JP2004063520A - Dry cleaning apparatus and method - Google Patents

Dry cleaning apparatus and method Download PDF

Info

Publication number
JP2004063520A
JP2004063520A JP2002216009A JP2002216009A JP2004063520A JP 2004063520 A JP2004063520 A JP 2004063520A JP 2002216009 A JP2002216009 A JP 2002216009A JP 2002216009 A JP2002216009 A JP 2002216009A JP 2004063520 A JP2004063520 A JP 2004063520A
Authority
JP
Japan
Prior art keywords
wafer
processed
container
dry cleaning
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002216009A
Other languages
Japanese (ja)
Other versions
JP3991805B2 (en
JP2004063520A5 (en
Inventor
Yoshinori Momoi
桃井 義典
Katanobu Yokogawa
横川 賢悦
Hiroyuki Nishihara
西原 宏幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002216009A priority Critical patent/JP3991805B2/en
Publication of JP2004063520A publication Critical patent/JP2004063520A/en
Publication of JP2004063520A5 publication Critical patent/JP2004063520A5/ja
Application granted granted Critical
Publication of JP3991805B2 publication Critical patent/JP3991805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved dry cleaning apparatus and an improved dry cleaning method for cleaning surface of wafers with higher efficiency in the drying atmosphere in the semiconductor device manufacturing process, and improving the cleaning capability of dry cleaning process to give the cleaning capability to the details at the surface having ultra-fine structure. <P>SOLUTION: This cleaning apparatus executes cleaning of wafers to be processed with flow of gas which can be obtained by injecting the gas to a gap between a pad 5 and a wafer 2 to be processed. In this cleaning apparatus, the pad 5 is placed near to the wafer 2 to be processed without collision by improving the shape of pad 5 and the method for holding the wafer to be processed. Consequently, higher cleaning capability can be realized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は半導体デバイスの製造工程におけるウエハの洗浄に関する方法及び装置に係わり、特に、半導体装置の製造過程におけるプラズマ処理や平坦化処理の後にウエハ表面に残存する異物等を真空中で除去する技術に関する。
【0002】
【従来の技術】
従来、ウエハの洗浄は純水又は純水に各種酸やアルカリ溶液を希釈した溶液を用い、該溶液中にウエハを浸す又は溶液を吹き付ける方法にてウエハ表面の異物を洗い流すことで実施されている。また、ウエハを溶液に浸すと同時にブラシによりウエハ表面を機械的に洗浄する方法等も用いられている。
【0003】
【発明が解決しようとする課題】
先に記した従来の洗浄方法は基本的に水を使うウエット洗浄方であるため、下記する課題を有する。
1) ドライエッチングやプラズマCVDといった真空中での処理を連続して真空中で一貫処理すると加工精度及び製造効率を高められるが、各処理後に必要な洗浄がウエット処理であるため、いったんウエハを大気に出す必要性が生じ、先に記した効果を得られない。
2) ウエット洗浄では、洗浄の他にリンス、乾燥の工程が必要となり、製造工程の増加をまねく。
3) ウエット洗浄では、半導体材料の極表面を改質してしまい、半導体の微細化に伴いその表面改質による歩留りの低下が生じる。
4) ウエット洗浄では、液体の表面張力により、微細構造部に十分液体が浸透しない場合があり、微細構造部での洗浄力が不足する。
5) 半導体装置の新材料、特に絶縁膜材料に今後有機系膜やポーラスな有機系膜等の吸湿性の高い材料が高性能デバイスでは必要となってきており、それら材料を用いた半導体装置の製造ではウエット洗浄又は場合によっては大気にさらすだけでデバイスの特性劣化が引き起こされる。
これらの課題を解決するため、発明者等は、真空中にてウエハ上に形成する高速ガス流による物理的な洗浄効果とプラズマによる化学的な洗浄効果を組み合わせたドライ洗浄方法(特願2001−7158)及びドライ洗浄装置(特願2001−7157)、さらにこの方式を用いてウエハの表面と裏面を同時に洗浄するドライ洗浄方法(特願2001−7156)を提案した。
該ドライ洗浄方法では、被処理ウエハとパッドとの間にガスを噴出し、荷重を印加しながら該パッドを該被処理ウエハに近接させ高速ガス流を形成させる。該パッドを該被処理ウエハにより近接させるほどガス流が被処理ウエハ表面に及ぼす摩擦応力は大きくなり、洗浄能力は向上する。
しかし、同時に該パッドを該被処理ウエハに近接させるほど、該パッドと該被処理ウエハが直接接触する可能性が増す。検討を進めたところ、洗浄力を向上させるほど該パッドと該被処理ウエハとの直接接触により新たな異物が生じるか、あるいは該被処理ウエハを破壊させる可能性があることがわかった。該パッドが該被処理ウエハに直接接触しないためには、近接する面が互いに平行に保つ必要がある。
本発明の目的は、上記課題を解決し、洗浄力を向上させかつ安定した洗浄力を得ることにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
【0004】
【課題を解決するための手段】
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
本発明の一つは、容器と、該容器に接続された真空排気手段と、荷重を印加しながら構造体を被処理ウエハに押し付ける機構と、該構造体と該被処理ウエハの間隙にガスを噴出する手段とを有し、該真空排気手段により排気された該容器内にて、該被処理ウエハ表面を洗浄するためのドライ洗浄装置であって、該構造体の中心における該構造体と該被処理ウエハの間隔が該構造体の外周における該構造体と該被処理ウエハの間隔よりも大きく、その差は1mm〜50mmであることを特徴とする。
本発明の他の一つは、容器と、該容器に接続された真空排気手段と、荷重を印加しながら構造体を被処理ウエハに押し付ける機構と、該構造体と該被処理ウエハの間隙にガスを噴出する手段とを有し、該真空排気手段により排気された該容器内にて、該被処理ウエハ表面を洗浄するためのドライ洗浄装置を用いたドライ洗浄方法であって、洗浄処理中における被処理ウエハ面上のガス圧力は均一でなく最大差が10kPa以上となることを特徴とする。
本発明により、新たな異物の発生あるいは被処理ウエハの破壊が起こることの無いドライ洗浄が可能となる。また、本発明用いることで、ウエット洗浄に適さない材料の使用を含んだ0.1μmレヘ゛ルの超微細構造を有する半導体装置を低コストでかつ高精度に製造することが可能となる。
また、真空雰囲気で実施される半導体装置の製造プロセスを複数工程一貫して実施するプロセスモジュールの形成を容易にし、プロセス精度及びコストパフォーマンスを高めた半導体製造装置のシステム構築が可能となる。
【0005】
【発明の実施の形態】
(実施の形態1)
以下、本発明のドライ洗浄方法の実施形態について説明する。
まず、本発明のドライ洗浄方法に適応されるドライ洗浄装置について説明する。図1に基本構成図を示す。真空排気手段を有する容器1内に被処理ウエハ2と被処理ウエハ2を設置する被処理ウエハ設置手段3、パッド5、パッドを支えるパッドアーム6を設置する。
本実施の形態では、真空排気手段としてドライポンプ15とメカニカルブースターポンプ14を使用したが、ターボ分子ポンプなど、排気手段であればどのような方式を用いても同様の効果を有する。本実施の形態では被処理ウエハ2として8インチウエハを用いたが、4インチウエハや12インチウエハなどの大きさであっても同様の効果を有する。
被処理ウエハ設置手段3はウエハ回転機構4により回転する。この時、被処理ウエハ設置手段3と被処理ウエハ2とが共に回転できるよう、ウエハ設置手段3は被処理ウエハ2を保持する。
パッド5は、パッドアーム6に接続された上下移動機構7と走査機構8により移動することができる。上下移動機構7はパッド5と被処理ウエハ2の距離を変えることができ、さらに、パッド5に荷重を印加しながら被処理ウエハ2に押し付けることができる。パッド5に印加される荷重は荷重測定装置21により測定した。
本実施の形態では荷重測定装置21としてひずみ測定器を用いた。上下移動機構7と荷重測定装置21は回路ボックス18に接続され、荷重測定装置21にて検出される荷重が望みの荷重に保たれるように回路ボックス18は上下移動機構7の移動量を調整できる。
一方、走査機構8はパッド5を被処理ウエハ2の被処理面に平行に移動させることができる。パッド5を走査機構8により移動させ、同時に被処理ウエハ2をウエハ回転機構4により回転させることでパッド5を被処理ウエハ2全面に走査させることができる。真空容器1の上部にはプラズマ生成手段9が設置されている。
本実施の形態では、UHF電源10、チューナー11、アンテナ12、誘電体13とから構成されるUHF波帯の電磁波を用いたプラズマ生成手段を用いた。プラズマ生成手段としては、マイクロ波帯、ラジオ波帯の電磁波を用いても同様の効果が得られる。
被処理ウエハ2はプラズマ生成手段9によって生成されるプラズマの拡散領域に配置され、プラズマによる過剰な損傷等を被処理ウエハ2に与えないようにした。真空容器内1へのガス導入はパッドガス導入系16とプラズマガス導入系17の2系統に分けた。パッドガス導入系16から導入されるガスは、パッド5中心からパッド5−被処理ウエハ2間に噴出し、主として物理的に被処理ウエハ2を洗浄するための高速ガス流の形成と被処理ウエハ2から除去した異物を被処理ウエハ2上から輸送する作用を担う。プラズマガス導入系17から導入されるガスは、プラズマ生成手段9近傍の真空容器内1に導入され、プラズマにより活性化されることで化学的な洗浄効果を付与する。
本実施の形態では、プラズマガス導入系17をアンテナ12下に設置したシャワープレート20を用いて導入した。真空容器1内の圧力は、圧力測定器19にて測定した。
【0006】
次に、パッド5の設置方法について説明する。
本実施の形態ではパッド5と被処理ウエハ2の近接面がなす角度がパッド5と被処理ウエハ2との間に噴射するガスの圧力で容易に変化できる構造とした。ガスを噴出させながらパッド5を被処理ウエハ2に接近させると、パッド5−被処理ウエハ2間ガス圧力によりパッド5は押し返され支えられる。この時、パッド5が被処理ウエハ2に対して傾いていると間隔が狭い場所ではガス圧力が上昇し間隔が狭い場所ではガス圧力が低下する。上記構造ではこの圧力差によりパッドの傾きが変化し、自己整合的にパッド5と被処理ウエハ2の互いに近接する面が平行となる。この結果、パッド5と被処理ウエハ2を直接接触させずに近接させることができる。
本実施の形態では、上記構造を図2に示すように球面軸受25やベアリング構造24を用いてパッド5とパッドアーム6を接続することで可能にした。さらに、バネ23を用いてパッドアーム6とパッド5を接続すればパッドアーム6とパッド5の距離は完全に固定されないので、パッド5に印加される荷重をひずみ測定器21にて正確に測定することができる。
【0007】
次に、パッド5の形状について説明する。
本実施の形態で用いるパッド5の被処理ウエハ2に近接する面は、直径30mmの円形をしている。材質はステンレス鋼を用いたが、他にアルミ、デルリン、ベスペル、カプトン、酸化シリコン、シリコン、酸化アルミニウム、炭化珪素等を用いても同様の効果がある。
図2に示すようにパッドガス導入系16から導入されるガスは、該面中心に設けた直径2mmの穴から噴出する。さらに該パッド5の被処理ウエハ2に近接する面は凹型形状になっており、パッド5と被処理ウエハ2との距離は中心ほど大きくなる。
パッド5を被処理ウエハ2に近接させる際、パッド5と被処理ウエハ2の間にあるガス圧力によりパッド5と被処理ウエハ2の近接する面が平行になることは先に述べた。しかし、パッド中心からガスを噴出するとガス圧力は中心から周辺に向かって急激に減少するので、このガス圧力に支えられたパッド5はバランスを失い振動を始めてしまうことがしばしばある。凹型形状にすると、圧力変化が緩和されパッド5を振動させずに安定して支えることができる。凹型形状は、最大深さ27が1mm以上、最大径26がパッド5の最大径の1/4以上であればよい。
【0008】
被処理ウエハ設置手段3の被処理ウエハ保持方法について説明する。
被処理ウエハ設置手段3は被処理ウエハ2と共に回転できるよう被処理ウエハ2を保持しなければならないことは先に述べた。さらに、パッド5から多量のガスを噴出するため、このガスが被処理ウエハ2の裏面に回りこみ被処理ウエハ2を浮き上がらせパッド5と接触させてしまうことも考慮しなければならない。また、被処理ウエハ2全面を洗浄するには、パッド5が全面を走査する必要があるのでパッド5側への突起があってはならない。
本実施の形態では図3に示すように被処理ウエハ2が収まり被処理ウエハ2の厚さよりも浅いくぼみ28を設け、そこに被処理ウエハ2を置く方式とした。被処理ウエハ2の回転力は被処理ウエハ設置手段3と被処理ウエハ2の摩擦力により被処理ウエハ設置手段3から伝えられる。
該くぼみには溝29を加工し、さらに被処理ウエハ設置手段3を貫通する穴空孔30を設けた。この溝と穴により被処理ウエハ2の裏面に回りこんだガスを排気することができるため、被処理ウエハ2が浮き上がることはない。
同様に、被処理ウエハ2がガスにより浮き上がることを防ぐため、静電チャックやメカニカルチャックを用いて強力に被処理ウエハを被処理ウエハ設置手段3に密着させても効果を得ることができる。
さらに、被処理ウエハ保持手段3に冷媒を流す、ヒーターを設置するなど温度調整機構を付加し、被処理ウエハ2の温度を制御することで洗浄効果を一層向上させることができる。
【0009】
本実施の形態のドライ洗浄方法に適応される洗浄手順について説明する。
洗浄手順は真空排気手段により排気されている真空容器1内にて、上下移動機構7によりパッド5を被処理ウエハ設置手段3から遠ざけ、被処理ウエ2を被処理ウエハ設置手段3に設置する。
次に、ウエハ回転機構4により、被処理ウエハ2を被処理ウエハ設置手段3と共に回転させる。回転速度は100rpmとしたが、10〜200rpmとしても動揺の効果がある。続いて上下移動機構7によりパッド5を被処理ウエハ2に接近させ、パッドガス導入系16からガスを噴出させる。
本実施の形態では、パッド5が被処理ウエハ2から5mmの距離に達したときガスを噴出した。パッドガス導入系からはアルゴンガスを25slm導入したが、他にヘリウム、ネオン、窒素、酸素、二酸化炭素等やこれらの混合ガスを0.5〜500slm導入しても効果がある。さらにプラズマガス導入系17からもガスを導入する。プラズマガス導入系からはCF4と酸素ガスを導入した。プラズマガス導入系には他に、Ar、SF6、Cl2、F2、HF、水素ガスを用いても効果がある。
ガスが設定流量に達したところでプラズマ生成手段9により真空容器1内にプラズマを発生させる。パッド5が上下移動機構7によりさらに被処理ウエハ2に接近させられると、パッド5と被処理ウエハ2の間が狭くなり噴出しているガスの圧力が上昇しパッド5の被処理ウエハ2への接近を妨げる反発力が生じるようになるが、上下移動機構7は荷重を加えて強制的にパッド5を被処理ウエハ2にさらに接近させる。
パッド5に加わる荷重は、荷重測定装置21から検出する。パッド5に荷重が加わった場合においても、パッド5と被処理ウエハ2の間にはパッドガス導入系からガスが噴出されているため、パッド5と被処理ウエハ2が直接接触することはない。
また、パッドガス導入系に導入されるガスは、パッド5−被処理ウエハ2間のガス圧力に応じて加圧し、供給する必要がある。実際、本実施の条件では0.3MPaまで加圧しないとガスが流れ出さず、パッド5−被処理ウエハ2間のガス圧力は0.3MPa程度と考えられる。十分なガス流量を供給するにはさらに加圧し、供給する必要があり、本実施の形態では0.8MPaとした。一方、真空容器1内は真空排気手段により排気されており、パッド5から離れた位置ではガス圧力が300Paになるようにした。
よって、被処理ウエハ表面ではパッド5の揺動によりガス圧力が300Paから0.3MPa程度の間で変動することになる。この圧力変動は被処理ウエハ表面の微細構造内部における洗浄力向上に寄与する。0.1mmの粒子の付着力は数nNであることが知られているので、圧力変動幅が10kPa以上となれば洗浄効果がある。また、真空容器内のガス圧力が低い程除去した異物の被処理ウエハ2への再付着確率が低くなるため、洗浄効率が向上する。
パッド5と被処理ウエハ2真空容器荷重測定装置21から検出される荷重があらかじめ設定した荷重に達したところで、走査機構8によりパッド5を被処理ウエハ2の被処理面と平行に移動させる。本実施の形態での走査機構8は、被処理ウエハ2上のうちパッドアーム6を半径とした円周上にパッド5を移動させる方式とした。荷重を印加され被処理ウエハ2に近接したパッド5は、常に荷重測定装置21から検出される荷重があらかじめ設定した荷重に保たれるよう上下移動機構7により調整される。
本実施の形態では荷重の設定値を120Nとし、パッド5と被処理ウエハ2の近接する面の距離を30mm±3mmに保った。該距離1mm〜100mmであれば同様な効果があり、荷重は15N〜600Nで効果がある。この荷重をパッド5の被処理ウエハ2に近接する面で平均すると2×10N/m〜8.5×10N/mとなる。あらかじめ設定した走査速度にて同様に設定した走査回数を行った後、プラズマ生成手段9によるプラズマ生成を止め、上下移動機構7によりパッド5を被処理ウエハ2から遠ざける。
本実施の形態ではウエハ中心から端までの走査速度を30秒とし、中心→端→中心へと1回走査を行った。パッド5が被処理ウエハ2に接触する可能性が無くなるのに十分な位置までパッド5を遠ざけたところでガスの導入を止める。
本実施の形態では、パッド5が被処理ウエハ2から5mm離れたところでガスの導入を止めた。さらに、被処理ウエハ2を取り出すのに十分な位置までパッド5を被処理ウエハ2から遠ざけた後、被処理ウエハ2を取り出し、洗浄処理を終了する。
【0010】
以上の洗浄装置及び洗浄方法を用いれば半導体装置用ウエハに付着した異物を真空中にて高効率かつウエハを傷つけることなく安定に除去することができる。本実施の形態では被処理ウエハ2として半導体装置用ウエハを想定し説明したが、他に、液晶パネルやプラズマディスプレイパネルなどのディスプレイ装置、磁気記録用ディスク、光学記録用ディスクといった微細構造を有する装置又は基板の洗浄に適用できる。
(実施の形態2)
本実施の形態では、パッドの形状に工夫を施した形態について説明する。
【0011】
本実施の形態では、凹型形状の外周部に図4に示す溝を設けた。溝加工のようにガス流に変動を加えると、パッド5と被処理ウエハ2の間に流れるガス流に乱流を生じさせることができる。乱流ではウエハ2表面近傍において、ウエハ2表面から離れるにしたがいガス流速度が急激に増加する。このようにガス流速度勾配が大きくなると、ウエハ2表面に作用する摩擦応力が大きくなるためウエハ2表面の異物洗浄力が向上する。図4の溝はパッド5の中心を中心とした3重の同心円状に加工してあり、溝に沿って円周上に一様な乱流を生じさせることができる。(実施の形態3)
本実施の形態では、パッドの形状に工夫を施した他の形態について説明する。
【0012】
図5に示す例では、円周方向に連続でない溝を加工した。この場合は、円周上に一様ではないものの溝の端でより過激な乱流を生じさせることができる。このような乱流ではウエハ2表面近傍において、ウエハ2表面から離れるにしたがいガス流速度が急激に増加する。ガス流速度勾配が大きくなると、ウエハ2表面に作用する摩擦応力が大きくなるためウエハ2表面の異物洗浄力がより向上する。(実施の形態4)
本方式の洗浄装置では、パッド5と被処理ウエハ2を荷重測定器21と上下機構7により100mm以下の任意の距離に保つことは先に述べた。しかし、装置外部から意図していない振動が伝わりパッド5や被処理ウエハ2が上記距離程度の振幅で振動すると上記距離を保つことが困難になる。そこで、本実施の形態では、図6に示すように除震台31に本装置を設置することで装置を設置する床からの振動を排除する。
ポンプは振動を発生するためメカニカルブースターポンプ14、ドライポンプ15は除震台31上には設置しない。さらに、メカニカルブースターポンプ14、ドライポンプ15と真空容器1は除震配管32により接続し、ポンプの振動が真空容器へ伝わらないようにした。除震配管としてはベローズ配管やゴムなどのヤング率が小さい材料を用いた配管が適している。この結果、パッド5と被処理ウエハ2とを安定して近接させられるため、本洗浄装置の洗浄力を向上させることができる。
【0013】
【発明の効果】
本発明によれば、被処理ウエハの異物を真空内にて高効率な洗浄処理を実現できる。これにより、製造工程の簡略化、歩留りの向上といった効果の他に、被処理ウエハにウエット洗浄ができない材質が含まれていても洗浄が可能、洗浄による被処理ウエハの表面改質低下という効果も得られる。
したがって、半導体装置の製造コスト低下、加工精度向上が可能となる。
【図面の簡単な説明】
【図1】実施の形態1における基本構成図である。
【図2】実施の形態1におけるパッドの詳細説明図である。
【図3】実施の形態1における被処理ウエハ設置手段の構成図である。
【図4】実施の形態2における、表面に溝加工がされたパッドの説明図である。
【図5】実施の形態3における、表面に溝加工がされた他のパッドの説明図である。
【図6】実施の形態4における除震台を用いた洗浄装置の構成図である。
【符号の説明】
1…真空容器、2…被処理ウエハ、3…被処理ウエハ設置手段、4…ウエハ回転機構、5…パッド、6…パッドアーム、7…上下移動機構、8…走査機構、9…プラズマ生成手段、10…UHF電源、11…チューナー、12…アンテナ、13…誘電体、14…メカニカルブースターポンプ、15…ドライポンプ、16…パッドガス導入系、17…プラズマガス導入系、18…回路ボックス、19…圧力測定器、20…シャワープレート、21…荷重測定器、22…バリアブルバルブ、23…バネ、24…ベアリング機構、25…球面軸受、26…パッド凹型形状の最大径、27…パッド凹形状の最大深さ、28…被処理ウエハ設置手段のくぼみ、29…被処理ウエハ設置手段の溝、30…被処理ウエハ設置手段の空孔、31…除震台、32…除震配管。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for cleaning a wafer in a semiconductor device manufacturing process, and more particularly to a technique for removing foreign matter and the like remaining on a wafer surface after a plasma process or a planarization process in a semiconductor device manufacturing process in a vacuum. .
