JP2004063795A - Substrate processing device - Google Patents

Substrate processing device Download PDF

Info

Publication number
JP2004063795A
JP2004063795A JP2002220239A JP2002220239A JP2004063795A JP 2004063795 A JP2004063795 A JP 2004063795A JP 2002220239 A JP2002220239 A JP 2002220239A JP 2002220239 A JP2002220239 A JP 2002220239A JP 2004063795 A JP2004063795 A JP 2004063795A
Authority
JP
Japan
Prior art keywords
substrate
liquid
slit nozzle
processing liquid
discharge port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002220239A
Other languages
Japanese (ja)
Other versions
JP3976632B2 (en
Inventor
Keiji Tsukuda
佃 啓二
Kosaku Saino
才野 耕作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsumo KK
Original Assignee
Tatsumo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsumo KK filed Critical Tatsumo KK
Priority to JP2002220239A priority Critical patent/JP3976632B2/en
Publication of JP2004063795A publication Critical patent/JP2004063795A/en
Application granted granted Critical
Publication of JP3976632B2 publication Critical patent/JP3976632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To remove a fill-up unevenness of a processing agent in a substrate processing device, enhance maintenance properties of a device, reduce costs and reduce a foot-print. <P>SOLUTION: When a slit nozzle 3 fills up a liquid in a horizontal direction perpendicular to an outlet 31 and simultaneously moves, and the slit nozzle 3 releases at a terminal of a substrate W, a relative moving speed of the slit nozzle 3 is increased to enhance a liquid leakage (liquid separativeness) of the processing agent between the outlet 31 of the processing agent and the terminal of the substrate. It is possible to prevent the processing agent from liquid-dropping from a surface of the substrate W by transmitting a liquid connection in the vicinity of the outlet 31, and to prevent a liquid flow phenomenon induced by the liquid drop. Therefore, a film retreat does not occur, and the processing agent can be filled up without a fill-up unevenness. As a vertically moving means of the slit nozzle for preventing a liquid flow is not necessary, it is possible to intend to reduce costs of the substrate processing device and enhance a reduction in the foot-print. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウェーハ、フォトマスク用ガラス角基板、液晶用ガラス角基板等の基板表面全域にわたって処理液を液盛りをすることにより基板の表面に所定の化学処理を施す基板処理装置に関するものである。
【0002】
【従来の技術】
従来から、半導体や液晶ディスプレイの製造工程において、シリコンウェーハ、フォトマスク用ガラス角基板、液晶用ガラス角基板等の基板表面上の塗布膜等に化学処理を施す工程がある。中でも、基板上に形成されたフォトレジスト膜(感光性樹脂)に所定のパターンを露光後に行う工程であって、現像液により化学処理を行い露光部分のフォトレジスト膜を除去する現像工程は、上記製造工程における殆どの分野で行われる工程である。この現像工程に関して、処理液の表面張力を利用して基板上に処理液を一定時間保持(液盛り)し、この間にフォトレジストに化学反応を進行させて現像を行い、続いて基板を基板平面内で回転させて、洗浄、リンス、乾燥等を行う方法及び装置が知られている。
【0003】
上述の基板上への液盛りについて説明する。十分な量の処理液が処理液吐出ノズル等により基板上に供給された場合、図4(a)に示されるように、処理液Mの表面張力の作用によって、処理液Mが基板W上の全域にわたって一様な膜状に盛り上がって載っている状態が生じて、外力を加えない限りそのままの状態が維持される。例えば、一辺152mmの四角形基板上に60〜80ccの処理液Mが供給されると処理液Mの厚さは基板W上全域において3mm程度となる。ところが、基板W上に供給された処理液量が十分な量でなく不足する場合、例えば、処理液Mの量が60cc未満の場合、図4(b)(c)に示されるように、基板W上に処理液Mが殆ど載っていない膜退き部gが発生する。これは、処理液Mが自己の表面張力により基板上で表面積を収縮させるからである。この処理液Mの膜退きにより、処理液の分布が不規則となり、処理液Mが基板W全面に広がらない「処理液の盛りむら」が発生する。この処理液の盛りむらは、現像工程において基板上の各点における現像時間のばらつきや現像不良の原因となるため、発生しないようにしなければならない。なお、上記の数値は処理液の物性に依存し、処理液の種類及び下地となる基板表面状態によって大きく異なる。
【0004】
