JP2004063312A - High-frequency heating apparatus - Google Patents

High-frequency heating apparatus Download PDF

Info

Publication number
JP2004063312A
JP2004063312A JP2002220992A JP2002220992A JP2004063312A JP 2004063312 A JP2004063312 A JP 2004063312A JP 2002220992 A JP2002220992 A JP 2002220992A JP 2002220992 A JP2002220992 A JP 2002220992A JP 2004063312 A JP2004063312 A JP 2004063312A
Authority
JP
Japan
Prior art keywords
heating
microwave
electrode
heating chamber
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002220992A
Other languages
Japanese (ja)
Other versions
JP3925345B2 (en
Inventor
Tomotaka Nobue
信江 等隆
Kenji Yasui
安井 健治
Kazuhiko Asada
麻田 和彦
Koji Yoshino
吉野 浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002220992A priority Critical patent/JP3925345B2/en
Publication of JP2004063312A publication Critical patent/JP2004063312A/en
Application granted granted Critical
Publication of JP3925345B2 publication Critical patent/JP3925345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easy-to-use apparatus allowing a large effective volume of a heating chamber to be formed, in an apparatus provided with heating electrodes for sandwiching and heating a heating object. <P>SOLUTION: This high-frequency heating apparatus is provided with: the heating chamber 10 for storing the heating object; the heating electrode 18 disposed so as to interpose the heating object with at least one of them movable; and an electromagnetic wave leakage prevention means 33 installed on a wall surface 34 of the heating chamber facing to the movable heating electrode. Since spark generation between the heat chamber wall surface and the heating electrode can be restrained and the heating electrode can be moved and fixed to the vicinity of the heating chamber wall surface in executing microwave hating, the effective volume of the heating chamber can be increased, and the microwave heating can efficiently be executed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、被加熱物を電極間に挟んで誘電加熱とマイクロ波加熱とが併用できる高周波加熱装置に関する。
【0002】
【従来の技術】
高周波加熱装置の代表である電子レンジは、被加熱物を直接的に加熱できるのでなべ釜を準備する必要がない簡便さでもって生活上の不可欠な機器になっている。また、この電子レンジの加熱の特徴は加熱エネルギを食品内部にまで供給できることであり、この特徴を冷凍食品の解凍に利用するということで冷凍食品が大量に流通してきた。
【0003】
電子レンジは、被加熱物を収納する加熱室の大きさが大概、幅寸法および奥行き寸法がそれぞれ30〜40cm、高さ寸法が20cm前後である。一方使用している周波数の波長は約12cmであり、加熱室内には強弱の電界分布が必ず生じ、さらには被加熱物の形状やその物理特性の影響が相乗されて局所加熱が発生することがある。冷凍食品の解凍においては、氷が解けて水になった領域に加熱エネルギが集中するので局所加熱現象が顕著に現れ、部分煮えと未解凍とが共存してしまう問題を有している。
【0004】
波長の長い高周波を利用し、加熱用電極を用いて被加熱物を誘電加熱する方法は、歴史が古くいまでも工業用としてバッチ方式やベルトコンベア方式が用いられている。これらは大型の冷凍品の処理や冷凍品の多量処理のために大型の装置構成であり、かつ装置の操作も熟練者が行っている。
【0005】
一方、この加熱用電極を用いた装置の家庭用装置への展開も古くから検討されてきたが、生活上の利便性あるいは使用上の利便性の価値をユーザに提供できるまでには至っていない。家庭用装置としての実用価値を提供することを目的とした従来技術としては、たとえば特開平9−92455号公報がある。この公報には、電子レンジとの併用を考慮し加熱室内の電気配線による電気的結合部を排除する構成の提案がなされている。
【0006】
【発明が解決しようとする課題】
家庭用装置の実用価値は、形状は大きくても電子レンジ並であり、かつ電子レンジと同様に加熱室の有効容積を大きくして使い勝手を確保することが主要な解決すべき課題である。
【0007】
形状のコンパクト化に関しては、高周波発生手段の小型化および加熱用電極と高周波発生手段とのインピーダンスの整合を図る各種インピーダンス整合素子の小型化が主要な課題である。また、加熱室の使い勝手に関しては、加熱用電極の収容方法に工夫することである。
【0008】
従来技術の特開平9−92455号公報は、加熱用電極の上電極が上下動する構成からなり、マイクロ波加熱時にはこの可動する上電極を加熱室の最上部に移動することが開示されているが、導体である上電極を加熱室壁面に近接する場合、マイクロ波電界の局所集中によりスパークが発生に電極あるいは加熱室壁面が破損する危険性を有している。
【0009】
本発明は上記課題を解決するもので、可動する加熱用電極の未使用時の配置構成に工夫し、マイクロ波加熱時での加熱室の有効容積を大きくするとともに電極を用いた誘電加熱時には加熱用電極に高周波を効率よく供給して被加熱物をスピード加熱する装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の高周波加熱装置は上記課題を解決するために、被加熱物を収納する加熱室と、前記被加熱物を挟む形で配置した少なくとも一方が可動する加熱用電極と、前記可動する加熱用電極が対向する加熱室の壁面に設けた電波漏洩抑制手段とを備えた構成としている。
【0011】
上記発明によれば、加熱用電極を加熱室壁面近傍に移動固定してマイクロ波加熱を行う時に、加熱室壁面と加熱用電極との間の隙間でのマイクロ波の伝送を抑制でき、スパーク発生を確実に抑制できるので、加熱用電極を加熱室壁面に近接配置することで加熱室の有効容積を大きくできるとともにマイクロ波加熱を効率よく実行させることができる。
【0012】
【発明の実施の形態】
請求項1に記載の発明は、被加熱物を収納する加熱室と、前記被加熱物を挟む形で配置した少なくとも一方が可動する加熱用電極と、前記加熱室の壁面のうち可動する加熱用電極が対向する面に設け前記加熱室と前記可動する電極との隙間からの電波の漏洩を抑制する電波漏洩抑制手段とを備えたもので、これにより加熱用電極を加熱室壁面近傍に移動固定してマイクロ波加熱を行う時に、加熱室壁面と加熱用電極との間の隙間でのマイクロ波の伝送を抑制でき、スパーク発生を確実に抑制できるので、加熱用電極を加熱室壁面に近接配置することで加熱室の有効容積を大きくできるとともにマイクロ波加熱を効率よく実行させることができる。
【0013】
請求項2に記載の発明は、特に、請求項1に記載の電波漏洩抑制手段は、可動する加熱用電極の周縁部に対向する加熱室壁面に設けたものであり、これにより加熱用電極の中央部へのマイクロ波の伝搬が抑制できるので、この中央部に電気部品などを配置させることができ、この可動する加熱用電極を高圧側電極にすることができる。
【0014】
請求項3に記載の発明は、特に、請求項1に記載の高周波加熱装置が、可動する加熱用電極と電波漏洩抑制手段を配した加熱室壁面との間に所定のすきまを形成した状態で可動する加熱用電極を固定支持する係止部を設けたものであり、これにより電波漏洩抑制手段の作用を確実に働かせることができる。
【0015】
請求項4に記載の発明は、特に、請求項2に記載の高周波加熱装置が、可動する加熱用電極に対向する加熱室壁面を櫛状に構成したものであり、これにより加熱室内をランダムに伝搬し加熱室壁面と加熱用電極とのすきまにあらゆる方向から侵入しようとするマイクロ波に対して電波漏洩抑制手段の作用を確実に働かせることができる。
【0016】
請求項5に記載の発明は、被加熱物を収納する加熱室と、この被加熱物を挟む形で配置した加熱用電極とを備え、前記電極の一方を前記加熱室の壁面とし、前記加熱室の壁面にはマイクロ波を伝送する導波管の終端側に前記導波管の管軸上の点に対して点対称に配設した複数のL字状のマイクロ波放射口を前記加熱室の壁面の略中央部に配置する構成とし、これにより複数のL字状の放射口を点対称に配置することで各放射口を励振する電界の向きはそれぞれが異なる方向となり、各放射口から放射される高周波が放射口近傍で結合したり反発したりして放射口周辺に幅広い放射分布を形成する。この放射口近傍での振る舞いにより、被加熱物の量や形状の違いによるマイクロ波発生手段への影響が緩和され様々な被加熱物に対してマイクロ波発生手段を安定に動作させることができ、マイクロ波エネルギの利用効率を高めることができる。さらに電極を用いた誘電加熱とマイクロ波によるマイクロ波加熱とを連続的に実行させることができる。
【0017】
請求項6に記載の発明は、特に、請求項5に記載の複数のマイクロ波放射口の導波管の管軸方向における最大間隔は、この導波管を伝送するマイクロ波の伝送波長の略1/2の長さとしたものであり、これにより各放射口を横切る高周波電界の方向を相反する方向に規定させることができ放射方向の全方向化を確実に図ることができる。
【0018】
請求項7に記載の発明は、特に、請求項5に記載の複数のマイクロ波放射口は導波管の管軸を横切らない構成としたものであり、これによりマイクロ波発生手段側に位置する放射口からの放射エネルギを抑制し各放射口のマイクロ波励振を保証させることができる。
【0019】
請求項8に記載の発明は、特に、請求項5に記載の高周波加熱装置が、被加熱物を載置する非金属材料の載置部と、マイクロ波放射口と前記載置部との間に回転支持されるマイクロ波攪拌手段とを備え、前記マイクロ波攪拌手段を非金属で低誘電損失で低透磁率の材料にて支持したものであり、これによりマイクロ波攪拌手段を加熱室壁面から確実に絶縁して配置でき、電極を用いた誘電加熱の際の電極間の電界分布の均一性を保証できる。
【0020】
請求項9に記載の発明は、特に、請求項8に記載のマイクロ波攪拌手段は、長方形状の板としたものであり、これにより複数の放射口から放射されたマイクロ波を周期的にチョップして放射方向を攪拌するので被加熱物を移動させることなくマイクロ波による加熱の均一性を促進させることができる。
【0021】
請求項10に記載の発明は、特に、請求項8に記載のマイクロ波攪拌手段は、円形状の板とし、この円板に回転の中心を点対称とする複数のL字状の開口を設けたものであり、これにより複数の放射口から放射されたマイクロ波への作用を大きくできるので、より複雑にマイクロ波を攪拌するので被加熱物を移動させることなくマイクロ波の加熱の均一性をさらに促進させることができる。
【0022】
請求項11に記載の発明は、特に、請求項10に記載のL字状の開口は、導波管に設けたマイクロ波放射口と同等の形状で構成したものであり、これによりマイクロ波攪拌手段からも二次的な回転電界放射をさせることで被加熱物を移動させることなく均一加熱できる。
【0023】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0024】
(実施例1)
図1は本発明の実施例1を示す高周波加熱装置の正面断面構成図、図2は図1において加熱用電極を可動させた時の正面断面構成図、図3は図1の並列配置の固定インピーダンス素子の部品構成図、図4は図1のA−A‘断面矢視図、図5は図1のB−B‘断面矢視図、図6はマイクロ波放射部まわりの構成図、図7は図1の回路構成図である。
【0025】
図1および図2において、10は被加熱物を収納する加熱室であり、加熱室10の底面11は加熱用電極を兼ねている。この加熱室の底面11には、マイクロ波発生手段12が発生するマイクロ波(2450MHz帯)を加熱室10内に供給するマイクロ波放射部13を設けている。14はマイクロ波をマイクロ波放射部13に伝送する導波管である。このマイクロ波放射部13まわりの構成は後述する。また、15は金属材料(非磁性金属材料、たとえばアルミ)の板状構成からなるマイクロ波攪拌手段であり、モータ16によって回転駆動する。マイクロ波攪拌手段15を覆って被加熱物を載置する非金属材料(たとえば、耐熱ガラス、セラミックスあるいは耐熱樹脂)の載置部17を配置させている。このように被加熱物の載置部を非金属材料としたことにより安全性という安心感を提供できるとともに被加熱物を加熱用電極11から絶縁したことにより被加熱物の局所加熱を防止できる。
【0026】
一方、18は他方の加熱用電極(非磁性金属材料、たとえばアルミ、SUS304)であり、絶縁材料(PPSやPS)からなるアーム19、20によって支持されている。このアーム19、20の他端はそれぞれラック21、22に固定接続している。23はモータであり、その出力シャフトに樹脂材料からなるピニオン24を配し、モータ23を駆動することでピニオン24の歯車と噛み合ったラックが図1において左右方向に移動する構成としている。モータ23は回転方向を規制していない同期モータとしている。なお、モータ23はステッピングモータを利用しても構わない。
【0027】
25は加熱室の底面11と加熱用電極18との間に供給する高周波(たとえば13.56MHz、27.12MHz)を発生する高周波発生手段、26は高周波発生手段25の出力側に設けた出力電力および反射電力を検出する電力検出部(CM型SWR回路など)、27は電力供給線である。電力供給線27は同軸ケーブルで構成し、外部導体27aは加熱室10の壁面11と電気的に導通するように接続している。また、同軸ケーブルからなる電力供給線27の中心導体27bは可変インピーダンス素子であるタップ切替端子付きのコイル28に結線している。
【0028】
可変インピーダンス素子であるタップ切替端子付きコイル28の他端と固定インピーダンス素子29の一端とは表面に絶縁体を付帯させた可撓性の板状導体30で結線している。
【0029】
固定インピーダンス素子29はコイル構成とし、加熱用電極18に固定した絶縁材料からなるボディ31に導線を数回巻きして構成している。固定インピーダンス素子29の他端は加熱用電極18に結線している。ボディ31は加熱用電極18に固定組立しており、この構成により、加熱用電極18と固定インピーダンス素子29とは一体構造となり、加熱用電極18の可動に伴って固定インピーダンス素子29が一体的に昇降する。
【0030】
また、この構成により固定インピーダンス素子29と可変インピーダンス素子28は高周波発生手段25と加熱用電極18との間に直列に配置した構成からなる。また可変インピーダンス素子28と高周波発生手段25との間に並列配置の固定インピーダンス素子32を設けている。
【0031】
この固定インピーダンス素子32はコンデンサとしている。このコンデンサの詳細構成を図3に示す。図3において、321と322とは一方の電極、323は他方の電極、324と325はそれぞれの電極間に積層する誘電体(比誘電率が高い材料が好ましい。たとえば、アルミナ)である。
【0032】
また各電極および誘電体には中央部に所定の寸法の穴加工を配しており、これらを順に積層した後、中央部の穴に金属を挿入して電極321と電極322とを導通させてコンデンサを構成している。電極321、322に配したそれぞれの穴326および327は一方の電極の結線用の穴、電極323に配した穴328は他方の電極の結線用穴である。なお、図1および図2においては中央部に通した金属ねじを加熱室の底面11と導通する金属面とともにねじ組み立てした構成としている。
【0033】
次に図1、図2および図4を用いて電波漏洩抑制手段33の説明をする。
図4は図1のA−A‘断面矢視図である。可動する加熱用電極18の周縁部に対向する加熱室10の上壁面34に櫛部35をほぼ周期的に周回配置して櫛状に加工した領域を配置している。この櫛状領域の加熱用電極18とは反対側には櫛状領域を覆い櫛部35との間でチョーク溝を形成するチョーク壁面36を設けている。また図1に示すように加熱用電極18を櫛状領域と所定の隙間を形成させて固定支持する係止部37、38をチョーク壁面36と連続した壁面にて構成している。電波漏洩抑制手段33は、加熱用電極18、櫛部35を周期的に周回配置した櫛状領域、チョーク壁面36および係止部によって構成している。櫛部35の長さは、使用しているマイクロ波の波長の約1/4波長(約30mm)とし、櫛部間に設けた隙間35aの寸法は10mmとしている。櫛部35の幅は、直線部分では20mmとし、コーナー部では10mmとしている。
【0034】
なお、図4において18aは加熱用電極18の周囲を示し、39は加熱室10に被加熱物を出し入れする開閉扉、40は装置の加熱動作を入力する操作キーを配置した操作パネルである。
【0035】
このように構成した電波漏洩抑制手段33により、加熱用電極18の周囲位置から櫛部側を見たときのインピーダンスは非常に低い値になる。これにより加熱室10内にマイクロ波を閉じ込める金属壁面は加熱室10の上壁面34と加熱用電極18とが連続した金属体のように作用する。したがって、加熱用電極18と加熱室壁面との間のスパーク発生を抑制することができる。
【0036】