[0002]
[Prior art]
Conventionally, wafer cleaning is performed by using pure water or a solution obtained by diluting various acids or alkali solutions in pure water, and immersing the wafer in the solution or spraying the solution to wash away foreign substances on the wafer surface. . Further, a method of mechanically cleaning the wafer surface with a brush while immersing the wafer in a solution is also used.
[0003]
[Problems to be solved by the invention]
Since the conventional cleaning method described above is basically a wet cleaning method using water, it has the following problems.
1) If processing in a vacuum such as dry etching or plasma CVD is performed continuously and continuously in a vacuum, processing accuracy and manufacturing efficiency can be improved. However, since the cleaning required after each processing is a wet processing, the wafer must be once exposed to the atmosphere. Therefore, the effect described above cannot be obtained.
2) In wet cleaning, rinsing and drying steps are required in addition to cleaning, which leads to an increase in the number of manufacturing steps.
3) In wet cleaning, the extreme surface of the semiconductor material is modified, and as the semiconductor is miniaturized, the yield is reduced due to the surface modification.
4) In wet cleaning, the liquid may not sufficiently penetrate into the fine structure due to the surface tension of the liquid, and the cleaning power in the fine structure may be insufficient.
5) Highly hygroscopic materials such as organic films and porous organic films will be required for high-performance devices in the future as new materials for semiconductor devices, especially insulating film materials. In manufacturing, wet cleaning or even exposure to air alone can cause device degradation.
In order to solve these problems, the present inventors have developed a dry cleaning method that combines a physical cleaning effect by a high-speed gas flow formed on a wafer in a vacuum and a chemical cleaning effect by plasma (Japanese Patent Application No. 2001-131). 7158), a dry cleaning apparatus (Japanese Patent Application No. 2001-7157), and a dry cleaning method (Japanese Patent Application No. 2001-7156) for simultaneously cleaning the front and back surfaces of a wafer using this method.
In the dry cleaning method, a gas is ejected between a wafer to be processed and a pad, and the pad is brought close to the wafer to be processed while applying a load to form a high-speed gas flow. The closer the pad is to the target wafer, the greater the frictional stress exerted by the gas flow on the surface of the target wafer, and the better the cleaning performance.
However, at the same time, the closer the pad is to the wafer to be processed, the greater the possibility that the pad and the wafer to be processed are in direct contact. As a result of study, it has been found that as the cleaning power is improved, there is a possibility that new foreign matter is generated by direct contact between the pad and the wafer to be processed or the wafer to be processed is broken. In order that the pad does not directly contact the wafer to be processed, adjacent surfaces must be kept parallel to each other.
An object of the present invention is to solve the above-mentioned problems, improve the detergency and obtain a stable detergency.
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
[0004]
[Means for Solving the Problems]
The following is a brief description of an outline of typical inventions disclosed in the present application.
One aspect of the present invention is a container, a vacuum evacuation unit connected to the container, a mechanism for pressing a structure against a wafer to be processed while applying a load, and supplying a gas to a gap between the structure and the wafer to be processed. A dry cleaning apparatus for cleaning the surface of the wafer to be processed in the container evacuated by the vacuum evacuation means, comprising: The distance between the wafers to be processed is larger than the distance between the structure and the wafer to be processed on the outer periphery of the structure, and the difference is 1 mm to 50 mm.
Another one of the present invention is a container, vacuum evacuation means connected to the container, a mechanism for pressing a structure against a wafer to be processed while applying a load, and a mechanism for pressing a structure to a wafer to be processed. Means for ejecting a gas, and a dry cleaning method using a dry cleaning apparatus for cleaning the surface of the wafer to be processed in the container evacuated by the vacuum evacuation means, , The gas pressure on the surface of the wafer to be processed is not uniform and the maximum difference is 10 kPa or more.
According to the present invention, dry cleaning can be performed without generation of new foreign substances or destruction of a wafer to be processed. Further, by using the present invention, it becomes possible to manufacture a semiconductor device having an ultrafine structure of 0.1 μm level including a use of a material that is not suitable for wet cleaning at low cost and with high precision.
Further, it is possible to easily form a process module for performing a plurality of steps of a semiconductor device manufacturing process performed in a vacuum atmosphere consistently, and it is possible to construct a semiconductor manufacturing system with improved process accuracy and cost performance.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
Hereinafter, embodiments of the dry cleaning method of the present invention will be described.
First, a dry cleaning apparatus applied to the dry cleaning method of the present invention will be described. FIG. 1 shows a basic configuration diagram. A wafer 2 to be processed and a wafer mounting means 3 for mounting the wafer 2 to be processed, a pad 5, and a pad arm 6 supporting the pad are installed in a container 1 having a vacuum evacuation means.
In this embodiment, the dry pump 15 and the mechanical booster pump 14 are used as the evacuation means. However, the same effect can be obtained by using any method of evacuation means such as a turbo molecular pump. In the present embodiment, an 8-inch wafer is used as the wafer 2 to be processed. However, a similar effect can be obtained even with a 4-inch wafer or a 12-inch wafer.
The processed wafer setting means 3 is rotated by a wafer rotating mechanism 4. At this time, the wafer setting means 3 holds the processed wafer 2 so that the processed wafer setting means 3 and the processed wafer 2 can rotate together.
The pad 5 can be moved by a vertical movement mechanism 7 and a scanning mechanism 8 connected to a pad arm 6. The vertical movement mechanism 7 can change the distance between the pad 5 and the processing target wafer 2, and can press the pad 5 against the processing target wafer 2 while applying a load to the pad 5. The load applied to the pad 5 was measured by the load measuring device 21.
In the present embodiment, a strain measuring device is used as the load measuring device 21. The vertical moving mechanism 7 and the load measuring device 21 are connected to the circuit box 18, and the circuit box 18 adjusts the moving amount of the vertical moving mechanism 7 so that the load detected by the load measuring device 21 is maintained at a desired load. it can.
On the other hand, the scanning mechanism 8 can move the pad 5 in parallel with the processing surface of the processing target wafer 2. The pad 5 can be moved over the entire surface of the wafer 2 by moving the pad 5 by the scanning mechanism 8 and simultaneously rotating the wafer 2 by the wafer rotating mechanism 4. A plasma generating means 9 is provided on the upper part of the vacuum vessel 1.
In the present embodiment, a plasma generation unit using an electromagnetic wave in the UHF wave band, which includes the UHF power supply 10, the tuner 11, the antenna 12, and the dielectric 13, is used. The same effect can be obtained by using microwave waves or radio wave electromagnetic waves as the plasma generation means.
The wafer 2 to be processed is arranged in a diffusion region of the plasma generated by the plasma generating means 9 so that the wafer 2 is not excessively damaged by the plasma. Gas introduction into the vacuum chamber 1 was divided into two systems, a pad gas introduction system 16 and a plasma gas introduction system 17. The gas introduced from the pad gas introduction system 16 is ejected from the center of the pad 5 to the space between the pad 5 and the wafer 2 to be processed, and mainly forms a high-speed gas flow for physically cleaning the wafer 2 to be processed and the wafer to be processed. 2 transports the foreign matter removed from the wafer 2 from above the wafer 2 to be processed. The gas introduced from the plasma gas introduction system 17 is introduced into the vacuum chamber 1 near the plasma generating means 9 and activated by plasma to provide a chemical cleaning effect.
In the present embodiment, the plasma gas introduction system 17 is introduced using the shower plate 20 installed below the antenna 12. The pressure in the vacuum vessel 1 was measured by a pressure measuring device 19.
[0006]
Next, a method of installing the pad 5 will be described.
In the present embodiment, the structure is such that the angle formed between the pad 5 and the adjacent surface of the processing target wafer 2 can be easily changed by the pressure of the gas injected between the pad 5 and the processing target wafer 2. When the pad 5 is brought close to the processing target wafer 2 while ejecting gas, the pad 5 is pushed back and supported by the gas pressure between the pad 5 and the processing target wafer 2. At this time, when the pad 5 is inclined with respect to the wafer 2 to be processed, the gas pressure increases at a place where the interval is small, and the gas pressure decreases at a place where the interval is small. In the above structure, the inclination of the pad changes due to this pressure difference, and the mutually adjacent surfaces of the pad 5 and the processing target wafer 2 become parallel in a self-aligned manner. As a result, the pad 5 and the processing target wafer 2 can be brought close to each other without making direct contact.
In the present embodiment, the above structure is made possible by connecting the pad 5 and the pad arm 6 using a spherical bearing 25 or a bearing structure 24 as shown in FIG. Furthermore, if the pad arm 6 and the pad 5 are connected using the spring 23, the distance between the pad arm 6 and the pad 5 is not completely fixed, so that the load applied to the pad 5 is accurately measured by the strain gauge 21. be able to.
[0007]
Next, the shape of the pad 5 will be described.
The surface of the pad 5 used in the present embodiment close to the wafer 2 to be processed has a circular shape with a diameter of 30 mm. The material is stainless steel, but the same effect can be obtained by using aluminum, delrin, Vespel, Kapton, silicon oxide, silicon, aluminum oxide, silicon carbide, or the like.
As shown in FIG. 2, the gas introduced from the pad gas introduction system 16 is ejected from a hole having a diameter of 2 mm provided at the center of the surface. Further, the surface of the pad 5 close to the processing target wafer 2 has a concave shape, and the distance between the pad 5 and the processing target wafer 2 increases toward the center.
As described above, when the pad 5 is brought closer to the processing target wafer 2, the gas 5 pressure between the pad 5 and the processing target wafer 2 makes the adjacent surfaces of the pad 5 and the processing target wafer 2 parallel. However, when the gas is ejected from the center of the pad, the gas pressure rapidly decreases from the center to the periphery, so that the pad 5 supported by the gas pressure often loses its balance and starts to vibrate. With the concave shape, the pressure change is reduced, and the pad 5 can be stably supported without vibrating. The concave shape may have a maximum depth 27 of 1 mm or more and a maximum diameter 26 of 1/4 or more of the maximum diameter of the pad 5.
[0008]
The method of holding the processed wafer by the processed wafer setting means 3 will be described.
As described above, the processing target wafer setting means 3 must hold the processing target wafer 2 so as to be able to rotate together with the processing target wafer 2. Further, since a large amount of gas is ejected from the pad 5, it is necessary to consider that the gas flows around the back surface of the processing target wafer 2 to lift the processing target wafer 2 and come into contact with the pad 5. Further, in order to clean the entire surface of the wafer 2 to be processed, the pad 5 must scan the entire surface, so that there must be no protrusion toward the pad 5 side.
In the present embodiment, as shown in FIG. 3, the processing target wafer 2 is accommodated, a recess 28 is provided which is shallower than the thickness of the processing target wafer 2, and the processing target wafer 2 is placed there. The rotational force of the processing target wafer 2 is transmitted from the processing target wafer setting means 3 by the frictional force between the processing target wafer setting means 3 and the processing target wafer 2.
A groove 29 was formed in the depression, and a hole 30 penetrating through the wafer setting means 3 was provided. The gas which has flowed to the back surface of the processing target wafer 2 can be exhausted by these grooves and holes, so that the processing target wafer 2 does not rise.
Similarly, in order to prevent the processing target wafer 2 from being lifted by the gas, the effect can be obtained even if the processing target wafer is strongly brought into close contact with the processing target wafer setting means 3 using an electrostatic chuck or a mechanical chuck.
Further, by adding a temperature adjustment mechanism such as flowing a coolant to the processing target wafer holding means 3 and installing a heater, and controlling the temperature of the processing target wafer 2, the cleaning effect can be further improved.
[0009]
A cleaning procedure applied to the dry cleaning method according to the present embodiment will be described.
In the cleaning procedure, the pad 5 is moved away from the processing target wafer setting means 3 by the vertical movement mechanism 7 in the vacuum vessel 1 evacuated by the vacuum evacuation means, and the processing target wafer 2 is set on the processing wafer setting means 3.
Next, the processed wafer 2 is rotated together with the processed wafer setting means 3 by the wafer rotating mechanism 4. Although the rotation speed was set to 100 rpm, the effect of shaking can be obtained even when the rotation speed is set to 10 to 200 rpm. Subsequently, the pad 5 is made to approach the wafer 2 to be processed by the vertical movement mechanism 7, and gas is ejected from the pad gas introduction system 16.
In the present embodiment, when the pad 5 reaches a distance of 5 mm from the wafer 2 to be processed, gas is ejected. Although 25 slm of argon gas was introduced from the pad gas introduction system, it is also effective to introduce 0.5 to 500 slm of helium, neon, nitrogen, oxygen, carbon dioxide, or a mixture thereof. Further, a gas is also introduced from the plasma gas introduction system 17. CF4 and oxygen gas were introduced from the plasma gas introduction system. The use of Ar, SF6, Cl2, F2, HF or hydrogen gas in the plasma gas introduction system is also effective.