液盛り工程において、基板上に処理液が不足する状態は、図5に示されるように、「液流れ」という現象によって発生する。角形基板の一辺に平行な長手の処理液吐出口を有するスリットノズルを、吐出口の長手方向と直交する方向に移動させながら基板上に処理液を液盛りする場合を考える。図5(a)のように、スリットノズル3が吐出口31から処理液Mを角形基板Wに吐出しながら、基板Wの終端部に達して僅かに基板終端を外れた状態では、スリットノズル先端と基板終端部エッジとで形成される間隙における処理液(橋渡し部h)の表面張力と自重とが釣り合った状態になっている。スリットノズル3がさらに移動し、間隙が広くなると、図5(b)のように、橋渡し部hの処理液に作用する表面張力よりも処理液の重さが大きくなり、基板端部より「液零れM2」が発生する。さらにスリットノズル3が移動し、処理液の橋渡し部hが消失すると、図5(c)のように、基板W上の処理液が基板端から流出する「液流れk」が発生する。このため、既に基板上に滴下された処理液の一部が基板上から失われ、「液盛り」に必要な量の処理液が不足することになる。この後、図5(d)のように、基板上の処理液Mは表面張力により面積を収縮し、基板端縁部で膜退きによる膜退き部gが発生し、結果、「処理液の盛りむら」が生じる。
【0005】
基板端からの液零れは、上記の基板終端部だけでなく、図6に示されるように、スリットノズル3の吐出口31が基板から横にはみ出した部分がある場合、液盛り処理の途中において基板の左右端でも発生する。このように、基板サイズ(幅寸法)がスリットノズルの長さより小さい場合、基板よりはみ出した部分のスリットノズル吐出口から余分な処理液が吐出されると共に、基板上から基板左右端側面を伝って処理液が零れ落ちる。「液零れM2」がスリットノズル3の移動に伴って基板の全長で発生する。しかし、基板終端部とは異なり、基板左右端では上記の膜退き現象及び膜退き部gの発生はない。その理由は、「液盛り」途中で基板左右側面を伝って零れ落ちる液滴の幅uは、略吐出口の幅に対応して僅か数ミリ程度であって、また、主にスリットノズル3の存在する位置でのみ液零れM2が発生し、この部分から零れ落ちる処理液の量は前述の基板終端部で零れ落ちる量に比して微量であり、また、基板上には処理液が継続して供給されていることにより、処理液の不足がおこらないからである。
【0006】
従来、図7に示されるように、基板終端における液流れ対策機能を備えた基板処理装置が知られている。この装置において、角形基板Wの一辺(基端)からその一辺に対向する他の辺(終端)へとスリットノズル3を水平に相対移動させながら基板表面全域に処理液を供給した後、スリットノズルが基板の終端から離脱する際、スリットノズルを斜め上方へ移動(退避)させる方法が基板終端における液流れ対策として採られている。これによると、スリットノズルと基板表面上の処理液との接液部を伝って基板表面上の処理液が液零れするのを防止でき、ひいては、液零れにより誘発される液流れが防止される(例えば、特開平7−37788号公報参照)。
【0007】
上記従来技術による基板処理装置について説明する。この基板処理装置においては、基板Wを水平保持する基板保持手段5が基板保持下部5bを介してベアリングBにより回転自在にカップ底部6に設けられ、また、処理液飛散防止用のカップ側部7が矢印A1方向に昇降自在に設けられている。処理液吐出口31を有するスリットノズル3が、吐出口31を基板Wの表面に対向させてノズル支持アーム2に取り付けられている。スリットノズル3は、基板Wの表面と吐出口31とが平行に維持されると共に、吐出口31の長手方向に直交する矢印A2により示される水平方向に移動可能であり、また、矢印A3で示される上下方向にも移動可能である。スリットノズル3の上下及び水平移動は、ノズル支持アーム2を電動機9b及び制御手段10bにより上下に昇降して、また、ノズル支持アーム2を支持する水平移動フレーム1を移動ガイド4、電動機9a、及び制御手段10aにより水平に移動して行われる。
【0008】
続いて、上記従来技術による基板処理装置を用いた液盛り方法について説明する。基板Wが基板保持手段5に載置された後、位置P1においてノズル受け8上で待機していたスリットノズル3が、吐出口31を基板Wの一辺(基端)よりやや外側の上面に配置するように、点P2まで矢印aに沿って移動される。次に、吐出口31より処理液を供給しながら矢印bに沿って、スリットノズル3を基板Wの一辺(終端)方向へ水平移動させて基板Wの表面全域に液盛りが行なわれる。スリットノズル3が基板Wの一辺(終端)のやや内側の点P3まで到達すると、矢印cに沿ってスリットノズル3が斜め上方の点P4に移動(退避)させられて液盛りが完了する。
【0009】
【発明が解決しようとする課題】
しかしながら、上述した図7に示されるような液盛りを行う基板処理装置は、スリットノズル3を上方へ移動(退避)させることで液流れを防止しているため、スリットノズル3を上下方向に移動する電動機9bや駆動制御手段10bなどを含む移動手段、及び上方へ移動(退避)するための空間とが必要となり、装置の製造コスト、保守性、及び装置の設置床面積(フットプリント)の点で問題がある。
【0010】
本発明は、上記の課題を解消するものであって、簡単な構成により、処理液の盛りむらをなくすことができ、装置のメンテナンス性の向上、低コスト化、小フットプリント化を実現できる基板処理装置を提供することを目的とする。
【0011】
【課題を解決するための手段及び発明の効果】
上記の課題を達成するために、請求項1の発明は、角形又は円形基板を載置して水平に保持する基板保持手段と、前記基板保持手段に保持された基板の表面全域に処理液を液盛りする処理液供給機構とを備え、前記基板表面全域に処理液を所定の液盛厚に液盛りして基板表面に所定の化学処理を施す基板処理装置において、前記処理液供給機構は、角形基板の一辺又は円形基板の直径以上の長さの処理液吐出口を有するスリットノズルと、前記スリットノズルの吐出口を前記基板表面と平行に維持すると共に該吐出口と該基板表面との間隔を、前記液盛厚程度の間隔に維持し、該吐出口より処理液を吐出しながら、前記スリットノズルの直交方向に前記基板と相対移動させる移動手段と、前記スリットノズル及び前記移動手段を制御する制御手段とを備え、前記制御手段は、スリットノズルが、前記基板上を相対移動して該基板表面全域への液盛りを終了するまで該スリットノズルの吐出口と該基板表面との前記間隔を維持すると共に、液盛りを終了する際、前記基板の液盛り終了側端部より所定の距離だけ内側以降を、相対移動の速度を増速して通過するように制御するものである。
【0012】
上記構成の基板処理装置においては、基板終端でスリットノズルが離脱する際にスリットノズルの相対移動速度を増速して、処理液吐出口と基板終端との間における処理液の液切れ性(液離れ性)を向上させることとしたので、スリットノズルの吐出口近傍の接液部を伝って基板表面から処理液が液零れするのを防止でき、従って、液零れにより誘発される液流れ現象を防止できるので、膜退きも発生せず、処理液を盛りむらなく液盛りすることが可能となる。また、上記装置によれば、液流れ防止のためのスリットノズル上下方向移動手段を必要としないので、基板処理装置の簡略化ができ、低コスト化、小フットプリント化の向上が図れる。また、スリットノズルを用いて液盛りを行う基板処理装置では、基板表面とスリットノズル吐出面との平行性の維持及び間隔の維持が液盛り処理の高精度化と安定化を図るうえで重要であるが、本発明の基板処理装置では、液盛り処理において液流れ対策としてスリットノズルを上下方向に移動する必要性がないため、昇降稼働部の省略が可能となり、基板表面とスリットノズル吐出面との平行度調整は水平稼働部のみ実施すればよく、もって平行度の精度向上が図れ、処理の高精度化と安定化が図れると共に、基板処理装置のメンテナンス性の向上が実現できる。
【0013】
【発明の実施の形態】