また、この作用により、加熱用電極18の加熱室10と反対側にはマイクロ波の流入が抑制されるので、加熱用電極18の中央部へ固定インピーダンス素子29を配置することや可変インピーダンス素子28と固定インピーダンス素子29とを接続する電力線41などを配置させることができ、さらには本実施例のごとく可動する加熱用電極を高圧側電極にすることができる。
【0037】
また、マイクロ波加熱を行う時に、加熱用電極をスパークの危険性なく加熱室壁面に近接固定することで、加熱室の有効容積を大きくできるとともにマイクロ波加熱を効率よく実行させることができる。
【0038】
また係止部を設けたので確実に所定の隙間を形成でき電波漏洩抑制手段の作用を確実に働かせることができる。さらに櫛状に構成により加熱室内をランダムに伝搬し加熱室壁面と加熱用電極との隙間にあらゆる方向から侵入しようとするマイクロ波に対して電波漏洩抑制手段の作用を確実に働かせることができる。
【0039】
次に図5および図6を用いてマイクロ波放射部13まわりの説明をする。マイクロ波放射部13は、導波管14のマイクロ波発生手段を装着する側から遠い側の導波管端面42とこの端面42から導波管14を伝送する周波数の伝送波長の略1/2の距離だけ離れた位置との間の壁面(導波管のH面)に配置している。マイクロ波放射部13は、それぞれL字形状の開口13a、13bから構成し点対称に配置している。点対称の位置は導波管14の管軸43上であり図において穴44の中心である。マイクロ波放射部13の各開口13a、13bは導波管14の管軸に対して平行な部分と垂直な部分とを有し、かつ各開口は管軸を横切らないように配置している。
【0040】
また、45は導波管内の伝送波長を定在波分布として一例を示しているが、図示したように導波管内で共振するような導波管14の長さに限定する必要はない。
【0041】
穴44はマイクロ波攪拌手段15と連結しそれを回転させるモータ16の出力シャフト(非金属で低誘電損失材料にて構成)が貫通する。マイクロ波攪拌手段15は上述したとおりの金属材料からなる長方形状の板構成であり、その板面は加熱室底面11と略平行に配置している。このような構成により、マイクロ波攪拌手段15は加熱室10の壁面11から絶縁した配置としている。そしこのマイクロ波攪拌手段15の構成により、電極を用いた加熱における加熱用電極間に生じる高周波電界の不均一分布を極小化している。なお、46はマイクロ波発生手段12の出力アンテナを挿入組み立てする穴である。
【0042】
次に上記マイクロ波放射部構成の主要動作について説明する。導波管14を伝送したマイクロ波により、導波管壁面には図6において矢印47〜50で示すような高周波電流が流れ、L字状の放射口13a、13bには同様に矢印47〜50で示す方向の高周波電界が生じる。この高周波電界は相互に結合し回転電界となって放射口から放射する。これにより放射口周辺に幅広い放射分布を形成している。この放射口近傍での振る舞いにより、被加熱物の量や形状の違いによるマイクロ波発生手段への影響が緩和され様々な範囲の被加熱物に対してマイクロ波発生手段を安定に動作させることができ、発生したマイクロ波エネルギの利用効率を高めることができる。
【0043】
そしてこのマイクロ波放射部13から回転電界を生じながら加熱室10内に放射させたマイクロ波はマイクロ波攪拌手段15によってかき乱され、加熱室10内全体に万遍なくマイクロ波が放射されて、被加熱物の加熱の均一化を促進する。なお、マイクロ波攪拌手段15は、たとえば、幅20mm、長さ120mm(90mm以上が望ましい)の長方形状の板としている。
【0044】
上記した装置の電極を用いた加熱に係る回路図を図7に示す。図7において、25は高周波発生手段、26は電力検出部、32は並列配置の固定インピーダンス素子、28はタップ切替付の可変コイルからなる直列配置の可変インピーダンス素子、29は直列配置の固定インピーダンス素子、18は可動する加熱用電極、11は加熱室底面、17は載置部、51は被加熱物である。
【0045】
次に加熱用電極18の可動動作について説明する。
図1に示す状態においてモータ23を動作させるとラック21、22が移動自由な方向にモータ23の回転方向が規制され、これにより加熱用電極18が下降する方向にモータ23が回転動作する。加熱用電極18の下降は、図2に示すように、アーム19、20が略鉛直方向になるまで続く。この状態においてラック21、22の一端が加熱室の壁面52、53に当たる。そして、モータ23は現在の回転方向に対する駆動トルクが増大し、それを解消するべく反対方向に回転を始める。これにより、加熱用電極18は上昇に転じ、図1に示すような最上位の位置に戻る。
【0046】
図1に示す最上位の位置は、加熱用電極18は電波漏洩抑制手段33の構成部の一つである金属部37、38によって上昇を規制させている。この位置に到達したことをリミットスイッチ(図示していない)で検知してモータ23の動作を停止させる。
【0047】
この加熱用電極18の昇降動作に対して、被加熱物を収納した場合の加熱用電極18の制御方法を以下に説明する。被加熱物を載置した後、モータ23を動作させると加熱用電極18は下降を始め、被加熱物あるいは被加熱物の収納容器などに加熱用電極18が当接すると下降動作が停止する。このときにモータ23に駆動トルクが発生し、これに伴ってモータの駆動電流が増大する。この駆動電流をモニターしておき、駆動電流の増大を検知した後、所定時間経過後にモータの動作を停止させることで加熱用電極18を加熱室10内に停止固定させている。
【0048】
この後、高周波発生手段25を動作させ、電力検知部26の検出信号に基づき、反射電力が最小になるように可変インピーダンス素子28のタップ切替位置を選択し、反射電力が最小となるタップ位置にて高周波加熱を連続し、所定時間あるいは反射電力量の時間的変化に基づいて加熱を停止する。
【0049】
次に上記構成の電極を用いた高周波加熱の有効性について図8を用いて説明する。図8は、それぞれの被加熱物に対して、加熱用電極18と被加熱物とのすきまを10mmとし可変インピーダンス素子の値を反射電力が最小となるように選択した時の図7の点P1から加熱用電極側を見たインピーダンス値をスミス図表の上にプロットしたものである。測定周波数は13.56MHzであり、並列配置の固定インピーダンス素子32は690pFのコンデンサ、直列配置の固定インピーダンス素子29は2μHのコイル、可変インピーダンス素子28は0.7μH、0.8μH、0.9μHを用いた。また加熱用電極18の形状は250mmx200mm、被加熱物として牛スライス肉(図中の□印)、ミンチ肉(図中の△印)、まぐろブロック(図中の●印)の各100g、300g、500gを用いた。
【0050】
図中の破線の円54は電圧定在波比の値が2を示し、電力反射率に換算すると約11%である。使用した被加熱物に対して可変インピーダンス素子28の値を選択するだけのインピーダンス整合調整であるが、反射電力は十分に小さくすることができ、高周波発生手段25の出力電力を被加熱物に効率よく供給できることが認められ、また短時間に被加熱物を良好に解凍することができた。
【0051】
つまり、可変インピーダンス素子を一つだけ用いる構成で十分に実用性がある高周波加熱装置を実現できる。この場合、直列配置の二つのインピーダンス素子(固定インピーダンス素子と可変インピーダンス素子)において、加熱用電極側に設ける固定インピーダンス素子のインピーダンス値を可変インピーダンス素子の最大インピーダンス値の2倍以上とする。これにより、加熱用電極間と直列配置の二つのインピーダンス素子とに高電圧を分圧する。固定インピーダンス素子は高電圧を分担するので固定インピーダンス素子と加熱用電極との間の結線は太く短くを基本とし加熱用電極に固定インピーダンス素子を一体組み立てする構成としている。これにより、結線部の発熱を抑制することができる。
【0052】
また、高電圧を加熱用電極と固定インピーダンス素子に集中化させることで固定インピーダンス素子と可変インピーダンス素子との結線部の発熱を抑制でき、この結線に可撓性の高い導線を使用することができる。
【0053】
なお、インピーダンス値の比率は、大きいほど有効であるが、可変インピーダンスの可変範囲を確保することを考慮して実用的には最大で4〜5倍程度までが使用できる。
【0054】
以上より、並列配置の固定インピーダンス素子と直列配置の固定インピーダンス素子と同じく直列配置の可変インピーダンス素子とを用い直列配置の各インピーダンス素子のインピーダンス比率を最適化することでインピーダンス整合に係わる各インピーダンス素子をコンパクトに構成できるとともにインピーダンス整合の調整を簡単な制御にて実現することができる装置を実現させることができる。
【0055】
なお、図6において、導波管の管軸およびマイクロ波放射部を加熱室の底面に配置したが、これらを側面に配置したとしても同様の効果を得られるものである。
【0056】
(実施例2)
次に本発明の実施例2について図9を用いて説明する。実施例2が実施例1と相違する点は、マイクロ波攪拌手段の構成にある。なお、実施例1と同一部材または同一相当部材は同一番号で示し説明を省略する。
【0057】
すなわち、図9において、矩形形状の導波管14の終端側にはL字形状の開口を有する放射口13a、13bを導波管14の管軸上に位置する点を点対称として配設している。この複数の放射口13a、13bの上方には回転体である略円形形状の金属板からなるマイクロ波攪拌手段55を設けている。このマイクロ波攪拌手段55は複数の放射口13a、13bの点対称位置44を回転の中心として回転駆動する構成としている。すなわち、マイクロ波攪拌手段55の略円形形状の中心部には非金属で低誘電損失で低透磁率の材料からなる支柱(図示していない)を設け、この支柱にモータ16の出力シャフトを嵌合させている。またマイクロ波攪拌手段55には導波管14に設けたL字形状の開口と同様の開口56a、56bを配設している。
【0058】
このような構成により、マイクロ波攪拌手段55を回転させることによりL字形状の放射口によって形成させた放射分布を保護しながらマイクロ波攪拌手段55に設けたL字形状の開口56a、56bを第二の放射口として作用させて被加熱物側にマイクロ波を放射することで被加熱物を移動させることなく被加熱物の加熱の均一化を促進することができる。
【0059】
なお、マイクロ波攪拌手段55に設ける開口の形状はL字形状に限るものではなく、たとえば矩形形状の長手方向を直交させて複数配設しても構わない。また、マイクロ波攪拌手段55は偏心回転駆動させてもよい。また、マイクロ波攪拌手段55は導波管14に設けたL字形状の開口からなる放射口によって現出される放射分布を許可する構成であればよく、たとえば扇型形状でも構わない。
【0060】
以上の実施例において、各放射口あるいは開口のコーナー部は適当に丸く加工するのが加工上およびエッジ部によるスパーク発生抑止の観点で望ましい。
【0061】
【発明の効果】
以上のように本発明によれば、可動する加熱用電極が対向する加熱室の壁面に設けた電波漏洩抑制手段とを備えた構成としたことにより、加熱用電極を加熱室壁面近傍に移動固定してマイクロ波加熱を行う時に、加熱室壁面と加熱用電極との間の隙間でのマイクロ波の伝送を抑制でき、スパーク発生を確実に抑制できるので、加熱室の有効容積を大きくできるとともにマイクロ波加熱を効率よく実行させることができる。
【0062】
また、被加熱物を収納する加熱室においてこの被加熱物を挟む形で配置した加熱用電極の一方を前記加熱室の壁面とし、マイクロ波を伝送する導波管の終端側に前記導波管の管軸上の点に対して点対称に配設した複数のL字状のマイクロ波放射口を前記加熱室の壁面の略中央部に配置する構成により、放射口周辺に幅広い放射分布を形成し被加熱物の量や形状の違いによるマイクロ波発生手段への影響が緩和され様々な被加熱物に対してマイクロ波発生手段を安定に動作させることができ、マイクロ波エネルギの利用効率を高めることができる。さらに電極を用いた誘電加熱とマイクロ波によるマイクロ波加熱とを連続的に実行できる利便性の高い装置を提供できる。
【図面の簡単な説明】
【図1】本発明の実施例1の高周波加熱装置の正面断面図
【図2】同高周波加熱装置の加熱用電極を可動した時の正面断面図
【図3】同高周波加熱装置の固定インピーダンス素子の部品構成図
【図4】同高周波加熱装置のA−A‘断面矢視図
【図5】同高周波加熱装置のB−B‘断面矢視図
【図6】同高周波加熱装置のマイクロ波放射部まわりの構成図
【図7】同高周波加熱装置の電極を用いる加熱に係る回路構成図
【図8】同高周波加熱装置の各種被加熱物に対する負荷インピーダンス特性図
【図9】本発明の実施例2の高周波加熱装置のマイクロ波放射部まわりの構成図
【符号の説明】
10 加熱室
11 加熱室の底面(一方の加熱用電極)
12 マイクロ波発生手段
13 マイクロ波放射部(供給部)
13a、13b、56a、56b L字形状の開口
15、55 マイクロ波攪拌手段
17 載置部
18 加熱用電極(可動する加熱用電極)
25 高周波発生手段
33 電波漏洩抑制手段
35 櫛部
37、38 係止部
43 導波管の管軸
51 被加熱物
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency heating device in which dielectric heating and microwave heating can be used in combination with an object to be heated sandwiched between electrodes.
[0002]
[Prior art]
2. Description of the Related Art A microwave oven, which is a typical example of a high-frequency heating device, has become an indispensable device in daily life because it can directly heat an object to be heated, so that it is not necessary to prepare a pot. Further, the feature of the heating of the microwave oven is that heating energy can be supplied to the inside of the food, and the frozen food has been distributed in large quantities by utilizing this feature for thawing the frozen food.
[0003]
2. Description of the Related Art In a microwave oven, a heating chamber for storing an object to be heated generally has a size of about 30 to 40 cm in width and depth, and about 20 cm in height. On the other hand, the wavelength of the frequency used is about 12 cm, a strong and weak electric field distribution always occurs in the heating chamber, and the local heating may occur due to the synergistic effect of the shape of the object to be heated and its physical characteristics. is there. In the thawing of frozen foods, the heating energy is concentrated in the area where the ice has melted and turned into water, so that a local heating phenomenon appears remarkably, and there is a problem that partially boiled and unthawed coexist.
[0004]
A method of dielectrically heating an object to be heated by using a heating electrode by using a high frequency having a long wavelength has a long history, and even now, a batch system or a belt conveyor system is used for industrial use. These are large-sized apparatus configurations for processing large-sized frozen products and large-scale processing of frozen products, and the operation of the apparatus is also performed by skilled personnel.
[0005]
On the other hand, the application of the device using the heating electrode to a home device has been studied for a long time, but the value of convenience in life or convenience in use has not yet been provided to the user. As a conventional technique for providing practical value as a household device, there is, for example, Japanese Patent Application Laid-Open No. 9-92455. This publication proposes a configuration in which an electric connection part by electric wiring in a heating chamber is eliminated in consideration of the combined use with a microwave oven.
[0006]
[Problems to be solved by the invention]
The practical value of a household device is comparable to that of a microwave oven even if it is large in shape, and the main problem to be solved is to increase the effective volume of the heating chamber and secure usability similarly to a microwave oven.