When the gas reaches the set flow rate, plasma is generated in the vacuum vessel 1 by the plasma generating means 9. When the pad 5 is further moved closer to the processing target wafer 2 by the vertical movement mechanism 7, the space between the pad 5 and the processing target wafer 2 becomes narrower, the pressure of the jetted gas increases, and the pad 5 moves to the processing target wafer 2. Although a repulsive force is generated that hinders the approach, the vertical movement mechanism 7 applies a load to forcibly bring the pad 5 closer to the wafer 2 to be processed.
The load applied to the pad 5 is detected from the load measuring device 21. Even when a load is applied to the pad 5, the gas is ejected from the pad gas introduction system between the pad 5 and the processing target wafer 2, so that the pad 5 does not directly contact the processing target wafer 2.
Further, the gas introduced into the pad gas introduction system needs to be pressurized and supplied according to the gas pressure between the pad 5 and the wafer 2 to be processed. In fact, under the conditions of the present embodiment, the gas does not flow unless the pressure is increased to 0.3 MPa, and the gas pressure between the pad 5 and the wafer 2 to be processed is considered to be about 0.3 MPa. In order to supply a sufficient gas flow rate, it is necessary to further pressurize and supply, and in this embodiment, it is set to 0.8 MPa. On the other hand, the inside of the vacuum vessel 1 is evacuated by vacuum evacuation means, and the gas pressure is set to 300 Pa at a position away from the pad 5.
Therefore, the gas pressure fluctuates between about 300 Pa and about 0.3 MPa due to the swing of the pad 5 on the surface of the wafer to be processed. This pressure fluctuation contributes to improving the cleaning power inside the fine structure on the surface of the wafer to be processed. Since it is known that the adhesive force of 0.1 mm particles is several nN, a cleaning effect is obtained if the pressure fluctuation width is 10 kPa or more. Further, the lower the gas pressure in the vacuum vessel, the lower the probability of re-adhesion of the removed foreign matter to the processing target wafer 2, thereby improving the cleaning efficiency.
When the load detected by the pad 5 and the wafer 2 to be processed 2 from the vacuum vessel load measuring device 21 reaches a predetermined load, the scanning mechanism 8 moves the pad 5 in parallel with the surface of the wafer 2 to be processed. The scanning mechanism 8 in the present embodiment is of a type in which the pad 5 is moved on the circumference of the processing target wafer 2 with the radius of the pad arm 6. The pad 5 to which the load is applied and which is close to the wafer 2 to be processed is adjusted by the vertical movement mechanism 7 so that the load detected from the load measuring device 21 is always maintained at a preset load.
In the present embodiment, the set value of the load is set to 120 N, and the distance between the pad 5 and the adjacent surface of the processing target wafer 2 is kept at 30 mm ± 3 mm. The same effect is obtained if the distance is 1 mm to 100 mm, and the load is effective when the distance is 15 N to 600 N. This load is 2 × 10 4 N / m 2 to 8.5 × 10 5 N / m 2 when averaged on the surface of the pad 5 close to the processing target wafer 2. After performing the same number of scans at a preset scan speed, the plasma generation by the plasma generation means 9 is stopped, and the pad 5 is moved away from the wafer 2 to be processed by the vertical movement mechanism 7.
In the present embodiment, the scanning speed from the center to the edge of the wafer is 30 seconds, and one scan is performed from the center to the edge to the center. The gas introduction is stopped when the pad 5 is moved far enough to prevent the possibility that the pad 5 comes into contact with the wafer 2 to be processed.
In the present embodiment, the introduction of gas is stopped when the pad 5 is separated from the wafer 2 by 5 mm. Further, after the pad 5 is moved away from the processing target wafer 2 to a position sufficient to take out the processing target wafer 2, the processing target wafer 2 is taken out, and the cleaning process is completed.
[0010]
With the use of the above-described cleaning apparatus and cleaning method, foreign substances adhering to a semiconductor device wafer can be stably removed in a vacuum with high efficiency and without damaging the wafer. Although the present embodiment has been described assuming a wafer for a semiconductor device as the wafer 2 to be processed, other devices having a fine structure such as a display device such as a liquid crystal panel or a plasma display panel, a magnetic recording disk, and an optical recording disk Alternatively, the present invention can be applied to cleaning of a substrate.
(Embodiment 2)
In the present embodiment, an embodiment in which the shape of the pad is devised will be described.
[0011]
In the present embodiment, the groove shown in FIG. 4 is provided on the outer periphery of the concave shape. When a variation is applied to the gas flow as in the groove processing, a turbulent flow can be generated in the gas flow flowing between the pad 5 and the wafer 2 to be processed. In the turbulent flow, the gas flow velocity rapidly increases near the surface of the wafer 2 as the distance from the surface of the wafer 2 increases. When the gas flow velocity gradient is increased as described above, the frictional stress acting on the surface of the wafer 2 is increased, so that the foreign matter cleaning ability on the surface of the wafer 2 is improved. The groove in FIG. 4 is machined in a triple concentric shape centered on the center of the pad 5, and a uniform turbulence can be generated on the circumference along the groove. (Embodiment 3)
In this embodiment, another embodiment in which the shape of the pad is devised will be described.
[0012]
In the example shown in FIG. 5, grooves that are not continuous in the circumferential direction are machined. In this case, a more extreme turbulence can be generated at the end of the groove, though it is not uniform on the circumference. In such a turbulent flow, the gas flow velocity rapidly increases near the surface of the wafer 2 as the distance from the surface of the wafer 2 increases. When the gas flow velocity gradient is increased, the frictional stress acting on the surface of the wafer 2 is increased, so that the foreign matter cleaning ability on the surface of the wafer 2 is further improved. (Embodiment 4)
As described above, in the cleaning apparatus of this system, the pad 5 and the wafer 2 to be processed are kept at an arbitrary distance of 100 mm or less by the load measuring device 21 and the vertical mechanism 7. However, if an unintended vibration is transmitted from the outside of the apparatus and the pad 5 and the wafer 2 to be processed vibrate with an amplitude of about the above distance, it becomes difficult to maintain the above distance. Therefore, in the present embodiment, as shown in FIG. 6, by installing the present apparatus on the vibration isolation table 31, vibration from the floor on which the apparatus is installed is eliminated.
Since the pump generates vibration, the mechanical booster pump 14 and the dry pump 15 are not installed on the vibration isolation table 31. Further, the mechanical booster pump 14, the dry pump 15 and the vacuum vessel 1 were connected by an anti-vibration pipe 32 so that the vibration of the pump was not transmitted to the vacuum vessel. Bellows piping or piping using a material with a small Young's modulus, such as rubber, is suitable as the seismic isolation piping. As a result, the pad 5 and the processing target wafer 2 can be stably brought close to each other, so that the cleaning power of the present cleaning apparatus can be improved.
[0013]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the foreign substance of a to-be-processed wafer can implement | achieve highly efficient cleaning processing in a vacuum. As a result, in addition to the effect of simplifying the manufacturing process and improving the yield, cleaning can be performed even if the target wafer contains a material that cannot be wet-cleaned, and the effect of reducing the surface modification of the target wafer due to cleaning can be obtained. can get.
Therefore, the manufacturing cost of the semiconductor device can be reduced and the processing accuracy can be improved.
[Brief description of the drawings]
FIG. 1 is a basic configuration diagram according to a first embodiment.
FIG. 2 is a detailed explanatory diagram of a pad according to the first embodiment.
FIG. 3 is a configuration diagram of a processing target wafer setting unit in the first embodiment.
FIG. 4 is an explanatory diagram of a pad having a groove formed on a surface according to a second embodiment;
FIG. 5 is an explanatory diagram of another pad having a groove processed on its surface in the third embodiment.
FIG. 6 is a configuration diagram of a cleaning apparatus using a vibration isolation table according to a fourth embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Vacuum container, 2 ... Wafer to be processed, 3 ... Wafer installation means, 4 ... Wafer rotation mechanism, 5 ... Pad, 6 ... Pad arm, 7 ... Vertical movement mechanism, 8 ... Scanning mechanism, 9 ... Plasma generation means Reference numeral 10 UHF power supply 11 Tuner 12 Antenna 13 Dielectric 14 Mechanical booster pump 15 Dry pump 16 Pad gas introduction system 17 Plasma gas introduction system 18 Circuit box 19 ... pressure measuring instrument, 20 ... shower plate, 21 ... load measuring instrument, 22 ... variable valve, 23 ... spring, 24 ... bearing mechanism, 25 ... spherical bearing, 26 ... pad concave shape maximum diameter, 27 ... pad concave shape Maximum depth, 28: recess of wafer setting means, 29: groove of wafer setting means, 30: hole of wafer setting means, 31: anti-vibration table, 32 JoShin piping.

Claims (12)

容器と、該容器に接続された真空排気手段と、荷重を印加しながら構造体を被処理ウエハに押し付ける機構と、該構造体と該被処理ウエハの間隙にガスを噴出する手段とを有し、該真空排気手段により排気された該容器内にて、該被処理ウエハ表面を洗浄するためのドライ洗浄装置であって、該構造体の中心における該構造体と該被処理ウエハの間隔が該構造体の外周における該構造体と該被処理ウエハの間隔よりも大きく、その差は1mm〜50mmであることを特徴とするドライ洗浄装置。A container, vacuum evacuation means connected to the container, a mechanism for pressing a structure against a wafer to be processed while applying a load, and means for ejecting gas into a gap between the structure and the wafer to be processed. A dry cleaning apparatus for cleaning the surface of the wafer to be processed in the container evacuated by the evacuation means, wherein the distance between the structure and the wafer at the center of the structure is A dry cleaning apparatus characterized in that it is larger than the distance between the structure and the wafer to be processed on the outer periphery of the structure, and the difference is 1 mm to 50 mm. 容器と、該容器に接続された真空排気手段と、荷重を印加しながら構造体を被処理ウエハに押し付ける機構と、該構造体と該被処理ウエハの間隙にガスを噴出する手段とを有し、該真空排気手段により排気された該容器内にて、該被処理ウエハ表面を洗浄するためのドライ洗浄装置であって、溝及び空孔を設けた面に該被処理ウエハを設置することを特徴とするドライ洗浄装置。A container, vacuum evacuation means connected to the container, a mechanism for pressing a structure against a wafer to be processed while applying a load, and means for ejecting gas into a gap between the structure and the wafer to be processed. A dry cleaning apparatus for cleaning the surface of the wafer to be processed in the container evacuated by the vacuum evacuation means, wherein the wafer to be processed is placed on a surface provided with grooves and holes. Features a dry cleaning device. 容器と、該容器に接続された真空排気手段と、荷重を印加しながら構造体を被処理ウエハに押し付ける機構と、該構造体と該被処理ウエハの間隙にガスを噴出する手段とを有し、該真空排気手段により排気された該容器内にて、該被処理ウエハ表面を洗浄するためのドライ洗浄装置であって、洗浄処理中における被処理ウエハ面上のガス圧力は均一でなく最大差が10kPa以上となることを特徴とするドライ洗浄装置。A container, vacuum evacuation means connected to the container, a mechanism for pressing a structure against a wafer to be processed while applying a load, and means for ejecting gas into a gap between the structure and the wafer to be processed. A dry cleaning apparatus for cleaning the surface of the wafer to be processed in the container evacuated by the vacuum evacuation means, wherein the gas pressure on the surface of the wafer to be processed during the cleaning process is not uniform and has a maximum difference. Is 10 kPa or more. 容器と、該容器に接続された真空排気手段と、荷重を印加しながら構造体を被処理ウエハに押し付ける機構と、該構造体と該被処理ウエハの間隙にガスを噴出する手段とを有し、該真空排気手段により排気された該容器内にて、該被処理ウエハ表面を洗浄するためのドライ洗浄装置であって、該荷重は該構造体の該被処理ウエハに近接する面にて平均2×10〜8×10N/mとなることを特徴とするドライ洗浄装置。A container, vacuum evacuation means connected to the container, a mechanism for pressing a structure against a wafer to be processed while applying a load, and means for ejecting gas into a gap between the structure and the wafer to be processed. A dry cleaning apparatus for cleaning the surface of the wafer to be processed in the container evacuated by the vacuum evacuation means, wherein the load is averaged on a surface of the structure close to the wafer to be processed. A dry cleaning device characterized by 2 × 10 4 to 8 × 10 5 N / m 2 . 容器と、該容器に接続された真空排気手段と、荷重を印加しながら構造体を被処理ウエハに押し付ける機構と、該構造体と該被処理ウエハの間隙にガスを噴出する手段とを有し、該真空排気手段により排気された該容器内にて、該被処理ウエハ表面を洗浄するためのドライ洗浄装置を用いたドライ洗浄方法であって、洗浄処理中における被処理ウエハ面上のガス圧力は均一でなく最大差が10kPa以上となることを特徴とするドライ洗浄方法。A container, vacuum evacuation means connected to the container, a mechanism for pressing a structure against a wafer to be processed while applying a load, and means for ejecting gas into a gap between the structure and the wafer to be processed. A dry cleaning method using a dry cleaning device for cleaning the surface of the wafer to be processed in the container evacuated by the vacuum evacuation means, wherein the gas pressure on the surface of the wafer to be processed during the cleaning process is Is a non-uniform, and the maximum difference is 10 kPa or more. 容器と、該容器に接続された真空排気手段と、荷重を印加しながら構造体を被処理ウエハに押し付ける機構と、該構造体と該被処理ウエハの間隙にガスを噴出する手段とを有し、該真空排気手段により排気された該容器内にて、該被処理ウエハ表面を洗浄するためのドライ洗浄装置を用いたドライ洗浄方法であって、該荷重は該構造体の該被処理ウエハに近接する面にて平均2×10〜8×10N/mとなることを特徴とするドライ洗浄方法。A container, vacuum evacuation means connected to the container, a mechanism for pressing a structure against a wafer to be processed while applying a load, and means for ejecting gas into a gap between the structure and the wafer to be processed. A dry cleaning method using a dry cleaning device for cleaning the surface of the wafer to be processed in the container evacuated by the vacuum exhaust means, wherein the load is applied to the wafer to be processed of the structure. A dry cleaning method characterized by an average of 2 × 10 4 to 8 × 10 5 N / m 2 on an adjacent surface. 容器と、該容器に接続された真空排気手段と、荷重を印加しながら構造体を被処理ウエハに押し付ける機構と、該構造体と該被処理ウエハの間隙にガスを噴出する手段とを有し、該真空排気手段により排気された該容器内にて、該被処理ウエハ表面を洗浄するためのドライ洗浄装置であって、該構造体の該被処理ウエハに近接する面に溝があることを特徴とするドライ洗浄装置。A container, vacuum evacuation means connected to the container, a mechanism for pressing a structure against a wafer to be processed while applying a load, and means for ejecting gas into a gap between the structure and the wafer to be processed. A dry cleaning apparatus for cleaning the surface of the wafer to be processed in the container evacuated by the vacuum evacuation means, wherein a groove is formed on a surface of the structure adjacent to the wafer to be processed. Features a dry cleaning device. 容器と、該容器に接続された真空排気手段と、荷重を印加しながら構造体を被処理ウエハに押し付ける機構と、該構造体と該被処理ウエハの間隙にガスを噴出する手段とを有し、該真空排気手段により排気された該容器内にて、該被処理ウエハ表面を洗浄するためのドライ洗浄装置であって、該構造体の該被処理ウエハに近接する面に円周方向に連続でない溝があることを特徴とするドライ洗浄装置。A container, vacuum evacuation means connected to the container, a mechanism for pressing a structure against a wafer to be processed while applying a load, and means for ejecting gas into a gap between the structure and the wafer to be processed. A dry cleaning apparatus for cleaning the surface of the wafer to be processed in the container evacuated by the vacuum evacuation means, wherein the apparatus is circumferentially continuous with a surface of the structure adjacent to the wafer to be processed. Dry cleaning device characterized in that there is a non-groove. 互いに近接するウエハとガス噴出のための構造体との間にガス流を生じさせてウエハ主面を洗浄するドライ洗浄装置と、除震台とを有し、該ドライ洗浄装置は該除震台に設置されていることを特徴とする半導体製造装置。A dry cleaning apparatus for generating a gas flow between a wafer and a structure for gas ejection that are close to each other to clean a main surface of the wafer; and a vibration isolation table, wherein the dry cleaning apparatus includes the vibration isolation table. A semiconductor manufacturing apparatus installed in a semiconductor device. 容器と、該容器に接続された真空排気手段と、荷重を印加しながら構造体を被処理ウエハに押し付ける機構と、該構造体と該被処理ウエハの間隙にガスを噴出する手段とを有し、該真空排気手段により排気された該容器内にて、該被処理ウエハ表面を洗浄するためのドライ洗浄装置であって、該容器と該容器を設置する床との間又は該容器と該真空排気手段との間及びその両方に除震機構を設置することを特徴とするドライ洗浄装置。A container, vacuum evacuation means connected to the container, a mechanism for pressing a structure against a wafer to be processed while applying a load, and means for ejecting gas into a gap between the structure and the wafer to be processed. A dry cleaning apparatus for cleaning the surface of the wafer to be processed in the container evacuated by the vacuum evacuation means, wherein the apparatus is provided between the container and a floor on which the container is installed, or between the container and the vacuum A dry cleaning apparatus characterized in that a vibration isolation mechanism is installed between the exhaust means and both of them. 請求項1〜4及び請求項7、8、10記載のドライ洗浄装置において、該容器内にプラズマを発生させる手段を有することを特徴とするドライ洗浄装置。11. The dry cleaning apparatus according to claim 1, further comprising means for generating a plasma in the container. 請求項5、6記載のドライ洗浄方法において、該容器内にプラズマを発生させることを特徴とするドライ洗浄方法。7. The dry cleaning method according to claim 5, wherein plasma is generated in the container.
JP2002216009A 2002-07-25 2002-07-25 Dry cleaning apparatus and dry cleaning method Expired - Fee Related JP3991805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216009A JP3991805B2 (en) 2002-07-25 2002-07-25 Dry cleaning apparatus and dry cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216009A JP3991805B2 (en) 2002-07-25 2002-07-25 Dry cleaning apparatus and dry cleaning method

Publications (3)

Publication Number Publication Date
JP2004063520A true JP2004063520A (en) 2004-02-26
JP2004063520A5 JP2004063520A5 (en) 2005-09-02
JP3991805B2 JP3991805B2 (en) 2007-10-17

Family

ID=31937882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216009A Expired - Fee Related JP3991805B2 (en) 2002-07-25 2002-07-25 Dry cleaning apparatus and dry cleaning method

Country Status (1)

Country Link
JP (1) JP3991805B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057395A1 (en) * 2007-11-02 2009-05-07 Canon Anelva Corporation Substrate cleaning method for removing oxide film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057395A1 (en) * 2007-11-02 2009-05-07 Canon Anelva Corporation Substrate cleaning method for removing oxide film
CN101919030B (en) * 2007-11-02 2012-07-04 佳能安内华股份有限公司 Substrate cleaning device and method, and method for forming grid insulating film in MOS structure
US10083830B2 (en) 2007-11-02 2018-09-25 Canon Anelva Corporation Substrate cleaning method for removing oxide film

Also Published As

Publication number Publication date
JP3991805B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
TWI553717B (en) A focusing ring and a substrate processing device provided with the focusing ring
KR100929449B1 (en) Substrate Processing Unit and Focus Ring
US6892738B2 (en) Apparatus and methods for reducing damage to substrates during megasonic cleaning processes
US7578302B2 (en) Megasonic cleaning using supersaturated solution
JP2008243937A (en) Equipment and method for treating substrate
JP2008171899A (en) Method of improving heat transfer of focus ring in placement device for processing substrate
JPH06163467A (en) Etching device
JP2006257495A (en) Substrate holding member and substrate treatment device
JP2008251742A (en) Substrate treating apparatus, and substrate mounting base on which focus ring is mounted
KR100440380B1 (en) Dry Cleaning Apparatus
KR20040014079A (en) Apparatus for cleaning a substrate
KR20120049823A (en) Plasma processing apparatus
KR101110905B1 (en) Megasonic cleaning using supersaturated cleaning solution
US6837963B2 (en) Semiconductor device, method of producing a semiconductor device, and semiconductor substrate cleaning apparatus used for the production method
JP3991805B2 (en) Dry cleaning apparatus and dry cleaning method
JP2002009065A (en) Plasma cvd device
JP4125278B2 (en) Dummy processing method for chemical mechanical polishing apparatus and polishing pad conditioning method
JP4033730B2 (en) Substrate mounting table for plasma processing apparatus, plasma processing apparatus, and base for plasma processing apparatus
JP4417600B2 (en) Etching method
US20020049029A1 (en) System and method for chemical mechanical polishing
JP3969907B2 (en) Plasma processing equipment
KR100667675B1 (en) Atmospheric pressure plasma apparatus used in etching of an substrate
JP2002329690A (en) Semiconductor wafer manufacturing method
JPH11317396A (en) Etching system
KR100927029B1 (en) Transducer and Substrate Cleaning Apparatus Comprising the Same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees