JP2004066129A - Method of restoring soil polluted with heavy metal - Google Patents

Method of restoring soil polluted with heavy metal Download PDF

Info

Publication number
JP2004066129A
JP2004066129A JP2002230202A JP2002230202A JP2004066129A JP 2004066129 A JP2004066129 A JP 2004066129A JP 2002230202 A JP2002230202 A JP 2002230202A JP 2002230202 A JP2002230202 A JP 2002230202A JP 2004066129 A JP2004066129 A JP 2004066129A
Authority
JP
Japan
Prior art keywords
soil
heavy metal
heavy metals
aqueous solution
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002230202A
Other languages
Japanese (ja)
Inventor
Shuzo Tokunaga
徳永 修三
Makoto Furukawa
古川 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foundation for Advancement of International Science
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Foundation for Advancement of International Science
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foundation for Advancement of International Science, National Institute of Advanced Industrial Science and Technology AIST filed Critical Foundation for Advancement of International Science
Priority to JP2002230202A priority Critical patent/JP2004066129A/en
Publication of JP2004066129A publication Critical patent/JP2004066129A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of restoring soil polluted with heavy metals by which an environmental risk is remarkably reduced and the soil is hardly damaged to thereby enable the soil to be reused by extracting and removing the heavy metals in the soil with a high efficiency. <P>SOLUTION: The soil polluted with heavy metals is subjected to washing treatment by using an aqueous solution containing a chelating agent having complex formability to the heavy metals and the pH of the aqueous solution is fluctuated at least once in a pH region where the heavy metal complex formed by the reaction of the heavy metals and the chelating agent exhibits water solubility, and thus the soil polluted with the heavy metals is restored. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、重金属で汚染された土壌(重金属汚染土壌)の修復方法に関するものである。
【0002】
【従来の技術】
工場・事業所跡地等で土壌汚染の判明件数が年々増加している(平成12年度土壌汚染調査・対策事例及び対応状況に関する調査結果の概要、平成14年2月環境省環境管理局水環境部)。こうした土壌汚染原因物質として、重金属類が半分以上を占めている。
重金属で汚染された土壌については、これまでは(1)掘削除去、封じ込め、飛散防止、セメントによる固型化・不溶化、最終処分場への埋立処分及び(2)強酸による溶出といった対策がとられてきた。しかし、(1)の方法では、重金属はその全量がそのまま土壌中に残留するため、長期間にわたってその対策効果が持続するものではない。風雨や地下水の浸透などによって土壌中の重金属が溶出して、二次環境汚染を引き起こすリスクが存在する。また、(2)の方法については、汚染物質以外の土壌成分も抽出されて、後処理としての排水処理の困難さをもたらすと共に、土壌の損傷が大きいために土壌の再利用が困難になることが問題となっていた。
【0003】
【発明が解決しようとする課題】