[0007]
Regarding the compactness of the shape, the main issues are downsizing of the high-frequency generating means and downsizing of various impedance matching elements for matching the impedance between the heating electrode and the high-frequency generating means. Further, regarding the usability of the heating chamber, it is necessary to devise a method of housing the heating electrode.
[0008]
Japanese Patent Application Laid-Open No. Hei 9-92455 discloses that the upper electrode of a heating electrode moves up and down, and the movable upper electrode is moved to the uppermost part of a heating chamber during microwave heating. However, when the upper electrode, which is a conductor, is close to the wall of the heating chamber, there is a danger that the electrode or the wall of the heating chamber may be damaged due to the occurrence of sparks due to local concentration of the microwave electric field.
[0009]
The present invention solves the above-mentioned problems, and devises an arrangement of the movable heating electrode when not in use, increases the effective volume of the heating chamber during microwave heating, and heats the electrode during dielectric heating using the electrode. It is an object of the present invention to provide a device for efficiently heating an object to be heated by efficiently supplying a high frequency to an electrode for use.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, a high-frequency heating device according to the present invention includes a heating chamber that stores an object to be heated, a heating electrode in which at least one of the heating electrodes is arranged to sandwich the object to be heated, and a heating electrode that is movable. Radio wave leakage suppressing means provided on the wall surface of the heating chamber facing the electrodes is provided.
[0011]
According to the above invention, when performing microwave heating by moving and fixing the heating electrode near the heating chamber wall surface, transmission of microwaves in the gap between the heating chamber wall surface and the heating electrode can be suppressed, and spark generation can occur. Therefore, by disposing the heating electrode close to the wall surface of the heating chamber, the effective volume of the heating chamber can be increased and microwave heating can be performed efficiently.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 is a heating chamber for accommodating an object to be heated, a heating electrode in which at least one of the heating chambers is arranged so as to sandwich the object to be heated, and a heating electrode which is movable among wall surfaces of the heating chamber. An electrode provided on a surface facing the electrode and a radio wave leakage suppressing means for suppressing radio wave leakage from a gap between the heating chamber and the movable electrode, whereby the heating electrode is moved and fixed near the wall of the heating chamber. When microwave heating is performed, microwave transmission in the gap between the heating chamber wall surface and the heating electrode can be suppressed, and spark generation can be reliably suppressed, so the heating electrode is placed close to the heating chamber wall surface. By doing so, the effective volume of the heating chamber can be increased, and microwave heating can be performed efficiently.
[0013]
According to a second aspect of the present invention, in particular, the radio wave leakage suppressing means according to the first aspect is provided on a wall surface of a heating chamber opposed to a peripheral portion of a movable heating electrode. Since the propagation of the microwave to the central portion can be suppressed, an electric component or the like can be arranged at the central portion, and the movable heating electrode can be a high-pressure side electrode.
[0014]
The invention according to claim 3 is a method according to claim 1, wherein the high-frequency heating device according to claim 1 forms a predetermined clearance between a movable heating electrode and a wall surface of a heating chamber provided with a radio wave leakage suppression unit. A locking portion for fixing and supporting the movable heating electrode is provided, whereby the action of the radio wave leakage suppressing means can be reliably performed.
[0015]
According to a fourth aspect of the present invention, in particular, the high-frequency heating apparatus according to the second aspect is configured such that the wall of the heating chamber facing the movable heating electrode is formed in a comb shape, whereby the heating chamber is randomly formed. The action of the radio wave leakage suppressing means can be reliably applied to microwaves that propagate and enter the gap between the heating chamber wall surface and the heating electrode from all directions.
[0016]
The invention according to claim 5 includes a heating chamber for accommodating an object to be heated, and a heating electrode arranged so as to sandwich the object to be heated, wherein one of the electrodes is a wall surface of the heating chamber, On the wall surface of the chamber, a plurality of L-shaped microwave radiating ports arranged point-symmetrically with respect to a point on the tube axis of the waveguide at the end side of the waveguide for transmitting microwaves are provided in the heating chamber. By arranging a plurality of L-shaped radiation ports in a point-symmetrical manner, the directions of the electric fields that excite the radiation ports are different from each other. The radiated high frequency waves are combined or repelled in the vicinity of the radiation port to form a wide radiation distribution around the radiation port. By the behavior in the vicinity of the radiation port, the influence on the microwave generating means due to the difference in the amount and shape of the object to be heated is reduced, and the microwave generating means can be operated stably for various objects to be heated. The utilization efficiency of microwave energy can be improved. Furthermore, dielectric heating using an electrode and microwave heating using a microwave can be continuously performed.
[0017]
In the invention according to claim 6, in particular, the maximum spacing of the plurality of microwave radiating ports according to claim 5 in the tube axis direction of the waveguide is substantially equal to the transmission wavelength of the microwave transmitted through the waveguide. The length is set to 2, whereby the direction of the high-frequency electric field crossing each radiation port can be defined in the opposite direction, and the omnidirectional radiation direction can be ensured.
[0018]
According to a seventh aspect of the present invention, in particular, the plurality of microwave radiating ports according to the fifth aspect are configured so as not to cross the waveguide axis of the waveguide, and are thereby located on the microwave generating means side. The radiation energy from the radiation ports can be suppressed, and the microwave excitation of each radiation port can be guaranteed.
[0019]
In the invention according to claim 8, the high-frequency heating device according to claim 5 is preferably arranged such that the non-metallic material mounting portion on which the object to be heated is mounted, the microwave radiating port, and the mounting portion described above. Microwave stirring means which is rotatably supported on the microwave stirring means, wherein the microwave stirring means is supported by a non-metallic material having a low dielectric loss and a low magnetic permeability. Insulation can be ensured, and the uniformity of the electric field distribution between the electrodes during dielectric heating using the electrodes can be ensured.
[0020]
According to a ninth aspect of the present invention, in particular, the microwave stirring means according to the eighth aspect is a rectangular plate, thereby periodically chopping the microwaves radiated from the plurality of radiation ports. As a result, the uniformity of microwave heating can be promoted without moving the object to be heated.
[0021]