以下、本発明の一実施形態に係る基板処理装置について、図1乃至図3を参照して説明する。図面中の共通する部材には同一符号を付して重複説明を省略する。図1に示されるように、基板処理装置100は、基板Wを水平保持する基板保持手段5を備えており、この基板保持手段5は、基板保持下部5bを介してベアリングBにより回転自在にカップ底部6に設けられている。また、処理液飛散防止用のカップ側部7が矢印A1方向に昇降自在に設けられている。処理液を液盛り処理する工程においては、このカップ上部7は上方に位置している。また、カップ底部6の周辺下部には、排気口6aが設けられおり、ここから処理液や処理液のミストの排出や排気が行われる。また、処理液吐出口31を有するスリットノズル3が、吐出口31を基板Wの表面に対向するようにノズル支持アーム2に取り付けられている。スリットノズル3は、基板Wの表面と吐出口31とが平行に維持されると共に、吐出口31の長手方向に直交する矢印A2により示される水平方向に移動可能である。スリットノズル3の水平移動は、ノズル支持アーム2を支持する水平移動フレーム1を移動ガイド4、電動機9、及び制御手段10により水平に移動して行われる。
【0014】
次に、上記基板処理装置を用いた液盛り方法について説明する。まず、処理液飛散防止用のカップ側部7が図示しない駆動手段により上昇し、基板Wが図示しないロボットハンド等により基板保持手段5上に載置される。基板Wが基板保持手段5に載置された後、位置P1においてノズル受け8上で待機していたスリットノズル3が、吐出口31が基板Wの一辺(基端)よりやや外側の上面に配置される点P2まで矢印xに沿って水平に移動される。基板Wの表面とスリットノズル3の間隙は、例えば3mmに設定される。なお、この間隙の寸法は使用する処理液の粘度、分子量、親水性(接触角)等の物性に依存し、スリットノズル3から供給される処理液が毛細管現象によりスリットノズル3の吐出口平面に沿って広がるように調整されている。
【0015】
続いて、図示しない処理液供給弁を開き、吐出口31より処理液を供給しながら矢印yに沿って、スリットノズル3を基板Wの一辺(終端)方向へ一定の移動速度V1で水平移動させて基板Wの表面全域に液盛りが行なわれる。このときの移動速度V1は、後述するように、スリットノズル3への処理液供給流量Q1とスリットノズル3からの処理液吐出流量Q2とが等しくなる移動速度である。スリットノズル3が基板Wの一辺(終端)のやや内側の点P3まで到達すると、スリットノズル3の移動速度を増速させ、基板Wの終端を通過するときの移動速度をV2(V1<V2)として、前記水平移動の方向を維持して矢印zに沿ってスリットノズル3を点P4まで水平に移動させた後、スリットノズル3を停止させ、図示しない処理液供給弁を閉じ、スリットノズル3をノズル受け8上の待機位置まで移動させる。このようにして基板W表面全域に液盛りされた処理液は、所定の処理時間が経過すると、図示しない回転駆動手段により基板保持手段5が回動することにより基板上より除去される。この時、除去される処理液がミスト状になり飛散しないよう、予めカップ側部7を図示しない駆動手段により降下させておく。
【0016】
なお、上記構成では、保持した基板Wの上方をスリットノズル3が水平移動する構成となっているが、液盛り処理は、液盛り中のスリットノズル3と基板Wとの相対的な位置関係が維持されれば行うことができる。例えば、スリットノズル3を基板上方で固定し、その下方を基板Wが速度V1で水平移動させ、基板上の所定の位置以降の区間をスリットノズル3が相対的に通過する際、基板Wの移動速度をV2に増速しても同様の効果が得られる。
【0017】
次に、上記のスリットノズル3の移動速度V1,V2について、詳述する。基板上に液盛りを行う際、処理液の省液が可能で、かつ盛りむらのない最適なノズル移動速度Vは、以下に示す計算式によって導かれる。まず、図2に示されるように、スリットノズル3の吐出口31から基板W上へ吐出される処理液Mの吐出流量Q2は、Q2=L・H・(v・t)/t=L・H・v、又は、Q2=(S/d)・H・vと表される。ここで、Lは吐出口31の開口長、Hは吐出口31と基板W表面間との距離、vは液盛り時のスリットノズル移動速度、tはスリットノズル3が基板W上を速度vで移動した時間、Sは吐出口31の開口面積、wは吐出口31の開口幅である。
【0018】
上述の吐出流量Q2の式によると、吐出流量Q2は、吐出口31の開口形状を一定とすれば、スリットノズル3の移動速度vと基板Wとの距離Hによって決る。ここで、距離Hは、前述したように、処理液の粘度、分子量、親水性(接触角)等の物性に依存し、吐出口31から基板W上に供給される処理液Mが毛細管現象により吐出口平面と基板W表面とのなす間隙に沿って広がるように予め調整される固定値である。結局、スリットノズル3へ供給される処理液Mの供給流量Q1が一定であるとして、Q2=Q1を満たすようにノズル移動速度vを調整すれば、この一定値として求まる移動速度vにより、基板上に必要十分な処理液Mを供給することができる。従って、v=Q1/(L・H)又は、v=Q1/((S/w)・H)が、液盛りを行うときの最適なスリットノズル3の移動速度となる。
【0019】
次に、本基板処理装置を用いた処理液の液盛りの詳細を説明する。図3(a)に示されるように、液盛り処理において、スリットノズル3は、処理液Mを吐出しながら定速区間f1において移動速度V1(=上述のv)で移動し、増速区間f2において移動速度を上げて、基板終端を移動速度V2で通過する。具体的には、例えば、1辺の長さが152mmの角基板に対して、処理液Mを吐出する吐出口31が基板終端より5〜10mm程度基板側へ入った位置から以降を増速区間とし、また、定速区間f1においてV1=20mm/sec、増速区間f2においてV2=28mm/secとして処理することにより「液流れ」のない液盛り処理が達成されている。
【0020】
また、スリットノズル3が基板Wの終端を通過するとき、図3(b)に示されるように、スリットノズル3の先端にある吐出口31と基板W終端部エッジとで形成される間隙において、橋渡し液部hが形成され、この部分の処理液Mに作用する表面張力と重力が釣り合っている状態が現れる。この状態の後、図3(c)に示されるように、液零れが発生するよりも速く、又は、零れ落ちる処理液の量を最小限に止め、「液盛り」に十分な量の処理液を基板上に残してスリットノズル3と基板W上の処理液Mとの液離れ(橋渡し部hの消滅)をさせることにより液流れの発生が防止される。このような最適液離れをさせるため、上述のように増速された移動速度V2でスリットノズル3が移動される。この後、図3(d)に示されるように、基板W上の処理液Mは、基板端において表面張力により支えられ、所望の液盛り状態となる。
【0021】
なお、本発明は、上記構成に限られることなく種々の変形が可能である。例えば、スリットノズルと基板との位置関係及び移動速度関係は、前述のように相対的なものであり、予め門型に固定されたスリットノズルの下側を基板が通過する装置構造としてもよい。この場合、液盛り最終段階において、スリットノズルを基板の移動方向と逆に移動させて相対速度を増速する方法としてもよい。また、相対移動速度を一定速度から増速する速度変化パターンについては、液盛りする処理液の粘性等の物性値や液盛り条件(液盛り面積、液盛り量、液盛り幅等)に応じて、ステップ状とするか、又は、なめらかに変化するパターンにするかを決めればよい。
【図面の簡単な説明】
【図1】本発明の一実施形態による基板処理装置の断面模式図。
【図2】(a)は同上装置に備えられるスリットノズルの斜視図、(b)は同スリットノズルを用いた液盛り処理と吐出流量の関係を示す斜視図。
【図3】(a)〜(d)は、同上装置による液盛り処理の詳細を説明する基板断面。
【図4】(a)は一般的な液盛り処理を説明する基板断面図、(b)は同液盛り処理の不良例を示す基板平面図、(c)は同断面図。
【図5】(a)〜(d)は液盛り処理の不良原因を説明する基板断面図。
【図6】(a)は基板左右端における液盛り処理状態を説明する基板横断面図、(b)は同縦断面図。
【図7】従来の基板処理装置の断面模式図。