本発明は、土壌中の重金属を高効率で抽出除去することにより、環境リスクを大幅に低減するとともに、土壌を殆ど損傷せず、その再利用を可能にする重金属汚染土壌の修復方法を提供することをその課題とする。
【0004】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を実施するに至った。
即ち、本発明によれば、以下に示す重金属汚染土壌の修復方法が提供される。(1)重金属汚染土壌を、該重金属に対して錯体形成能を有するキレート剤を含む水溶液を用いて洗浄処理する方法であって、該重金属と該キレート剤との反応により形成される重金属錯体が水溶性を示すpH領域において、該水溶液のpHを、少なくとも1回変動させることを特徴とする重金属汚染土壌の修復方法。
(2)該洗浄処理中における該水溶液のpHが少なくとも1回は、1〜6の範囲に調節され、該洗浄処理の終了時における該水溶液のpHが4〜8の範囲にあることを特徴とする前記(1)に記載の重金属汚染土壌の修復方法。
(3)該洗浄処理を、超音波照射下において行うことを特徴とする前記(1)又は(2)に記載の重金属汚染土壌の修復方法。
(4)該重金属が、カドミウム、銅、鉛及び亜鉛の中から選ばれる少なくとも1種であることを特徴とする前記(1)〜(3)のいずれかに記載の重金属汚染土壌の修復方法。
【0005】
【発明の実施の形態】
本発明の重金属汚染土壌の修復方法は、該土壌を、該重金属に対して錯体形成能を有するキレート剤を含む水溶液からなる洗浄液と接触させる洗浄工程を含む。
【0006】
キレート剤としては、従来公知の各種のものを用いることができる。このようなものには、例えば、ポリアミノカルボン酸系キレート剤の他、ポリカルボン酸系キレート剤、アミン系キレート剤等が包含される。
【0007】
前記ポリアミノカルボン酸系キレート剤としては、例えば、エチレンジアミン四酢酸、イミノ二酢酸、ニトリロ三酢酸、ヒドロキシエチルイミノ二酢酸、1,2−ジアミノシクロヘキサン−N,N,N′,N′−四酢酸、エチレンジエチルトリアミン−N,N,N′,N′′,N′′−五酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ジヒドロキシエチルグリシン、酸性アミノ酸、それらの水溶性塩(ナトリウム塩等)等が挙げられる。
【0008】
ポリカルボン酸系キレート剤としては、例えば、クエン酸、リンゴ酸、酒石酸、それらの水溶性塩等が挙げられる。
アミン系キレート剤としては、例えば、エチレンジアミン等が挙げられる。
【0009】
洗浄液(水溶液)中のキレート剤の濃度は、土壌の汚染度にもよるが、一般的には、0.5〜30%(w/v)、好ましくは1〜10%(w/v)である。
【0010】
洗浄液の使用割合は、土壌中に含まれる重金属を錯形成するのに必要な化学量論的量以上であればよい。一般的には、土壌中の重金属1当量当り、洗浄液中のキレート剤が1〜1000、好ましくは10〜500当量となるような割合である。
洗浄液と汚染土壌との接触時間(洗浄処理時間)は、特に制約されないが、12〜24時間程度で充分である。
【0011】
本発明により土壌と洗浄液とを接触させる場合、超音波照射を併用するのが好ましい。この場合、超音波の周波数は10〜600KHz、好ましくは10〜200KHzである。その超音波処理時間は、10〜60分間、好ましくは20〜40分間程度である。
【0012】
本発明の方法は、前記のようにして重金属汚染土壌を洗浄液を用いて洗浄処理するのに際し、該重金属と該キレート剤との反応により形成される重金属錯体が水溶性を示すpH領域において、該洗浄液(水溶液)のpHを、少なくとも1回変動させる。この洗浄処理において、洗浄処理開始時の洗浄液のpHは重金属錯体が水溶性を示すpH領域においていずれでも構わないが、好ましくは1〜6、さらに好ましくは1〜4の範囲に調節するのがよい。一方、洗浄処理終了時の洗浄液のpHは、4〜8、好ましくは6〜8の範囲になるようにするのがよい。
【0013】
本発明においては、前記のように、洗浄処理中に、洗浄液のpHを少なくとも1回変動させるが、このpH変動回数は複数回、例えば、2〜3回であることができる。この場合のpHの変動は、pHを酸性又はアルカリ側に変動させるpH調節剤を用いて行うことができる。このようなpH調節剤としては、酸性物質又はアルカリ性物質が用いられる。このようなものとしては、例えば酸性物質としては、塩酸、硫酸、硝酸等が、アルカリ性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カルシウム等が挙げられる。
【0014】
洗浄処理中での洗浄液のpH変動は、例えば、洗浄処理開始時の洗浄液のpHを1〜2の範囲に調節し、処理途中(中間部)の洗浄液のpHをpH調節剤を用いて4〜5の範囲に調節し、処理後半での洗浄液のpHを6〜8の範囲になるよう行うことができる。また、処理開始時の洗浄液のpHを3〜5の範囲に調節し、処理途中又は処理後半時の洗浄液のpHを6〜8の範囲になるように行うことができる。また、洗浄処理開始時の洗浄液のpHを2〜3の範囲に調節し、処理途中(中間部)の洗浄液のpHをpH調節剤を用いて1〜2の範囲に調節し、処理後半での洗浄液のpHを6〜8の範囲になるよう行うことができる。
【0015】
洗浄液の温度は、通常、常温であるが、必要に応じて加温(例えば40〜50℃)に加温することもできる。
【0016】
本発明で用いる被処理物質は、重金属汚染土壌であるが、この場合の重金属は、有害性重金属であり、このようなものには、例えば、カドミウム、銅、鉛、亜鉛等が包含される。その土壌中の濃度は、乾燥物基準で、通常、10〜10000mg/kgであり、特に500〜3000mg/kg程度である。
【0017】
前記土壌の洗浄処理後には、土壌と洗浄液とを分離する。この場合の分離方法としては、従来公知の固液分離法、例えば、濾過分離法、遠心分離法、沈降分離法等が用いられる。また、このようにして分離された土壌は、必要に応じ、水洗し、乾燥することができる。