According to a tenth aspect of the present invention, in particular, the microwave stirring means according to the eighth aspect is a circular plate, and a plurality of L-shaped openings having a point of symmetry about the center of rotation are provided on the circular plate. This makes it possible to increase the effect on the microwaves radiated from the plurality of radiating ports, so that the microwaves are stirred more complicatedly, so that the uniformity of the microwave heating can be improved without moving the object to be heated. It can be further promoted.
[0022]
According to the eleventh aspect of the present invention, in particular, the L-shaped opening according to the tenth aspect is configured to have the same shape as the microwave radiating port provided in the waveguide. By emitting secondary rotating electric field from the means, uniform heating can be performed without moving the object to be heated.
[0023]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0024]
(Example 1)
FIG. 1 is a front cross-sectional configuration diagram of a high-frequency heating apparatus according to a first embodiment of the present invention, FIG. 2 is a front cross-sectional configuration diagram when a heating electrode is moved in FIG. 1, and FIG. FIG. 4 is a cross-sectional view taken along the line AA ′ of FIG. 1, FIG. 5 is a cross-sectional view taken along the line BB ′ of FIG. 1, and FIG. 7 is a circuit configuration diagram of FIG.
[0025]
1 and 2, reference numeral 10 denotes a heating chamber for storing an object to be heated, and a bottom surface 11 of the heating chamber 10 also serves as a heating electrode. On the bottom surface 11 of the heating chamber, there is provided a microwave radiating section 13 for supplying the microwave (2450 MHz band) generated by the microwave generating means 12 into the heating chamber 10. Reference numeral 14 denotes a waveguide for transmitting microwaves to the microwave radiating unit 13. The configuration around the microwave radiating section 13 will be described later. Reference numeral 15 denotes a microwave stirring means having a plate-like structure made of a metal material (a non-magnetic metal material, for example, aluminum), which is rotated by a motor 16. A mounting portion 17 made of a non-metallic material (for example, heat-resistant glass, ceramics, or heat-resistant resin) on which the object to be heated is placed so as to cover the microwave stirring means 15 is arranged. By using a non-metallic material for the mounting portion of the object to be heated, a sense of security can be provided, and since the object to be heated is insulated from the heating electrode 11, local heating of the object to be heated can be prevented.
[0026]
On the other hand, reference numeral 18 denotes another heating electrode (a non-magnetic metal material, for example, aluminum or SUS304), which is supported by arms 19 and 20 made of an insulating material (PPS or PS). The other ends of the arms 19 and 20 are fixedly connected to racks 21 and 22, respectively. Reference numeral 23 denotes a motor. A pinion 24 made of a resin material is arranged on an output shaft of the motor. By driving the motor 23, a rack meshed with a gear of the pinion 24 moves in the left-right direction in FIG. The motor 23 is a synchronous motor whose rotation direction is not restricted. Incidentally, the motor 23 may use a stepping motor.
[0027]
25 is a high-frequency generating means for generating a high frequency (for example, 13.56 MHz, 27.12 MHz) supplied between the bottom surface 11 of the heating chamber and the heating electrode 18, and 26 is an output power provided on the output side of the high-frequency generating means 25. And a power detector (such as a CM type SWR circuit) for detecting reflected power, and 27 is a power supply line. The power supply line 27 is formed of a coaxial cable, and the outer conductor 27a is connected to the wall surface 11 of the heating chamber 10 so as to be electrically conductive. The central conductor 27b of the power supply line 27 formed of a coaxial cable is connected to a coil 28 having a tap switching terminal, which is a variable impedance element.
[0028]
The other end of the coil 28 with the tap switching terminal, which is a variable impedance element, and one end of the fixed impedance element 29 are connected by a flexible plate-shaped conductor 30 having an insulator attached to the surface.
[0029]
The fixed impedance element 29 has a coil configuration and is formed by winding a conductive wire several times around a body 31 made of an insulating material fixed to the heating electrode 18. The other end of the fixed impedance element 29 is connected to the heating electrode 18. The body 31 is fixedly assembled to the heating electrode 18. With this configuration, the heating electrode 18 and the fixed impedance element 29 have an integral structure, and the fixed impedance element 29 is integrally formed with the movement of the heating electrode 18. Go up and down.
[0030]
Further, according to this configuration, the fixed impedance element 29 and the variable impedance element 28 are arranged in series between the high-frequency generator 25 and the heating electrode 18. Further, a fixed impedance element 32 arranged in parallel between the variable impedance element 28 and the high frequency generation means 25 is provided.
[0031]
This fixed impedance element 32 is a capacitor. FIG. 3 shows the detailed configuration of this capacitor. In FIG. 3, reference numerals 321 and 322 denote one electrode, 323 denotes the other electrode, and 324 and 325 denote a dielectric (a material having a high relative permittivity, for example, alumina) laminated between the electrodes.
[0032]
In addition, each electrode and the dielectric are provided with a hole having a predetermined size in the center, and after laminating them in order, a metal is inserted into the hole in the center to make the electrodes 321 and 322 conductive. Constructs a capacitor. The holes 326 and 327 provided on the electrodes 321 and 322 are holes for connecting one electrode, and the holes 328 provided on the electrode 323 are holes for connecting the other electrode. In FIGS. 1 and 2, a metal screw passed through the center is assembled with a metal surface that is electrically connected to the bottom surface 11 of the heating chamber.
[0033]
Next, the radio wave leakage suppressing means 33 will be described with reference to FIGS.
FIG. 4 is a sectional view taken along the line AA ′ of FIG. On the upper wall surface 34 of the heating chamber 10 facing the peripheral edge of the movable heating electrode 18, a comb-shaped region is arranged substantially periodically and circulated to form a comb-shaped region. A choke wall surface 36 that covers the comb region and forms a choke groove with the comb portion 35 is provided on the side of the comb region opposite to the heating electrode 18. Also, as shown in FIG. 1, the locking portions 37 and 38 for fixing and supporting the heating electrode 18 with a predetermined gap formed between the comb-shaped region and the choke wall surface 36 are formed by the wall surfaces. The radio wave leakage suppressing means 33 includes a heating electrode 18, a comb-shaped region in which the comb portions 35 are periodically arranged, a choke wall surface 36, and a locking portion. The length of the comb section 35 is about 1 / wavelength (about 30 mm) of the wavelength of the microwave used, and the size of the gap 35 a provided between the comb sections is 10 mm. The width of the comb portion 35 is 20 mm in the straight portion and 10 mm in the corner portion.
[0034]
In FIG. 4, reference numeral 18a denotes the periphery of the heating electrode 18, reference numeral 39 denotes an opening / closing door for taking the object to be heated into and out of the heating chamber 10, and reference numeral 40 denotes an operation panel on which operation keys for inputting a heating operation of the apparatus are arranged.
[0035]
By the radio wave leakage suppressing means 33 configured as described above, the impedance when the comb side is viewed from the surrounding position of the heating electrode 18 has a very low value. As a result, the metal wall surface for confining the microwave in the heating chamber 10 acts like a metal body in which the upper wall surface 34 of the heating chamber 10 and the heating electrode 18 are continuous. Therefore, the generation of sparks between the heating electrode 18 and the wall surface of the heating chamber can be suppressed.
[0036]
