics are dispersed in a cobalt-based alloy, or a cermet-based material in which ceramics are dispersed in an iron-based alloy. It is characterized by comprising. Further, the front cylinder base material and the rear cylinder base material are joined by the HIP method. Further, the invention is characterized in that the coating layer is joined to the inner surface of the cylinder base material by the HIP method.
[0009]
The cylinder according to the present invention is configured such that the cylinder base material is divided into two or more regions in the longitudinal direction, that is, the front portion is disposed adjacent to the injection nozzle provided in front of the cylinder and disposed in the region where the injection internal pressure is high. A nickel-base heat-resistant alloy excellent in high-temperature strength and creep resistance is used as a cylinder base material. Further, as a rear cylinder base material disposed behind the front cylinder base material, an iron-based material having similar thermal characteristics to a nickel-based heat-resistant alloy and having a lower material cost than a nickel-based heat-resistant alloy is used.
[0010]
The basic form of the cylinder preform of the present invention comprises one front cylinder preform and one rear cylinder preform. However, for example, a plurality of front and rear cylinder preforms are respectively formed in the longitudinal direction so that one front cylinder preform and two rear cylinder preforms are joined to produce the entire cylinder preform. You may separate and comprise.
[0011]
As the nickel-base heat-resistant alloy of the front cylinder base material, for example, alloys represented by Inconel 718, Inconel 706, Inconel X-750 and the like are desirable.
[0012]
When joining cylinder base materials of different materials in the longitudinal direction, when subjected to a solution heat treatment and aging treatment after joining, and a thermal cycle acting during injection, if there is a difference in thermal expansion coefficient of the cylinder base material, Thermal stress and residual stress are generated in the joint and the coating layer on the inner surface of the cylinder base material. This stress is likely to cause a crack or the like in the thin coating layer.
[0013]
Nickel-base heat-resistant alloys have a larger coefficient of thermal expansion than ordinary steel materials. For example, for Inconel 718, the coefficient of thermal expansion between room temperature and 650 ° C. is about 15 × 10 −6 / ° C. In order to reduce the above-mentioned thermal stress and residual stress, it is necessary to use a material having a thermal expansion coefficient close to this.
[0014]
The difference in the coefficient of thermal expansion between the front cylinder base material and the rear cylinder base material from room temperature to 650 ° C. is within 5 × 10 −6 / ° C., more preferably within 3 × 10 −6 / ° C. preferable. As the rear cylinder base material, for example, an austenitic steel such as SUS304 or SUS316, or an austenitic heat-resistant steel such as SUH309 or SUH310 is desirable. These have high strength at high temperatures and can be sufficiently used except in the region of the tip of the cylinder.
[0015]
In the case where the front cylinder base material and the rear cylinder base material are joined in the longitudinal direction, the front cylinder base material and the rear cylinder base material are stacked in the longitudinal direction as in an example described later, and the two base materials are joined together. The end faces of the materials are joined to each other. Also, a male screw (or female screw) is engraved on the front cylinder base material, and a female screw (or male screw) is engraved on the rear cylinder base material. May be. The latter is preferable because the two base materials can be joined more firmly.
[0016]
The alloy coated on the inner surface of the cylinder base material is desirably one of a cobalt-based alloy, an iron-based alloy, a cermet-based material in which ceramics are dispersed in a cobalt-based alloy, and a cermet-based material in which ceramics are dispersed in an iron-based alloy. These materials are excellent in erosion resistance to molten metal such as magnesium, and have abrasion resistance, high-temperature strength, and the like, and can extend the life of members for injection molding machines.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic sectional view of a cylinder for a light alloy injection molding machine according to the present invention. In FIG. 1, a cylinder body 1 includes a hollow cylinder-shaped cylinder preform 4 formed by joining a front cylinder preform 2 and a rear cylinder preform 3 on concentric axes, and a molten metal of the cylinder preform 4. Is formed by forming a coating layer 5 made of a erosion-resistant material on the inner peripheral surface in contact with.
[0018]
First, Cr: 19%, Mo: 3%, Fe: 19%, Nb: 5%, Ti: 0.8%, Al: 0.5%, and Ni: the remaining nickel-based heat-resistant steel were used in terms of% by weight. A hollow cylindrical front cylinder base material 2 having an outer diameter of 150 mm, an inner diameter of 45 mm, and a length of 300 mm was produced. The front cylinder base material 2 has an average thermal expansion coefficient from room temperature to 650 ° C. of 15.0 × 10 −6 / ° C.
[0019]
Next, using an austenitic steel material consisting of Si: 0.3%, Mn: 1.5%, Ni: 8%, Cr: 18%, Fe: balance by weight%, outer diameter 150 mm, inner diameter 45 mm, length A 400 mm-thick hollow cylindrical rear cylinder base material 3 was produced. The rear cylinder base material 3 has an average thermal expansion coefficient from room temperature to 650 ° C. of 19.0 × 10 −6 / ° C.
[0020]
Next, a mandrel was placed at the center of the HIP can, and a front cylinder base material 2 and a rear cylinder preform 3 were inserted into the outer periphery of the metal core and stacked in the longitudinal direction. Then, in a gap having a width of about 3 mm formed between the outer surface of the core metal and the inner surfaces of the front cylinder base material 2 and the rear cylinder base material 3, Si: 1% by weight as a coating layer 5; A cobalt-based alloy powder consisting of Mn: 1%, Cr: 20%, B: 3%, and Co: balance was filled.
[0021]
HIP processing was performed in the state set in this way. After the HIP treatment, the core metal is removed, and a coating layer 5 made of a cobalt-based alloy is formed on the inner surface of a cylinder base material 4 in which the front cylinder base material 2 and the rear cylinder base material 3 are concentrically joined. The cylinder body 1 on which was formed was taken out and subjected to predetermined machining to obtain a cylinder for a light alloy injection molding machine of the present invention.
[0022]
Inspection of the joint surface between the front cylinder base material 2 and the rear cylinder base material 3 and the joint surface between the cylinder base material 4 and the coating layer 5 by penetrant inspection showed that defects such as cracks were not recognized and sound. Had been joined. In addition, the cylinder for a light alloy injection molding machine of the present invention significantly reduces the manufacturing cost over the entire length of the cylinder base material as compared with a conventional cylinder made of a nickel-base heat-resistant alloy, which is expensive in material and processing costs. did it.
[0023]
By using the cylinder for a light alloy injection molding machine of the present invention, magnesium whose temperature during use is 600 to 650 ° C. in a range of about 200 mm from the front end face of the injection outlet side of the cylinder, and less than 600 ° C. in a region behind it. Injection molding of the alloy was tested in an actual machine, and it was confirmed that there was no occurrence of erosion or abrasion in long-term use, and that the alloy was excellent in durability.
[0024]
【The invention's effect】
According to the cylinder for a light alloy injection molding machine of the present invention, while having properties such as heat resistance, high temperature strength, erosion resistance, and wear resistance required as a member for an injection molding machine of molten metal such as magnesium, It is possible to obtain a light alloy injection molding machine cylinder that can reduce the manufacturing cost as compared with the related art.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a cylinder for a light alloy injection molding machine of the present invention.
[Explanation of symbols]
1 cylinder body, 2 front cylinder base material, 3 rear cylinder base material,
4 cylinder base material, 5 coating layer