【0018】
【実施例】
以下、本発明を実施例によりさらに詳細に説明する。
【0019】
参考例1(モデル汚染土壌の調製)
茨城県つくば市において採集した黄褐色森林土を1週間風乾したのち、標準ふるいで粒径2mm以下の土壌をふるい分けた。その適当量を塩化ビニル製容器にとり、各々25mMのカドミウム、銅、鉛、亜鉛混合水溶液を加え、pH4.0に調整し、随時しんとうさせながら3ヶ月間処理して汚染させた。水相をろ別し、得られたろ過残渣を数回水洗した後風乾して、モデル重金属汚染土壌Aを調製した。モデル汚染土壌中の重金属含有量は米国EPA Method 3050Bに従って求め、その含有量はカドミウム982mg/kg、銅5,854mg/kg、鉛17,061mg/kg、亜鉛961mg/kgであった。
【0020】
参考例2(土壌の洗浄方法)
35mガラス遠沈管に汚染土壌A1gと洗浄剤20mLをいれ、20℃に保持した恒温槽中でしんとう器にて横方向(振幅10cm)に所定時間しんとうした。この時、洗浄剤のpHは3M NaOH又は1M HClを用いて調節した。次に、ろ紙5種Bにて土壌をろ別し、さらにろ液を孔径0.45μmのメンブランフィルターでろ過した。得られたろ液について、重金属濃度をICP発光分析法により測定した。
【0021】
参考例3(超音波を用いる土壌の洗浄方法)
超音波発生装置はオートチェーサー型を用いた。30mLビーカーに汚染土壌1gと洗浄剤20mLを加え、プローブ先端を液面下2.5mmに調節固定した後、超音波を照射した。この時、洗浄剤のpHは3M NaOH又は1M HClを用いて調節した。なお、超音波照射は室温にて実施した。超音波照射した処理液は、ろ紙5種Bにて土壌をろ別し、さらにろ液を孔径0.45μmのメンブランフィルターでろ過した。得られたろ液について、重金属濃度をICP発光分析法により測定した。
【0022】
実施例1
参考例1で調製したモデル汚染土壌A1gに、参考例2に従って、0.05MEDTA(エチレンジアミン四酢酸)水溶液(pH3.5)20mLを洗浄剤として加え、22時間洗浄した。次にpHを6.5に調節して、2時間洗浄した。重金属除去率は、未処理土壌中の重金属含有量に対する水相の重金属溶出量の割合で示した。得られた結果を表1に示す。いずれの重金属も洗浄剤のpHを3.5から6.5に調節することによって、pH3.5のみで洗浄した場合(比較例1)と同等の除去率を維持しながら、pH6.5のみで洗浄した場合(比較例2)よりも高い除去率を示した。これらの結果から、洗浄剤のpHを調節することにより、高い除去率を維持しつつ、土壌の中和処理も完了することができることを認めた。
【0023】
【表1】

Figure 2004066129
【0024】
実施例2
参考例1で調製したモデル汚染土壌A1gに、参考例2に従って、0.1M クエン酸水溶液(pH2.0)20mLを洗浄剤として加え、6時間洗浄した。次に、pHを5.3に調節して16時間洗浄した。さらに、pHを6.5に調節して、2時間洗浄した。重金属除去率は、未処理土壌中の重金属含有量に対する水相の重金属溶出量の割合で示した。得られた結果を表2に示す。カドミウム、銅、鉛の除去率は、洗浄剤のpHを2から6.5へ調節することで、pH2.0(比較例3)、pH5.3(比較例4)、pH6.5(比較例5)各々のみで洗浄した場合のいずれよりも高い値を示した。特に鉛に関しては、顕著に除去率の上昇がみられ、銅についても除去率は大きく上昇した。しかしながら、亜鉛に関しては、処理pH5.3、pH6.5のみの場合と比べて除去率は高かったものの、処理pH2.0の場合に比べると除去率は低かった。これらの結果から、洗浄剤のpHを調節することにより、重金属除去率を向上させうることが確認された。また同時に土壌の中和処理も完了した。
【0025】
【表2】
Figure 2004066129
【0026】
実施例3
参考例1で調製したモデル汚染土壌A1gに、参考例3に従って、0.1M クエン酸水溶液(pH2.0)20mLを洗浄剤として加え、20分間超音波を照射した。次に、pHを5.3に調整して、8分間超音波を照射した。さらに、pHを6.5に調整し2分間超音波を照射した。除去率は、未処理土壌中の重金属含有量に対する水相の重金属溶出量の割合で示した。得られた結果を表3に示す。カドミウム、銅、鉛の除去率は、pH2.0(比較例6)、pH5.3(比較例7)、pH6.5(比較例8)各々のみで処理した場合のいずれよりも高い値を示した。特に鉛に関しては、顕著に除去率の上昇がみられ、銅についても除去率は上昇した。しかしながら、亜鉛に関しては、pH5.3、pH6.5のみの場合と比べて除去率は上昇したものの、pH2.0の場合に比べると除去率は低かった。また除去率は、pHを調節して24時間洗浄した場合(実施例2の表2を参考)に比べ、短時間処理にも関らず上昇した。これらの結果から、洗浄剤のpHを調節することにより、除去率を向上させうることが確認された。また、同時に土壌の中和処理も完了した。また、超音波照射により、処理時間を大幅に短縮しつつ、除去効果を促進することが確認された。
【0027】
【表3】
Figure 2004066129
【0028】
【発明の効果】
本発明によれば、重金属で汚染された土壌から重金属を高効率で抽出除去することができ、これによって該土壌を損傷することなく修復することができる。本発明により修復された土壌は、植物栽培用土壌や埋立用土壌等として利用することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for repairing soil contaminated with heavy metals (heavy metal contaminated soil).
[0002]
[Prior art]
The number of cases where soil contamination has been identified has been increasing year by year on the sites of factories and business sites (Summary of the 2000 survey results on soil contamination surveys, countermeasures, and response status, February 2002, Ministry of the Environment, Environment Management Bureau, Water Environment Department) ). Heavy metals account for more than half of these soil pollutants.
For soils contaminated with heavy metals, measures such as (1) excavation removal, containment, scattering prevention, solidification and insolubilization with cement, landfill disposal at final disposal sites, and (2) elution with strong acid have been taken so far. Have been. However, in the method (1), since the entire amount of heavy metal remains in the soil as it is, the countermeasure effect is not sustained for a long time. There is a risk that heavy metals in the soil will elute out due to wind and rain and infiltration of groundwater, causing secondary environmental pollution. In the method (2), soil components other than contaminants are also extracted, which causes difficulty in wastewater treatment as a post-treatment, and also makes it difficult to reuse soil due to large damage to the soil. Was a problem.
[0003]
[Problems to be solved by the invention]
The present invention provides a method for remediating heavy metal-contaminated soil, which significantly reduces environmental risks by extracting and removing heavy metals in soil with high efficiency, hardly damages the soil, and enables its reuse. That is the subject.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have accomplished the present invention.
That is, according to the present invention, there is provided the following method for repairing heavy metal contaminated soil. (1) A method for washing heavy metal-contaminated soil with an aqueous solution containing a chelating agent capable of forming a complex with the heavy metal, wherein the heavy metal complex formed by the reaction between the heavy metal and the chelating agent is A method for repairing a soil contaminated with heavy metals, wherein the pH of the aqueous solution is changed at least once in a pH range showing water solubility.
(2) The pH of the aqueous solution is adjusted to a range of 1 to 6 at least once during the washing process, and the pH of the aqueous solution is 4 to 8 at the end of the washing process. The method for repairing heavy metal contaminated soil according to the above (1).
(3) The method for repairing heavy metal contaminated soil according to (1) or (2), wherein the cleaning treatment is performed under ultrasonic irradiation.
(4) The method for repairing heavy metal-contaminated soil according to any one of (1) to (3), wherein the heavy metal is at least one selected from cadmium, copper, lead, and zinc.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for repairing soil contaminated with heavy metals of the present invention includes a washing step of bringing the soil into contact with a washing solution comprising an aqueous solution containing a chelating agent capable of forming a complex with the heavy metal.
[0006]
Various conventionally known chelating agents can be used. Such a substance includes, for example, a polycarboxylic acid-based chelating agent, an amine-based chelating agent, and the like, in addition to a polyaminocarboxylic acid-based chelating agent.
[0007]
Examples of the polyaminocarboxylic acid-based chelating agent include ethylenediaminetetraacetic acid, iminodiacetic acid, nitrilotriacetic acid, hydroxyethyliminodiacetic acid, 1,2-diaminocyclohexane-N, N, N ', N'-tetraacetic acid, Ethylene diethyltriamine-N, N, N ', N ", N" -pentaacetic acid, hydroxyethylethylenediaminetriacetic acid, dihydroxyethylglycine, acidic amino acids, and water-soluble salts thereof (such as sodium salts).
[0008]
Examples of the polycarboxylic acid-based chelating agent include citric acid, malic acid, tartaric acid, and water-soluble salts thereof.
Examples of the amine chelating agent include ethylenediamine.
[0009]
The concentration of the chelating agent in the washing solution (aqueous solution) is generally 0.5 to 30% (w / v), preferably 1 to 10% (w / v), depending on the degree of soil contamination. is there.
[0010]
The use ratio of the washing solution may be any amount as long as it is equal to or more than the stoichiometric amount necessary to complex heavy metals contained in soil. Generally, the ratio is such that the chelating agent in the washing solution is 1 to 1000, preferably 10 to 500 equivalents per equivalent of heavy metal in the soil.
The contact time (washing treatment time) between the washing liquid and the contaminated soil is not particularly limited, but about 12 to 24 hours is sufficient.
[0011]
When the soil and the washing liquid are brought into contact according to the present invention, it is preferable to use ultrasonic irradiation in combination. In this case, the frequency of the ultrasonic wave is 10 to 600 KHz, preferably 10 to 200 KHz. The ultrasonic treatment time is about 10 to 60 minutes, preferably about 20 to 40 minutes.
[0012]
In the method of the present invention, when the heavy metal-contaminated soil is subjected to the washing treatment using the washing solution as described above, the heavy metal complex formed by the reaction of the heavy metal and the chelating agent exhibits a water solubility in a pH range where the solubility is high. The pH of the washing solution (aqueous solution) is changed at least once. In this washing treatment, the pH of the washing solution at the start of the washing treatment may be any pH range in which the heavy metal complex exhibits water solubility, but is preferably adjusted to a range of 1 to 6, more preferably 1 to 4. . On the other hand, the pH of the cleaning solution at the end of the cleaning process is preferably in the range of 4 to 8, preferably 6 to 8.
[0013]
In the present invention, as described above, the pH of the cleaning solution is changed at least once during the cleaning process, and the number of times of the pH change may be a plurality of times, for example, two to three times. In this case, the pH can be changed using a pH adjuster that changes the pH to an acidic or alkaline side. As such a pH adjuster, an acidic substance or an alkaline substance is used. Examples of such substances include acidic substances such as hydrochloric acid, sulfuric acid, and nitric acid, and examples of alkaline substances include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, and calcium hydroxide. .
[0014]
The pH fluctuation of the cleaning solution during the cleaning process may be adjusted, for example, by adjusting the pH of the cleaning solution at the start of the cleaning process to a range of 1 to 2 and adjusting the pH of the cleaning solution during the process (intermediate portion) to 4 to 4 using a pH regulator. 5, the pH of the washing solution in the latter half of the treatment can be adjusted to a range of 6 to 8. Further, the pH of the cleaning liquid at the start of the treatment can be adjusted to a range of 3 to 5 so that the pH of the cleaning liquid during the treatment or at the latter half of the treatment is in the range of 6 to 8. Further, the pH of the cleaning solution at the start of the cleaning process was adjusted to a range of 2 to 3, and the pH of the cleaning solution in the middle of the process (intermediate portion) was adjusted to a range of 1 to 2 using a pH adjuster. The washing can be performed so that the pH of the washing solution is in the range of 6 to 8.
[0015]
The temperature of the cleaning solution is usually room temperature, but it can be heated (for example, 40 to 50 ° C.) if necessary.
[0016]
The substance to be treated used in the present invention is a soil contaminated with heavy metals. In this case, the heavy metals are toxic heavy metals, and such substances include, for example, cadmium, copper, lead, zinc and the like. The concentration in the soil is usually 10 to 10000 mg / kg, and particularly about 500 to 3000 mg / kg on a dry matter basis.
[0017]
After the soil washing treatment, the soil and the washing liquid are separated. As a separation method in this case, a conventionally known solid-liquid separation method, for example, a filtration separation method, a centrifugal separation method, a sedimentation separation method, or the like is used. The soil thus separated can be washed with water and dried if necessary.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0019]
Reference Example 1 (Preparation of model contaminated soil)
After the yellow-brown forest soil collected in Tsukuba City, Ibaraki Prefecture was air-dried for one week, soil having a particle size of 2 mm or less was sieved with a standard sieve. An appropriate amount thereof was placed in a container made of vinyl chloride, and a 25 mM aqueous solution of cadmium, copper, lead, and zinc was added thereto, and the pH was adjusted to 4.0. The aqueous phase was separated by filtration, and the obtained filtration residue was washed several times with water and air-dried to prepare a model heavy metal-contaminated soil A. The heavy metal content in the model contaminated soil was determined according to US EPA Method 3050B, and the content was 982 mg / kg of cadmium, 5,854 mg / kg of copper, 17,061 mg / kg of lead, and 961 mg / kg of zinc.
[0020]
Reference Example 2 (Soil cleaning method)
1 g of contaminated soil A and 20 mL of a detergent were placed in a 35-m glass centrifuge tube, and the mixture was shaken in a constant temperature bath maintained at 20 ° C. in a horizontal direction (amplitude: 10 cm) for a predetermined time. At this time, the pH of the detergent was adjusted using 3M NaOH or 1M HCl. Next, the soil was filtered off with filter paper type 5 B, and the filtrate was further filtered with a membrane filter having a pore size of 0.45 μm. About the obtained filtrate, the heavy metal concentration was measured by ICP emission spectrometry.
[0021]
Reference Example 3 (Soil cleaning method using ultrasonic waves)
The ultrasonic generator used was an auto chaser type. 1 g of contaminated soil and 20 mL of a detergent were added to a 30 mL beaker, and the probe tip was adjusted and fixed at 2.5 mm below the liquid level, and then irradiated with ultrasonic waves. At this time, the pH of the detergent was adjusted using 3M NaOH or 1M HCl. The ultrasonic irradiation was performed at room temperature. The treated solution subjected to the ultrasonic irradiation was subjected to filtration of soil using a filter paper type 5 B, and the filtrate was further filtered through a membrane filter having a pore size of 0.45 μm. About the obtained filtrate, the heavy metal concentration was measured by ICP emission spectrometry.
[0022]
Example 1
According to Reference Example 2, 20 mL of 0.05 M EDTA (ethylenediaminetetraacetic acid) aqueous solution (pH 3.5) was added as a detergent to 1 g of the model-contaminated soil A prepared in Reference Example 1, and washed for 22 hours. Then the pH was adjusted to 6.5 and washed for 2 hours. The heavy metal removal rate was represented by the ratio of the heavy metal elution amount of the aqueous phase to the heavy metal content in the untreated soil. Table 1 shows the obtained results. By adjusting the pH of the cleaning agent from 3.5 to 6.5 for all heavy metals, the removal rate was maintained at the same level as in the case of cleaning only at pH 3.5 (Comparative Example 1). The removal rate was higher than in the case of washing (Comparative Example 2). From these results, it was recognized that by adjusting the pH of the detergent, the neutralization treatment of the soil could be completed while maintaining a high removal rate.
[0023]
[Table 1]
Figure 2004066129
[0024]
Example 2
To 1 g of the model-contaminated soil A prepared in Reference Example 1, 20 mL of a 0.1 M aqueous citric acid solution (pH 2.0) was added as a cleaning agent according to Reference Example 2, and washed for 6 hours. Next, the pH was adjusted to 5.3 and washing was performed for 16 hours. Further, the pH was adjusted to 6.5, and washing was performed for 2 hours. The heavy metal removal rate was represented by the ratio of the heavy metal elution amount of the aqueous phase to the heavy metal content in the untreated soil. Table 2 shows the obtained results. The removal rates of cadmium, copper, and lead were adjusted to pH 2.0 (Comparative Example 3), pH 5.3 (Comparative Example 4), and pH 6.5 (Comparative Example) by adjusting the pH of the detergent from 2 to 6.5. 5) The value was higher than any of the cases where only each washes. In particular, the removal rate of lead was markedly increased, and the removal rate of copper was also significantly increased. However, with respect to zinc, although the removal rate was higher than in the case of only treatment pH 5.3 and pH 6.5, the removal rate was lower than in the case of treatment pH 2.0. From these results, it was confirmed that by adjusting the pH of the cleaning agent, the heavy metal removal rate could be improved. At the same time, soil neutralization was completed.
[0025]
[Table 2]
Figure 2004066129
[0026]
Example 3
To 1 g of the model-contaminated soil A prepared in Reference Example 1, 20 mL of a 0.1 M aqueous citric acid solution (pH 2.0) was added as a detergent according to Reference Example 3, and irradiated with ultrasonic waves for 20 minutes. Next, the pH was adjusted to 5.3, and ultrasonic waves were irradiated for 8 minutes. Further, the pH was adjusted to 6.5 and ultrasonic waves were irradiated for 2 minutes. The removal rate was represented by the ratio of the heavy metal elution amount of the aqueous phase to the heavy metal content in the untreated soil. Table 3 shows the obtained results. The removal rates of cadmium, copper, and lead show higher values than any of the treatments with only pH 2.0 (Comparative Example 6), pH 5.3 (Comparative Example 7), and pH 6.5 (Comparative Example 8). Was. In particular, the removal rate of lead was markedly increased, and the removal rate of copper was also increased. However, with respect to zinc, although the removal rate increased as compared to the case of only pH 5.3 and pH 6.5, the removal rate was lower than that of the case of pH 2.0. In addition, the removal rate increased in spite of the short-time treatment as compared with the case where washing was performed for 24 hours while adjusting the pH (see Table 2 of Example 2). From these results, it was confirmed that the removal rate could be improved by adjusting the pH of the detergent. At the same time, soil neutralization was completed. In addition, it was confirmed that the ultrasonic irradiation accelerated the removal effect while significantly shortening the processing time.
[0027]
[Table 3]
Figure 2004066129
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, heavy metal can be extracted and removed from the soil contaminated with heavy metal with high efficiency, and thereby the soil can be repaired without being damaged. The soil repaired by the present invention can be used as plant cultivation soil, landfill soil, and the like.

Claims (4)

重金属汚染土壌を、該重金属に対して錯体形成能を有するキレート剤を含む水溶液を用いて洗浄処理する方法であって、該重金属と該キレート剤との反応により形成される重金属錯体が水溶性を示すpH領域において、該水溶液のpHを、少なくとも1回変動させることを特徴とする重金属汚染土壌の修復方法。A method of washing heavy metal-contaminated soil with an aqueous solution containing a chelating agent capable of forming a complex with the heavy metal, wherein the heavy metal complex formed by the reaction between the heavy metal and the chelating agent has a water solubility. A method for repairing heavy metal-contaminated soil, wherein the pH of the aqueous solution is changed at least once in the indicated pH range. 該洗浄処理中における該水溶液のpHが少なくとも1回は1〜6の範囲に調節され、該洗浄処理の終了時における該水溶液のpHが4〜8の範囲にあることを特徴とする請求項1に記載の重金属汚染土壌の修復方法。The pH of the aqueous solution is adjusted to a range of 1 to 6 at least once during the washing process, and the pH of the aqueous solution is 4 to 8 at the end of the washing process. 3. The method for repairing heavy metal contaminated soil according to item 2. 該洗浄処理を、超音波照射下において行うことを特徴とする請求項1又は2に記載の重金属汚染土壌の修復方法。The method for repairing heavy metal contaminated soil according to claim 1 or 2, wherein the cleaning treatment is performed under ultrasonic irradiation. 該重金属が、カドミウム、銅、鉛及び亜鉛の中から選ばれる少なくとも1種であることを特徴とする請求項1〜3のいずれかに記載の重金属汚染土壌の修復方法。The method according to any one of claims 1 to 3, wherein the heavy metal is at least one selected from cadmium, copper, lead, and zinc.
JP2002230202A 2002-08-07 2002-08-07 Method of restoring soil polluted with heavy metal Pending JP2004066129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230202A JP2004066129A (en) 2002-08-07 2002-08-07 Method of restoring soil polluted with heavy metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230202A JP2004066129A (en) 2002-08-07 2002-08-07 Method of restoring soil polluted with heavy metal

Publications (1)

Publication Number Publication Date
JP2004066129A true JP2004066129A (en) 2004-03-04

Family

ID=32016355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230202A Pending JP2004066129A (en) 2002-08-07 2002-08-07 Method of restoring soil polluted with heavy metal

Country Status (1)

Country Link
JP (1) JP2004066129A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039601A (en) * 2007-08-06 2009-02-26 Katsuyoshi Kondo Method for removing heavy metal element in biomass and method for decontaminating heavy metal-contaminated soil
CN102580989A (en) * 2012-03-01 2012-07-18 四川农业大学 Application of polyacrylamide in amaranthus hypochondriacus for restoring soil polluted by heavy metal cadmium
JP2016064354A (en) * 2014-09-24 2016-04-28 国立大学法人金沢大学 Contaminated soil treating method
CN108971215A (en) * 2018-06-11 2018-12-11 华东理工大学 The heavy-metal contaminated soil restorative procedure filtered based on ultrasound
CN111630970A (en) * 2020-06-03 2020-09-08 中节能大地环境修复有限公司 Restoration process of salinized soil and application thereof
CN115055510A (en) * 2022-06-14 2022-09-16 西北大学 Remediation method and application of heavy metal contaminated soil
CN116282577A (en) * 2023-03-25 2023-06-23 西安建筑科技大学 Method for repairing copper-containing wastewater by biomineralization based on pH value regulation and control
CN116855254A (en) * 2023-07-03 2023-10-10 江苏莘野生物科技有限公司 Long-acting controllable acid soil conditioner and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039601A (en) * 2007-08-06 2009-02-26 Katsuyoshi Kondo Method for removing heavy metal element in biomass and method for decontaminating heavy metal-contaminated soil
CN102580989A (en) * 2012-03-01 2012-07-18 四川农业大学 Application of polyacrylamide in amaranthus hypochondriacus for restoring soil polluted by heavy metal cadmium
JP2016064354A (en) * 2014-09-24 2016-04-28 国立大学法人金沢大学 Contaminated soil treating method
CN108971215A (en) * 2018-06-11 2018-12-11 华东理工大学 The heavy-metal contaminated soil restorative procedure filtered based on ultrasound
CN108971215B (en) * 2018-06-11 2020-07-24 华东理工大学 Heavy metal contaminated soil remediation method based on ultrasonic suction filtration
CN111630970A (en) * 2020-06-03 2020-09-08 中节能大地环境修复有限公司 Restoration process of salinized soil and application thereof
CN115055510A (en) * 2022-06-14 2022-09-16 西北大学 Remediation method and application of heavy metal contaminated soil
CN115055510B (en) * 2022-06-14 2023-09-22 西北大学 Restoration method and application of heavy metal contaminated soil
CN116282577A (en) * 2023-03-25 2023-06-23 西安建筑科技大学 Method for repairing copper-containing wastewater by biomineralization based on pH value regulation and control
CN116282577B (en) * 2023-03-25 2024-05-28 西安建筑科技大学 Method for repairing copper-containing wastewater by biomineralization based on pH value regulation and control
CN116855254A (en) * 2023-07-03 2023-10-10 江苏莘野生物科技有限公司 Long-acting controllable acid soil conditioner and preparation method thereof
CN116855254B (en) * 2023-07-03 2024-06-07 江苏莘野生物科技有限公司 Long-acting controllable acid soil conditioner and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2007301491A (en) Method for cleaning heavy metal-containing paddy soil
JP2013124960A (en) Treatment method of cesium-contaminated soil
JP2004066129A (en) Method of restoring soil polluted with heavy metal
US20160340216A1 (en) Method for removing boron from boron-containing waste water
JP2003159583A (en) Treatment method for heavy metal polluted soil or waste
JP2002503146A (en) Method for treating incineration smoke purification residues of domestic garbage and / or industrial waste
JP2007098299A (en) Method for cleaning heavy metal contaminated soil using chelating agent as cleaning agent
JP6125824B2 (en) Cleaning liquid composition for heavy metal contaminated soil and method for cleaning heavy metal contaminated soil
JP2005219013A (en) Heavy metal contaminated soil cleaning agent
JP2004066132A (en) Method of restoring heavy metal-polluted soil with ultrasonic irradiation
JP2006255515A (en) Method for decontaminating soil contaminated with heavy metal
JP5164074B2 (en) Purification method of paddy soil containing cadmium
KR101616174B1 (en) Method for the remediation of heavy metals polluted soil using recyclable leaching agent
KR20140075290A (en) Remediation of soil contaminated with heavy metals
JP2002052375A (en) Treatment agent for heavy metals in heavy metal- polluted soil or waste and heavy metal treatment method
JP2007209830A (en) Purifying method of soil contaminated with heavy metal
JP3407041B2 (en) Cleaning agent and stabilizer for selenium-contaminated soil and method for remediating selenium-contaminated soil using the same
JP6014409B2 (en) Fly ash treatment method and treatment apparatus
JP6279664B2 (en) Fly ash treatment method and fly ash treatment apparatus
JP4116975B2 (en) Purification method for contaminated soil
WO2012165025A1 (en) Method for cleaning and decontaminating dust, earth, sand, and soil contaminated by radioactive substance
JP2002018421A (en) Washing agent for arsenic contaminated soil, stabilizer for the same and repairing method for the same by using these
CN100564288C (en) By the device and method that contains recycle-water in the organic water
KR101548460B1 (en) Soil washing solution composed of reducing and chelating agents and washing method using the same for remediation of arsenic contaminated soil
KR20220047605A (en) Compositions and methods for treatment and recycling of paint washing waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050616

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20050616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918