【符号の説明】
1 水平移動フレーム(移動手段)
2 ノズル支持アーム(移動手段)
3 スリットノズル
4 移動ガイド(移動手段)
5 基板保持手段
9 電動機(移動手段)
10 制御手段
31 吐出口
100 基板処理装置
M 処理液
W 基板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a substrate processing apparatus for performing a predetermined chemical treatment on the surface of a substrate by applying a processing liquid over the entire surface of a substrate such as a silicon wafer, a glass square substrate for a photomask, and a glass square substrate for a liquid crystal. is there.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a manufacturing process of a semiconductor or a liquid crystal display, there is a step of performing a chemical treatment on a coating film on a substrate surface such as a silicon wafer, a glass square substrate for a photomask, and a glass square substrate for a liquid crystal. Above all, the step of performing a predetermined pattern on the photoresist film (photosensitive resin) formed on the substrate after exposure, and the developing step of performing a chemical treatment with a developing solution to remove the exposed portion of the photoresist film is described above. This is a process performed in most fields of the manufacturing process. In this development step, the processing liquid is held on the substrate for a certain period of time (liquid level) using the surface tension of the processing liquid, during which a chemical reaction proceeds on the photoresist to perform development. 2. Description of the Related Art A method and an apparatus are known which perform cleaning, rinsing, drying, and the like by rotating the inside.
[0003]
The above-described liquid accumulation on the substrate will be described. When a sufficient amount of the processing liquid is supplied onto the substrate by the processing liquid discharge nozzle or the like, the processing liquid M is applied to the substrate W by the action of the surface tension of the processing liquid M as shown in FIG. A state in which the film rises in a uniform film shape over the entire area occurs, and the state is maintained as long as no external force is applied. For example, when a processing liquid M of 60 to 80 cc is supplied onto a square substrate having a side of 152 mm, the thickness of the processing liquid M is about 3 mm over the entire area on the substrate W. However, when the amount of the processing liquid supplied onto the substrate W is not a sufficient amount but is insufficient, for example, when the amount of the processing liquid M is less than 60 cc, as shown in FIGS. A film retreating portion g where the processing liquid M hardly rests on W is generated. This is because the processing liquid M shrinks the surface area on the substrate due to its own surface tension. Due to the film retreat of the processing liquid M, the distribution of the processing liquid becomes irregular, so that the “processing liquid M unevenness” in which the processing liquid M does not spread over the entire surface of the substrate W occurs. This unevenness of the processing liquid must be prevented from occurring because it causes variations in the development time and development failure at each point on the substrate in the development process. Note that the above numerical values depend on the physical properties of the processing liquid, and vary greatly depending on the type of the processing liquid and the surface state of the substrate serving as a base.
