JP2004063414A - Vacuum container for cathode ray tube, its manufacturing method, display device and its manufacturing method - Google Patents

Vacuum container for cathode ray tube, its manufacturing method, display device and its manufacturing method Download PDF

Info

Publication number
JP2004063414A
JP2004063414A JP2002223572A JP2002223572A JP2004063414A JP 2004063414 A JP2004063414 A JP 2004063414A JP 2002223572 A JP2002223572 A JP 2002223572A JP 2002223572 A JP2002223572 A JP 2002223572A JP 2004063414 A JP2004063414 A JP 2004063414A
Authority
JP
Japan
Prior art keywords
glass
metal member
metal
cathode ray
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002223572A
Other languages
Japanese (ja)
Inventor
Tamao Asaki
浅木 玲生
Mitsuo Hashimoto
橋本 光生
Shirou Kenmotsu
見物 四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002223572A priority Critical patent/JP2004063414A/en
Publication of JP2004063414A publication Critical patent/JP2004063414A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a weight of a vacuum container for a cathode ray tube and to improve its reliability. <P>SOLUTION: This vacuum container for a cathode ray tube is composed of glass members 12, 13, 14 and metallic members 15, 16, 17, and the metallic members 15, 16 are partially buried in the glass members 12, 13 to be air-tightly joined at a joining part of the glass members 12, 13 and the metallic members 15, 16. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、テレビジョン受像機やコンピュータディスプレイモニタを始めとする各種機器のモニタ装置等に広く利用されている表示装置とその製造方法、及び表示装置に用いられる陰極線管用真空容器とその製造方法に関する。
【0002】
【従来の技術】
一般に、カラーテレビジョン受像機等に用いられているカラー陰極線管は、画面表示部であるガラスパネルと背面部材を有する管体(真空容器)と、この管体内の背面部材側に配置された電子放出源を備えて成る。図17は、通常のカラー陰極線管のガラス管体(真空容器)1を示し、夫々がガラスからなるパネル2と、ネック部3を一体に有したファンネル4とをフリットガラス5を介して接合して構成される。ネック部3を一体に有する漏斗状のファンネル4が背面部材に相当し、ネック部3内に電子放出源となる電子銃が配置される。図18は、平面カソード等を用いた平板型陰極線管、例えばフィールドエミッションディスプレイ(FED)用の陰極線管のガラス管体(真空容器)6を示し、前面ガラスパネル7と、背面ガラスパネル8と、側面を形成するガラス支持部材9とを、相互にフリットガラス10を介して接合して構成される。このようなガラス製真空容器、いわゆるガラス管体1、6の封着方法としては、パネル2とファンネル4とを、また前面ガラスパネル7と背面ガラスパネル8とをガラス支持部材部材9を介して、それぞれフリットガラス(低融点ガラス)により約450℃で加熱封着する方法が一般的である。
【0003】
これまでに、管体にセラミックやセラミックコーティングをした金属を用いたもの(特開平3ー263741号公報)、シール部の金属にガラスろうの被膜を設けたもの(特開昭47ー39420号公報)、管体を形成する金属を直接ガラスに封着するようにしたもの(特開昭53ー145555号公報)等が提案されている。
【0004】
近年、画像表示装置の大画面化への需要が高まり、陰極線管の大型化に伴った重量低減と全長低減が求められている。今後、更なる陰極線管の大型化を実現するためには、更なる真空容器の軽量化及び平板型陰極線管の実現による薄型化が要求される。これらを達成する技術として、特願2000ー279145号(特開2002ー93322号)で提案したように、光学特性を問わない画面表示部以外の全部、又は一部を比強度の高い金属で形成し、高強度かつ軽量な陰極線管用の真空容器を実現する方法がある。
【0005】
【発明が解決しようとする課題】
陰極線管の真空容器(管体)には、大気圧に耐え得るだけの強度が必要である。特に、ガラスと金属といった異種材料間の接合を用いる場合は、接合部の強度が高いこと、気密封着性が長期間保証でること、の条件を満足する必要がある。フリットガラスを用いたガラスと金属の接合方法は、真空容器の強度向上限界があった。また、金属を直接ガラスに封着する方法においては、ガラスの残留応力の小さい、信頼性の高い接合形態とその製造方法に関しての詳しい提案がなされていないのが現状であった。
【0006】
一方、ガラスと金属からなる真空容器を作製する際には、ガラスパネルと金属スカートを封着接合した後、背面金属部材を溶接する方法が好ましい。最終的な封止工程を溶接にすることで、フリットガラスを用いる場合のような高温の焼成工程を経ずに常温下での封止が可能となり、デバイスに要求される耐熱性が下げられる利点がある。しかし、ガラスパネル/金属スカートの封着体と背面金属部材との溶接では、溶接時の熱で金属部材が熱膨張し、ガラスにクラックが発生するといった悪影響を及ぼす虞れがあり、実現が難しかった。
これまで、陰極線管用の真空容器の封止溶接に関しては特開平5ー166462号公報に示されるような溶接方法、溶接条件に関する提案はあるが、溶接位置に関した提案はない。
【0007】
本発明は、上述の点に鑑み、軽量化、高信頼性化を図った陰極線管用真空容器とその製造方法、及びこの陰極線管用真空容器を備えて軽量化、高信頼性化を図った表示装置とその製造方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明に係る陰極線管用真空容器は、ガラス部材と金属部材とからなり、ガラス部材に金属部材の一部が埋め込まれて気密的に接合された構成とする。
【0009】
本発明の陰極線管用真空容器では、ガラス部材と金属部材からなるので、軽量且つ高強度の真空容器が得られ、耐熱性、耐熱衝撃性に優れる。ガラス部材に金属部材の一部を埋め込んで気密的に接合されるので、ガラス/金属接合部の残留応力が小さく高強度に接合され高い気密性を有する。封着材料が不要になる。
【0010】
本発明に係る陰極線管用真空容器の製造方法は、ガラス部材と金属部材とからなる陰極線管用真空容器の製造方法であって、ガラス部材を徐冷点温度以上に予備加熱する工程と、金属部材の埋込み端部を1150℃〜1250℃の範囲で加熱する工程と、加熱した金属部材をガラス部材に近接させてガラス部材の埋込み部を局所加熱する工程と、金属部材を前記ガラス部材内に押し込んで埋め込み、一定時間保持する工程と、この押し込んだ金属部材を押し込み方向とは逆方向に一部戻し、一定時間保持してガラス部材と金属部材との気密接合を行う工程とを有する。
【0011】
本発明の陰極線管用真空容器の製造方法では、ガラス部材を徐冷点温度以上に予備加熱して金属部材を埋め込むので、ガラス割れが生じないで埋め込むことができる。金属部材の埋込み端部を1150℃〜1250℃の範囲出加熱するので、埋込み時間、アニール時間の短縮が図れる。上記一連の工程を有することにより、ガラス部材と金属部材が高強度で接合され、軽量、高強度の真空容器の製造が可能になる。
【0012】
本発明に係る陰極線管用真空容器は、ガラス部材と金属部材とからなり、ガラス部材に接合された第1の金属部材に対して第2の金属部材がガラス部材との接合部から15mm以上離れた位置で溶接された構成とする。
【0013】
本発明の陰極線管用真空容器では、ガラス部材と金属部材からなるので、軽量且つ高強度の真空容器が得られ、耐熱性、耐熱衝撃性に優れる。ガラス部材に接合された第1の金属部材に対して第2の金属部材がガラス部材との接合部から15mm以上離れた位置で溶接されるので、溶接熱がガラス/金属接合部へ影響を与えず、ガラス部材にクッラクが発生しない。
【0014】
本発明に係る陰極線管用真空容器の製造方法は、ガラス部材と金属部材とからなる陰極線管用真空容器の製造方法であって、ガラス部材に接合された第1の金属部材に対して第2の金属部材を、ガラス部材との接合部から15mm以上離れた位置で溶接する工程を有する。
【0015】
本発明の陰極線管用真空容器の製造方法では、ガラス部材に接合された第1の金属部材に対して第2の金属部材を、ガラス部材との接合部から15mm以上離れた位置で溶接する工程を有するので、溶接時に溶接熱がガラス/金属溶接部へ影響を与えず、溶接熱に起因した金属部材の熱膨張によるガラスクッラクが生じない。これにより、軽量且つ高強度で信頼性の高い陰極線管用真空容器の製造が可能になる。
【0016】
本発明に係る表示装置は、ガラス部材と金属部材とからなる陰極線管用真空容器を備えた表示装置であって、ガラス部材と金属部材との接合部において、ガラス部材に金属部材の一部が埋め込まれて気密的に接合されてた構成とする。
【0017】
本発明の表示装置では、ガラス部材と金属部材とかなる陰極線管用真空容器を備えるので、軽量且つ高強度の表示装置が得られ、耐熱性、耐熱衝撃性に優れる。真空容器において、ガラス部材に金属部材の一部を埋め込んで気密的に接合されるので、ガラス/金属接合部の強度が高く且つ高い気密性が得られる。
【0018】
本発明に係る表示装置の製造方法は、ガラス部材と金属部材とからなる陰極線管用真空容器を備えた表示装置の製造方法であって、ガラス部材を徐冷点温度以上に予備加熱する工程と、金属部材の埋込み端部を1150℃〜1250℃の範囲で加熱する工程と、加熱した金属部材をガラス部材に近接させてガラス部材の埋込み部を局所加熱する工程と、金属部材を前記ガラス部材内に押し込んで埋め込み、一定時間保持する工程と、この押し込んだ金属部材を押し込み方向とは逆方向に一部戻し、一定時間保持してガラス部材と金属部材との気密接合を行う工程とを有して、陰極線管用真空容器の作製する。
【0019】
本発明の表示装置の製造方法では、特に陰極線管用真空容器の製造において、ガラス部材を徐冷点温度以上に予備加熱して金属部材を埋め込むので、ガラス割れが生じないで埋め込むことができる。金属部材の埋込み端部を1150℃〜1250℃の範囲出加熱するので、埋込み時間、アニール時間の短縮が図れる。上記一連の工程を有することにより、ガラス部材と金属部材が高強度で接合され、軽量、高強度の真空容器の製造が可能になる。
【0020】
本発明に係る表示装置は、ガラス部材と金属部材とからなる陰極線管用真空容器を備えた表示装置であって、ガラス部材に接合された第1の金属部材に対して第2の金属部材が、ガラス部材との接合部から15mm以上離れた位置で溶接された構成とする。
【0021】
本発明の表示装置では、ガラス部材と金属部材とかなる陰極線管用真空容器を備えるので、軽量且つ高強度の表示装置が得られ、耐熱性、耐熱衝撃性に優れる。真空容器において、ガラス部材に接合された第1の金属部材に対して第2の金属部材がガラス部材との接合部から15mm以上離れた位置で溶接されるので、溶接熱がガラス/金属接合部へ影響を与えず、ガラス部材にクッラクが発生しない。
【0022】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
【0023】
図 は、本発明に係る陰極線管用真空容器の一実施の形態を示す。本実施の形態に係る陰極線管用真空容器、即ち管体11は、平板状のガラスパネル12と、ガラスコーン部13を一体に有するガラスネック部14と、パネルスカート部となる第1の金属部材15と、ガラスコーン部13に接合する第2の金属部材16と、主たるファンネルとなる第3の金属部材17とから成る。
【0024】
第1の金属部材15は、その一端部がガラスパネル12の内面側よりガラス12内に埋め込まれて、ガラスパネル12と封着接合、即ち気密的に接合される。第2の金属部材16は、その一端部がガラスネック部14側のガラスコーン部13内に埋め込まれて、ガラスコーン部13と気密的に接合される。ガラスパネル12に接合された第1の金属部材15は、その他端部が第3の金属部材17の一端部に突き合わされ、その突き合わせ部18において互いの溶接されて気密的に接合される。ガラスコーン部13に接合された第2の金属部材16は、その他端部が第3の金属部材17の他端部に突き合わされ、その突き合わせ部19において互いに溶接されて気密的に接合される。このようにして、ガラス部材と金属部材とからなる陰極線管用の管体11が構成される。コーン部13は、偏向ヨーク25の磁界を遮蔽しないようにガラス製とされる。
【0025】
ガラス部材と接合される金属部材、即ちパネルスカート部を構成する第1の金属部材15及びガラスコーン部13と接合される第2の金属部材16は、その熱膨張係数が夫々対応するガラスパネル12の熱膨張係数及びガラスコーン部13の熱膨張係数の0.9〜1.2倍、好ましくは1.0〜1.1倍であり、且つ少なくともガラス部材内に埋め込まれる金属部材表面に酸化膜80(図7参照)が形成されているものとする。熱膨張係数が0.9倍より小さい、または1.2倍より大きいと、ガラス部材が割れて接合が難しく、仮に接合が良かったとしても後工程の熱衝撃で内部の残留応力が大きくなりガラス部材に割れが発生し、信頼性が悪くなる。接合部の金属部材表面の酸化膜80は、酸化物で構成されるガラス部材との接合に必要である。
【0026】
第1及び第2の金属部材15及び16としては、鉄クロム合金、鉄ニッケル合金、鉄ニッケルクロム合金、鉄ニッケルコバルト合金等の1種を用いることができる。具体的には、Feー18Cr合金、Feー42Niー6Cr合金、Feー47Niー6Cr合金等が挙げられる。第3の金属部材17は、ガラス部材と接合されず溶接での接合であるから、熱膨張係数を考慮することなく、且つ表面酸化膜を必要とせず、安価なFe鋼板を使用することができる。なお、第3の金属部材17は、第1及び第2の金属部材15及び16と同様のものを使用することも可能である。
【0027】
このようにガラス部材と金属部材から構成される真空容器としての管体11は、陰極線管用の管体として十分に機能する。すなわち、この管体11は、製造時では排気工程における最大350℃のベーキング温度に耐えうる耐熱性、耐衝撃性を有し、実働時では大気圧下で真空容器である管体が破壊せず、高真空を長期にわたって維持できる信頼性の高い管体である。この管体11は、ガラスと金属が接合した接合部の残留応力が小さく高強度に接合されており、高気密性を有している。
【0028】
図4は、上述の管体11を備えてなるカラー陰極線管の実施の形態を示す。本実施の形態に係るカラー陰極線管21は、管体11の平板状のガラスパネル12の内面に赤、緑及び青の各色蛍光体層、例えば各色蛍光体ストライプからなるカラー蛍光面22が形成され、この蛍光面22に対向して例えばアパーチャグリル、シャドウマスク等の色選別機構23は配置され、ガラスネック部14内に電子銃24が配置されて成る。ガラスコーン部13の外側には電子銃24からの電子ビームを画面の水平、垂直方向へ走査させるための偏向ヨーク25が配置される。色選別機構23は、パネルスカート部となる第1の金属部材15に金属ピン26設け、この金属ピン26に支持する。金属ピン26は、溶接で付けるか、プレス加工で第1の金属部材15と一体に成形するとができる。
【0029】
図2及び図3は、本発明に係る陰極線管用真空容器を、平面カソード、例えばフィールドエミッション(電界放出)型カソードを備えた平板型陰極線管用の真空容器(管体)に適用した他の実施の形態を示す。
【0030】
図2の本実施の形態に係る平板型陰極線管用真空容器、即ち平板型管体31は、蛍光面が形成される平板状のガラスパネル32と、平板状の背面ガラスパネル33と、管体の側板に相当する枠状の第1及び第2の金属部材34及び35とから成る。第1の金属部材34は、その一端部がガラスパネル32の内面側よりガラスパネル32内に埋め込まれてガラスパネル32と気密的に接合される。第2の金属部材35は、その一端部が背面ガラスパネル33の内面側より背面ガラスパネル33内に埋め込まれて背面ガラスパネル33と気密的に接合される。第1及び第2の金属部材33及び34同士は、互いに他端部が突き合わされ、その突き合わせ部36において溶接により気密的に接合される。このようにして、ガラス部材と金属部材からなる平板型陰極線管用の管体31が構成される。
第1及び第2の金属部材34及び35は、前述した図1の金属部材15及び16と同様の金属材料で作製することができる。
【0031】
図3の本実施の形態に係る平板型陰極線管用の平板型管体41は、蛍光面が形成される平板状のガラスパネル42と、管体の側板に相当する枠状の第1の金属部材43と、背面パネルとなる第2の金属部材44とから成る。第1の金属部材43はその一端部がガラスパネル42内面に埋め込まれてガラスパネル42と気密的に接合される。、第1の金属部材43及び背面パネルとなる第2の金属部材44同士は、互いに端部が突き合わされその突き合わせ部45において溶接により気密的に接合される。このようにして、ガラス部材と金属部材から成る平板型陰極線管の管体41が構成される。
【0032】
かかる平板型管体31あるいは41内に、図示せざるも平面カソード、例えばフィールドエミッション型カソードとこれに対向する制御電極とが配置され、ガラスパネル32あるいは42の内面に赤、緑及び青の各色蛍光体層、例えば各色蛍光体ストライプからなるカラー蛍光面が形成されて平板型カラー陰極線管が構成される。
【0033】
次に、上述の陰極線管用真空容器(即ち管体)の製造方法、及びその製造装置の実施の形態を説明する。
【0034】
図5は、製造装置、特に金属部材をガラス部材に埋め込んで接合するための製造装置の一例である。本実施の形態の製造装置51は、炉筐体52内の下方にガラス部材を載置して上下移動可能なカーボン製架台53と、その下に例えばカーボン製の架台53を通してガラス部材を予備加熱するためのヒータ54が配置され、カーボン製架台53に対向する上方にガラス部材に接合する金属部材を保持する上下動可能な例えばカーボン製のホルダー55と、金属部材の接合部を局所的に加熱するための高周波誘導加熱手段56、即ち高周波コイル57及び高周波電源58が配置されて成る。図示の例では、ガラス部材としてガラスパネル12が載置され、金属部材としてパネルスカート部となる第1の金属部材15が配置される。
【0035】
図6は、陰極線管用管体の製造方法、ここでは金属部材のガラス部材への埋込み接合のプロセスフローチャートを示す。
先ず、図5の製造装置51のカーボン製架台53上にガラス部材の例えばガラスパネル12を載置固定する。また、カーボン製ホルダー55に金属部材の例えばパネルスカート部となる第1の金属部材15を保持する。
次に、図6のステップS1 でヒータ54をオンしてガラスパネル12を予備加熱する。この予備加熱は、ガラスの徐冷点温度以上でガラス変形が起こらない温度まで、即ち   〜   ℃の範囲に昇温する。このガラスの徐冷点温度、即ちガラスに歪みが生じない温度まで昇温して置くことによって、後述するガラス割れが生じないで埋め込むことが可能になる。
【0036】
次に、このガラスパネル12を予備加熱した後、ステップS2 で高周波電源56をオンして、第1の金属部材15の接合部、即ち埋込み端部を局部的に高周波誘導加熱手段56により、所要の温度、例えば1150℃〜1250℃の範囲まで加熱する。
次に、ステップS3 で架台53を上昇させガラスパネル12を第1の金属部材15に近接させ(図7A参照)、ガラスパネル12の埋込み部となる部分を、高周波誘導加熱されている金属部材15からの熱輻射により局所的に加熱する。このとき、図7Aに示すように、金属部材15の少なくとも埋込まれる部分(埋込み端部)の表面には、酸化膜80が形成されている。
【0037】
次に、ステップS4 でホルダー55を下側へ可動し、金属部材15に荷重を印加して金属部材15の端部をガラスパネル12の局部的に溶けた埋込み部内に埋め込む。そしてステップ5 で、所定の押し込み量D1 になったところで一定時間保持する(図7B参照)。
次に、ステップS6 で架台53とホルダー55とを相対的に可動し、例えば架台53を下降させ、ガラスパネル12と金属部材15との濡れ角θが90°以上(図8参照)になるように、押し込み量D1 の1/2以下、好ましくは1/3程度まで金属部材15を引き抜き(図7C参照)、ステップS7 で所定の引き抜き量(いわゆる挿入方向と逆方向への戻し量)になったところで一定時間保持する。
【0038】
一定時間経過後、ステップS8 で高周波加熱をオフして、埋込み完了した接合部材、即ちガラスパネル12及び金属部材15を降温し、室温まで例えば平均冷却速度3℃/分以下で徐冷する。このようにして、埋込み深さD2 としたガラスパネル12と第1の金属部材15との埋込み封着接合が終了する。
【0039】
ガラスコーン部13と第2の金属部材16との埋込み封着接合も同様にして行われる。その後、第1の金属部材15と第2の金属部材16と第3の金属部材17との相互の気密的な溶接(いわゆる溶接による封着接合)が行われ、目的のガラス部材と金属部材からなる陰極線管用の管体11が製造される。この溶接については後述する。
【0040】
図示せざるも、図2の平板型管体31、及び図3の平板型管体41も同様にして製造される。
【0041】
表1は、ガラスパネル12と第1の金属部材15を上述の製造プロセスを用いて埋込み封着接合の試験結果を示す。
ガラスパネル12のサイズは対角7インチである。第1の金属部材15は、鉄18%クロム合金で作製した。ガラスパネル12の予備加熱温度は580℃、埋込み深さD2 は2mm(押し込み量3mm、引き抜き量1mm)、埋込み荷重は6kgで共通である。第1の金属部材15の温度は比較例1、2が1050℃、実施例1が1150℃、実施例2が1180℃とした。埋込み時間、即ち埋込み開始(ステップS4 )から埋込み終了(ステップS7 )までの時間は比較例1が5分、比較例2が15分、実施例1、2が3分である。徐冷時間は比較例1が12時間、比較例2が24時間、実施例1、2が6時間である。
【0042】
【表1】

Figure 2004063414
【0043】
表1によれば、比較例1以外では徐冷後にガラスクッラクの発生が無く、ガラス/金属の埋込み封着が成功した。比較例2、実施例1、2を比較すると、金属部材温度が高いほど埋め込み時間、徐冷時間が短縮でき、ガラスの濡れ角θが大きくなった。ただし、金属部材温度が高過ぎると結晶粒粗大化が進み、金属材料が脆化するので好ましくない。好ましい金属部材の温度範囲は1150℃〜1250℃である。
実施例2の条件において、最もガラス濡れ角θが大きく、接合部の残留応力の小さい良好な埋込み封着が実現された。接合部のガラス濡れ角θが90℃以上で大きいほど応力集中が緩和でき、残留応力が小さく接合強度が高くなる。また、徐冷時の冷却速度を速めることができ、徐冷時間が短縮できる。
【0044】
上述した本実施の形態によれば、陰極線管用の真空容器(管体)11、31又は41を、ガラス部材と金属部材とから構成するので、陰極線管用真空容器11、31又は41、ひいては陰極線管の軽量化、高強度化を可能にする。高強度の陰極線管用真空容器11、平板型陰極線管用の真空容器31、41を実現することができる。
真空容器において、ガラス部材と金属部材を埋込み封着接合し、その接合部のガラス濡れ角θを90°以上とすることにより、ガラス/金属接合部の残留応力が小さく、高強度で接合できる融着形態となる。長期間の高真空保持が可能な、信頼性の高い気密封着が可能になる。
埋込み封着接合はフリットガラス或いは低融点金属(半田)などの封着材料が必要ないため、低コストであり、製造プロセスが簡単になる。フリットガラスを用いないため、鉛の使用がなく(いわゆる鉛フリーであり)、低環境負担となり、また真空容器のリサイクルを容易にする。
【0045】
なお、上述の実施の形態におけるガラス部材と金属部材との埋込み封着接合は、上述の2形態の陰極線管用の真空容器に限らず、真空容器としての機能が要求される他の用途への応用が可能である。
【0046】
次に、上述したガラス部材と金属部材からなる陰極線管用真空容器の金属部材同士の封止溶接に係る実施の形態を説明する。
本実施の形態に係る封止溶接は、ガラス部材と金属部材間の封着接合として、前述した図1、図2、図3に示す埋込み封着接合を用いた場合、あるいは、図9、図10、図11に示す低融点ガラス(いわゆるフリットガラス)、あるいは低融点金属(いわゆる半田等)等の低融点接合部材60を介して封着接合を行う場合に適用できる。図12に示すように、ガラス部材61と金属部材62とを例えばフリットガラス601を介して封着接合する場合は、金属部材62の接合部分の表面に酸化膜63を形成して接合する。図13に示すように、ガラス部材61と金属部材62とを例えば低融点金属602を介して封着接合する場合は、金属部材62の接合部分の表面に酸化膜を形成する必要はない。
【0047】
本実施の形態に係るガラス部材と金属部材とからなり金属部材同士を溶接接合する陰極線管用真空容器(管体)は、特に、そのガラス部材に接合された金属部材と他の金属部材とを封止溶接する際に、ガラス部材との接合部から距離L1 が15mm以上離れた位置で溶接して構成される。これにより、溶接熱によるガラス/金属溶接部の金属部材の温度上昇が小さく抑えられ、金属部材の溶接時の熱膨張によるガラス部材側でのクラック発生を抑制することができる。
【0048】
図14A〜図14Cは、溶接部位の形態例を示す。本例では、ガラス部材12と金属部材15とを低融点接合材60を介して接合した場合でる。溶接する場合、例えば図14Aに示すように、金属部材15及び17をその接合端面を直接突き合わせて溶接しても良い。71は溶接部である。また、図14Bに示すように、金属部材15及び17の端部の側面同士を重ね合わせて溶接しても良い。72は溶接部である。更に図14Cに示すように、金属部材15及び17に接合代として折曲したフランジ部15a及び17aを設け、両フランジ部15a及び17aを重ね合わせて溶接するようにしても良い。73は溶接部である。そして、夫々の溶接形態においても、その溶接部71、72、73は、ガラス部材12との接合部から距離L1 が15mm以上離れた位置で行うようにする。
【0049】
図15A〜図15Cは、ガラス部材12と金属部材15とを前述の図1と同様の埋込み封着接合した場合の溶接部位の形態例を示す。本例も上述の図14A〜図14Cと同様に、金属部材15及び17をその接合端面を直接突き合わせて溶接することもでき(図15A参照)、金属部材15及び17の端部の側面同士を重ね合わせて溶接することもでき(図15A参照)、金属部材15及び17に接合代として折曲したフランジ部15a及び17aを設け、両フランジ部15a及び17aを重ね合わせて溶接することもできる(図15C参照)。そして、夫々の溶接部71、72、73は、ガラス部材12との接合部から距離L1 が15mm以上離れた位置で行うようにする。
【0050】