In addition, this action suppresses the inflow of microwaves into the heating electrode 18 on the side opposite to the heating chamber 10, so that the fixed impedance element 29 can be arranged at the center of the heating electrode 18, and the variable impedance element 28 can be disposed. A power line 41 or the like connecting the fixed impedance element 29 and the like can be arranged, and the heating electrode that can move as in the present embodiment can be a high-voltage side electrode.
[0037]
Further, when performing microwave heating, by fixing the heating electrode close to the wall surface of the heating chamber without danger of spark, the effective volume of the heating chamber can be increased and the microwave heating can be performed efficiently.
[0038]
In addition, since the locking portion is provided, a predetermined gap can be reliably formed, and the action of the radio wave leakage suppressing means can be reliably operated. Further, the comb-like configuration ensures that the action of the radio wave leakage suppressing means can be reliably applied to microwaves that propagate randomly in the heating chamber and enter the gap between the heating chamber wall surface and the heating electrode from all directions.
[0039]
Next, the surroundings of the microwave radiating section 13 will be described with reference to FIGS. The microwave radiating portion 13 has a waveguide end face 42 on the side of the waveguide 14 remote from the side where the microwave generating means is mounted, and approximately 1 / of the transmission wavelength of the frequency transmitting the waveguide 14 from this end face 42. (The H-plane of the waveguide) between them. The microwave radiating portion 13 is constituted by L-shaped openings 13a and 13b, respectively, and is arranged point-symmetrically. The point-symmetric position is on the tube axis 43 of the waveguide 14 and is the center of the hole 44 in the figure. Each of the openings 13a and 13b of the microwave radiating portion 13 has a portion parallel to and perpendicular to the tube axis of the waveguide 14, and the openings are arranged so as not to cross the tube axis.
[0040]
Also, reference numeral 45 shows an example in which the transmission wavelength in the waveguide is a standing wave distribution, but it is not necessary to limit the length of the waveguide 14 to resonate in the waveguide as shown.
[0041]
The hole 44 is penetrated by the output shaft (made of non-metal and low dielectric loss material) of the motor 16 which is connected to the microwave stirring means 15 and rotates it. The microwave stirring means 15 has a rectangular plate configuration made of a metal material as described above, and its plate surface is arranged substantially parallel to the bottom surface 11 of the heating chamber. With such a configuration, the microwave stirring means 15 is arranged so as to be insulated from the wall surface 11 of the heating chamber 10. The configuration of the microwave stirring means 15 minimizes the non-uniform distribution of the high-frequency electric field generated between the heating electrodes in the heating using the electrodes. Reference numeral 46 denotes a hole into which the output antenna of the microwave generating means 12 is inserted and assembled.
[0042]
Next, the main operation of the microwave radiating section will be described. The microwave transmitted through the waveguide 14 causes a high-frequency current as shown by arrows 47 to 50 in FIG. 6 to flow on the waveguide wall surface, and similarly causes arrows 47 to 50 to flow through the L-shaped radiation ports 13a and 13b. A high-frequency electric field in the direction indicated by. The high-frequency electric fields are mutually coupled to form a rotating electric field and radiate from the radiation port. This forms a wide radiation distribution around the radiation outlet. The behavior in the vicinity of the radiation port reduces the influence on the microwave generation means due to the difference in the amount and shape of the object to be heated, and enables the microwave generation means to operate stably with respect to the object to be heated in various ranges. As a result, the utilization efficiency of the generated microwave energy can be increased.
[0043]
The microwave radiated from the microwave radiating section 13 into the heating chamber 10 while generating a rotating electric field is disturbed by the microwave stirring means 15, and the microwave is radiated all over the heating chamber 10, and the microwave is radiated. Promotes uniform heating of heated objects. The microwave stirring means 15 is, for example, a rectangular plate having a width of 20 mm and a length of 120 mm (preferably 90 mm or more).
[0044]
FIG. 7 shows a circuit diagram relating to heating using the electrodes of the above-described apparatus. In FIG. 7, 25 is a high-frequency generating means, 26 is a power detector, 32 is a fixed impedance element arranged in parallel, 28 is a variable impedance element arranged in series consisting of a variable coil with tap switching, and 29 is a fixed impedance element arranged in series. , 18 are movable heating electrodes, 11 is a bottom surface of the heating chamber, 17 is a mounting portion, and 51 is an object to be heated.
[0045]
Next, the movable operation of the heating electrode 18 will be described.
When the motor 23 is operated in the state shown in FIG. 1, the rotation direction of the motor 23 is regulated in a direction in which the racks 21 and 22 can move freely, whereby the motor 23 rotates in a direction in which the heating electrode 18 moves down. The lowering of the heating electrode 18 continues as shown in FIG. 2 until the arms 19 and 20 become substantially vertical. In this state, one ends of the racks 21 and 22 hit the wall surfaces 52 and 53 of the heating chamber. Then, the driving torque of the motor 23 in the current rotation direction increases, and the motor 23 starts rotating in the opposite direction to eliminate the increase. Thereby, the heating electrode 18 starts to rise and returns to the uppermost position as shown in FIG.
[0046]
In the uppermost position shown in FIG. 1, the heating electrode 18 is restricted from rising by metal parts 37 and 38 which are one of the components of the radio wave leakage suppressing means 33. The arrival of this position is detected by a limit switch (not shown), and the operation of the motor 23 is stopped.
[0047]
A method of controlling the heating electrode 18 when the object to be heated is stored will be described below with respect to the elevating operation of the heating electrode 18. When the motor 23 is operated after the object to be heated is mounted, the heating electrode 18 starts to descend, and when the heating electrode 18 comes into contact with the object to be heated or the container for the object to be heated, the descending operation stops. At this time, a driving torque is generated in the motor 23, and the driving current of the motor increases accordingly. The driving current is monitored, and after detecting an increase in the driving current, the operation of the motor is stopped after a predetermined time has elapsed, so that the heating electrode 18 is stopped and fixed in the heating chamber 10.
[0048]
Thereafter, the high-frequency generator 25 is operated, and based on the detection signal of the power detector 26, the tap switching position of the variable impedance element 28 is selected so that the reflected power is minimized. In this way, the high-frequency heating is continued, and the heating is stopped for a predetermined time or based on a temporal change of the reflected power.
[0049]
Next, the effectiveness of high-frequency heating using the electrode having the above configuration will be described with reference to FIG. FIG. 8 shows a point P1 in FIG. 7 when the gap between the heating electrode 18 and the object to be heated is set to 10 mm and the value of the variable impedance element is selected such that the reflected power is minimized. Is a plot of the impedance value, as viewed from the side of the heating electrode side, on the Smith chart. The measurement frequency is 13.56 MHz, the fixed impedance element 32 arranged in parallel is a 690 pF capacitor, the fixed impedance element 29 in series is a 2 μH coil, and the variable impedance element 28 is 0.7 μH, 0.8 μH, 0.9 μH. Using. The shape of the heating electrode 18 is 250 mm x 200 mm, and the objects to be heated are 100 g, 300 g of beef sliced meat (marked with □ in the figure), minced meat (marked with △ in the figure), and tuna block (marked with ● in the figure). 500 g were used.