[0004]
In the liquid filling step, a state in which the processing liquid runs short on the substrate is caused by a phenomenon called “liquid flow” as shown in FIG. Consider a case where a processing liquid is deposited on a substrate while a slit nozzle having a processing liquid discharge port having a longitudinal length parallel to one side of a rectangular substrate is moved in a direction orthogonal to the longitudinal direction of the discharge port. As shown in FIG. 5A, while the slit nozzle 3 discharges the processing liquid M from the discharge port 31 to the rectangular substrate W and reaches the terminal end of the substrate W and slightly deviates from the substrate terminal, the slit nozzle tip The surface tension and the own weight of the processing liquid (bridge h) in the gap formed between the substrate liquid and the edge of the substrate end are in a balanced state. When the slit nozzle 3 moves further and the gap becomes wider, as shown in FIG. 5B, the weight of the processing liquid becomes larger than the surface tension acting on the processing liquid in the bridging portion h, and the "liquid""SpillM2" occurs. Further, when the slit nozzle 3 moves and the bridging portion h of the processing liquid disappears, a "liquid flow k" occurs in which the processing liquid on the substrate W flows out from the substrate end as shown in FIG. 5C. For this reason, a part of the processing liquid that has already been dropped on the substrate is lost from the substrate, and the amount of processing liquid necessary for “liquid filling” becomes insufficient. Thereafter, as shown in FIG. 5 (d), the area of the processing liquid M on the substrate shrinks due to the surface tension, and a film retreat portion g occurs due to the film retreat at the edge of the substrate. Unevenness "occurs.
[0005]
The liquid spilling from the substrate end is caused not only at the end of the substrate but also when the discharge port 31 of the slit nozzle 3 has a portion protruding laterally from the substrate as shown in FIG. It also occurs at the left and right edges of the substrate. As described above, when the substrate size (width dimension) is smaller than the length of the slit nozzle, excess processing liquid is discharged from the slit nozzle discharge port at a portion protruding from the substrate, and the excess processing liquid is transmitted from the substrate to the left and right side surfaces of the substrate. The treatment liquid spills. “Liquid M2” occurs over the entire length of the substrate as the slit nozzle 3 moves. However, unlike the terminal end portion of the substrate, the above-mentioned film retreat phenomenon and the film retreat portion g do not occur at the left and right ends of the substrate. The reason is that the width u of the droplet falling down along the left and right side surfaces of the substrate during the “liquid filling” is only about several millimeters corresponding to the width of the orifice, and the slit nozzle 3 mainly The liquid spill M2 occurs only at the existing position, and the amount of the processing liquid spilling from this portion is smaller than the amount of the processing liquid spilling at the end of the substrate, and the processing liquid continues on the substrate. This is because the processing liquid does not run short.
[0006]
Conventionally, as shown in FIG. 7, there has been known a substrate processing apparatus having a function for preventing a liquid flow at a substrate end. In this apparatus, the processing liquid is supplied to the entire substrate surface while horizontally moving the slit nozzle 3 from one side (base end) of the rectangular substrate W to another side (end) opposite to the one side, and then the slit nozzle When the substrate is separated from the end of the substrate, a method of moving (retreating) the slit nozzle obliquely upward is employed as a measure against liquid flow at the end of the substrate. According to this, it is possible to prevent the processing liquid on the substrate surface from flowing down along the liquid contact portion between the slit nozzle and the processing liquid on the substrate surface, and thus, to prevent the liquid flow induced by the liquid flowing. (See, for example, JP-A-7-37788).
[0007]
The substrate processing apparatus according to the related art will be described. In this substrate processing apparatus, a substrate holding means 5 for horizontally holding a substrate W is rotatably provided on a cup bottom 6 by a bearing B via a substrate holding lower part 5b, and a cup side part 7 for preventing a processing liquid from scattering. Are provided so as to be able to move up and down in the direction of arrow A1. A slit nozzle 3 having a processing liquid discharge port 31 is attached to the nozzle support arm 2 with the discharge port 31 facing the surface of the substrate W. The slit nozzle 3 keeps the surface of the substrate W and the discharge port 31 parallel, and can move in the horizontal direction indicated by an arrow A2 perpendicular to the longitudinal direction of the discharge port 31, and also indicated by an arrow A3. It can also be moved vertically. The vertical and horizontal movement of the slit nozzle 3 is performed by moving the nozzle support arm 2 up and down by the electric motor 9b and the control means 10b, and moving the horizontal movement frame 1 supporting the nozzle support arm 2 by the movement guide 4, the electric motor 9a, and The movement is carried out horizontally by the control means 10a.
[0008]
Subsequently, a liquid filling method using the above-described conventional substrate processing apparatus will be described. After the substrate W is placed on the substrate holding means 5, the slit nozzle 3 waiting on the nozzle receiver 8 at the position P1 disposes the discharge port 31 on the upper surface slightly outside one side (base end) of the substrate W. Is moved along the arrow a to the point P2. Next, the slit nozzle 3 is horizontally moved in the direction of one side (end) of the substrate W along the arrow b while supplying the processing liquid from the discharge port 31, and the entire surface of the substrate W is filled. When the slit nozzle 3 reaches a point P3 slightly inside one side (end) of the substrate W, the slit nozzle 3 is moved (evacuated) to a point P4 obliquely upward along the arrow c, and the liquid accumulation is completed.
[0009]
[Problems to be solved by the invention]
However, in the substrate processing apparatus that performs the liquid filling as shown in FIG. 7 described above, since the liquid flow is prevented by moving (retreating) the slit nozzle 3 upward, the slit nozzle 3 is moved in the vertical direction. Moving means including the electric motor 9b and the drive control means 10b, and a space for moving up (evacuating) upward are required, and the manufacturing cost of the apparatus, the maintainability, and the installation floor area (footprint) of the apparatus are reduced. There is a problem.
[0010]
The present invention solves the above-mentioned problems, and can eliminate unevenness of a processing solution by a simple configuration, and realize a substrate capable of improving the maintainability of the apparatus, reducing costs, and achieving a small footprint. It is an object to provide a processing device.