この溶接形態は、他の金属部材16及び17間でも同様であり、図2及び図3の真空容器31及び41の金属部材同士の溶接でも同様である。
【0051】
ガラス部材に接合した金属部材と他の金属部材との溶接時の相互位置精度、溶接性を考慮した場合、溶接代を作る方が製造性が良く好ましい。特に、溶接代としてフランジ部を形成した場合、真空容器の奥行きを増すことなく封着接合部からの距離L1 を取ることができる。また、フランジ部は金属部材の耐真空強度を向上させ、溶接時の熱による部材変形を抑制する効果があり、ガラス/金属接合部における残留応力の小さい、高強度、高信頼性の真空容器を作製することができる。
【0052】
溶接位置の実験例を示す。図16に示すL字型金属部材(Feー18Cr材)15をフリットガラス601でガラス部材12に接合したサンプルを作製し、L字型金属部材15に別の金属部材17(図示せず)をレーザ溶接を行った。ガラス/金属接合面75からの距離L0 を変えて溶接を行い、ガラスクラックが生じる距離を求めた。この結果、ガラス/金属接合面75から溶接位置76までの距離をL0 としたとき、L0 =15mm以上ではガラスクラックが発生せず溶接することができた。従って、ガラス/金属接合体の金属部材と他の金属部材を接合する際の溶接位置は、接合面から15mm以上距離をとれば良いといえる。
【0053】
本実施の形態に用いる溶接法には、出来るだけ被溶接材への入熱が小さく、気密信頼性の高い溶接法が最適であり、例えば、レーザ溶接、TIG溶接等が挙げられる。
【0054】
上述の本実施の形態によれば、ガラス部材と金属部材とからなる陰極線管用の管体において、封止溶接時に溶接位置をガラス/金属接合部から15mm以上の距離を離すことにより、ガラス/金属接合部への溶接熱の影響を少なくし、溶接後のガラス/金属接合部の残留応力を小さくすることができ、信頼性の高い陰極線管用真空容器を提供することができる。
即ち、溶接熱に起因した金属部材の熱膨張によるガラス部材のクラックが生じない。ガラス/金属封着接合部の残留応力を小さくできる。最終的な封止工程を溶接にすることができるため、フリットガラスを用いる場合のように高温の焼成工程を経ずに常温下での封止が可能となり、デバイスに要求される耐熱性が下げられる。長期にわたって高真空を維持できる。信頼性の高い真空容器が製造できる。ガラス部材と金属部材を用いた陰極線管用の真空容器が実現するため、陰極線管の軽量化、薄型化が可能になる。
【0055】
なお、上述の本実施の形態の溶接方法は、陰極線管用の真空容器に限らず、ガラス/金属部材と他の金属部材とを溶接する他の形態のも応用可能である。
【0056】
本発明は、上述したガラス部材及び金属部材からなる陰極線管用真空容器、または平板型陰極線管用真空容器を備えた陰極線管、または平板型陰極線管をセットに組み込み、例えばテレビジョン受像機、コンピュータディスプレイなどの表示装置、平板型表示装置として構成する。
このような表示装置、あるいは平板型表示装置によれば、軽量化、高強度化を可能にし、信頼性の高いこの種の表示装置を提供することができる。
【0057】
【発明の効果】
本発明に係る陰極線管用真空容器によれば、ガラス部材と金属部材とからなり、ガラス部材と金属部材との接合部において埋込み封着接合されるので、真空容器の軽量化、高強度化を図ることができる。また、ガラス部材と金属部材の接合部では、残留応力が小さく高強度の接合が得られる。長期間の高真空を保持でき、信頼性の高い陰極線管用真空容器を提供できる。埋込み封着接合のため、封着材料が不要になり、低コスト化が図れる。鉛を含むフリットガラスを用いないので、環境に優しく、且つリサイクルが容易になる。
金属部材の熱膨張係数がガラス部材の熱膨張係数の0.9〜1.2倍とし、且つ金属部材の少なくともガラス部材に接合する部分の表面に酸化膜を有するときは、金属部材とガラス部材との接合が強固になる。
【0058】
本発明に係る陰極線管用真空容器の製造方法によれば、軽量で高強度の真空容器の製造を可能にする。また、ガラス部材と金属部材の接合を封着材料を用いることなく、直接ガラス部材内へ金属部材を埋め込んで接合するので、気密、高強度の接合が可能になり、且つ低コスト化、製造プロセスの簡単化を図ることができる。低環境負荷での製造ができる。
【0059】
ガラス部材を徐冷点温度以上に予備加熱するので、ガラス部材の形状を変形させることなく、且つガラス部材の割れを防いで金属部材の埋込みを行うことができる。金属部材の埋込み端部を1150℃〜1250℃にお範囲で加熱するので、金属部材の脆化を防ぎ、埋込み時間、徐冷温度の短縮を図ることができる。金属部材を一旦ガラス部材に押し込んだ後、一定時間保持してから押し込み量の1/2以下だけ金属部材を戻すのとにより、ガラス濡れ角が90°以上になり、接合強度が向上する。
【0060】
本発明に係る表示装置によれば、上記陰極線管用真空容器を備えるので、軽量化、高強度化が図られ、長期にわたり高気密性を維持できる。また、環境に優しく、リサイクルを容易にする。
本発明に係る表示装置の製造方法によれば、上記陰極線管用真空容器の製造工程を有するので、陰極線管用真空容器を軽量且つ高強度に製造でき、軽量で且つ信頼性の高い表示装置を製造することができる。
【0061】
本発明に係る陰極線管用真空容器の製造方法によれば、ガラス部材に接合した第1の金属部材に第2の金属部材を溶接する際に、第1の金属部材に対して第2の金属部材を、ガラス部材の接合部から15mm離れた位置で溶接することにより、ガラス/金属接合部へ溶接熱の影響が及ばず、ガラス割れを生じることなく付着溶接ができる。従って、信頼性の高い陰極線管用真空容器を製造することができる。
【0062】
本発明に係る陰極線管用真空容器によれば、ガラス部材に接合した第1の金属部材に対して第2の金属部材が、ガラス部材の接合部から15mm離れた位置で溶接されているので、ガラス/金属接合部でのガラス割れが生ぜず、気密性に優れ、軽量化且つ高強度化された陰極線管用真空容器を提供できる。
本発明に係る表示装置によれば、かかる陰極線管用真空容器を備えるので、軽量且つ信頼性の高い表示装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る陰極線管用真空容器の一実施の形態を示す構成図である。
【図2】本発明に係る陰極線管用真空容器の他の実施の形態を示す構成図である。
【図3】本発明に係る陰極線管用真空容器の他の実施の形態を示す構成図である。
【図4】本発明に係る陰極線管の一実施の形態を示す構成図である。
【図5】本発明の埋込み封着接合を行う製造装置の実施の形態を示す区制図である。
【図6】本発明の埋込み封着接合のプロセスフローチャートである。
【図7】本発明の埋込み封着接合の工程順の断面図である。
【図8】埋込み終了時のガラス濡れ角の説明図である。
【図9】本発明に係る陰極線管用真空容器の他の実施の形態を示す構成図である。
【図10】本発明に係る陰極線管用真空容器の他の実施の形態を示す構成図である。
【図11】本発明に係る陰極線管用真空容器の他の実施の形態を示す構成図である。
【図12】金属部材をガラス部材にフリットガラスを介して接合する例を示す要部の断面図である。
【図13】金属部材をガラス部材に低融点金属を介して接合する例を示す要部の断面図である。
【図14】A〜C 本発明に係る陰極線管用真空容器の一例の金属部材同士の溶接形態及び溶接位置を示す要部の構成図である。
【図15】A〜C 本発明に係る陰極線管用真空容器の他の例の金属部材同士の溶接形態及び溶接位置を示す要部の構成図である。
【図16】本発明の溶接位置の説明図である。
【図17】従来の陰極線管用真空容器の例を示す構成図である。
【図18】従来の平板型陰極線管用真空容器の例を示す構成図である。
【符号の説明】
11・・・陰極線管用真空容器、12・・・ガラスパネル、13・・・ガラスコーン部、14・・・ガラスネック部、15、16、17・・・金属部材、21・・・陰極線管、22・・・蛍光面、23・・・色選別機構、24・・・電子銃、25・・・偏向ヨーク、26・・・支持ピン、31、41・・・平板型陰極線管用真空容器、32、42・・・ガラスパネル、33・・・背面ガラスパネル、43、44・・・金属部材、18、36、45・・・溶接部、51・・・製造装置、52・・・筐体、53・・・架台、54・・・ヒータ、55・・・ホルダー、56・・・高周波誘導加熱手段、57・・・高周波誘導コイル、58・・・高周波電源、60・・・低融点接合材、601・・・フリットガラス、602・・・低融点金属、71、72、73・・・溶接部、80・・・酸化膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a display device widely used as a monitor device for various devices such as a television receiver and a computer display monitor and a method for manufacturing the same, and a vacuum vessel for a cathode ray tube used for the display device and a method for manufacturing the same. .
[0002]
[Prior art]
2. Description of the Related Art In general, a color cathode ray tube used for a color television receiver or the like includes a tube (vacuum container) having a glass panel serving as a screen display unit and a back member, and an electronic device arranged on the back member side in the tube. Comprising an emission source. FIG. 17 shows a glass tube (vacuum vessel) 1 of a normal color cathode ray tube, in which a panel 2 made of glass and a funnel 4 integrally having a neck 3 are joined via a frit glass 5. It is composed. A funnel-shaped funnel 4 integrally having a neck 3 corresponds to a back surface member, and an electron gun serving as an electron emission source is arranged in the neck 3. FIG. 18 shows a flat tube type cathode ray tube using a flat cathode or the like, for example, a glass tube (vacuum vessel) 6 of a cathode ray tube for a field emission display (FED), and a front glass panel 7, a back glass panel 8, The glass support member 9 forming the side surface is joined to each other via a frit glass 10. As a method of sealing such a glass vacuum vessel, so-called glass tubes 1 and 6, the panel 2 and the funnel 4 are connected to each other, and the front glass panel 7 and the rear glass panel 8 are connected via the glass support member 9 to each other. Generally, a method of heating and sealing at about 450 ° C. using frit glass (low-melting glass) is common.
[0003]
Heretofore, a tube using a ceramic or a metal coated with a ceramic coating (Japanese Patent Application Laid-Open No. 3-263741) and a device in which a metal of a seal portion is provided with a glass brazing film (Japanese Patent Application Laid-Open No. 47-39420). ), And those in which the metal forming the tube is directly sealed to glass (Japanese Patent Application Laid-Open No. 53-145555) have been proposed.
[0004]
2. Description of the Related Art In recent years, the demand for a larger screen of an image display device has been increased, and there has been a demand for a reduction in weight and a reduction in overall length accompanying an increase in the size of a cathode ray tube. In the future, in order to further increase the size of the cathode ray tube, it is required to further reduce the weight of the vacuum vessel and to reduce the thickness by realizing a flat-type cathode ray tube. As a technique for achieving these, as proposed in Japanese Patent Application No. 2000-279145 (Japanese Unexamined Patent Application Publication No. 2002-93322), all or a part other than the screen display portion irrespective of optical characteristics is formed of a metal having a high specific strength. Then, there is a method of realizing a high-strength and lightweight vacuum vessel for a cathode ray tube.
[0005]
[Problems to be solved by the invention]
The vacuum vessel (tube body) of the cathode ray tube needs to have enough strength to withstand the atmospheric pressure. In particular, when joining between different materials such as glass and metal, it is necessary to satisfy the conditions that the strength of the joining portion is high and that the hermetic sealability is guaranteed for a long time. The joining method of glass and metal using frit glass has a limit on the strength improvement of the vacuum vessel. Further, in the method of directly sealing a metal to glass, at present, no detailed proposal has been made on a highly reliable bonding form having a small residual stress of glass and a manufacturing method thereof.
[0006]
On the other hand, when producing a vacuum vessel made of glass and metal, it is preferable to seal the glass panel and the metal skirt and then weld the back metal member. By welding the final sealing step, it is possible to seal at room temperature without going through a high-temperature baking step like when using frit glass, and the advantage that the heat resistance required for the device is reduced There is. However, in the welding of the glass panel / metal skirt sealing body and the back metal member, there is a possibility that the metal member thermally expands due to heat at the time of welding and cracks may be generated in the glass, which is difficult to realize. Was.
So far, there have been proposals regarding the welding method and welding conditions as disclosed in Japanese Patent Application Laid-Open No. Hei 5-166462 regarding the sealing welding of a vacuum vessel for a cathode ray tube, but no proposal regarding the welding position.
[0007]
The present invention has been made in view of the above points, and has been made in view of the above points. A vacuum vessel for a cathode ray tube, which has been reduced in weight and increased in reliability, and a method of manufacturing the same, and a display device provided with the vacuum vessel for a cathode ray tube, has been reduced in weight and increased in reliability. And a method of manufacturing the same.
[0008]
[Means for Solving the Problems]
The vacuum vessel for a cathode ray tube according to the present invention includes a glass member and a metal member, and has a structure in which a part of the metal member is embedded in the glass member and joined in an airtight manner.
[0009]
In the vacuum vessel for a cathode ray tube of the present invention, since it is made of a glass member and a metal member, a lightweight and high-strength vacuum vessel is obtained, and is excellent in heat resistance and thermal shock resistance. Since a part of the metal member is embedded in the glass member and air-tightly bonded, the residual stress at the glass / metal bonding portion is small and the glass member is bonded with high strength and has high air-tightness. No sealing material is required.
[0010]
The method for manufacturing a vacuum vessel for a cathode ray tube according to the present invention is a method for manufacturing a vacuum vessel for a cathode ray tube comprising a glass member and a metal member, and a step of preheating the glass member to a temperature not lower than the annealing point, Heating the embedded end in the range of 1150 ° C. to 1250 ° C., bringing the heated metal member close to the glass member and locally heating the embedded portion of the glass member, and pressing the metal member into the glass member. The method includes a step of embedding and holding the metal member for a predetermined time, and a step of partially returning the pressed metal member in a direction opposite to the pressing direction, and holding the metal member for a predetermined time to perform airtight joining between the glass member and the metal member.
[0011]
In the method for manufacturing a vacuum vessel for a cathode ray tube according to the present invention, since the glass member is preheated to the annealing temperature or higher and the metal member is embedded, the glass member can be embedded without glass breakage. Since the embedded end of the metal member is heated in the range of 1150 ° C. to 1250 ° C., the embedding time and the annealing time can be reduced. With the above series of steps, the glass member and the metal member are joined with high strength, and a lightweight and high-strength vacuum container can be manufactured.
[0012]
The vacuum vessel for a cathode ray tube according to the present invention includes a glass member and a metal member, and the second metal member is separated from the first metal member joined to the glass member by at least 15 mm from the joint with the glass member. Welded at the position.
[0013]
In the vacuum vessel for a cathode ray tube of the present invention, since it is made of a glass member and a metal member, a lightweight and high-strength vacuum vessel is obtained, and is excellent in heat resistance and thermal shock resistance. Since the second metal member is welded to the first metal member joined to the glass member at a position at least 15 mm away from the joint with the glass member, welding heat affects the glass / metal joint. No cracks occur on the glass member.
[0014]
The method for manufacturing a vacuum vessel for a cathode ray tube according to the present invention is a method for manufacturing a vacuum vessel for a cathode ray tube comprising a glass member and a metal member, wherein the first metal member bonded to the glass member has a second metal. A step of welding the member at a position 15 mm or more away from the joint with the glass member.
[0015]
In the method for manufacturing a vacuum vessel for a cathode ray tube according to the present invention, the step of welding the second metal member to the first metal member joined to the glass member at a position 15 mm or more from the joint with the glass member is performed. As a result, the welding heat does not affect the glass / metal weld during welding, and glass cracking due to thermal expansion of the metal member caused by the welding heat does not occur. This makes it possible to manufacture a lightweight, high-strength, and highly reliable vacuum vessel for a cathode ray tube.
[0016]
A display device according to the present invention is a display device provided with a vacuum vessel for a cathode ray tube including a glass member and a metal member, wherein a part of the metal member is embedded in the glass member at a joint between the glass member and the metal member. And airtightly joined.
[0017]
Since the display device of the present invention includes a vacuum vessel for a cathode ray tube comprising a glass member and a metal member, a light-weight and high-strength display device is obtained, and is excellent in heat resistance and thermal shock resistance. In the vacuum container, since a part of the metal member is embedded in the glass member and joined in an airtight manner, the strength of the glass / metal joint is high and high airtightness can be obtained.
[0018]
The method for manufacturing a display device according to the present invention is a method for manufacturing a display device including a vacuum vessel for a cathode ray tube including a glass member and a metal member, and a step of preheating the glass member to a temperature not lower than the annealing point, Heating the embedded end of the metal member in the range of 1150 ° C. to 1250 ° C., locally heating the embedded portion of the glass member by bringing the heated metal member close to the glass member, A step of holding the metal member for a certain time in a direction opposite to the pressing direction, and holding the glass member and the metal member for hermetic bonding by holding the metal member for a certain time. Then, a vacuum vessel for a cathode ray tube is manufactured.
[0019]
In the manufacturing method of the display device of the present invention, particularly in the manufacture of a vacuum vessel for a cathode ray tube, the glass member is preheated to a temperature not lower than the annealing point, and the metal member is embedded. Since the embedded end of the metal member is heated in the range of 1150 ° C. to 1250 ° C., the embedding time and the annealing time can be reduced. With the above series of steps, the glass member and the metal member are joined with high strength, and a lightweight and high-strength vacuum container can be manufactured.
[0020]
The display device according to the present invention is a display device provided with a vacuum vessel for a cathode ray tube including a glass member and a metal member, wherein a second metal member is provided with respect to a first metal member joined to the glass member. It is configured to be welded at a position 15 mm or more away from the joint with the glass member.
[0021]
Since the display device of the present invention includes a vacuum vessel for a cathode ray tube comprising a glass member and a metal member, a light-weight and high-strength display device is obtained, and is excellent in heat resistance and thermal shock resistance. In the vacuum vessel, the second metal member is welded to the first metal member joined to the glass member at a position 15 mm or more away from the joint with the glass member, so that the welding heat is reduced to the glass / metal joint. And no crack is generated on the glass member.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 shows an embodiment of a vacuum vessel for a cathode ray tube according to the present invention. The vacuum vessel for a cathode ray tube according to the present embodiment, that is, the tube body 11 is a flat glass panel 12, a glass neck portion 14 integrally having a glass cone portion 13, and a first metal member 15 serving as a panel skirt portion. , A second metal member 16 joined to the glass cone portion 13, and a third metal member 17 serving as a main funnel.
[0024]
One end of the first metal member 15 is embedded in the glass 12 from the inner surface side of the glass panel 12, and is sealed and bonded to the glass panel 12, that is, hermetically bonded. One end of the second metal member 16 is embedded in the glass cone portion 13 on the glass neck portion 14 side, and is air-tightly joined to the glass cone portion 13. The other end of the first metal member 15 joined to the glass panel 12 is abutted against one end of the third metal member 17, and is welded to each other at the abutting portion 18 to be air-tightly joined. The other end of the second metal member 16 joined to the glass cone portion 13 is abutted against the other end of the third metal member 17 and is welded to each other at the abutting portion 19 to be air-tightly joined. In this manner, a tube 11 for a cathode ray tube composed of a glass member and a metal member is configured. The cone portion 13 is made of glass so as not to shield the magnetic field of the deflection yoke 25.
[0025]
The metal member joined to the glass member, that is, the first metal member 15 forming the panel skirt portion and the second metal member 16 joined to the glass cone portion 13 have a glass panel 12 having a corresponding thermal expansion coefficient. 0.9 to 1.2 times, preferably 1.0 to 1.1 times the thermal expansion coefficient of the glass cone portion 13 and at least the surface of the metal member embedded in the glass member. 80 (see FIG. 7) is formed. If the coefficient of thermal expansion is smaller than 0.9 times or larger than 1.2 times, the glass member is broken and joining is difficult. Even if the joining is good, the internal residual stress increases due to the thermal shock in the post-process. Cracks occur in the member, and the reliability deteriorates. The oxide film 80 on the surface of the metal member at the joint is necessary for joining with the glass member made of oxide.
[0026]
As the first and second metal members 15 and 16, one kind such as an iron-chromium alloy, an iron-nickel alloy, an iron-nickel-chromium alloy, and an iron-nickel-cobalt alloy can be used. Specifically, an Fe-18Cr alloy, an Fe-42Ni-6Cr alloy, an Fe-47Ni-6Cr alloy or the like can be used. Since the third metal member 17 is joined by welding without being joined to the glass member, an inexpensive Fe steel sheet can be used without considering the thermal expansion coefficient and without requiring a surface oxide film. . Note that the third metal member 17 can be the same as the first and second metal members 15 and 16.
[0027]
Thus, the tube 11 as a vacuum container composed of a glass member and a metal member sufficiently functions as a tube for a cathode ray tube. That is, the tube 11 has heat resistance and impact resistance enough to withstand a maximum baking temperature of 350 ° C. in the evacuation process at the time of manufacturing, and does not break the tube which is a vacuum vessel under the atmospheric pressure in operation. A highly reliable tube that can maintain a high vacuum for a long time. This tube body 11 is joined with high residual strength with small residual stress at the joint where glass and metal are joined, and has high airtightness.
[0028]
FIG. 4 shows an embodiment of a color cathode ray tube including the above-described tube body 11. In the color cathode ray tube 21 according to the present embodiment, red, green and blue phosphor layers, for example, a color phosphor screen 22 composed of phosphor phosphor stripes are formed on the inner surface of the flat glass panel 12 of the tube body 11. A color selection mechanism 23 such as an aperture grill or a shadow mask is disposed facing the fluorescent screen 22, and an electron gun 24 is disposed in the glass neck portion 14. A deflection yoke 25 for scanning the electron beam from the electron gun 24 in the horizontal and vertical directions on the screen is disposed outside the glass cone portion 13. The color selection mechanism 23 has a metal pin 26 provided on the first metal member 15 serving as a panel skirt, and supports the metal pin 26. The metal pin 26 can be attached by welding or formed integrally with the first metal member 15 by pressing.
[0029]
2 and 3 show another embodiment in which the vacuum vessel for a cathode ray tube according to the present invention is applied to a vacuum vessel (tube body) for a flat cathode ray tube having a flat cathode, for example, a field emission (field emission) type cathode. The form is shown.
[0030]
The vacuum vessel for a flat cathode ray tube according to the present embodiment in FIG. 2, that is, the flat tube body 31 includes a flat glass panel 32 on which a phosphor screen is formed, a flat rear glass panel 33, and a tube body. It comprises first and second frame-shaped metal members 34 and 35 corresponding to side plates. One end of the first metal member 34 is embedded in the glass panel 32 from the inner surface side of the glass panel 32 and is air-tightly joined to the glass panel 32. One end of the second metal member 35 is embedded in the rear glass panel 33 from the inner side of the rear glass panel 33 and is airtightly joined to the rear glass panel 33. The other end portions of the first and second metal members 33 and 34 are butted against each other, and are hermetically joined by welding at the butted portions 36. In this way, a tube 31 for a flat-plate cathode ray tube composed of a glass member and a metal member is formed.
The first and second metal members 34 and 35 can be made of the same metal material as the metal members 15 and 16 in FIG. 1 described above.
[0031]
A flat tube 41 for a flat cathode ray tube according to the present embodiment shown in FIG. 3 includes a flat glass panel 42 on which a phosphor screen is formed, and a frame-shaped first metal member corresponding to a side plate of the tube. 43, and a second metal member 44 serving as a back panel. One end of the first metal member 43 is embedded in the inner surface of the glass panel 42 and is air-tightly joined to the glass panel 42. The ends of the first metal member 43 and the second metal member 44 to be the back panel are butted against each other, and are hermetically joined at the butted portion 45 by welding. In this way, a flat-plate type cathode ray tube body 41 composed of a glass member and a metal member is formed.
[0032]
A flat cathode (not shown), for example, a field emission type cathode and a control electrode opposed thereto are arranged in the flat tube type body 31 or 41, and red, green and blue colors are provided on the inner surface of the glass panel 32 or 42. A flat color cathode ray tube is formed by forming a phosphor layer, for example, a color phosphor screen composed of phosphor stripes of each color.
[0033]
Next, an embodiment of a method for manufacturing the above-described vacuum vessel for a cathode ray tube (that is, a tube) and an apparatus for manufacturing the same will be described.
[0034]
FIG. 5 is an example of a manufacturing apparatus, particularly a manufacturing apparatus for embedding a metal member in a glass member and joining the glass member. The manufacturing apparatus 51 according to the present embodiment includes a carbon mount 53 on which a glass member can be placed and moved vertically below a furnace housing 52 and a glass mount 53 provided thereunder, for example, through which the glass member is preheated. A heater 54 is provided for holding the metal member to be bonded to the glass member above and opposed to the carbon gantry 53, and is capable of moving vertically, for example, a carbon holder 55, and locally heats the bonded portion of the metal member. High-frequency induction heating means 56, that is, a high-frequency coil 57 and a high-frequency power supply 58 are disposed. In the illustrated example, a glass panel 12 is placed as a glass member, and a first metal member 15 serving as a panel skirt is disposed as a metal member.
[0035]
FIG. 6 shows a process flow chart of a method for manufacturing a tube for a cathode ray tube, here, embedding and joining a metal member to a glass member.
First, a glass member, for example, the glass panel 12 is placed and fixed on the carbon gantry 53 of the manufacturing apparatus 51 shown in FIG. Further, the first metal member 15 serving as a panel skirt portion of the metal member is held by the carbon holder 55.
Next, step S in FIG. 1 To turn on the heater 54 to preheat the glass panel 12. This preheating is performed up to the temperature at which the glass is not deformed above the annealing temperature of the glass. Ie ~ ℃ The temperature rises to the range. By raising the temperature to the annealing point of the glass, that is, a temperature at which the glass is not distorted, it becomes possible to embed the glass without causing glass breakage described later.
[0036]
Next, after pre-heating the glass panel 12, step S 2 Then, the high frequency power supply 56 is turned on, and the bonding portion of the first metal member 15, that is, the embedded end portion is locally heated by the high frequency induction heating means 56 to a required temperature, for example, 1150 ° C. to 1250 ° C.
Next, step S 3 Then, the gantry 53 is raised to bring the glass panel 12 close to the first metal member 15 (see FIG. 7A), and the portion to be embedded in the glass panel 12 is heated by heat radiation from the metal member 15 that has been subjected to high-frequency induction heating. Heat locally. At this time, as shown in FIG. 7A, an oxide film 80 is formed on the surface of at least the embedded portion (embedded end) of metal member 15.
[0037]
Next, step S 4 , The holder 55 is moved downward, and a load is applied to the metal member 15 so that the end of the metal member 15 is embedded in the locally melted embedded portion of the glass panel 12. And step 5 And the predetermined pushing amount D 1 Is held for a certain period of time (see FIG. 7B).
Next, step S 6 The gantry 53 and the holder 55 are relatively movable, for example, the gantry 53 is lowered, and the pushing amount D is set so that the wetting angle θ between the glass panel 12 and the metal member 15 becomes 90 ° or more (see FIG. 8). 1 The metal member 15 is pulled out to 1 / or less, preferably about 3 of the thickness (see FIG. 7C), and step S 7 When a predetermined amount of withdrawal (a so-called return amount in the direction opposite to the insertion direction) is reached, the holding is performed for a certain period of time.
[0038]
After a lapse of a predetermined time, step S 8 Then, the high-frequency heating is turned off to lower the temperature of the embedded member, that is, the glass panel 12 and the metal member 15, and gradually cooled to room temperature, for example, at an average cooling rate of 3 ° C./min or less. In this way, the embedding depth D 2 The embedded sealing joining between the glass panel 12 and the first metal member 15 thus completed is completed.
[0039]
The embedded sealing bonding between the glass cone portion 13 and the second metal member 16 is performed in the same manner. After that, the first metal member 15, the second metal member 16, and the third metal member 17 are mutually air-tightly welded (so-called welding joint), and the target glass member and the metal member are separated from each other. Is manufactured for the cathode ray tube. This welding will be described later.
[0040]
Although not shown, the flat tube 31 of FIG. 2 and the flat tube 41 of FIG. 3 are similarly manufactured.
[0041]
Table 1 shows the test results of embedded sealing bonding of the glass panel 12 and the first metal member 15 using the above-described manufacturing process.
The size of the glass panel 12 is 7 inches diagonally. The first metal member 15 was made of 18% iron chromium alloy. The preheating temperature of the glass panel 12 is 580 ° C, and the embedding depth D 2 Is 2 mm (push-in amount 3 mm, pull-out amount 1 mm), and the embedding load is 6 kg. The temperature of the first metal member 15 was 1050 ° C. for Comparative Examples 1 and 2, 1150 ° C. for Example 1, and 1180 ° C. for Example 2. Embedding time, that is, embedding start (step S 4 ) To end of embedding (step S) 7 The time up to) is 5 minutes for Comparative Example 1, 15 minutes for Comparative Example 2, and 3 minutes for Examples 1 and 2. The slow cooling time is 12 hours for Comparative Example 1, 24 hours for Comparative Example 2, and 6 hours for Examples 1 and 2.
[0042]
[Table 1]
Figure 2004063414
[0043]
According to Table 1, except for Comparative Example 1, no glass crack was generated after slow cooling, and the glass / metal embedded sealing was successful. Comparing Comparative Example 2 and Examples 1 and 2, the higher the metal member temperature, the shorter the embedding time and the slower cooling time, and the larger the glass wetting angle θ. However, if the temperature of the metal member is too high, coarsening of the crystal grains proceeds and the metal material becomes brittle, which is not preferable. A preferable temperature range of the metal member is 1150 ° C to 1250 ° C.
Under the conditions of Example 2, good embedding and sealing with the largest glass wetting angle θ and small residual stress at the joint was realized. The larger the glass wetting angle θ of the joint is 90 ° C. or more, the more the stress concentration can be reduced, the smaller the residual stress and the higher the joint strength. Further, the cooling rate during slow cooling can be increased, and the slow cooling time can be shortened.
[0044]
According to the above-described embodiment, since the vacuum vessel (tube body) 11, 31, or 41 for the cathode ray tube is made of a glass member and a metal member, the vacuum vessel 11, 31, or 41 for the cathode ray tube, and further, the cathode ray tube It is possible to reduce weight and increase strength. The high-strength vacuum vessel 11 for a cathode ray tube and the vacuum vessels 31 and 41 for a flat cathode ray tube can be realized.
In a vacuum vessel, the glass member and the metal member are embedded and bonded together, and the glass wetting angle θ of the bonded portion is set to 90 ° or more. Wearing form. A highly reliable hermetic seal that can maintain a high vacuum for a long period of time is possible.
Embedded sealing bonding does not require a sealing material such as frit glass or low-melting point metal (solder), so that the cost is low and the manufacturing process is simplified. Since frit glass is not used, there is no use of lead (so-called lead-free), a low environmental burden, and easy recycling of the vacuum container.
[0045]
The embedding and sealing bonding between the glass member and the metal member in the above-described embodiment is not limited to the above two forms of the vacuum vessel for a cathode ray tube, but may be applied to other applications requiring a function as a vacuum vessel. Is possible.
[0046]
Next, an embodiment relating to sealing welding of metal members of a vacuum vessel for a cathode ray tube comprising the above-described glass member and metal member will be described.
The sealing welding according to the present embodiment uses the embedded sealing bonding shown in FIGS. 1, 2, and 3 as the sealing bonding between the glass member and the metal member, or FIGS. The present invention can be applied to the case where the sealing bonding is performed via a low melting point bonding member 60 such as a low melting point glass (so-called frit glass) or a low melting point metal (so-called solder or the like) shown in FIG. As shown in FIG. 12, when the glass member 61 and the metal member 62 are sealed and bonded via, for example, a frit glass 601, an oxide film 63 is formed on the surface of the bonding portion of the metal member 62 and bonded. As shown in FIG. 13, when the glass member 61 and the metal member 62 are sealed and bonded via, for example, the low melting point metal 602, it is not necessary to form an oxide film on the surface of the bonding portion of the metal member 62.
[0047]
The vacuum vessel (tube body) for a cathode ray tube comprising a glass member and a metal member according to the present embodiment and welding and joining the metal members to each other particularly seals the metal member joined to the glass member and another metal member. When performing stop welding, distance L from the joint with the glass member 1 Are welded at positions separated by 15 mm or more. Thereby, the temperature rise of the metal member of the glass / metal welding portion due to the welding heat is suppressed to be small, and the occurrence of cracks on the glass member side due to thermal expansion during welding of the metal member can be suppressed.
[0048]
14A to 14C show examples of the form of the welded part. In this example, the glass member 12 and the metal member 15 are joined via the low melting point joining material 60. In the case of welding, for example, as shown in FIG. 14A, the metal members 15 and 17 may be welded by directly abutting their joint end faces. 71 is a welding part. Further, as shown in FIG. 14B, the side surfaces of the ends of the metal members 15 and 17 may be overlapped and welded. Reference numeral 72 denotes a weld. Further, as shown in FIG. 14C, the metal members 15 and 17 may be provided with bent flange portions 15a and 17a as joining margins, and the two flange portions 15a and 17a may be overlapped and welded. 73 is a welded portion. Also, in each of the welding modes, the welded portions 71, 72, and 73 have a distance L from the joint with the glass member 12. 1 Is performed at a position separated by 15 mm or more.
[0049]
FIGS. 15A to 15C show an example of the form of the welded part when the glass member 12 and the metal member 15 are embedded and bonded in the same manner as in FIG. 1 described above. In this example, similarly to FIGS. 14A to 14C described above, the metal members 15 and 17 can also be welded by directly abutting the joining end surfaces thereof (see FIG. 15A). The metal members 15 and 17 may be provided with bent flange portions 15a and 17a as joining margins, and the two flange portions 15a and 17a may be overlapped and welded (see FIG. 15A). (See FIG. 15C). Each of the welds 71, 72, 73 is a distance L from the joint with the glass member 12. 1 Is performed at a position separated by 15 mm or more.
[0050]
This welding mode is the same between the other metal members 16 and 17, and the same applies to the welding between the metal members of the vacuum vessels 31 and 41 in FIGS. 2 and 3.
[0051]
In consideration of mutual positional accuracy and weldability of a metal member joined to a glass member and another metal member at the time of welding, it is preferable to make a welding margin because the manufacturability is good. In particular, when a flange is formed as a welding margin, the distance L from the sealing joint is increased without increasing the depth of the vacuum vessel. 1 Can take. In addition, the flange portion has the effect of improving the vacuum resistance of the metal member, suppressing the deformation of the member due to heat during welding, and providing a high-strength, high-reliability vacuum vessel with small residual stress at the glass / metal joint. Can be made.
[0052]
An experimental example of a welding position is shown. A sample in which the L-shaped metal member (Fe-18Cr material) 15 shown in FIG. 16 is bonded to the glass member 12 with the frit glass 601 is manufactured, and another metal member 17 (not shown) is attached to the L-shaped metal member 15. Laser welding was performed. Distance L from glass / metal joint surface 75 0 Was changed, and the distance at which glass cracks occurred was determined. As a result, the distance from the glass / metal joint surface 75 to the welding position 76 is L 0 And L 0 If it was 15 mm or more, welding could be performed without generating glass cracks. Therefore, it can be said that the welding position at the time of joining the metal member of the glass / metal joint to another metal member should be at least 15 mm from the joint surface.
[0053]
As the welding method used in the present embodiment, a welding method in which the heat input to the material to be welded is as small as possible and the airtight reliability is high is optimal, and examples thereof include laser welding and TIG welding.
[0054]
According to the above-described present embodiment, in a tube for a cathode ray tube including a glass member and a metal member, the welding position is separated from the glass / metal joint by 15 mm or more at the time of sealing welding, whereby the glass / metal The effect of welding heat on the joint can be reduced, the residual stress of the glass / metal joint after welding can be reduced, and a highly reliable vacuum vessel for a cathode ray tube can be provided.
That is, the glass member does not crack due to the thermal expansion of the metal member caused by the welding heat. The residual stress at the glass / metal sealing joint can be reduced. Since the final sealing process can be welded, it is possible to seal at room temperature without going through a high-temperature baking process as in the case of using frit glass, reducing the heat resistance required for devices Can be High vacuum can be maintained for a long time. A highly reliable vacuum container can be manufactured. Since a vacuum vessel for a cathode ray tube using a glass member and a metal member is realized, the weight and thickness of the cathode ray tube can be reduced.
[0055]
The above-described welding method according to the present embodiment is not limited to the vacuum vessel for a cathode ray tube, and other forms of welding a glass / metal member and another metal member can be applied.
[0056]
The present invention incorporates a vacuum vessel for a cathode ray tube comprising the above-described glass member and a metal member, or a cathode ray tube provided with a vacuum vessel for a flat cathode ray tube, or a flat cathode ray tube into a set, for example, a television receiver, a computer display, and the like. And a flat panel display device.
According to such a display device or a flat panel display device, it is possible to reduce the weight and increase the strength, and to provide a highly reliable display device of this type.
[0057]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the vacuum vessel for cathode ray tubes which concerns on this invention, since it consists of a glass member and a metal member, and embeds and seals and joins in the joint part of a glass member and a metal member, the weight reduction of a vacuum container and high strength are achieved. be able to. Further, at the joint between the glass member and the metal member, a high-strength joint with small residual stress is obtained. A long-term high vacuum can be maintained, and a highly reliable vacuum vessel for a cathode ray tube can be provided. The embedded sealing bonding eliminates the need for a sealing material and can reduce the cost. Since frit glass containing lead is not used, it is environmentally friendly and easy to recycle.
When the coefficient of thermal expansion of the metal member is 0.9 to 1.2 times the coefficient of thermal expansion of the glass member, and when the metal member has an oxide film on at least the surface of the portion joined to the glass member, the metal member and the glass member And the bonding becomes stronger.
[0058]
ADVANTAGE OF THE INVENTION According to the manufacturing method of the vacuum container for cathode ray tubes which concerns on this invention, a lightweight and high-strength vacuum container can be manufactured. Further, since the joining of the glass member and the metal member is performed by directly embedding the metal member into the glass member without using a sealing material, the joining can be performed in a hermetic and high-strength manner. Can be simplified. Can be manufactured with low environmental load.
[0059]
Since the glass member is preheated to the annealing temperature or higher, the metal member can be embedded without deforming the shape of the glass member and preventing the glass member from cracking. Since the embedded end of the metal member is heated in the range of 1150 ° C. to 1250 ° C., embrittlement of the metal member can be prevented, and the embedding time and the annealing temperature can be reduced. By temporarily pushing the metal member into the glass member, holding the metal member for a certain period of time, and then returning the metal member by 以下 or less of the pushing amount, the glass wetting angle becomes 90 ° or more, and the bonding strength is improved.
[0060]
According to the display device of the present invention, since the above-described vacuum vessel for a cathode ray tube is provided, the weight and strength can be reduced, and high airtightness can be maintained for a long time. It is also environmentally friendly and facilitates recycling.
According to the method for manufacturing a display device according to the present invention, since the method includes the step of manufacturing the vacuum vessel for a cathode ray tube, the vacuum vessel for a cathode ray tube can be manufactured with light weight and high strength, and a lightweight and highly reliable display device is manufactured. be able to.
[0061]
According to the method for manufacturing a vacuum vessel for a cathode ray tube according to the present invention, when welding a second metal member to a first metal member joined to a glass member, a second metal member is used for the first metal member. Is welded at a position 15 mm away from the joint of the glass members, so that the welding heat is not exerted on the glass / metal joint and adhesion welding can be performed without causing glass breakage. Accordingly, a highly reliable vacuum vessel for a cathode ray tube can be manufactured.
[0062]
According to the vacuum vessel for a cathode ray tube according to the present invention, the second metal member is welded to the first metal member joined to the glass member at a position 15 mm away from the joint of the glass members. It is possible to provide a vacuum vessel for a cathode ray tube which does not cause glass breakage at a metal joint, has excellent airtightness, is lightweight and has high strength.
According to the display device of the present invention, since such a vacuum vessel for a cathode ray tube is provided, a lightweight and highly reliable display device can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing one embodiment of a vacuum vessel for a cathode ray tube according to the present invention.
FIG. 2 is a configuration diagram showing another embodiment of the vacuum vessel for a cathode ray tube according to the present invention.
FIG. 3 is a configuration diagram showing another embodiment of the vacuum vessel for a cathode ray tube according to the present invention.
FIG. 4 is a configuration diagram showing one embodiment of a cathode ray tube according to the present invention.
FIG. 5 is a sectional view showing an embodiment of a manufacturing apparatus for performing burying sealing joining of the present invention.
FIG. 6 is a process flowchart of the embedding sealing bonding of the present invention.
FIG. 7 is a sectional view in the order of the steps of the burying sealing bonding of the present invention.
FIG. 8 is an explanatory diagram of a glass wetting angle at the end of embedding.
FIG. 9 is a configuration diagram showing another embodiment of the vacuum vessel for a cathode ray tube according to the present invention.
FIG. 10 is a configuration diagram showing another embodiment of the vacuum vessel for a cathode ray tube according to the present invention.
FIG. 11 is a configuration diagram showing another embodiment of the vacuum vessel for a cathode ray tube according to the present invention.
FIG. 12 is a cross-sectional view of a main part showing an example of joining a metal member to a glass member via frit glass.
FIG. 13 is a cross-sectional view of a main part showing an example of joining a metal member to a glass member via a low-melting metal.
FIGS. 14A to 14C are main part configuration diagrams showing a welding mode and welding positions of metal members of an example of the vacuum vessel for a cathode ray tube according to the present invention.
FIGS. 15A to 15C are main part configuration diagrams showing welding forms and welding positions of metal members of another example of the cathode ray tube vacuum vessel according to the present invention.
FIG. 16 is an explanatory diagram of a welding position according to the present invention.
FIG. 17 is a configuration diagram showing an example of a conventional vacuum vessel for a cathode ray tube.
FIG. 18 is a configuration diagram showing an example of a conventional vacuum vessel for a flat-plate cathode ray tube.
[Explanation of symbols]
11 vacuum tube for cathode ray tube, 12 glass panel, 13 glass cone portion, 14 glass neck portion, 15, 16, 17 metal member, 21 cathode ray tube, Reference numeral 22: fluorescent screen, 23: color selection mechanism, 24: electron gun, 25: deflection yoke, 26: support pins, 31, 41: vacuum vessel for flat cathode ray tube, 32 , 42 ... glass panel, 33 ... rear glass panel, 43, 44 ... metal member, 18, 36, 45 ... welded part, 51 ... manufacturing device, 52 ... housing, 53 ... stand, 54 ... heater, 55 ... holder, 56 ... high frequency induction heating means, 57 ... high frequency induction coil, 58 ... high frequency power supply, 60 ... low melting point bonding material 601 frit glass, 602 low melting point metal, 71 2,73 ... weld, 80 ... oxide film

Claims (21)

ガラス部材と金属部材とからなり、
前記ガラス部材と前記金属部材との接合部において、前記ガラス部材に金属部材の一部が埋め込まれて気密的に接合されて成る
ことを特徴とする陰極線管用真空容器。
Consists of a glass member and a metal member,
A vacuum vessel for a cathode ray tube, wherein a part of a metal member is embedded in the glass member and hermetically bonded at a joint between the glass member and the metal member.
第1及び第2のガラス部材と、第1及び第2の金属部材とからなり、
前記第1のガラス部材に前記第1の金属部材の一部が埋め込まれて気密的に接合され、
前記第2のガラス部材に前記第2の金属部材の一部が埋め込まれて気密的に接合され、
前記第1の金属部材と前記第2の金属部材とが気密的に溶接されて成る
ことを特徴とする陰極線管用真空容器。
The first and second glass members, and the first and second metal members,
A part of the first metal member is embedded in the first glass member and joined in an airtight manner;
A part of the second metal member is embedded in the second glass member and joined in an airtight manner,
A vacuum vessel for a cathode ray tube, wherein the first metal member and the second metal member are hermetically welded.
第1及び第2のガラス部材と、第1、第2及び第3の金属部材とからなり、
前記第1のガラス部材に前記第1の金属部材の一部が埋め込まれて気密的に接合され、
前記第2のガラス部材に前記第2の金属部材の一部が埋め込まれて気密的に接合され、
前記第1の金属部材と前記第3の金属部材、及び前記第2の金属部材と前記第3の金属部材が夫々気密的に溶接されて成る
ことを特徴とする陰極線管用真空容器。
The first and second glass members, and the first, second and third metal members,
A part of the first metal member is embedded in the first glass member and joined in an airtight manner;
A part of the second metal member is embedded in the second glass member and joined in an airtight manner,
A vacuum vessel for a cathode ray tube, wherein the first metal member and the third metal member, and the second metal member and the third metal member are each hermetically welded.
前記金属部材の熱膨張係数が、前記ガラス部材の熱膨張係数の0.9〜1.2倍であり、且つ前記金属部材の少なくともガラス部材に接合する部分の表面に酸化膜が形成されて成る
ことを特徴とする請求項1、2又は3記載の陰極線管用真空容器。
The metal member has a coefficient of thermal expansion of 0.9 to 1.2 times the coefficient of thermal expansion of the glass member, and an oxide film is formed on at least a surface of a portion of the metal member joined to the glass member. The vacuum vessel for a cathode ray tube according to claim 1, 2, or 3.
ガラス部材と金属部材とからなる陰極線管用真空容器を備えた表示装置であって、
前記ガラス部材と前記金属部材との接合部において、前記ガラス部材に金属部材の一部が埋め込まれて気密的に接合されて成る
ことを特徴とする表示装置。
A display device comprising a vacuum vessel for a cathode ray tube comprising a glass member and a metal member,
A display device, wherein a part of a metal member is embedded in the glass member and hermetically bonded at a joint between the glass member and the metal member.
第1及び第2のガラス部材と、第1及び第2の金属部材とからなる陰極線管用真空容器を備えた表示装置であって、
前記第1のガラス部材に前記第1の金属部材の一部が埋め込まれて気密的に接合され、
前記第2のガラス部材に前記第2の金属部材の一部が埋め込まれて気密的に接合され、
前記第1の金属部材と前記第2の金属部材とが気密的に溶接されて成る
ことを特徴とする表示装置。
A display device comprising a vacuum vessel for a cathode ray tube comprising first and second glass members and first and second metal members,
A part of the first metal member is embedded in the first glass member and joined in an airtight manner;
A part of the second metal member is embedded in the second glass member and joined in an airtight manner,
The display device, wherein the first metal member and the second metal member are hermetically welded.
第1及び第2のガラス部材と、第1、第2及び第3の金属部材とからなる陰極線管用真空容器を備えた表示装置であって、
前記第1のガラス部材に前記第1の金属部材の一部が埋め込まれて気密的に接合され、
前記第2のガラス部材に前記第2の金属部材の一部が埋め込まれて気密的に接合され、
前記第1の金属部材と前記第3の金属部材、及び前記第2の金属部材と前記第3の金属部材が夫々気密的に溶接されて成る
ことを特徴とする表示装置。
A display device provided with a vacuum vessel for a cathode ray tube comprising first and second glass members and first, second and third metal members,
A part of the first metal member is embedded in the first glass member and joined in an airtight manner;
A part of the second metal member is embedded in the second glass member and joined in an airtight manner,
The display device, wherein the first metal member and the third metal member, and the second metal member and the third metal member are hermetically welded, respectively.
前記金属部材の熱膨張係数が、前記ガラス部材の熱膨張係数の0.9〜1.2倍であり、且つ前記金属部材の少なくともガラス部材に接合する部分の表面に酸化膜が形成されて成る
ことを特徴とする請求項5、6又は7記載の表示装置。
The metal member has a coefficient of thermal expansion of 0.9 to 1.2 times the coefficient of thermal expansion of the glass member, and an oxide film is formed on at least a surface of a portion of the metal member joined to the glass member. The display device according to claim 5, 6 or 7, wherein:
ガラス部材と金属部材とからなる陰極線管用真空容器の製造方法であって、
前記ガラス部材を徐冷点温度以上に予備加熱する工程と、
前記金属部材の埋込み端部を1150℃〜1250℃の範囲で加熱する工程と、
加熱した前記金属部材を前記ガラス部材に近接させてガラス部材の埋込み部を局所加熱する工程と、
前記金属部材を前記ガラス部材内に押し込んで埋め込み、一定時間保持する工程と、
該押し込んだ金属部材を押し込み方向とは逆方向に一部戻し、一定時間保持してガラス部材と金属部材との気密接合を行う工程とを有する
ことを特徴とする陰極線管用真空容器の製造方法。
A method for producing a vacuum vessel for a cathode ray tube comprising a glass member and a metal member,
A step of preheating the glass member above the annealing point temperature,
Heating the embedded end of the metal member in a range of 1150 ° C to 1250 ° C;
A step of locally heating the embedded portion of the glass member by bringing the heated metal member close to the glass member,
Pushing the metal member into the glass member and embedding it, and holding it for a certain time;
A step of partially returning the pushed metal member in a direction opposite to the pushing direction and holding the glass member and the metal member for hermetic sealing for a certain period of time, thereby manufacturing a vacuum vessel for a cathode ray tube.
前記金属部材の戻し量が、金属部材の押し込み量の1/2以下である
ことを特徴とする請求項9記載の陰極線管用真空容器の製造方法。
The method for manufacturing a vacuum vessel for a cathode ray tube according to claim 9, wherein an amount of return of the metal member is 1/2 or less of an amount of pushing of the metal member.
前記ガラス部材がヒータによって加熱され、前記金属部材が高周波誘導加熱によって選択的に加熱される
ことを特徴とする請求項9記載の陰極線管用真空容器の製造方法。
The method for manufacturing a vacuum vessel for a cathode ray tube according to claim 9, wherein the glass member is heated by a heater, and the metal member is selectively heated by high-frequency induction heating.
ガラス部材と金属部材とからなる陰極線管用真空容器を備えた表示装置の製造方法であって、
前記ガラス部材を徐冷点温度以上に予備加熱する工程と、
前記金属部材の埋込み端部を1150℃〜1250℃の範囲で加熱する工程と、
加熱した前記金属部材を前記ガラス部材に近接させてガラス部材の埋込み部を局所加熱する工程と、
前記金属部材を前記ガラス部材内に押し込んで埋め込み、一定時間保持する工程と、
該押し込んだ金属部材を押し込み方向とは逆方向に一部戻し、一定時間保持してガラス部材と金属部材との気密接合を行う工程とを有して、前記陰極線管用真空容器の作製する
ことを特徴とする表示装置の製造方法。
A method for manufacturing a display device including a vacuum vessel for a cathode ray tube comprising a glass member and a metal member,
A step of preheating the glass member above the annealing point temperature,
Heating the embedded end of the metal member in a range of 1150 ° C to 1250 ° C;
A step of locally heating the embedded portion of the glass member by bringing the heated metal member close to the glass member,
Pushing the metal member into the glass member and embedding it, and holding it for a certain time;
Partially returning the pushed metal member in the direction opposite to the pushing direction, holding the glass member and the metal member in a hermetic manner by holding the glass member for a predetermined time, and manufacturing the vacuum vessel for the cathode ray tube. A method for manufacturing a display device characterized by the following.
前記金属部材の戻し量が、金属部材の押し込み量の1/2以下である
ことを特徴とする請求項12記載の表示装置の製造方法。
13. The method of manufacturing a display device according to claim 12, wherein a return amount of the metal member is equal to or less than 1/2 of a pushing amount of the metal member.
前記ガラス部材がヒータによって加熱され、前記金属部材が高周波誘導加熱によって選択的に加熱される
ことを特徴とする請求項12記載の表示装置の製造方法。
The method according to claim 12, wherein the glass member is heated by a heater, and the metal member is selectively heated by high-frequency induction heating.
ガラス部材と金属部材とからなる陰極線管用真空容器の製造方法であって、
前記ガラス部材に接合された第1の金属部材に対して第2の金属部材を、前記ガラス部材との接合部から15mm以上離れた位置で溶接する工程を有する
ことを特徴とする陰極線管用真空容器の製造方法。
A method for producing a vacuum vessel for a cathode ray tube comprising a glass member and a metal member,
A step of welding a second metal member to a first metal member joined to the glass member at a position separated from the joint portion with the glass member by 15 mm or more. Manufacturing method.
ガラス部材と金属部材とからなり、
前記ガラス部材に接合された第1の金属部材に対して第2の金属部材が、前記ガラス部材との接合部から15mm以上離れた位置で溶接されて成る
ことを特徴とする陰極線管用真空容器。
Consists of a glass member and a metal member,
A vacuum vessel for a cathode ray tube, wherein a second metal member is welded to a first metal member joined to the glass member at a position at least 15 mm away from a joint with the glass member.
前記第1の金属部材の一部が前記ガラス部材内に埋め込まれて接合されて成る
ことを特徴とする請求項16記載の陰極線管用真空容器。
17. The vacuum vessel for a cathode ray tube according to claim 16, wherein a part of the first metal member is embedded in and joined to the glass member.
前記第1の金属部材の一部がフリットガラスまたは低融点金属を介して前記ガラス部材に接合されて成る
ことを特徴とする請求項16記載の陰極線管用真空容器。
17. The vacuum vessel for a cathode ray tube according to claim 16, wherein a part of the first metal member is joined to the glass member via frit glass or a low melting point metal.
ガラス部材と金属部材とからなる陰極線管用真空容器を備えた表示装置であって、
前記ガラス部材に接合された第1の金属部材に対して第2の金属部材が、前記ガラス部材との接合部から15mm以上離れた位置で溶接されて成る
ことを特徴とする表示装置。
A display device comprising a vacuum vessel for a cathode ray tube comprising a glass member and a metal member,
A display device, wherein a second metal member is welded to a first metal member joined to the glass member at a position at least 15 mm away from a joint with the glass member.
前記第1の金属部材の一部が前記ガラス部材内に埋め込まれて接合されて成る
ことを特徴とする請求項19記載の表示装置。
20. The display device according to claim 19, wherein a part of the first metal member is embedded in and joined to the glass member.
前記第1の金属部材の一部がフリットガラスまたは低融点金属を介して前記ガラス部材に接合されて成る
ことを特徴とする請求項19記載の表示装置。
20. The display device according to claim 19, wherein a part of the first metal member is joined to the glass member via frit glass or a low melting point metal.
JP2002223572A 2002-07-31 2002-07-31 Vacuum container for cathode ray tube, its manufacturing method, display device and its manufacturing method Pending JP2004063414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223572A JP2004063414A (en) 2002-07-31 2002-07-31 Vacuum container for cathode ray tube, its manufacturing method, display device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223572A JP2004063414A (en) 2002-07-31 2002-07-31 Vacuum container for cathode ray tube, its manufacturing method, display device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004063414A true JP2004063414A (en) 2004-02-26

Family

ID=31943288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223572A Pending JP2004063414A (en) 2002-07-31 2002-07-31 Vacuum container for cathode ray tube, its manufacturing method, display device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004063414A (en)

Similar Documents

Publication Publication Date Title
TWI303592B (en) Glass-to-glass joining method using laser, vacuum envelope manufactured by the method, electron emission display having the vacuum envelope
KR0148417B1 (en) Flat type crt
JP3768889B2 (en) Display device
US20020079839A1 (en) Sealing vessel, method for manufacturing thereof and a display apparatus using such sealing vessel
JP2004063414A (en) Vacuum container for cathode ray tube, its manufacturing method, display device and its manufacturing method
JP2000149791A (en) Sealed container, sealing method, sealing device, and image forming device
EP2296164A2 (en) Bonding method of base materials, and manufacturing method of image display apparatus
JP4006440B2 (en) Airtight container manufacturing method, image display device manufacturing method, and television device manufacturing method
JPH07312189A (en) Manufacture of frit sealed x-ray tube
JP3119052B2 (en) Flat panel image display
JP3341294B2 (en) Cold cathode discharge lamp
JP2003524280A (en) Flat panel display wall and method for manufacturing the same
JPS60131729A (en) Vacuum container and production process thereof
JP2952682B2 (en) Method of manufacturing flat display device
US6194825B1 (en) Laser cathode ray tube (laser-CRT) and method of manufacturing the same
JP2001357803A (en) Image display device and its manufacturing method
JPS6246941B2 (en)
JPH05174733A (en) Vacuum vessel for flat plate type display device
JPH02288132A (en) Flat type display device
TW434633B (en) Glass and metal junction electronic part
JP2000195426A (en) Sealing method and closed housing and image display device and evacuation device
JP2002184330A (en) Image display device and its manufacturing method
JPH0714512A (en) Manufacture of frit seal type x-ray tube
JPH05190121A (en) Vacuum container for image display device and manufacture thereof
JP2001307667A (en) X-ray image tube and its manufacturing method