[0050]
A broken line circle 54 in the figure indicates that the value of the voltage standing wave ratio is 2, which is about 11% in terms of power reflectance. Although impedance matching adjustment is performed only by selecting the value of the variable impedance element 28 for the object to be used, the reflected power can be made sufficiently small, and the output power of the high-frequency generator 25 can be efficiently applied to the object to be heated. It was confirmed that the material could be supplied well, and the object to be heated could be well thawed in a short time.
[0051]
That is, it is possible to realize a sufficiently practical high-frequency heating device by using only one variable impedance element. In this case, in the two impedance elements (fixed impedance element and variable impedance element) arranged in series, the impedance value of the fixed impedance element provided on the heating electrode side is twice or more the maximum impedance value of the variable impedance element. Thereby, a high voltage is divided between the heating electrodes and the two impedance elements arranged in series. Since the fixed impedance element shares a high voltage, the connection between the fixed impedance element and the heating electrode is basically thick and short, and the fixed impedance element is integrally assembled with the heating electrode. Thereby, heat generation of the connection portion can be suppressed.
[0052]
In addition, since the high voltage is concentrated on the heating electrode and the fixed impedance element, heat generation at the connection between the fixed impedance element and the variable impedance element can be suppressed, and a highly flexible conductive wire can be used for this connection. .
[0053]
The larger the ratio of the impedance value is, the more effective it is. However, in consideration of securing the variable range of the variable impedance, it can be practically used up to about 4 to 5 times.
[0054]
From the above, each impedance element involved in impedance matching is optimized by optimizing the impedance ratio of each impedance element arranged in series using fixed impedance elements arranged in parallel and fixed impedance elements arranged in series as well as variable impedance elements arranged in series. It is possible to realize an apparatus that can be configured compactly and that can realize adjustment of impedance matching with simple control.
[0055]
In FIG. 6, although the tube axis of the waveguide and the microwave radiating portion are arranged on the bottom surface of the heating chamber, the same effect can be obtained even if these are arranged on the side surface.
[0056]
(Example 2)
Next, a second embodiment of the present invention will be described with reference to FIG. The second embodiment differs from the first embodiment in the configuration of the microwave stirring means. Note that the same members or the same equivalent members as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0057]
That is, in FIG. 9, radiation ports 13 a and 13 b having an L-shaped opening are arranged at the end side of the rectangular waveguide 14 so that the point located on the tube axis of the waveguide 14 is point-symmetric. ing. Above the plurality of radiation ports 13a and 13b, there is provided a microwave stirring means 55 made of a substantially circular metal plate as a rotating body. The microwave stirring means 55 is configured to be rotationally driven around the point symmetric position 44 of the plurality of radiation ports 13a and 13b as the center of rotation. That is, a support (not shown) made of a non-metallic material having a low dielectric loss and a low magnetic permeability is provided at the center of the substantially circular shape of the microwave stirring means 55, and the output shaft of the motor 16 is fitted to the support. Have been combined. The microwave stirring means 55 has openings 56a and 56b similar to the L-shaped openings provided in the waveguide 14.
[0058]
With such a configuration, the L-shaped openings 56a and 56b provided in the microwave stirring means 55 are protected by rotating the microwave stirring means 55 while protecting the radiation distribution formed by the L-shaped radiation ports. By acting as a second radiation port and radiating microwaves to the object to be heated, uniform heating of the object to be heated can be promoted without moving the object to be heated.
[0059]
The shape of the opening provided in the microwave stirring means 55 is not limited to the L-shape. For example, a plurality of rectangular shapes may be arranged so that the longitudinal directions thereof are orthogonal to each other. Further, the microwave stirring means 55 may be driven to rotate eccentrically. Further, the microwave stirring means 55 may have any configuration as long as it allows a radiation distribution appearing through a radiation port having an L-shaped opening provided in the waveguide 14, and may have a fan shape, for example.
[0060]
In the above embodiments, it is desirable that the corners of the radiation ports or openings are appropriately rounded from the viewpoint of processing and suppression of spark generation due to edge portions.
[0061]
【The invention's effect】
As described above, according to the present invention, the movable electrode for heating is provided with the radio wave leakage suppressing means provided on the wall surface of the heating chamber facing the movable electrode, so that the heating electrode is moved and fixed near the wall of the heating chamber. When microwave heating is performed, the transmission of microwaves in the gap between the heating chamber wall surface and the heating electrode can be suppressed, and the generation of sparks can be reliably suppressed, so that the effective volume of the heating chamber can be increased and the microwave can be increased. Wave heating can be performed efficiently.
[0062]
Further, in the heating chamber for accommodating the object to be heated, one of the heating electrodes arranged so as to sandwich the object to be heated is used as the wall surface of the heating chamber, and the end of the waveguide for transmitting microwaves is provided with the waveguide. A wide radiation distribution is formed around the radiation port by arranging a plurality of L-shaped microwave radiation ports arranged point-symmetrically with respect to a point on the tube axis of the heating chamber at a substantially central portion of the wall surface of the heating chamber. In addition, the influence on the microwave generating means due to the difference in the amount and shape of the object to be heated is reduced, and the microwave generating means can be operated stably for various objects to be heated, and the utilization efficiency of the microwave energy is improved. be able to. Further, a highly convenient device capable of continuously performing dielectric heating using an electrode and microwave heating using a microwave can be provided.
[Brief description of the drawings]
FIG. 1 is a front cross-sectional view of a high-frequency heating device according to a first embodiment of the present invention; FIG. 2 is a front cross-sectional view when a heating electrode of the high-frequency heating device is moved; FIG. FIG. 4 is a sectional view taken along the line AA ′ of the high-frequency heating device. FIG. 5 is a sectional view taken along the line BB ′ of the high-frequency heating device. FIG. 6 is a microwave radiation of the high-frequency heating device. FIG. 7 is a circuit configuration diagram relating to heating using electrodes of the high-frequency heating device. FIG. 8 is a load impedance characteristic diagram of the high-frequency heating device for various objects to be heated. FIG. 9 is an embodiment of the present invention. Configuration diagram around the microwave radiating section of the high-frequency heating device 2 [Explanation of reference numerals]
10 heating chamber 11 bottom of heating chamber (one heating electrode)
12 Microwave generation means 13 Microwave radiation part (supply part)
13a, 13b, 56a, 56b L-shaped opening 15, 55 Microwave stirring means 17 Mounting part 18 Heating electrode (movable heating electrode)
25 High frequency generating means 33 Radio wave leakage suppressing means 35 Comb portions 37, 38 Locking portion 43 Waveguide tube shaft 51 Heated object

Claims (11)

被加熱物を収納する加熱室と、前記被加熱物を挟む形で配置した少なくとも一方が可動する加熱用電極と、前記加熱室の壁面のうち可動する加熱用電極が対向する面に設け前記加熱室と前記可動する電極との隙間からの電波の漏洩を抑制する電波漏洩抑制手段とを備えた高周波加熱装置。A heating chamber for accommodating the object to be heated, a heating electrode movable at least one of which is arranged so as to sandwich the object to be heated, and a heating electrode provided on a surface of the wall surface of the heating chamber opposite to the movable heating electrode. A high-frequency heating apparatus comprising: a radio wave leakage suppressing unit that suppresses a radio wave from leaking from a gap between a chamber and the movable electrode. 電波漏洩抑制手段は、可動する加熱用電極の周縁部に対向する加熱室壁面に設けた構成の請求項1に記載の高周波加熱装置。The high-frequency heating device according to claim 1, wherein the radio wave leakage suppressing means is provided on a wall surface of the heating chamber facing a peripheral portion of the movable heating electrode. 可動する加熱用電極と電波漏洩抑制手段を配した加熱室壁面との間に所定のすきまを形成した状態で可動する加熱用電極を固定支持する係止部を設けた請求項1に記載の高周波加熱装置。2. The high-frequency device according to claim 1, further comprising: a locking portion for fixedly supporting the movable heating electrode with a predetermined clearance formed between the movable heating electrode and a wall of the heating chamber provided with the radio wave leakage suppressing means. Heating equipment. 可動する加熱用電極に対向する加熱室壁面を櫛状に構成した請求項2に記載の高周波加熱装置。3. The high-frequency heating apparatus according to claim 2, wherein a wall surface of the heating chamber facing the movable heating electrode has a comb shape. 被加熱物を収納する加熱室と、この被加熱物を挟む形で配置した加熱用電極とを備え、前記電極の一方を前記加熱室の壁面とし、前記加熱室の壁面にはマイクロ波を伝送する導波管の終端側に前記導波管の管軸上の点に対して点対称に配設した複数のL字状のマイクロ波放射口を前記加熱室の壁面の略中央部に配置する構成とした高周波加熱装置。A heating chamber for storing the object to be heated, and a heating electrode arranged so as to sandwich the object to be heated, one of the electrodes being a wall surface of the heating chamber, and a microwave being transmitted to the wall surface of the heating chamber. A plurality of L-shaped microwave radiating ports arranged point-symmetrically with respect to a point on the tube axis of the waveguide on the terminal side of the waveguide to be arranged are arranged at substantially the center of the wall surface of the heating chamber. High-frequency heating device configured. 複数のマイクロ波放射口の導波管の管軸方向における最大間隔は、この導波管を伝送するマイクロ波の伝送波長の略1/2の長さとした請求項5に記載の高周波加熱装置。The high-frequency heating apparatus according to claim 5, wherein the maximum interval between the plurality of microwave radiating ports in the direction of the tube axis of the waveguide is substantially half the transmission wavelength of the microwave transmitted through the waveguide. 複数のマイクロ波放射口は導波管の管軸を横切らない構成とした請求項5に記載の高周波加熱装置。The high-frequency heating device according to claim 5, wherein the plurality of microwave radiation ports are configured not to cross the axis of the waveguide. 被加熱物を載置する非金属材料の載置部と、マイクロ波放射口と前記載置部との間に回転支持されるマイクロ波攪拌手段とを備え、前記マイクロ波攪拌手段を非金属で低誘電損失で低透磁率の材料にて支持した請求項5に記載の高周波加熱装置。A mounting portion of a non-metallic material for mounting an object to be heated, a microwave stirring means rotatably supported between the microwave radiating port and the mounting portion, and the microwave stirring means is made of non-metal. The high-frequency heating apparatus according to claim 5, wherein the apparatus is supported by a material having low dielectric loss and low magnetic permeability. マイクロ波攪拌手段は、長方形状の板とした請求項8に記載の高周波加熱装置。The high-frequency heating device according to claim 8, wherein the microwave stirring means is a rectangular plate. マイクロ波攪拌手段は、円形状の板とし、この円板に回転の中心を点対称とする複数のL字状の開口を設けた請求項8に記載の高周波加熱装置。9. The high-frequency heating apparatus according to claim 8, wherein the microwave stirring means is a circular plate, and the disk has a plurality of L-shaped openings having a point of symmetry about the center of rotation. L字状の開口は、導波管に設けたマイクロ波放射口と同等の形状で構成した請求項10に記載の高周波加熱装置。The high-frequency heating apparatus according to claim 10, wherein the L-shaped opening has a shape equivalent to a microwave radiation port provided in the waveguide.
JP2002220992A 2002-07-30 2002-07-30 High frequency heating device Expired - Lifetime JP3925345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220992A JP3925345B2 (en) 2002-07-30 2002-07-30 High frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220992A JP3925345B2 (en) 2002-07-30 2002-07-30 High frequency heating device

Publications (2)

Publication Number Publication Date
JP2004063312A true JP2004063312A (en) 2004-02-26
JP3925345B2 JP3925345B2 (en) 2007-06-06

Family

ID=31941444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220992A Expired - Lifetime JP3925345B2 (en) 2002-07-30 2002-07-30 High frequency heating device

Country Status (1)

Country Link
JP (1) JP3925345B2 (en)

Also Published As

Publication number Publication date
JP3925345B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
US10356855B2 (en) Microwave heating apparatus
US4463239A (en) Rotating slot antenna arrangement for microwave oven
KR20030072340A (en) Device for heating a material by microwave application
US10680335B2 (en) Resonant antenna for generating circularly-polarized signal with multiple modes
KR100380313B1 (en) Variable-impedance unit, microwave device using the unit, and microwave heater
JP3925345B2 (en) High frequency heating device
JP3925344B2 (en) High frequency heating device
JP2008166090A (en) Microwave heating device
JP2005129335A5 (en)
JP2005129335A (en) High-frequency heating device
JP2016213099A (en) Heating cooker
JP2558877B2 (en) High frequency heating equipment
JP2014216067A (en) High-frequency wave heating device
JP2005100673A (en) High-frequency heating apparatus
EP3852496A1 (en) Microwave processing apparatus
CN210568632U (en) Intelligent microwave oven with dual modes
JP2013016339A (en) Microwave heating device
JPH11144861A (en) Microwave cavity
JP3630135B2 (en) High frequency heating device
EP3479653B1 (en) Microwave feeding system
WO2022123875A1 (en) Thawing and heating cooker
RU2085057C1 (en) Superhigh-frequency oven
JP4888221B2 (en) Microwave heating device
CN117676945A (en) Microwave heating apparatus
JP2004206938A (en) High-frequency heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Effective date: 20060929

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Effective date: 20070110

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110309

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110309

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6