[0011]
Means for Solving the Problems and Effects of the Invention
In order to achieve the above object, the invention according to claim 1 is directed to a substrate holding means for mounting a rectangular or circular substrate and holding the substrate horizontally, and a processing liquid applied to the entire surface of the substrate held by the substrate holding means. A processing liquid supply mechanism for performing liquid processing, wherein the processing liquid is supplied to the entire surface of the substrate, and a predetermined processing liquid is applied to the substrate surface to perform a predetermined chemical treatment on the substrate surface. A slit nozzle having a processing liquid discharge port having a length equal to or greater than one side of a square substrate or a diameter of a circular substrate; and a gap between the discharge port and the substrate surface while maintaining the discharge port of the slit nozzle parallel to the substrate surface. Is controlled at an interval of about the liquid thickness, and controls the moving means for moving the processing liquid relative to the substrate in a direction orthogonal to the slit nozzle while discharging the processing liquid from the discharge port, and controlling the slit nozzle and the moving means. Control A step, wherein the control means maintains the distance between the discharge port of the slit nozzle and the substrate surface until the slit nozzle relatively moves on the substrate and finishes the liquid filling over the entire surface of the substrate. At the same time, when ending the liquid filling, the relative movement speed is controlled to be increased at a predetermined distance from the end of the substrate at the liquid filling end side so as to pass the substrate.
[0012]
In the substrate processing apparatus having the above configuration, when the slit nozzle separates at the end of the substrate, the relative movement speed of the slit nozzle is increased so that the processing liquid can be drained between the processing liquid discharge port and the end of the substrate. (Separation property) can be improved, so that the treatment liquid can be prevented from flowing down from the substrate surface along the liquid contact portion near the discharge port of the slit nozzle, and therefore, the liquid flow phenomenon induced by the liquid leakage can be prevented. Since it can be prevented, film retreat does not occur, and the processing liquid can be filled evenly. Further, according to the above-described apparatus, since a means for moving the slit nozzle in the vertical direction for preventing the liquid flow is not required, the substrate processing apparatus can be simplified, and the cost can be reduced and the footprint can be improved. In addition, in a substrate processing apparatus that performs liquid filling using a slit nozzle, maintaining parallelism and maintaining an interval between a substrate surface and a slit nozzle discharge surface is important for achieving high precision and stability of liquid filling processing. However, in the substrate processing apparatus of the present invention, it is not necessary to move the slit nozzle in the vertical direction as a liquid flow countermeasure in the liquid filling process, so it is possible to omit the elevating and lowering operation unit, and the substrate surface and the slit nozzle discharge surface The adjustment of the parallelism may be performed only in the horizontal operating section, so that the accuracy of the parallelism can be improved, the processing can be made more accurate and stable, and the maintainability of the substrate processing apparatus can be improved.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a substrate processing apparatus according to an embodiment of the present invention will be described with reference to FIGS. The same reference numerals are given to common members in the drawings, and redundant description will be omitted. As shown in FIG. 1, the substrate processing apparatus 100 includes a substrate holding means 5 for horizontally holding a substrate W, and the substrate holding means 5 is rotatably cupped by a bearing B via a substrate holding lower part 5b. It is provided on the bottom 6. Further, a cup side portion 7 for preventing the treatment liquid from scattering is provided so as to be able to move up and down in the direction of arrow A1. In the step of performing the liquid processing of the processing liquid, the cup upper part 7 is located at the upper side. An exhaust port 6a is provided in the lower part of the periphery of the cup bottom 6, from which the processing liquid and the mist of the processing liquid are discharged and discharged. Further, a slit nozzle 3 having a processing liquid discharge port 31 is attached to the nozzle support arm 2 such that the discharge port 31 faces the surface of the substrate W. The slit nozzle 3 keeps the surface of the substrate W parallel to the discharge port 31 and can move in the horizontal direction indicated by an arrow A2 perpendicular to the longitudinal direction of the discharge port 31. The horizontal movement of the slit nozzle 3 is performed by horizontally moving the horizontal movement frame 1 supporting the nozzle support arm 2 by the movement guide 4, the electric motor 9, and the control means 10.
[0014]
Next, a liquid filling method using the substrate processing apparatus will be described. First, the cup side portion 7 for preventing the processing liquid from scattering is raised by a driving unit (not shown), and the substrate W is placed on the substrate holding unit 5 by a robot hand or the like (not shown). After the substrate W is placed on the substrate holding means 5, the slit nozzle 3 waiting on the nozzle receiver 8 at the position P <b> 1 has the discharge port 31 disposed on the upper surface slightly outside one side (base end) of the substrate W. Is moved horizontally along the arrow x to the point P2. The gap between the surface of the substrate W and the slit nozzle 3 is set to, for example, 3 mm. The size of the gap depends on physical properties such as the viscosity, molecular weight, and hydrophilicity (contact angle) of the processing liquid to be used, and the processing liquid supplied from the slit nozzle 3 is formed on the discharge port plane of the slit nozzle 3 by capillary action. Adjusted to spread along.
[0015]
Subsequently, a processing liquid supply valve (not shown) is opened, and the slit nozzle 3 is horizontally moved at a constant moving speed V1 in the direction of one side (end) of the substrate W along the arrow y while supplying the processing liquid from the discharge port 31. Thus, the liquid is filled on the entire surface of the substrate W. The moving speed V1 at this time is a moving speed at which the processing liquid supply flow rate Q1 to the slit nozzle 3 and the processing liquid discharge flow rate Q2 from the slit nozzle 3 become equal, as described later. When the slit nozzle 3 reaches a point P3 slightly inside one side (end) of the substrate W, the moving speed of the slit nozzle 3 is increased to V2 (V1 <V2) when passing through the end of the substrate W. After moving the slit nozzle 3 horizontally to the point P4 along the arrow z while maintaining the horizontal movement direction, the slit nozzle 3 is stopped, the processing liquid supply valve (not shown) is closed, and the slit nozzle 3 is closed. The nozzle is moved to a standby position on the nozzle receiver 8. After a predetermined processing time has elapsed, the processing liquid that has been deposited on the entire surface of the substrate W in this manner is removed from the substrate by rotating the substrate holding unit 5 by a rotation driving unit (not shown). At this time, the cup side portion 7 is previously lowered by a driving means (not shown) so that the processing liquid to be removed becomes mist-like and does not scatter.
[0016]
In the above configuration, the slit nozzle 3 is configured to move horizontally above the held substrate W. However, in the liquid replenishment process, the relative positional relationship between the slit nozzle 3 and the substrate W during liquid replenishment is determined. It can be done if maintained. For example, when the slit nozzle 3 is fixed above the substrate, the substrate W horizontally moves below the substrate at the speed V1, and when the slit nozzle 3 relatively passes through a section after a predetermined position on the substrate, the substrate W moves. The same effect can be obtained even if the speed is increased to V2.
[0017]
Next, the moving speeds V1 and V2 of the slit nozzle 3 will be described in detail. When the liquid is applied on the substrate, the optimum nozzle moving speed V that can save the processing liquid and has no unevenness is derived by the following formula. First, as shown in FIG. 2, the discharge flow rate Q2 of the processing liquid M discharged from the discharge port 31 of the slit nozzle 3 onto the substrate W is Q2 = L · H · (v · t) / t = L · H · v or Q2 = (S / d) · H · v. Here, L is the opening length of the discharge port 31, H is the distance between the discharge port 31 and the surface of the substrate W, v is the moving speed of the slit nozzle at the time of liquid filling, and t is the speed v of the slit nozzle 3 on the substrate W. The moving time, S is the opening area of the discharge port 31, and w is the opening width of the discharge port 31.
[0018]
According to the above-described equation of the discharge flow rate Q2, the discharge flow rate Q2 is determined by the moving speed v of the slit nozzle 3 and the distance H between the substrate W and the opening shape of the discharge port 31. Here, as described above, the distance H depends on physical properties such as the viscosity, molecular weight, and hydrophilicity (contact angle) of the processing liquid, and the processing liquid M supplied from the discharge port 31 onto the substrate W is formed by capillary action. This is a fixed value that is adjusted in advance so as to spread along the gap between the discharge port plane and the surface of the substrate W. After all, assuming that the supply flow rate Q1 of the processing liquid M supplied to the slit nozzle 3 is constant and the nozzle moving speed v is adjusted so as to satisfy Q2 = Q1, the moving speed v obtained as this constant value allows the substrate speed to be increased. , The processing liquid M necessary and sufficient can be supplied. Therefore, v = Q1 / (L · H) or v = Q1 / ((S / w) · H) is the optimum moving speed of the slit nozzle 3 when performing the liquid filling.
[0019]
Next, the details of the liquid level of the processing liquid using the present substrate processing apparatus will be described. As shown in FIG. 3A, in the liquid filling process, the slit nozzle 3 moves at the moving speed V1 (= v described above) in the constant speed section f1 while discharging the processing liquid M, and increases in the speed increasing section f2. At the moving speed V2, and passes the substrate end at the moving speed V2. Specifically, for example, with respect to a square substrate having a side length of 152 mm, the speed increasing section starts from the position where the discharge port 31 for discharging the processing liquid M enters the substrate side by about 5 to 10 mm from the end of the substrate. Further, by performing the processing at V1 = 20 mm / sec in the constant speed section f1 and V2 = 28 mm / sec in the speed increasing section f2, the liquid filling processing without “liquid flow” is achieved.
[0020]
When the slit nozzle 3 passes through the end of the substrate W, as shown in FIG. 3B, in the gap formed by the discharge port 31 at the end of the slit nozzle 3 and the edge of the end of the substrate W, The bridging liquid part h is formed, and a state in which the surface tension acting on the processing liquid M in this part and gravity are balanced appears. After this state, as shown in FIG. 3 (c), the amount of the processing solution that is faster or spills before the liquid spills is minimized, and a sufficient amount of the processing solution is filled in the "pump". Is left on the substrate to separate the slit nozzle 3 from the processing liquid M on the substrate W (elimination of the bridging portion h), thereby preventing generation of a liquid flow. In order to perform such optimal liquid separation, the slit nozzle 3 is moved at the moving speed V2 increased as described above. Thereafter, as shown in FIG. 3D, the processing liquid M on the substrate W is supported by the surface tension at the edge of the substrate, and is brought into a desired liquid state.
[0021]
The present invention can be variously modified without being limited to the above configuration. For example, the positional relationship and the moving speed relationship between the slit nozzle and the substrate are relative as described above, and the device structure may be such that the substrate passes below the slit nozzle fixed in advance in a gate shape. In this case, in the final stage of the liquid filling, the relative speed may be increased by moving the slit nozzle in a direction opposite to the moving direction of the substrate. The speed change pattern for increasing the relative moving speed from a constant speed depends on physical properties such as viscosity of the processing liquid to be liquid and liquid storage conditions (liquid storage area, liquid storage amount, liquid storage width, etc.). , Or a pattern that changes smoothly.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a substrate processing apparatus according to an embodiment of the present invention.
FIG. 2A is a perspective view of a slit nozzle provided in the same apparatus, and FIG. 2B is a perspective view showing a relationship between a liquid filling process using the slit nozzle and a discharge flow rate.
FIGS. 3A to 3D are cross-sectional views of a substrate illustrating details of a liquid filling process performed by the above apparatus.
4A is a cross-sectional view of a substrate for explaining a general liquid replenishing process, FIG. 4B is a plan view of a substrate showing an example of a defect in the liquid replenishment process, and FIG.
FIGS. 5A to 5D are cross-sectional views of a substrate illustrating a cause of a failure in a liquid filling process.
FIG. 6A is a cross-sectional view of a substrate explaining a liquid filling process at left and right ends of the substrate, and FIG. 6B is a vertical cross-sectional view of the same.
FIG. 7 is a schematic sectional view of a conventional substrate processing apparatus.
[Explanation of symbols]
1 horizontal moving frame (moving means)
2 Nozzle support arm (moving means)
3 Slit nozzle 4 Moving guide (moving means)
5 Substrate holding means 9 Electric motor (moving means)
Reference Signs List 10 control means 31 discharge port 100 substrate processing apparatus M processing liquid W substrate

Claims (1)

角形又は円形基板を載置して水平に保持する基板保持手段と、前記基板保持手段に保持された基板の表面全域に処理液を液盛りする処理液供給機構とを備え、前記基板表面全域に処理液を所定の液盛厚に液盛りして基板表面に所定の化学処理を施す基板処理装置において、
前記処理液供給機構は、角形基板の一辺又は円形基板の直径以上の長さの処理液吐出口を有するスリットノズルと、
前記スリットノズルの吐出口を前記基板表面と平行に維持すると共に該吐出口と該基板表面との間隔を、前記液盛厚程度の間隔に維持し、該吐出口より処理液を吐出しながら、前記スリットノズルの直交方向に前記基板と相対移動させる移動手段と、
前記スリットノズル及び前記移動手段を制御する制御手段とを備え、
前記制御手段は、前記スリットノズルが、前記基板上を相対移動して該基板表面全域への液盛りを終了するまで該スリットノズルの吐出口と該基板表面との前記間隔を維持すると共に、液盛りを終了する際、前記基板の液盛り終了側端部より所定の距離だけ内側以降を、相対移動の速度を増速して通過するように制御することを特徴とする基板処理装置。
A substrate holding means for mounting and holding the rectangular or circular substrate horizontally and a processing liquid supply mechanism for storing a processing liquid on the entire surface of the substrate held by the substrate holding means; In a substrate processing apparatus for performing a predetermined chemical treatment on a substrate surface by performing a processing liquid on a predetermined liquid thickness,
The processing liquid supply mechanism has a slit nozzle having a processing liquid discharge port having a length equal to or longer than one side of the square substrate or the diameter of the circular substrate,
While maintaining the discharge port of the slit nozzle in parallel with the substrate surface, the interval between the discharge port and the substrate surface is maintained at an interval of about the liquid thickness, while discharging the processing liquid from the discharge port, Moving means for relatively moving the substrate in a direction orthogonal to the slit nozzle,
Control means for controlling the slit nozzle and the moving means,
The control means maintains the distance between the discharge port of the slit nozzle and the substrate surface until the slit nozzle relatively moves on the substrate and finishes liquid filling on the entire substrate surface, A substrate processing apparatus characterized in that when the filling is completed, control is performed such that the relative movement speed is increased at a predetermined distance from the end on the liquid filling end side of the substrate and thereafter.
JP2002220239A 2002-07-29 2002-07-29 Substrate processing equipment Expired - Fee Related JP3976632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220239A JP3976632B2 (en) 2002-07-29 2002-07-29 Substrate processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220239A JP3976632B2 (en) 2002-07-29 2002-07-29 Substrate processing equipment

Publications (2)

Publication Number Publication Date
JP2004063795A true JP2004063795A (en) 2004-02-26
JP3976632B2 JP3976632B2 (en) 2007-09-19

Family

ID=31940921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220239A Expired - Fee Related JP3976632B2 (en) 2002-07-29 2002-07-29 Substrate processing equipment

Country Status (1)

Country Link
JP (1) JP3976632B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221401A (en) * 2014-05-22 2015-12-10 東京エレクトロン株式会社 Coating treatment device
CN110271010A (en) * 2018-03-15 2019-09-24 欧姆龙株式会社 The control method of robot system and robot
WO2023042738A1 (en) * 2021-09-15 2023-03-23 株式会社Screenホールディングス Substrate coating device and substrate coating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221401A (en) * 2014-05-22 2015-12-10 東京エレクトロン株式会社 Coating treatment device
CN110271010A (en) * 2018-03-15 2019-09-24 欧姆龙株式会社 The control method of robot system and robot
CN110271010B (en) * 2018-03-15 2022-09-13 欧姆龙株式会社 Robot system and robot control method
WO2023042738A1 (en) * 2021-09-15 2023-03-23 株式会社Screenホールディングス Substrate coating device and substrate coating method

Also Published As

Publication number Publication date
JP3976632B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
KR100375036B1 (en) Coating film forming apparatus for semiconductor processing
JP5012651B2 (en) Coating device, coating method, coating, developing device and storage medium
US7914843B2 (en) Slit coater having pre-applying unit and coating method using the same
US7449069B2 (en) Slit coater having apparatus for supplying a coating solution
US7647884B2 (en) Slit coater with a standby unit for a nozzle and a coating method using the same
KR101259334B1 (en) Application method and application device
JP6447354B2 (en) Development device
JPH09106934A (en) Wafer developing device
KR102168007B1 (en) Developing method, and computer readable storage medium
JP5315320B2 (en) Substrate processing method, program, computer storage medium, and substrate processing apparatus
US6089762A (en) Developing apparatus, developing method and substrate processing apparatus
KR20140140492A (en) Coating apparatus and method of cleaning sealing unit
US20060147618A1 (en) Slit coater with a service unit for a nozzle and a coating method using the same
JP2004063795A (en) Substrate processing device
JPH10340836A (en) Developing apparatus and developing method
JPH11244760A (en) Substrate treating device
JP4030973B2 (en) Development processing equipment
JPH11233406A (en) Method and device for substrate processing
JP3865669B2 (en) Liquid processing apparatus and liquid processing method
JP2002100556A (en) Substrate developing apparatus
JP2001189266A (en) Substrate processor
KR20070107221A (en) Apparatus of coating a sensitizer for large substrate and method thereof
JP2001113217A (en) Resist coating apparatus and resist coating method
JPH0736195A (en) Substrate developing device
JP4321720B2 (en) Liquid processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees