JP2003159583A - Treatment method for heavy metal polluted soil or waste - Google Patents

Treatment method for heavy metal polluted soil or waste

Info

Publication number
JP2003159583A
JP2003159583A JP2001361218A JP2001361218A JP2003159583A JP 2003159583 A JP2003159583 A JP 2003159583A JP 2001361218 A JP2001361218 A JP 2001361218A JP 2001361218 A JP2001361218 A JP 2001361218A JP 2003159583 A JP2003159583 A JP 2003159583A
Authority
JP
Japan
Prior art keywords
waste
soil
chelating agent
solution
heavy metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001361218A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsutani
浩 松谷
Sayumi Kudo
彩友美 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001361218A priority Critical patent/JP2003159583A/en
Publication of JP2003159583A publication Critical patent/JP2003159583A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To recover an expensive chelating agent to reutilize the same, to certainly prevent the elution of heavy metals, to hold the elution of heavy metals to an environmental standard value or less over a long period of time, to reduce the amount of use of the expensive chelating agent and to obtain high heavy metal removing effect by a reduced use amount of the chelating agent, in a treatment method for heavy metal polluted soil or waster, removing heavy metals in soil or waste polluted with heavy metals by bringing a chelating agent solution into contact with the polluted soil or waste. <P>SOLUTION: The solution after the contact with the polluted soil or waste is recovered and the recovered solution is brought into contact with an H-type cation exchange resin to remove heavy metals in the solution to regenerate the chelating agent. After the solution subsequent to the contact with the polluted soil or waste is recovered, a polyvalent metal salt and/or a cementitious compound is added to the soil or waste to prevent the elution of residual heavy metals. The soil or waste is brought into contact with sulfite and/or hydrogen sulfite along with the chelating agent solution or prior to the contact with the chelating agent solution to accelerate the elution of heavy metals. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、重金属で汚染され
た土壌又は廃棄物にキレート剤溶液を接触させて該土壌
又は廃棄物中の重金属を除去する重金属汚染土壌又は廃
棄物の処理方法に関する。
TECHNICAL FIELD The present invention relates to a method for treating heavy metal-contaminated soil or waste, which comprises contacting a soil or waste contaminated with heavy metal with a chelating agent solution to remove the heavy metal in the soil or waste.

【0002】[0002]

【従来の技術】近年、工場跡地などを中心に鉛やカドミ
ウムなどの重金属による土壌汚染や廃棄物汚染が各地で
見出されており、このため、重金属で汚染された土壌や
廃棄物の浄化方法についての研究が進められるようにな
っている。
2. Description of the Related Art In recent years, soil pollution and waste pollution due to heavy metals such as lead and cadmium have been found in various places, mainly in the former sites of factories. Therefore, a method for cleaning soil and waste contaminated with heavy metals. The research about is being promoted.

【0003】重金属は有機物のように分解することがで
きないため、重金属汚染土壌を処理するには、汚染土壌
を掘削して処分場に搬入する、不溶性の重金属塩を生成
させて不溶化する、汚染土壌にセメント等の固化剤を加
えて固化する、土壌に通電して発熱させてガラス状に固
化する等の手法がとられる。しかしながら、これらの方
法はいずれも土壌中に重金属を残したままにするもので
あるため、長期安定性の面で信頼性に欠けるものであっ
た。
Since heavy metals cannot be decomposed like organic substances, in order to treat heavy metal contaminated soil, the contaminated soil is excavated and brought to a disposal site, insoluble heavy metal salts are produced and insolubilized, contaminated soil. A solidifying agent such as cement is added to solidify the soil, or the soil is energized to generate heat to solidify into glass. However, since all of these methods leave heavy metals in the soil, they are unreliable in terms of long-term stability.

【0004】そこで、土壌中から重金属を除去する方法
として、電気浸透法が提案された(特開平6−2183
55号公報「汚染土壌の現場での修復法」、特開平5−
59716号公報「汚染土壌の処理方法とその装
置」)。また、キレート剤を用いて汚染土壌から重金属
を溶出させて除去する方法が提案されており(特開平4
−263874号公報「重金属汚染土壌の浄化方法」、
Water, Air, and Soil Poll
ution,45,361(1989))、エチレンジ
アミン四酢酸塩(EDTA)、ニトリロ三酢酸塩(NT
A)などのキレート剤が検討されてきた。
Therefore, an electroosmosis method has been proposed as a method for removing heavy metals from soil (Japanese Patent Laid-Open No. 6-2183).
No. 55, “Remedial method for contaminated soil on site”, Japanese Patent Laid-Open No. 5-
59716, "Method and apparatus for treating contaminated soil"). Further, a method has been proposed in which a chelating agent is used to elute and remove heavy metals from contaminated soil (Japanese Patent Application Laid-Open No. Hei 4 (1999) -411).
-263874, "Method for cleaning heavy metal contaminated soil",
Water, Air, and Soil Poll
, 45, 361 (1989)), ethylenediaminetetraacetic acid salt (EDTA), nitrilotriacetic acid salt (NT)
Chelating agents such as A) have been investigated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、電気浸
透法は効率が低く、多大なコストがかかるため実用性に
乏しく、また、キレート剤を用いる方法では、比較的高
い濃度で使用しないと十分に土壌から重金属を溶出させ
ることはできず、やはりコスト高になってしまう。
However, the electroosmosis method is not practical because it is inefficient and costs a lot of money, and the method using a chelating agent is sufficient if soil is not used at a relatively high concentration. It is not possible to elute heavy metals from, and the cost is still high.

【0006】また、キレート剤を用いる方法では、残留
重金属が溶出し、重金属の溶出量を長期に亘り環境基準
値以下に維持することが困難である。
Further, with the method using a chelating agent, residual heavy metals are eluted and it is difficult to maintain the amount of heavy metals eluted below the environmental standard value for a long period of time.

【0007】本発明は上記従来の問題点を解決するもの
であって、その目的は、重金属で汚染された土壌又は廃
棄物にキレート剤溶液を接触させて、該土壌又は廃棄物
中の重金属を除去する重金属汚染土壌又は廃棄物の処理
方法において、キレート剤を回収して再利用することが
できる方法を提供することにある。
The present invention solves the above-mentioned conventional problems, and an object thereof is to bring a chelating agent solution into contact with soil or waste contaminated with heavy metals to remove heavy metals in the soil or waste. It is an object of the present invention to provide a method for recovering and reusing a chelating agent in a method for treating heavy metal-contaminated soil or waste to be removed.

【0008】本発明の他の目的は、重金属で汚染された
土壌又は廃棄物にキレート剤溶液を接触させて、該土壌
又は廃棄物中の重金属を除去する重金属汚染土壌又は廃
棄物の処理方法において、重金属の溶出を確実に防止
し、重金属の溶出量を長期に亘り環境基準値以下に維持
する方法を提供することにある。
Another object of the present invention is to provide a method for treating heavy metal-contaminated soil or waste, which comprises contacting a soil or waste contaminated with heavy metals with a chelating agent solution to remove heavy metals in the soil or waste. The object of the present invention is to provide a method for reliably preventing the elution of heavy metals and maintaining the elution amount of heavy metals at or below the environmental standard value for a long period of time.

【0009】本発明の別の目的は、重金属で汚染された
土壌又は廃棄物にキレート剤溶液を接触させて、該土壌
又は廃棄物中の重金属を除去する重金属汚染土壌又は廃
棄物の処理方法において、高価なキレート剤使用量を低
減し、少ないキレート剤使用量で高い重金属除去効果を
得る方法を提供することを目的とする。
Another object of the present invention is to provide a method for treating heavy metal-contaminated soil or waste, which comprises contacting a soil or waste contaminated with heavy metal with a chelating agent solution to remove heavy metals in the soil or waste. It is an object of the present invention to provide a method for reducing the amount of expensive chelating agent used and obtaining a high heavy metal removing effect with a small amount of chelating agent used.

【0010】[0010]

【課題を解決するための手段】請求項1の重金属汚染土
壌又は廃棄物の処理方法は、重金属で汚染された土壌又
は廃棄物にキレート剤溶液を接触させて、該土壌又は廃
棄物中の重金属を除去する重金属汚染土壌又は廃棄物の
処理方法において、該土壌又は廃棄物と接触後の溶液を
回収し、回収した溶液をH型陽イオン交換樹脂と接触さ
せて該溶液中の重金属を捕集することを特徴とする。
A method for treating heavy metal-contaminated soil or waste according to claim 1, wherein a chelating agent solution is contacted with the soil or waste contaminated with heavy metal, and the heavy metal in the soil or waste is treated. In a method for treating heavy metal-contaminated soil or waste, the solution after contact with the soil or waste is collected, and the collected solution is contacted with an H-type cation exchange resin to collect heavy metal in the solution. It is characterized by doing.

【0011】重金属と安定な水溶性キレートを生成する
キレート剤溶液を汚染土壌又は廃棄物と接触させると、
土壌又は廃棄物中に存在する鉛、カドミウム、水銀等の
重金属を水溶性として水中に溶出させることができ、こ
れにより、土壌又は廃棄物中の重金属の大部分を除去す
ることができる。
Contact of a chelating agent solution that produces a stable water-soluble chelate with heavy metals with contaminated soil or waste,
Heavy metals such as lead, cadmium, and mercury existing in soil or waste can be dissolved in water as water-soluble and thereby most of heavy metals in soil or waste can be removed.

【0012】この重金属汚染土壌又は廃棄物と接触した
キレート剤溶液中には、除去対象となる重金属イオン以
外に土壌構成成分の、或いは廃棄物中含有成分の、カル
シウムイオン、マグネシウムイオン、鉄イオン、アルミ
ニウムイオン、マンガンイオン等の多種類の金属イオン
がキレート化合物として溶解している。従って、土壌又
は廃棄物と接触後のキレート剤溶液は、重金属イオンを
溶解する能力は大きく低下しているため、このまま新た
な汚染土壌又は廃棄物と接触させても重金属イオンの溶
出除去効果は殆ど得られない。
In the chelating agent solution that has come into contact with the heavy metal-contaminated soil or waste, calcium ion, magnesium ion, iron ion, which is a constituent of the soil or a component contained in the waste, other than the heavy metal ion to be removed, Many kinds of metal ions such as aluminum ions and manganese ions are dissolved as chelate compounds. Therefore, the ability of the chelating agent solution after contact with soil or waste material to dissolve heavy metal ions is greatly reduced, and even if it is directly contacted with new contaminated soil or waste material, the elution and removal effect of heavy metal ions is almost eliminated. I can't get it.

【0013】そこで、請求項1の方法では、汚染土壌又
は廃棄物と接触させた後のキレート剤溶液を土壌又は廃
棄物から分離して回収した後、H型に調整した陽イオン
交換樹脂と接触させ、金属イオンをH型陽イオン交換樹
脂で捕集することにより、キレート剤を酸型として回収
することができる。酸型として回収されたキレート剤
は、水酸化ナトリウム等のアルカリを用いて中和するこ
とにより、再利用することが可能であり、キレート剤の
使用量が著しく減少する。
Therefore, in the method of claim 1, the chelating agent solution after contacting with the contaminated soil or waste is separated from the soil or waste and recovered, and then contacted with a cation exchange resin adjusted to H type. Then, the chelating agent can be recovered in the acid form by collecting the metal ions with the H-type cation exchange resin. The chelating agent recovered as the acid form can be reused by neutralizing with an alkali such as sodium hydroxide, and the amount of the chelating agent used is significantly reduced.

【0014】また、従来、キレート剤共存下での重金属
排水処理は難しいとされているが、このようにしてキレ
ート剤と重金属イオンとを分離することにより、イオン
交換樹脂再生時に得られる重金属イオン含有再生排水を
通常の中和・凝集沈殿法等の適用により容易に処理する
ことが可能となる。
Further, it has been conventionally considered difficult to treat heavy metal wastewater in the presence of a chelating agent. By separating the chelating agent and the heavy metal ions in this manner, the heavy metal ion-containing material obtained at the time of regeneration of the ion exchange resin is contained. The recycled wastewater can be easily treated by applying ordinary neutralization / coagulation sedimentation method.

【0015】請求項2の重金属汚染土壌又は廃棄物の処
理方法は、重金属で汚染された土壌又は廃棄物にキレー
ト剤溶液を接触させて、該土壌又は廃棄物中の重金属を
除去する重金属汚染土壌又は廃棄物の処理方法におい
て、該土壌又は廃棄物と接触後の溶液を回収した後、該
土壌又は廃棄物に多価金属塩及び/又はセメント系化合
物を添加することを特徴とする。
The method for treating heavy metal-contaminated soil or waste according to claim 2, wherein a chelating agent solution is contacted with the soil or waste contaminated with heavy metal to remove the heavy metal in the soil or waste. Alternatively, in the method for treating waste, the solution after contacting the soil or the waste is collected, and then the polyvalent metal salt and / or the cement-based compound is added to the soil or the waste.

【0016】前述の如く、重金属と安定な水溶性キレー
トを生成するキレート剤溶液を汚染土壌又は廃棄物と接
触させると、土壌又は廃棄物中に存在する鉛、カドミウ
ム、水銀等の重金属を水溶性として水中に溶出させるこ
とができ、これにより、土壌又は廃棄物中の重金属の大
部分を除去することができる。しかし、このようにし
て、土壌又は廃棄物中の重金属を含む金属を溶出させて
しまうと、金属を介して土壌又は廃棄物と結合している
土壌又は廃棄物中の有機物が溶出し易い状態となり、こ
の有機物が溶出することで、この有機物に結合したわず
かな残留重金属類が更に溶出してくる。このため、従来
においては、キレート剤で処理した後の土壌又は廃棄物
からの重金属の溶出を確実に防止することが困難であっ
た。
As described above, when a chelating agent solution that forms a stable water-soluble chelate with heavy metals is brought into contact with contaminated soil or waste, heavy metals such as lead, cadmium and mercury existing in the soil or waste are soluble in water. Can be eluted into the water as water, which can remove most of the heavy metals in the soil or waste. However, in this way, when the metal containing the heavy metal in the soil or waste is eluted, the organic matter in the soil or the waste that is bound to the soil or the waste through the metal is easily eluted. As the organic substance is eluted, the slight amount of residual heavy metals bound to the organic substance is further eluted. Therefore, conventionally, it has been difficult to reliably prevent the elution of heavy metals from the soil or the waste after the treatment with the chelating agent.

【0017】そこで、請求項2の方法では、キレート剤
溶液で処理した後の土壌又は廃棄物に多価金属塩及び/
又はセメント系化合物を添加する。これにより、添加し
た多価金属塩及び/又はセメント系化合物を介して一旦
溶出した有機物を土壌又は廃棄物に再付着させることが
でき、重金属類の溶出を確実に防止し、溶出量を環境基
準値以下に維持することが可能となる。
Therefore, according to the method of claim 2, the polyvalent metal salt and / or the soil or the waste after the treatment with the chelating agent solution is added.
Alternatively, a cementitious compound is added. This makes it possible to reattach organic substances that have once been eluted through the added polyvalent metal salt and / or cementitious compound to soil or waste, reliably prevent the elution of heavy metals, and reduce the amount of elution to environmental standards. It is possible to maintain below the value.

【0018】請求項3の重金属汚染土壌又は廃棄物の処
理方法は、重金属で汚染された土壌又は廃棄物にキレー
ト剤溶液を接触させて、該土壌又は廃棄物中の重金属を
除去する重金属汚染土壌又は廃棄物の処理方法におい
て、該キレート剤溶液と共に、或いは該キレート剤溶液
との接触に先立ち、該土壌又は廃棄物を亜硫酸塩及び/
又は亜硫酸水素塩と接触させることを特徴とする。
The method for treating heavy metal-contaminated soil or waste according to claim 3 is a method for contacting a soil or waste contaminated with heavy metal with a chelating agent solution to remove the heavy metal in the soil or waste. Alternatively, in the method for treating waste, the soil or waste may be treated with sulfite and / or prior to contact with the chelating agent solution or prior to contact with the chelating agent solution.
Alternatively, it is characterized by being brought into contact with bisulfite.

【0019】土壌又は廃棄物中の金属、主に鉄、マンガ
ン等は亜硫酸塩及び/又は亜硫酸水素塩と接触すること
により低酸化状態に還元され、土壌又は廃棄物との結合
が弱くなり溶出し易くなる。
Metals in soil or waste, mainly iron, manganese, etc., are reduced to a low oxidation state by contact with sulfite and / or bisulfite, and the bond with soil or waste is weakened and eluted. It will be easier.

【0020】そこで、請求項3の方法では、キレート剤
溶液と共に、或いはキレート剤溶液との接触に先立ち、
土壌又は廃棄物を亜硫酸塩及び/又は亜硫酸水素塩と接
触させる。これにより、土壌又は廃棄物中の鉄やマンガ
ン酸化物に結合していた重金属は溶出し易い状態にな
り、キレート剤溶液のみで処理を行う場合に比べて、
鉄、カドミウム等の重金属類を効率的に水溶性として土
壌又は廃棄物から溶出させることができるようになる。
この結果、キレート剤溶液による処理時間を短縮し、キ
レート剤使用量を低減することが可能となる。
Therefore, according to the method of claim 3, before the contact with the chelating agent solution or before the contact with the chelating agent solution,
Contacting the soil or waste with sulfite and / or bisulfite. As a result, heavy metals bound to iron or manganese oxide in soil or waste are in a state of being easily eluted, compared with the case where treatment is performed only with a chelating agent solution.
Heavy metals such as iron and cadmium can be efficiently made water-soluble and eluted from soil or waste.
As a result, the treatment time with the chelating agent solution can be shortened and the amount of chelating agent used can be reduced.

【0021】本発明において用いるキレート剤は、L−
アスパラギン酸−N,N−二酢酸、グルタミン酸二酢
酸、ヒドロキシエチルイミノ二酢酸、カルボキシメチル
オキシコハク酸、3−ヒドロキシ−2,2’−イミノジ
コハク酸、ポリアスパラギン酸及びこれらの塩よりなる
群から選ばれる1種又は2種以上であることが好まし
い。
The chelating agent used in the present invention is L-
Selected from the group consisting of aspartic acid-N, N-diacetic acid, glutamic acid diacetic acid, hydroxyethyliminodiacetic acid, carboxymethyloxysuccinic acid, 3-hydroxy-2,2'-iminodisuccinic acid, polyaspartic acid and salts thereof. It is preferable that it is one kind or two or more kinds.

【0022】L−アスパラギン酸−N,N−二酢酸、グ
ルタミン酸二酢酸、ヒドロキシエチルイミノ二酢酸、カ
ルボキシメチルオキシコハク酸、3−ヒドロキシ−2,
2’−イミノジコハク酸、ポリアスパラギン酸は、いず
れも分子内にカルボキシル基及び/又はアミノ基を持
ち、このカルボキシル基及び/又はアミノ基により、土
壌又は廃棄物中の鉛、カドミウム、水銀等の重金属イオ
ンと安定な水溶性キレートを生成する。このキレート化
作用により、これらの物質の水溶液を重金属で汚染され
た土壌又は廃棄物と接触させると、重金属イオンを汚染
土壌又は廃棄物中から効率的に溶出させることができ
る。従って、汚染土壌又は廃棄物と接触した後のキレー
ト剤溶液を土壌又は廃棄物から分離して回収することに
より、土壌又は廃棄物から重金属を効率的に除去するこ
とができる。
L-aspartic acid-N, N-diacetic acid, glutamic acid diacetic acid, hydroxyethyliminodiacetic acid, carboxymethyloxysuccinic acid, 3-hydroxy-2,
2′-iminodisuccinic acid and polyaspartic acid each have a carboxyl group and / or an amino group in the molecule, and due to the carboxyl group and / or the amino group, heavy metals such as lead, cadmium, and mercury in soil or wastes. It produces stable water-soluble chelates with ions. Due to this chelating action, when an aqueous solution of these substances is brought into contact with soil or waste contaminated with heavy metals, heavy metal ions can be efficiently eluted from the contaminated soil or waste. Therefore, the heavy metal can be efficiently removed from the soil or the waste by separating and recovering the chelating agent solution after contacting the contaminated soil or the waste from the soil or the waste.

【0023】しかも、これらの物質はいずれも生分解性
で、処理後、土壌中に残留しても分解するため、環境へ
の影響は極めて小さい。また、処理後、回収しきれなか
った微量の処理剤(重金属イオンとキレートを生成して
いる処理剤と、キレートを生成していない処理剤の両
方)は生分解することにより、重金属イオンとキレート
を生成できなくなり、土壌中に微量残留する重金属をキ
レート化して再溶出させることも防止される。従って、
微量残留処理剤が原因となる地下水の重金属汚染のよう
な二次汚染を防止することができる。
Moreover, since all of these substances are biodegradable and decomposed even if they remain in the soil after the treatment, their influence on the environment is extremely small. In addition, after the treatment, a trace amount of the treatment agent (both the treatment agent that produces a heavy metal ion and a chelate and the treatment agent that does not produce a chelate) that could not be completely recovered is biodegraded, so that the heavy metal ion and the chelate are chelated. It is also possible to prevent the generation of heavy metal and chelate and re-elute heavy metals that remain in trace amounts in the soil. Therefore,
It is possible to prevent secondary pollution such as heavy metal pollution of groundwater caused by a trace amount residual treatment agent.

【0024】[0024]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0025】まず、本発明において用いるキレート剤溶
液について説明する。
First, the chelating agent solution used in the present invention will be described.

【0026】本発明においては、キレート剤としては、
分子内にカルボキシ基及び/又はアミノ基を有し、重金
属と安定な水溶性キレートを生成する物質が好ましい。
例えば、エチレンジアミン四酢酸(EDTA)、ニトリ
ロ三酢酸(NTA)、クエン酸、L−アスパラギン酸−
N,N−二酢酸塩(ASDA)等が挙げられるが、特
に、L−アスパラギン酸−N,N−二酢酸、グルタミン
酸二酢酸、ヒドロキシエチルイミノ二酢酸、カルボキシ
メチルオキシコハク酸、3−ヒドロキシ−2,2’−イ
ミノジコハク酸、ポリアスパラギン酸及びこれらの塩、
例えば、カリウム塩、ナトリウム塩等のアルカリ金属
塩、カルシウム塩等のアルカリ土類金属塩の1種又は2
種以上を用いることが好ましく、キレート剤溶液として
は、一般的に、これらのキレート剤の水溶液が用いられ
る。水溶液中のキレート剤濃度は、過度に低いと重金属
の溶出効果が十分でなく、過度に高いと薬剤コストが高
騰することから、固形分濃度で0.01〜10重量%、
特に0.1〜3重量%とするのが好ましい。
In the present invention, the chelating agent is
A substance having a carboxy group and / or an amino group in the molecule and forming a stable water-soluble chelate with a heavy metal is preferable.
For example, ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), citric acid, L-aspartic acid-
Examples thereof include N, N-diacetic acid salt (ASDA), and particularly L-aspartic acid-N, N-diacetic acid, glutamic acid diacetic acid, hydroxyethyliminodiacetic acid, carboxymethyloxysuccinic acid, 3-hydroxy- 2,2'-iminodisuccinic acid, polyaspartic acid and salts thereof,
For example, one or two of alkali metal salts such as potassium salt and sodium salt and alkaline earth metal salts such as calcium salt.
It is preferable to use one or more species, and an aqueous solution of these chelating agents is generally used as the chelating agent solution. If the concentration of the chelating agent in the aqueous solution is too low, the elution effect of heavy metals will not be sufficient, and if it is too high, the cost of the drug will rise, so the solid concentration is 0.01 to 10% by weight,
It is particularly preferably 0.1 to 3% by weight.

【0027】本発明において、このようなキレート剤の
水溶液と重金属汚染土壌又は廃棄物とを接触させる方法
としては特に制限はないが、例えば次のような方法を採
用することができる。 まず、土壌中の汚染された部分を特定し、この部分
を矢板等の遮水壁で囲い、注入井戸と揚水井戸を掘孔す
る。注入井戸から上記キレート剤の水溶液を注入して、
汚染土壌とキレート剤の水溶液とを接触させ、その後、
揚水井戸から揚水して重金属が溶出した水を回収する。 掘削した汚染土壌又は廃棄物を上記キレート剤の水
溶液と共に洗浄槽に入れ攪拌する。その後、固液分離を
行い、浄化土壌又は廃棄物と重金属が溶出した水とに分
離し、浄化土壌を埋め戻す。廃棄物は埋め立て等により
処分する。
In the present invention, the method for bringing such an aqueous solution of a chelating agent into contact with heavy metal-contaminated soil or waste is not particularly limited, but the following method can be adopted, for example. First, identify the contaminated part of the soil, surround this part with an impermeable wall such as sheet pile, and drill an injection well and a pumping well. Inject the aqueous solution of the chelating agent from the injection well,
Contact the contaminated soil with an aqueous solution of a chelating agent, then
Pumping water from the pumping well to collect water in which heavy metals are eluted. The polluted contaminated soil or waste is put in a washing tank together with the aqueous solution of the chelating agent and stirred. After that, solid-liquid separation is performed to separate purified soil or waste and water in which heavy metals are eluted, and the purified soil is backfilled. Dispose of waste by landfill.

【0028】請求項1の方法においては、上記又は
の方法等により、土壌又は廃棄物と接触させて回収した
キレート剤水溶液をH型陽イオン交換樹脂充填カラムに
通液するなどして接触させて金属イオンをH型陽イオン
交換樹脂に吸着(捕集)させて除去する。H型陽イオン
交換樹脂と接触させた後のキレート剤水溶液は酸型とな
っているため、水酸化ナトリウム等のアルカリを添加し
てpH5.0〜9.0程度に中和することにより再生す
る。
In the method of claim 1, the chelating agent aqueous solution recovered by contacting with soil or waste by the above method or the like is passed through an H-type cation exchange resin packed column to be contacted. The metal ions are adsorbed (collected) on the H-type cation exchange resin to be removed. Since the aqueous solution of the chelating agent after being brought into contact with the H-type cation exchange resin is in an acid form, it is regenerated by adding alkali such as sodium hydroxide to neutralize the pH to about 5.0 to 9.0. .

【0029】再生されたキレート剤水溶液は、金属イオ
ンが十分に除去され、土壌又は廃棄物の処理前と同等の
重金属溶出効果を示すため、これを重金属汚染土壌又は
廃棄物の処理に繰り返し再利用することができる。
The regenerated aqueous chelating agent solution has sufficient removal of metal ions and exhibits the same heavy metal elution effect as before soil or waste treatment. Therefore, this is repeatedly reused for treatment of heavy metal-contaminated soil or waste. can do.

【0030】請求項2の方法においては、前記又は
の方法等により土壌又は廃棄物と接触させて、キレート
剤水溶液を回収して分離した後の土壌又は廃棄物に、多
価金属塩及び/又はセメント系化合物を添加する。
In the method of claim 2, a polyvalent metal salt and / or a polyvalent metal salt is added to the soil or waste after the chelating agent aqueous solution is collected and separated by contacting with the soil or waste by the above method or the like. Add cementitious compound.

【0031】具体的には、前記の処理において、キレ
ート剤水溶液を回収した後の土壌に、好ましくは水を注
入して水洗し、その後多価金属塩の水溶液を注入して残
留する重金属類を不溶化する。又は、前記の処理にお
いて、キレート剤水溶液で処理して固液分離した後の土
壌又は廃棄物を好ましくは水洗し、その後多価金属塩及
び/又はセメント系化合物を添加して撹拌する。或い
は、処理終了後の土壌又は廃棄物に多価金属塩の水溶液
を散布しても良い。
Specifically, in the above treatment, preferably, water is injected into the soil after recovering the chelating agent aqueous solution to wash it, and then an aqueous solution of a polyvalent metal salt is injected to remove residual heavy metals. Insolubilize. Alternatively, in the above treatment, the soil or waste after the treatment with the chelating agent aqueous solution and the solid-liquid separation is preferably washed with water, and then the polyvalent metal salt and / or the cement compound is added and stirred. Alternatively, an aqueous solution of a polyvalent metal salt may be sprayed on the soil or waste after the treatment.

【0032】多価金属塩としては、カルシウム、マグネ
シウム、鉄、アルミニウムの塩化物塩、硫酸塩等の塩類
あるいはその水酸化物、酸化物等を用いることができ、
また、セメント系化合物としては、セメント、アルミノ
シリケート等を用いることができる。これらの多価金属
塩、セメント系化合物は1種を単独で用いても良く、2
種以上を併用しても良い。
As the polyvalent metal salt, salts such as chloride salts and sulfate salts of calcium, magnesium, iron and aluminum, or hydroxides and oxides thereof can be used.
Further, as the cement-based compound, cement, aluminosilicate or the like can be used. These polyvalent metal salts and cement compounds may be used alone or in combination.
You may use together more than one kind.

【0033】多価金属塩及び/又はセメント系化合物の
添加量は、重金属類の溶出防止効果が得られる程度であ
れば良く、用いる多価金属塩やセメント系化合物の種類
によっても異なるが、例えば、塩化カルシウムを添加す
る場合は、土壌又は廃棄物の重量に対して0.1〜10
重量%の塩化カルシウムの粉体又は水溶液を用いて処理
する。この濃度よりも低いと溶出抑制効果が低下し、高
いとコストが高くなり無駄が多くなる。また、セメント
とポリ硫酸鉄を併用添加する場合は土壌に対するセメン
トの濃度として2〜10重量%、ポリ硫酸鉄の濃度とし
て3〜15重量%であり、添加後の溶出液のpHが8.
0〜10.5になるように調整する。この場合も、添加
量が少ないと溶出抑制効果が低下し、濃度が高いと無駄
が多くなる。また、pHが上記範囲外の場合も溶出抑制
効果が低下する。
The amount of the polyvalent metal salt and / or the cement-based compound added may be such that the effect of preventing the elution of heavy metals can be obtained, and it depends on the type of the polyvalent metal salt or the cement-based compound used. If calcium chloride is added, it is 0.1-10 based on the weight of soil or waste.
Treat with powdered or aqueous solution of calcium chloride by weight. If it is lower than this concentration, the elution suppressing effect is lowered, and if it is higher than this concentration, the cost is increased and the waste is increased. When cement and polyiron sulfate are added together, the concentration of cement in the soil is 2 to 10% by weight, the concentration of polyiron sulfate is 3 to 15% by weight, and the pH of the eluate after addition is 8.
Adjust so that it is 0-10.5. Also in this case, if the addition amount is small, the elution suppressing effect decreases, and if the concentration is high, waste increases. Also, when the pH is out of the above range, the effect of suppressing elution decreases.

【0034】このようにしてキレート剤水溶液で処理し
た後の土壌又は廃棄物に多価金属塩及び/又はセメント
系化合物を添加することにより、長期に亘り、土壌又は
廃棄物からの重金属類の溶出を確実に防止することがで
きる。
By adding a polyvalent metal salt and / or a cement-based compound to the soil or waste treated with the aqueous chelating agent solution in this manner, the elution of heavy metals from the soil or waste for a long period of time is performed. Can be reliably prevented.

【0035】請求項3の方法では、前記又はの方法
等で汚染土壌又は廃棄物を処理するに当たり、キレート
剤溶液と共に、或いはキレート剤溶液との接触に先立
ち、亜硫酸塩及び/又は亜硫酸水素塩、具体的には亜硫
酸塩及び/又は亜硫酸水素塩水溶液を土壌又は廃棄物に
接触させる。
In the method of claim 3, in treating the contaminated soil or waste by the above method or the like, the sulfite and / or the hydrogen sulfite, together with the chelating agent solution or prior to the contact with the chelating agent solution, Specifically, an aqueous solution of sulfite and / or bisulfite is brought into contact with soil or waste.

【0036】亜硫酸塩及び/又は亜硫酸水素塩水溶液中
の亜硫酸塩及び/又は亜硫酸水素塩の濃度は固形分濃度
で0.01〜10重量%、特に0.05〜1重量%であ
ることが好ましい。この濃度よりも低いと亜硫酸塩及び
/又は亜硫酸水素塩による重金属の溶出促進効果を十分
に得ることができず、高いとコストが高くなる。
The concentration of sulfite and / or bisulfite in the aqueous solution of sulfite and / or bisulfite is preferably 0.01 to 10% by weight, more preferably 0.05 to 1% by weight, in terms of solid content. . If it is lower than this concentration, the effect of promoting the elution of heavy metals by sulfite and / or hydrogen sulfite cannot be sufficiently obtained, and if it is higher, the cost becomes higher.

【0037】また、亜硫酸塩及び/又は亜硫酸水素塩水
溶液とキレート剤水溶液との使用割合は、これらの併用
による効果を十分に得るためには、キレート剤:亜硫酸
塩及び/又は亜硫酸水素塩=1:0.1〜2(重量比)
の範囲とすることが好ましい。
Further, the ratio of the aqueous solution of sulfite and / or bisulfite to the aqueous solution of chelating agent is such that in order to sufficiently obtain the effect of the combination thereof, chelating agent: sulfite and / or hydrogen sulfite = 1. : 0.1 to 2 (weight ratio)
It is preferable to set it as the range.

【0038】汚染土壌又は廃棄物に対する処理は、 土壌又は廃棄物を亜硫酸塩及び/又は亜硫酸水素塩
水溶液に接触させた後、キレート剤水溶液に接触させ
る。 土壌又は廃棄物を亜硫酸塩及び/又は亜硫酸水素塩
水溶液及びキレート剤水溶液に同時に接触させる。 土壌又は廃棄物をキレート剤水溶液に接触させた後
亜硫酸塩及び/又は亜硫酸水素塩水溶液に接触させ、そ
の後キレート剤水溶液に接触させる。方法のいずれでも
良く、亜硫酸塩及び/又は亜硫酸水素塩水溶液及びキレ
ート剤水溶液に同時に接触させる場合には、亜硫酸塩及
び/又は亜硫酸水素塩を含むキレート剤水溶液を用いて
も良い。
In the treatment of contaminated soil or waste, the soil or waste is contacted with an aqueous solution of sulfite and / or bisulfite and then with an aqueous solution of a chelating agent. The soil or waste is simultaneously contacted with the aqueous sulfite and / or bisulfite solution and the aqueous chelating agent solution. The soil or waste is contacted with the chelating agent aqueous solution and then with the sulfite and / or bisulfite aqueous solution, and then with the chelating agent aqueous solution. Any method may be used, and in the case of simultaneously contacting with the sulfite and / or hydrogen sulfite aqueous solution and the chelating agent aqueous solution, a chelating agent aqueous solution containing the sulfite and / or hydrogen sulfite may be used.

【0039】なお、亜硫酸塩及び/又は亜硫酸水素塩と
しては、亜硫酸ナトリウム、亜硫酸カリウム等の亜硫酸
塩や、亜硫酸水素ナトリウム、亜硫酸水素カリウム等の
亜硫酸水素塩を用いることができ、これらは1種を単独
で用いても良く、2種以上を併用しても良い。
As the sulfite and / or bisulfite, there can be used sulfites such as sodium sulfite and potassium sulfite, and bisulfites such as sodium bisulfite and potassium bisulfite. They may be used alone or in combination of two or more.

【0040】このようにして、キレート剤と共に亜硫酸
塩及び/又は亜硫酸水素塩を併用することにより、亜硫
酸塩及び/又は亜硫酸水素塩の溶出促進効果で、重金属
類の溶出速度を高め、処理時間を短縮して高価なキレー
ト剤の使用量を低減することができる。
In this way, by using sulfite and / or bisulfite together with the chelating agent, the elution rate of heavy metals is increased by the elution promoting effect of sulfite and / or bisulfite, and the treatment time is increased. The amount of the expensive chelating agent used can be shortened to reduce the amount.

【0041】[0041]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.

【0042】実施例1 電池メーカーの敷地から採取した鉛汚染土壌を風乾し、
粒径2mm以下に篩い分けをした。この土壌試料50g
と、0.3重量%(3000mg/L)のキレート剤
(L−アスパラギン酸−N,N−二酢酸。以下「ASD
A」と略記する。)水溶液500mLを1Lのフタ付き
ポリ容器に入れ、200rpmの条件で24時間振盪し
た。振盪終了後、遠心分離器にかけ、その上澄液を0.
45μmのメンブレンフィルターで濾過した(以下、得
られた濾液を「土壌洗浄水」と称す。)。この土壌洗浄
水中のCaイオン濃度、Mgイオン濃度、Pbイオン濃
度を測定したところ各々330mg/L、30mg/
L、45mg/Lであり、pHは7.5であった。
Example 1 Lead-contaminated soil collected from the site of a battery manufacturer was air-dried,
The particles were sieved to a particle size of 2 mm or less. 50g of this soil sample
And 0.3 wt% (3000 mg / L) of a chelating agent (L-aspartic acid-N, N-diacetic acid.
It is abbreviated as "A". ) 500 mL of the aqueous solution was placed in a 1 L poly container with a lid and shaken at 200 rpm for 24 hours. After shaking, the mixture was centrifuged, and the supernatant was added to 0.
It was filtered through a 45 μm membrane filter (hereinafter, the obtained filtrate is referred to as “soil wash water”). When the Ca ion concentration, Mg ion concentration, and Pb ion concentration in this soil wash water were measured, they were 330 mg / L and 30 mg / L, respectively.
L, 45 mg / L, and pH was 7.5.

【0043】1N塩酸を用いてH型に調整した強酸性陽
イオン交換樹脂10mLをガラスカラムに充填し、まず
純水を通水して洗浄した。このカラムに先に得られた土
壌洗浄水をSV=2hr−1の条件で通水し、所定の通
水量毎にカラム出口のCaイオン濃度、Mgイオン濃
度、Pbイオン濃度、ASDA濃度、及びpHを測定
し、結果を表1に示した。
A glass column was filled with 10 mL of a strongly acidic cation exchange resin adjusted to H type with 1N hydrochloric acid, and first, pure water was passed through for washing. The soil wash water previously obtained was passed through this column under the condition of SV = 2 hr −1 , and the Ca ion concentration, Mg ion concentration, Pb ion concentration, ASDA concentration, and pH of the column outlet for each predetermined water flow amount. Was measured and the results are shown in Table 1.

【0044】[0044]

【表1】 [Table 1]

【0045】表1に示すように、通水開始後しばらくは
金属イオンは検出されず、ASDAはほぼ3000mg
/L検出された。通水量は280〜320mLの間で金
属イオンが検出されるようになり、この時点でイオン交
換容量を超えたものと推定された。
As shown in Table 1, metal ions were not detected for a while after the start of water flow, and ASDA was approximately 3000 mg.
/ L was detected. Metal ions became to be detected between 280 and 320 mL of water flow rate, and it was estimated that the ion exchange capacity was exceeded at this point.

【0046】通水量280mLまでの溶液を回収し、N
aOHでpHを6.5に中和後、再び土壌試料28gを
加えて上記と同じ条件で振盪し、濾過して得られた溶液
中のPb濃度を測定したところ、48mg/Lであり、
ASDAが再生されたことにより、初期と同等の重金属
溶出性能を示すようになったことが確認された。
The solution having a water flow rate of up to 280 mL was recovered and
After neutralizing the pH to 6.5 with aOH, 28 g of the soil sample was added again, shaken under the same conditions as above, and the Pb concentration in the solution obtained by filtration was measured and found to be 48 mg / L,
It was confirmed that the heavy metal leaching performance equivalent to that at the initial stage was exhibited due to the regeneration of ASDA.

【0047】比較例1 実施例1において、土壌洗浄水をイオン交換樹脂と接触
させずに、そのまま再び土壌試料と混合し同様の条件で
振盪、濾過したところ、溶液中のPbイオン濃度は53
mg/Lとなり、2回目の土壌処理では53−45=8
mg/Lの鉛しか溶出させることができなかったことが
判明した。
COMPARATIVE EXAMPLE 1 In Example 1, the soil washing water was mixed with the soil sample again without being contacted with the ion exchange resin, and the mixture was shaken and filtered under the same conditions, and the Pb ion concentration in the solution was 53.
mg / L, and 53-45 = 8 in the second soil treatment
It was found that only mg / L of lead could be eluted.

【0048】比較例2 実施例1と同様にして得られた土壌洗浄水をNa型強酸
性陽イオン交換樹脂に通水したところ、通水開始直後よ
りASDAが検出されたが金属イオンも検出され、AS
DAの再生を行うことはできなかった。
Comparative Example 2 When the soil washing water obtained in the same manner as in Example 1 was passed through a Na-type strongly acidic cation exchange resin, ASDA was detected immediately after the start of passing water, but metal ions were also detected. , AS
It was not possible to reproduce the DA.

【0049】実施例2〜4 電池メーカーの敷地から採取した鉛汚染土壌を風乾し、
粒径2mm以下に篩い分けをした。この土壌試料50g
と、0.37重量%ASDA水溶液500mLを1Lの
フタ付きポリ容器に入れ、200rpmの条件で24時
間振盪した。振盪終了後、遠心分離器にかけその上澄み
を0.45μmのフィルターで濾過し、ICP発光分析
法にて鉛濃度を測定した。
Examples 2 to 4 Lead-contaminated soil collected from the site of a battery manufacturer was air-dried,
The particles were sieved to a particle size of 2 mm or less. 50g of this soil sample
Then, 500 mL of a 0.37 wt% ASDA aqueous solution was placed in a 1 L poly container with a lid, and shaken at 200 rpm for 24 hours. After the shaking was completed, the mixture was centrifuged and the supernatant was filtered with a 0.45 μm filter, and the lead concentration was measured by ICP emission spectrometry.

【0050】予め汚染土壌中の鉛含有量を測定した結
果、500mg/kgであり、ASDAの溶出効果を、
この値に対する溶出量の割合の百分率(除去率)で示し
たところ、溶出量は370mg/kgで除去率は74%
であった。なお、ASDA水溶液のpHは汚染土壌と混
合する前に予め7.0±0.5に調整した。
As a result of measuring the lead content in the contaminated soil in advance, it was 500 mg / kg, and the elution effect of ASDA was
As a percentage (removal rate) of the elution rate to this value, the elution rate was 370 mg / kg and the removal rate was 74%.
Met. The pH of the ASDA aqueous solution was adjusted to 7.0 ± 0.5 in advance before mixing with the contaminated soil.

【0051】次に、このASDA処理後の土壌に純水5
00mLを加え、更に200rpmの条件で24時間振
盪し、振盪終了後、遠心分離器にかけ固液分離を行って
水洗した。この水洗後の土壌を風乾した。以下、この土
壌を「ASDA処理土壌」と称す。
Next, pure water 5 was added to the soil after the ASDA treatment.
00 mL was added, and the mixture was further shaken under the condition of 200 rpm for 24 hours, and after the shaking was completed, it was subjected to a centrifuge for solid-liquid separation, and washed with water. The soil after the water washing was air dried. Hereinafter, this soil is referred to as "ASDA-treated soil".

【0052】このASDA処理土壌3gを表2に示す濃
度の塩化カルシウム水溶液30mLに添加し、200r
pmの条件で24時間振盪した。振盪終了後、遠心分離
器にかけ固液分離を行った。固液分離された土壌を純水
30mLと混合し、200rpmの条件で6時間振盪
し、遠心分離器にかけて固液分離し、その上澄みを0.
45μmのフィルターで濾過し、ICP発光分析法にて
鉛濃度を測定し、結果を表2に示した。
3 g of this ASDA-treated soil was added to 30 mL of an aqueous calcium chloride solution having the concentration shown in Table 2 to obtain 200 r
It was shaken for 24 hours under the condition of pm. After the shaking was completed, the mixture was put into a centrifuge for solid-liquid separation. The solid-liquid separated soil was mixed with 30 mL of pure water, shaken at 200 rpm for 6 hours, and subjected to a centrifuge for solid-liquid separation.
After filtering through a 45 μm filter, the lead concentration was measured by ICP emission spectrometry, and the results are shown in Table 2.

【0053】実施例5〜8 実施例2と同様に処理して得られたASDA処理土壌3
gに表2に示す量(対土壌添加重量%)のセメントを加
えて良く撹拌した後、実施例2と同様にして、純水によ
る水洗、固液分離及び上澄みの濾過とICP発光分析を
行って、鉛濃度を測定し、結果を表2に示した。
Examples 5-8 ASDA treated soil 3 obtained by treating in the same manner as in Example 2
After the amount of cement shown in Table 2 (wt% to soil added) was added to g and stirred well, washing with pure water, solid-liquid separation, filtration of the supernatant, and ICP emission analysis were performed in the same manner as in Example 2. Then, the lead concentration was measured, and the results are shown in Table 2.

【0054】実施例9,10 実施例2と同様に処理して得られたASDA処理土壌3
gに、土壌に対して3重量%のセメントを加えて良く撹
拌し、その後1時間放置した後、表2に示す量(対土壌
添加重量%)のポリ硫酸鉄を加えて良く撹拌した。処理
後の土壌について、実施例2と同様にして、純水による
水洗、固液分離及び上澄みの濾過とICP発光分析を行
って、鉛濃度を測定し、結果を表2に示した。
Examples 9 and 10 ASDA-treated soil 3 obtained by treating in the same manner as in Example 2
To g, 3% by weight of cement was added to the soil, and the mixture was stirred well, after which it was allowed to stand for 1 hour, and then the amount of polyiron sulfate as shown in Table 2 (weight% to soil added) was added and stirred well. The treated soil was washed with pure water, subjected to solid-liquid separation, filtered the supernatant and subjected to ICP emission analysis in the same manner as in Example 2 to measure the lead concentration, and the results are shown in Table 2.

【0055】比較例3 実施例2と同様にして処理して得られたASDA処理土
壌を更に処理することなく、実施例2と同様にして、純
水による水洗、固液分離及び上澄みの濾過とICP発光
分析を行って、鉛濃度を測定し、結果を表2に示した。
Comparative Example 3 The ASDA-treated soil obtained by treating in the same manner as in Example 2 was washed with pure water, solid-liquid separated, and the supernatant was filtered in the same manner as in Example 2 without further treatment. ICP emission analysis was performed to measure the lead concentration, and the results are shown in Table 2.

【0056】[0056]

【表2】 [Table 2]

【0057】表2より、キレート剤で処理した後の土壌
を塩化カルシウム又はセメント、或いは、セメントとポ
リ硫酸鉄で処理することにより、鉛の溶出を環境基準値
(0.01mg/L以下)に抑えることができることが
わかる。
From Table 2, by treating the soil after treatment with a chelating agent with calcium chloride or cement, or with cement and polyiron sulfate, the elution of lead was brought to an environmental standard value (0.01 mg / L or less). You can see that it can be suppressed.

【0058】実施例11〜13 電池メーカーの敷地から採取した鉛汚染土壌を風乾し、
粒径2mm以下に篩い分けをした。この土壌試料(鉛含
有量約500mg/kg)5gと、表3に示す濃度の亜
硫酸水素ナトリウム水溶液50mLを100mLのフタ
付きポリ容器に入れ、200rpmの条件で24時間振
盪した。振盪終了後、遠心分離器にかけ固液分離した。
Examples 11 to 13 Lead-contaminated soil collected from the site of a battery manufacturer was air-dried,
The particles were sieved to a particle size of 2 mm or less. 5 g of this soil sample (lead content of about 500 mg / kg) and 50 mL of an aqueous sodium hydrogen sulfite solution having the concentration shown in Table 3 were placed in a 100 mL plastic container with a lid and shaken at 200 rpm for 24 hours. After the shaking was completed, it was subjected to a centrifuge for solid-liquid separation.

【0059】固液分離して得られた土壌に0.37重量
%ASDA水溶液50mLを添加して、200rpmの
条件で更に24時間振盪した。溶出液は0.45μmの
フィルターで濾過し、濾液の鉛濃度はICP発光分析法
にて測定し、実施例1と同様に汚染土壌中の鉛含有量に
対する除去率を求め、結果を表3に示した。なお、AS
DA水溶液のpHは汚染土壌と混合する前に7.0±
0.5に調整した。
To the soil obtained by solid-liquid separation, 50 mL of 0.37 wt% ASDA aqueous solution was added, and the mixture was further shaken at 200 rpm for 24 hours. The eluate was filtered through a 0.45 μm filter, the lead concentration in the filtrate was measured by ICP emission spectrometry, and the removal rate for the lead content in the contaminated soil was determined in the same manner as in Example 1, and the results are shown in Table 3. Indicated. In addition, AS
The pH of DA solution is 7.0 ± before mixing with contaminated soil.
Adjusted to 0.5.

【0060】比較例4 実施例11において、亜硫酸水素ナトリウム水溶液によ
る処理を行わず、ASDA水溶液による処理のみを行っ
たこと以外は同様にして鉛除去率を求め、結果を表3に
示した。
Comparative Example 4 The lead removal rate was determined in the same manner as in Example 11 except that the treatment with the sodium bisulfite aqueous solution was not performed and only the treatment with the ASDA aqueous solution was performed, and the results are shown in Table 3.

【0061】[0061]

【表3】 [Table 3]

【0062】表3より、亜硫酸水素ナトリウムを併用す
ることにより、キレート剤による重金属溶出効果を高め
ることができることがわかる。
From Table 3, it can be seen that the combined use of sodium hydrogen sulfite can enhance the heavy metal elution effect of the chelating agent.

【0063】[0063]

【発明の効果】以上詳述した通り、本発明によれば、重
金属で汚染された土壌又は廃棄物にキレート剤溶液を接
触させて、該土壌又は廃棄物中の重金属を除去する重金
属汚染土壌又は廃棄物の処理方法において、次のような
効果を得ることができる。請求項1の方法によれば、使
用後のキレート剤をH型陽イオン交換樹脂で処理するこ
とにより、高価なキレート剤を回収して再利用すること
が可能となり、キレート剤使用量、キレート剤コストを
大幅に低減することができる。請求項2の方法によれ
ば、キレート剤処理後の土壌又は廃棄物に多価金属塩及
び/又はセメント系化合物を添加することにより、重金
属の溶出を確実に防止して、重金属の溶出量を長期に亘
り環境基準値以下に維持することができる。請求項3の
方法によれば、キレート剤と共に亜硫酸塩及び/又は亜
硫酸水素塩を併用することにより、キレート剤による重
金属の溶出効果を高め、短い処理時間、少ないキレート
剤使用量で高い重金属除去効果を得ることができる。
As described in detail above, according to the present invention, a chelating agent solution is brought into contact with soil or waste contaminated with heavy metals to remove heavy metals in the soil or waste, or with heavy metal-contaminated soil. The following effects can be obtained in the waste treatment method. According to the method of claim 1, an expensive chelating agent can be recovered and reused by treating the used chelating agent with the H-type cation exchange resin. The cost can be reduced significantly. According to the method of claim 2, by adding the polyvalent metal salt and / or the cement-based compound to the soil or the waste after the treatment with the chelating agent, the elution of the heavy metal is surely prevented and the elution amount of the heavy metal is increased. It can be maintained below the environmental standard value for a long time. According to the method of claim 3, by using a sulfite and / or bisulfite together with the chelating agent, the elution effect of the heavy metal by the chelating agent is enhanced, and the heavy metal removing effect is high with a short treatment time and a small amount of the chelating agent used. Can be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D004 AA41 AA46 AB03 AC07 CA13 CA15 CA34 CA35 CA37 CA40 CC03 CC06 CC11 CC12 CC13 4D017 AA01 BA13 CA17 DA01    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D004 AA41 AA46 AB03 AC07 CA13                       CA15 CA34 CA35 CA37 CA40                       CC03 CC06 CC11 CC12 CC13                 4D017 AA01 BA13 CA17 DA01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重金属で汚染された土壌又は廃棄物にキ
レート剤溶液を接触させて、該土壌又は廃棄物中の重金
属を除去する重金属汚染土壌又は廃棄物の処理方法にお
いて、 該土壌又は廃棄物と接触後の溶液を回収し、 回収した溶液をH型陽イオン交換樹脂と接触させて該溶
液中の重金属を捕集することを特徴とする重金属汚染土
壌又は廃棄物の処理方法。
1. A method for treating heavy metal-contaminated soil or waste, which comprises contacting a chelating agent solution with heavy metal-contaminated soil or waste to remove heavy metals in the soil or waste, wherein the soil or waste is treated. The method for treating heavy metal-contaminated soil or waste, comprising collecting the solution after contacting with H-type cation exchange resin to collect the heavy metal in the solution.
【請求項2】 重金属で汚染された土壌又は廃棄物にキ
レート剤溶液を接触させて、該土壌又は廃棄物中の重金
属を除去する重金属汚染土壌又は廃棄物の処理方法にお
いて、 該土壌又は廃棄物と接触後の溶液を回収した後、 該土壌又は廃棄物に多価金属塩及び/又はセメント系化
合物を添加することを特徴とする重金属汚染土壌又は廃
棄物の処理方法。
2. A method for treating heavy metal-contaminated soil or waste, which comprises contacting a chelating agent solution with soil or waste contaminated with heavy metals to remove heavy metals in the soil or waste, wherein the soil or waste is treated. A method for treating heavy metal-contaminated soil or waste, which comprises adding a polyvalent metal salt and / or a cement-based compound to the soil or waste after recovering the solution after contact with the soil or waste.
【請求項3】 重金属で汚染された土壌又は廃棄物にキ
レート剤溶液を接触させて、該土壌又は廃棄物中の重金
属を除去する重金属汚染土壌又は廃棄物の処理方法にお
いて、 該キレート剤溶液と共に、又は該キレート剤溶液との接
触に先立ち、該土壌又は廃棄物を亜硫酸塩及び/又は亜
硫酸水素塩と接触させることを特徴とする重金属汚染土
壌又は廃棄物の処理方法。
3. A method for treating heavy metal-contaminated soil or waste, which comprises contacting a chelating agent solution with heavy metal-contaminated soil or waste to remove heavy metals in the soil or waste, together with the chelating agent solution. Or a method for treating heavy metal-contaminated soil or waste, which comprises contacting the soil or waste with sulfite and / or bisulfite prior to contact with the chelating agent solution.
【請求項4】 請求項1ないし3のいずれか1項におい
て、該キレート剤が、L−アスパラギン酸−N,N−二
酢酸、グルタミン酸二酢酸、ヒドロキシエチルイミノ二
酢酸、カルボキシメチルオキシコハク酸、3−ヒドロキ
シ−2,2’−イミノジコハク酸、ポリアスパラギン酸
及びこれらの塩よりなる群から選ばれる1種又は2種以
上であることを特徴とする重金属汚染土壌又は廃棄物の
処理方法。
4. The chelating agent according to claim 1, wherein the chelating agent is L-aspartic acid-N, N-diacetic acid, glutamic acid diacetic acid, hydroxyethyliminodiacetic acid, carboxymethyloxysuccinic acid, A method for treating heavy metal-contaminated soil or waste, comprising one or more selected from the group consisting of 3-hydroxy-2,2'-iminodisuccinic acid, polyaspartic acid and salts thereof.
JP2001361218A 2001-11-27 2001-11-27 Treatment method for heavy metal polluted soil or waste Pending JP2003159583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361218A JP2003159583A (en) 2001-11-27 2001-11-27 Treatment method for heavy metal polluted soil or waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361218A JP2003159583A (en) 2001-11-27 2001-11-27 Treatment method for heavy metal polluted soil or waste

Publications (1)

Publication Number Publication Date
JP2003159583A true JP2003159583A (en) 2003-06-03

Family

ID=19171916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361218A Pending JP2003159583A (en) 2001-11-27 2001-11-27 Treatment method for heavy metal polluted soil or waste

Country Status (1)

Country Link
JP (1) JP2003159583A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716330B1 (en) * 2004-02-27 2007-05-11 가부시끼가이샤 아스텍 Method for purifying contaminated soil
JPWO2006123574A1 (en) * 2005-05-19 2008-12-25 三菱瓦斯化学株式会社 Soil and / or groundwater purification method
JP2010201332A (en) * 2009-03-03 2010-09-16 Kanazawa Univ Method of cleaning harmful metal contaminant
JP2010235796A (en) * 2009-03-31 2010-10-21 Ecocycle Corp Detoxifying agent and detoxifying method of cyanide
JP2012236136A (en) * 2011-05-11 2012-12-06 Taisei Corp Method of suppressing elution of heavy metal and/or organic halide contained in sludge and/or soil
CN103894404A (en) * 2014-03-06 2014-07-02 华南理工大学 Method for restoring heavy metal contaminated soil
CN103894409A (en) * 2014-03-27 2014-07-02 武汉都市环保工程技术股份有限公司 Stable curing repair system for polluted soil
CN104190698A (en) * 2014-08-21 2014-12-10 中国科学院南京土壤研究所 Method for restoring clayed soil of high-load heavy metal polluted site
JP5661211B1 (en) * 2014-07-31 2015-01-28 株式会社山▲崎▼砂利商店 Contaminated soil purification system
JP2016064354A (en) * 2014-09-24 2016-04-28 国立大学法人金沢大学 Contaminated soil treating method
CN105598148A (en) * 2016-02-04 2016-05-25 周益辉 Method for repairing volatile organic matter and heavy metal chromium combined polluted soil
US9631256B2 (en) 2012-07-05 2017-04-25 Aisin Seiki Kabushiki Kaisha Alkali metal and/or alkali earth metal extraction method
CN108188162A (en) * 2017-12-28 2018-06-22 湖南创清环境技术有限公司 A kind of serious pollution land method
US10113214B2 (en) 2012-07-05 2018-10-30 Aisin Seiki Kabushiki Kaisha Alkali metal and/or alkali earth metal extraction method
JP2019042730A (en) * 2017-09-06 2019-03-22 国立大学法人金沢大学 Processing method of contaminated soil

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716330B1 (en) * 2004-02-27 2007-05-11 가부시끼가이샤 아스텍 Method for purifying contaminated soil
JPWO2006123574A1 (en) * 2005-05-19 2008-12-25 三菱瓦斯化学株式会社 Soil and / or groundwater purification method
JP5250975B2 (en) * 2005-05-19 2013-07-31 三菱瓦斯化学株式会社 Soil and / or groundwater purification method
JP2010201332A (en) * 2009-03-03 2010-09-16 Kanazawa Univ Method of cleaning harmful metal contaminant
JP2010235796A (en) * 2009-03-31 2010-10-21 Ecocycle Corp Detoxifying agent and detoxifying method of cyanide
JP2012236136A (en) * 2011-05-11 2012-12-06 Taisei Corp Method of suppressing elution of heavy metal and/or organic halide contained in sludge and/or soil
US9631256B2 (en) 2012-07-05 2017-04-25 Aisin Seiki Kabushiki Kaisha Alkali metal and/or alkali earth metal extraction method
US10113214B2 (en) 2012-07-05 2018-10-30 Aisin Seiki Kabushiki Kaisha Alkali metal and/or alkali earth metal extraction method
CN103894404A (en) * 2014-03-06 2014-07-02 华南理工大学 Method for restoring heavy metal contaminated soil
CN103894409A (en) * 2014-03-27 2014-07-02 武汉都市环保工程技术股份有限公司 Stable curing repair system for polluted soil
JP5661211B1 (en) * 2014-07-31 2015-01-28 株式会社山▲崎▼砂利商店 Contaminated soil purification system
JP2016032796A (en) * 2014-07-31 2016-03-10 株式会社山▲崎▼砂利商店 Contaminated soil purification system
CN104190698A (en) * 2014-08-21 2014-12-10 中国科学院南京土壤研究所 Method for restoring clayed soil of high-load heavy metal polluted site
JP2016064354A (en) * 2014-09-24 2016-04-28 国立大学法人金沢大学 Contaminated soil treating method
CN105598148A (en) * 2016-02-04 2016-05-25 周益辉 Method for repairing volatile organic matter and heavy metal chromium combined polluted soil
JP2019042730A (en) * 2017-09-06 2019-03-22 国立大学法人金沢大学 Processing method of contaminated soil
JP7093964B2 (en) 2017-09-06 2022-07-01 国立大学法人金沢大学 How to treat contaminated soil
CN108188162A (en) * 2017-12-28 2018-06-22 湖南创清环境技术有限公司 A kind of serious pollution land method
CN108188162B (en) * 2017-12-28 2020-07-10 湖南创清环境技术有限公司 Method for treating heavily polluted land

Similar Documents

Publication Publication Date Title
JP2003159583A (en) Treatment method for heavy metal polluted soil or waste
JP5911716B2 (en) Treatment agent and treatment method for contaminated soil
JP3110464B2 (en) Heavy metal cation scavengers containing silicate, aluminosilicate or carbonate type compounds
JP2007098299A (en) Method for cleaning heavy metal contaminated soil using chelating agent as cleaning agent
JP2002052375A (en) Treatment agent for heavy metals in heavy metal- polluted soil or waste and heavy metal treatment method
Hong et al. Selective removal of heavy metals from contaminated kaolin by chelators
US8013204B2 (en) Use of partly prehydrated lime for separating a solid matter/liquid mixture, method for treating sludge and purified sludge obtained by said method
JP2007209830A (en) Purifying method of soil contaminated with heavy metal
JP2003334510A (en) Chlorine removing treatment method for molten fly ash
JP2986736B2 (en) Fly ash treatment method
JPH1157695A (en) Treatment process for phosphorus-containing wastewaer
JP2004066129A (en) Method of restoring soil polluted with heavy metal
JP2911506B2 (en) Treatment method for fluorine-containing wastewater
JP2000169828A (en) Powdery chelate-catching material and its production, and ion-catching using the catching material
JP4116975B2 (en) Purification method for contaminated soil
Wasay et al. Contamination of a calcareous soil by battery industry wastes. II. Treatment
JP2002059150A (en) Cleaning agent and stabilizer for selenium-contaminated soil and method of repairing selenium-contaminated soil using the same
JP2004066132A (en) Method of restoring heavy metal-polluted soil with ultrasonic irradiation
JP2002282836A (en) Treatment agent and treatment method for heavy metal in the heavy metal contaminated soil or in the waste
JP2004181303A (en) Treatment method and treating agent for soil contaminated with arsenic or waste contaminated with arsenic
JP3240442B2 (en) Granulated dephosphorizing agent and wastewater treatment method
JP2002066573A (en) Method for removing manganese ion in wastewater
JP2005324137A (en) Method for removing fluoride ion in wastewater
JP2008006331A (en) Recycling method of iron powder for arsenic removal
JP6786033B2 (en) How to treat contaminated soil