Claims (6)

中空円筒状のシリンダ母材の内面に耐溶損性材料からなる被覆層を形成した軽合金射出成形機用シリンダにおいて、シリンダ母材は、射出出口側に配置した前部のシリンダ母材と、その後方に配置した後部のシリンダ母材とを長手方向に接合してなり、前部のシリンダ母材がニッケル基耐熱合金、後部のシリンダ母材が鉄基材料からなることを特徴とする軽合金射出成形機用シリンダ。In a cylinder for a light alloy injection molding machine in which a coating layer made of a erosion-resistant material is formed on the inner surface of a hollow cylindrical cylinder base material, the cylinder base material is a front cylinder base material disposed on the injection outlet side, and thereafter. Light alloy injection, characterized in that the rear cylinder base material is joined in the longitudinal direction, the front cylinder base material is made of a nickel-based heat-resistant alloy, and the rear cylinder base material is made of an iron-based material. Cylinder for molding machine. 前記後部のシリンダ母材を形成する鉄基材料が、オーステナイト系鋼材またはオーステナイト系耐熱鋼からなることを特徴とする請求項1に記載の軽合金射出成形機用シリンダ。The cylinder for a light alloy injection molding machine according to claim 1, wherein the iron-based material forming the rear cylinder base material is made of austenitic steel or austenitic heat-resistant steel. 前部のシリンダ母材と後部のシリンダ母材との常温から650℃までの平均熱膨張係数の差が5×10−6/℃以内であることを特徴とする請求項1または2に記載の軽合金射出成形機用シリンダ。The difference between the average thermal expansion coefficient of the front cylinder base material and the rear cylinder base material from room temperature to 650 ° C. is within 5 × 10 −6 / ° C. 3. Cylinder for light alloy injection molding machine. シリンダ母材の内面に形成した被覆層が、コバルト基合金、鉄基合金、およびコバルト基合金または鉄基合金にセラミックスを分散させたサーメット系材料のいずれかからなることを特徴とする請求項1〜3のいずれかに記載の軽合金射出成形機用シリンダ。The coating layer formed on the inner surface of the cylinder base material is made of one of a cobalt-based alloy, an iron-based alloy, and a cermet-based material in which ceramics are dispersed in a cobalt-based alloy or an iron-based alloy. The cylinder for a light alloy injection molding machine according to any one of claims 1 to 3. 前部のシリンダ母材と後部のシリンダ母材とをHIP法により接合したことを特徴とする請求項1〜4のいずれかに記載の軽合金射出成形機用シリンダ。The cylinder for a light alloy injection molding machine according to any one of claims 1 to 4, wherein the front cylinder base material and the rear cylinder base material are joined by a HIP method. 前記被覆層をシリンダ母材の内面にHIP法により接合したことを特徴とする請求項1〜5のいずれかに記載の軽合金射出成形機用シリンダ。The cylinder for a light alloy injection molding machine according to any one of claims 1 to 5, wherein the coating layer is joined to an inner surface of the cylinder base material by a HIP method.
JP2002224307A 2002-08-01 2002-08-01 Cylinder for injection-molding machine for light alloy Pending JP2004066240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224307A JP2004066240A (en) 2002-08-01 2002-08-01 Cylinder for injection-molding machine for light alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224307A JP2004066240A (en) 2002-08-01 2002-08-01 Cylinder for injection-molding machine for light alloy

Publications (1)

Publication Number Publication Date
JP2004066240A true JP2004066240A (en) 2004-03-04

Family

ID=32012302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224307A Pending JP2004066240A (en) 2002-08-01 2002-08-01 Cylinder for injection-molding machine for light alloy

Country Status (1)

Country Link
JP (1) JP2004066240A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046289A1 (en) 2012-09-24 2014-03-27 株式会社日本製鋼所 Coating structure material
JP2014065042A (en) * 2012-09-24 2014-04-17 Japan Steel Works Ltd:The Cylinder of metal injection molding machine and metal injection molding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046289A1 (en) 2012-09-24 2014-03-27 株式会社日本製鋼所 Coating structure material
JP2014065042A (en) * 2012-09-24 2014-04-17 Japan Steel Works Ltd:The Cylinder of metal injection molding machine and metal injection molding method
KR20150063112A (en) 2012-09-24 2015-06-08 더 재팬 스틸 워크스 엘티디 coating structure material
US9604432B2 (en) 2012-09-24 2017-03-28 The Japan Steel Works, Ltd. Coating structure material

Similar Documents

Publication Publication Date Title
US7807273B2 (en) Alloy-coated boiler part and method of welding self-fluxing alloy-coated boiler part
JP5445712B1 (en) Die-casting sleeve regenerating method and regenerated die-casting sleeve
JP2004066240A (en) Cylinder for injection-molding machine for light alloy
JPH07119421A (en) Manufacture of na-sealed hollow engine valve
JP2004066241A (en) Cylinder for light alloy injection-molding machine
JP2862799B2 (en) Injection molding machine components
JP2002210358A (en) Housing for plastic, metal powder, ceramic powder or food processing machines
JPS60181208A (en) Manufacture of multi-shaft cylinder for plastic molding machine
JP2002283030A (en) Member for light alloy injection molding machine
JP2002036033A (en) Coating method for metallic structure interior surface
JP2000301542A (en) Heat conductive composite mold and its manufacture
JP2004066243A (en) Member for light alloy injection-molding machine
JPH02178B2 (en)
JP2003001393A (en) Relining method for hollow member with wear-resistant layer on inner circumferential surface
JPH1024473A (en) Cylinder for molding machine
JP2642661B2 (en) Manufacturing method of high thermal conductive composite mold
JPH03264607A (en) Manufacture of complex cylinder and screw for injection and extrusion compacting machine
JP2001200931A (en) Heating cylinder for plastic molding with composite alloy sleeve
JPH1024472A (en) Cylinder for molding machine
JPH023661B2 (en)
JPH06269925A (en) Production of composite material having excellent wear resistance and toughness and composite material having excellent wear resistance and toughness
JPS6059301B2 (en) Manufacturing method of plastic melting cylinder
JPH11300459A (en) Sleeve for die casting machine
JPH1024471A (en) Cylinder for molding machine
SU565775A1 (en) Method of manufacturing bimetal cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070126